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Abstract 

The Discrete Element Method (DEM) is a well-established approach to study granular materials in 

numerous fields of application; modelling each granular particle individually to predict the overall 

behavior. This behavior can be then extracted by averaging, or coarse graining, the sample using a 

suitable method. The choice of appropriate coarse-graining method entails a compromise between 

accuracy and computational cost, especially in the large-scale simulation typically required by 

industry. A number of coarse-graining methods have been proposed in the literature, these are 

reviewed and categorized in this work. Within this contribution two novel porosity coarse-graining 

strategies are proposed including a Voxel method where a secondary dense grid of “pixel-cells” is 

implemented adopting a binary logic for the coarse graining and a Hybrid method where both 

analytical formulas and pixels are utilized. The proposed methods are compared with four coarse-

graining schemes that have been documented in the literature, including the Particle Centroid Method 

(PCM), an Analytical method, a method which solves the diffusion equation and an approach which 

employs averaging using kernels. The novel methods are validated for problems in both two and three 

dimensions through comparison with the “accurate” Analytical method. It is shown that, once 

validated, both the proposed schemes can approximate the exact solutions quite accurately, however 

there is a high computational cost associated with the Voxel method. The accuracy of both methods 

can be adjusted allowing the user to decide between accuracy and computational time. A detailed 

comparison is then presented for all six schemes considering “accuracy”, “smoothness” and 

“computational cost”. Optimal parameters are obtained for all six methods and recommendations for 

coarse graining DEM samples are discussed. 

KEY WORDS: granular materials; discrete element method; homogenization; numerical simulations; 

coarse graining 
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Nomenclature 

𝑎, 𝑏, 𝑐 distances between the particle centroid and each bin face 

𝐴𝑐𝑎𝑝 area of disk cap 

𝐴𝑖  disk segment area 𝑖  

b bandwidth (width of averaging kernel) 

𝐶𝐹𝐷 Computational Fluid Dynamics 

𝐶𝑢 Coefficient of Uniformity 

𝐷 diffusion coefficient  

𝐷𝐸𝑀 Discrete Element Method 

𝑑𝑝 particle diameter 

𝑑𝑐𝑜𝑎𝑟𝑠𝑒  coarse particle diameter 

𝑑𝑓𝑖𝑛𝑒  fine particle diameter 

𝐹𝑓𝑖𝑛𝑒  fines content (%) 

𝐺 shear modulus  

h disk segment height  

𝑛 porosity  

𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠  number of Eulerian cells  

𝑁𝑝 number of particles  

𝑃𝐶𝑀 Particle Centroid Method 

𝑃𝑖 number of pixels along each direction of the sample  

𝑃𝑃𝑀 Particle Meshing Method 

r𝑝  particle radius 

𝑡 Time 

𝑉𝑐𝑎𝑝 spherical cap volume 

𝑉𝑐𝑒𝑙𝑙  Eulerian cell volume 
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𝑉𝑒𝑑𝑔𝑒  overlapping edge volume 

𝑉𝑝 particle volume 

𝑉𝑠𝑒𝑔𝑚  particle segment volume 

𝑋 multiplier that controls the Eulerian cell size  

𝒙 vector containing coordinates of Eulerian cell centroids 

𝑥𝑐 , 𝑦𝑐  coordinates of particle centroid 

𝒙𝑐,𝑘  vector containing coordinates of particle centroid 

𝑎 magnitude of diffusion coefficient 

∆𝑠 fluid-cell cell size 

∆𝑥 fluid-cell cell size (x-dimension) 

∆𝑦 fluid-cell cell size (y-dimension) 

∆𝑧 fluid-cell cell size (z-dimension) 

𝜀𝑝 particle volume fraction  

𝜁𝑖,𝑐𝑒𝑙𝑙  coefficient of volume fraction 

𝜇 interparticle friction coefficient  

𝜈 Poisson’s ratio  

𝜌 particle density 
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1 Introduction 

There are many reasons why one might want to upscale, homogenize or coarse-grain, the particle 

information available from a Discrete Element Method (DEM) simulation to obtain a continuum field. 

These include a desire to interpret the simulation data within the continuum mechanics framework in 

which much of our understanding of material behaviour has evolved [1], the need to upscale data for 

use in multi-scale modelling approaches [2] or where a DEM code is coupled with a Computational 

Fluid Dynamics (CFD) solver [3]. This last application, coupling DEM-CFD simulations, is the motivation 

for this study.  Specifically this contribution is relevant to the unresolved coupling approach where the 

fluid is modelled at a scale much larger than individual particles so the particle information is treated 

in an average manner [4].  

In the case of unresolved DEM-CFD simulations there is no strict consensus on the appropriate size of 

the Eulerian cells used to discretize the fluid field, however Itasca Consulting Group Inc. [5] suggest 

∆𝑠/dp > 5 where ∆𝑠 is the length of the side of the CFD cell and 𝑑𝑝 is the diameter of the considered 

DEM particles. In CFD-DEM the calculation of porosity (𝑛) within the Eulerian cells is a key step in the 

calculation process, shown in Fig. 1. One challenge posed is the need to balance the accuracy of the 

porosity calculations with computational efficiency and at the same time conserve the total mass of 

the solid phase [6]. In addition, averaged DEM fields are directly used in the numerical solution of the 

CFD, where large oscillations (“noise”) can cause problems with the numerical solution [7]. Kloss et al. 

[8] , Link et al. [2], Zhao and Shan [9] studied several calculation methods to improve smoothness and 

hence robustness of the pressure-velocity coupling, e.g. by smearing out each particle’s region of 

influence or by additional spatial smoothing of the void fraction field. 

 

  

Fig. 1 Schematic showing a Eulerian grid for an unresolved coupled DEM-CFD simulation. 

This manuscript critically assesses existing methods that have been developed to calculate porosity in 

CFD-DEM and proposes two novel algorithms. The existing and proposed methods are applied to 

dense assemblies of polydisperse disks and spheres and a comparison of the accuracy, computational 

cost and smoothness of the various methods is presented. The advantages and disadvantages of each 

method are listed, highlighting the trade-off between the need for more accurate methodologies and 

available computational power.   

 

Eulerian grid

Eulerian cell

ΔS

ΔS
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The paper is organized as follows. In Section 2 the existing coarse-grained algorithms documented in 

the literature are reviewed, compared, and evaluated. Section 0 presents the averaging algorithms 

implemented in the current study and demonstrates the rationale behind them in two and three 

dimensions. Section 4 describes the calibration of each algorithm, and presents the results of the prior 

tests. Section 5 identifies the advantages and limitations of each method by directly comparing them 

in terms of accuracy, smoothness and computational cost. Finally, conclusions are provided in Section 

6.  

2 Review of existing methods  

The documented coarse graining approaches can be broadly classified as “binning” and “smoothing” 

methods. In the binning methods the particle volumes are assigned to the Eulerian cells (bins) and the 

porosity calculation is determined in each bin separately. In contrast, smoothing methods are based 

on the generation of a Eulerian field, from multiplication of particle positions by a weighting, 

generated using a Gaussian or Lucy function, so the particle density is distributed or “smoothed” over 

the support of the weighting function.  

Binning methods: The simplest and most commonly used binning method is depicted in Fig. 2a and is 

known as the Particle Centroid Method (PCM). According to this method the entire volume of each 

particle is attributed to the Eulerian cell in which its centroid is located, even where the particle is 

shared between two or more cells [10–12]. Porosity fields in simulations using this method can display 

unrealistic results due to particle crossing the Eulerian cell boundaries, especially when the cells are 

not much larger than the particle diameter. To reduce this adverse effect the so-called approximate 

methods were developed.  The “Divided Particle Volume Methods” (DPVP) approximate the shape of 

the particle by some simple geometric approach such as cube and then portions of the particle volume 

are assigned to neighbouring cells. Darmana et al. [13] following the work of Tomiyama et al. [14] 

introduced a DPVM where the particles (described as bubbles), can be either smaller or bigger than 

the Eulerian grid size. The particle volume fraction 𝜀𝑝 in a computational cell was calculated from the 

volume occupied by the particles (approximated as cuboids) present in the cell under consideration, 

multiplied with 𝜁𝑐𝑒𝑙𝑙
𝑖 , a factor that depends on the particle shape, see Fig. 2b. Similarly, Khawaja et al. 

[15] assumed cubic particles (Fig. 2c) and applied corrections to approximate the solution for the case 

of spherical particles, aiming to reduce the computational effort of  the exact solution. However, the 

problem of the approximation error remained, especially when the sphere is intersected by three 

planes, i.e. the sphere is divided to four segments while the cube is divided to eight. In their 2D study 

of a ring axi-symmetric Couette shear-cell, Lätzel et al. [16], proposed a slicing method for calculating 

the particle areas that belong to each ring wall with radius 𝑅𝑖 (Fig. 2d), assuming that the boundaries 

are straight and the particles are cut in slices. Satellite point methods (SPM) [17–23] approximate the 

particle as collection of smaller pseudo-particles. Porosity is then determined by the amount of these 

pseudo-particles within each cell. Recently, such methods were employed to volume averaging of non-

spherical particles [24–27] as they are significantly more accurate compared to the PCM. Peng et al. 

[18] introduced the Particle meshing method (PMM) which belongs to the SPM family. This method 

relies on a versatile meshing technique, by which the particles are meshed into several small particle 

grids. The solid volume in a fluid cell is calculated by counting the number of particle grids in the cell 

and adding up their volumes with the advantage that the particle volume can be allocated to different 

cells (Fig. 2e). 

To obtain accurate results some researchers have focused on the development of so called “analytical” 

methods. These aim to get the exact fraction of the spherical particles located in each of the cells using 

analytical formula for the geometry intersection. Wu et al. [28] developed an accurate analytical 
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method developed for cells of different shapes (wedged, tetrahedral, or hexahedral) and for different 

particle–cell intersections (node, edge or face) (Fig. 2f). Bnà et al. [29] used a double Gauss–Legendre 

integration and a large number of nodes to calculate the intercepted sphere volumes. Similarly, 

Freireich et al. [30] assumed spherical particles, cuboidal measurement bins and a Cartesian 

coordinate system, and derived their solution by integrating the overlap volumes.  

Smoothing methods: Unlike binning methods which extract average values in small volumes, 

smoothing techniques evaluate continuum fields as a function of time and space. The resulting fields 

satisfy the conservation equations of continuum mechanics,  the particles are not assumed rigid or 

spherical and the spatial and temporal averaging scales are well-defined [31, 32]. In the smoothing 

methods a kernel, or wavelet, is applied to the center of each particle and porosity is distributed 

according to the kernel's shape. A similar procedure is used for filters in digital image processing 

applications. As a result, the solid volume fraction at each point is calculated as the summation of the 

distributed volume of each particle. Goldhirsch et al. [33, 34] studied the effect of the application of 

statistical kernels to calculate stresses in rapid granular flows. They noted that the classical statistical 

mechanical theories do not take into account the effect of resolution on the constitutive relationships 

and the fluctuations can be strong, revealing unrepresentative averaging. Weinhart et al. [35–37] 

chose a Gaussian function to establish the macroscopic velocity and stress fields while  delivering 

smooth results; they applied cut-off limits to reduce the computational cost. They also mentioned that 

coarse-graining functions such as Heaviside or Lucy polynomials can be used instead, however the 

coarse-grained fields depend only weakly on the choice of the function.  This approach has been 

implemented to consider chute flows [35, 36], silo flows [37], dosing of cohesive powders [38], ring 

shear cells [39], granular avalanches and more, using the open-source software MercuryDPM [40]. 

Zhu and Yu [41] developed an averaging method to derive the average balance equations for granular 

materials. In their work they described the characteristics of a proper weighting technique and special 

treatment was provided for the particles located near the external boundaries by introducing image 

particles (Fig. 2g). Sun and Xiao [42] applied the Gaussian distribution to calculate porosity and 

validated  their results by comparison with other coarse graining methods, while Ries et al. [43] studied 

three different methods to tackle the  challenge posed by applying  statistical methods near the 

physical boundaries. Simonsen et al. [44] proposed a new weight for distributing the discrete phase 

exchange rates to the continuous phase cells. This is done by analytically integrating any distribution 

over the entirety of the particle trajectory, and only requires the probability and cumulative density 

functions to be specified. An equivalent to the kernel method approach, named the Diffusion Based 

method, was proposed by Sun and Xiao [42, 45]. This approach uses the field from the PCM method 

as an initial condition for a diffusive solver, which distributes the measured quantities over a wider 

area. Kloss et al. [8], Jing et al. [46] and Link et al.  [47] identified limitations on the applicability of the 

binning methods (referred to as the divided void fraction method [9]) as erroneous results arise when 

the maximum particle size gets close to the fluid cell size, because the discrete particles would cause 

discontinuities to the porosity field in the fluid domain. To overcome this obstacle, they treated the 

particles as porous cubes [47] or porous spheres, [44]. According to this approach the actual particle 

volume is equally distributed to the porous particle allowing different porous particles to overlap in 

one Eulerian cell (see Fig. 2h).  
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Fig. 2 Graphical illustration describing the binning and smoothing approaches applied in the literature. (a) PCM: 

The volume of particles A, B, C, D is allocated to 𝐶𝑒𝑙𝑙 2 and the volume of particle 𝐸 to 𝐶𝑒𝑙𝑙 1. (b) Darmana et 

al. [13] DPVM: The spherical particles are approximated by cubes and corrections are applied to increase 

accuracy. (c) Khawaja et al. [15] DPVM corrected Cube method: Comparison between a sphere and a cubic 

particle at the same location, intersected by the same planes and the cube to sphere correlation. (d) Latzel et al 

model [16]: Plan view and schematic plot of a particle at radial position 𝑟𝑝 which is cut into pieces by the 

boundaries 𝑅𝑙. (e) PMM [18]: Acquisition of centroid coordinate and volume of particle grids of each particle, 

where 𝒙𝑖
𝑒, 𝑉𝑖

𝑒  are the meshed particle coordinates and volume. (f) Wu et al. [28] analytical model: different 

cases of particle- positions/unstructured lattice.  (g) PPM: Configuration of the porous particle representation, 
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assuming a porous sphere. (h) Statistical kernel method: Gaussian kernel averaging for a particle volume near a 

physical boundary. The kernel function ℎ(𝑥 − 𝑥𝑖) for the physical particle located at 𝑥𝑖  is shown on the physical 

domain (left to the boundary); the kernel function ℎ(𝑥 − 𝑥𝑖  ) for the image particle located at 𝑥𝑖
′ is shown on 

the image domain (right to the boundary). The kernel function based on the superposition of the two functions 

above are shown on the physical domain in the top panel with shade and in the bottom panel with solid line 

 

The most commonly employed coarse graining methods are summarized Table 1 and are assessed 

based on the implementation complexity, use with unstructured mesh, parallel coding capabilities and 

difficulties in treating the exterior boundaries. Additionally, the smoothness of solution in small cells 

is stated. 
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Table 1 Summary of advantages and disadvantages of aggregation methods in the literature, with the names of the studied methods in this work in bold followed by an 

asterisk. 

Coarse graining 
method 

Use with 
unstructured mesh 

Complexity to 
implement 

Implementation in 
parallel code 

Smooth field on 
small cells 

Treatment of 
exterior boundaries 

Variations of method References 

Particle centroid 
method (PCM)* 

Easy Easy Easy No Easy 
Classic [10–12] 

2D to 3D scaling [12, 48, 49] 

Approximate method Difficult Difficult Difficult 
Depend on 
approximations 

Easy 

Equivalent cube method [13–15, 28] 

Slicing method [16] 

Particle meshing method (PPM) [18] 

Satellite point methods [17, 19–27] 

Exact methods* Difficult Moderate Difficult Yes (if Δx>~2dp) Easy 

Divided particle volume method [28] 

Numerical integration of Volume of 
Fluid function 

[29] 

Analytical method for determining 
local solid fractions 

[30] 

Analytical calculation of the overlap 
volume of spheres and mesh 
elements 

[50] 

Porous particle 
methods 

Moderate Moderate Moderate Yes Moderate 

Big particle (CFDEM software) [8] 

Porous sphere method [46] 

Porous cube method [47] 

Kernel method* Moderate Moderate Moderate Yes Difficult 

Statistical functions applied to stress 
fields 

[33–40] 

Averaging method for granular 
material 

[41] 
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Coarse graining 
method 

Use with 
unstructured mesh 

Complexity to 
implement 

Implementation in 
parallel code 

Smooth field on 
small cells 

Treatment of 
exterior boundaries 

Variations of method References 

Kernel-based interpolation procedure 
between Eulerian and Lagrangian 
fields 

[51] 

Statistical kernel method [42] 

Coarse graining strategies at walls [31, 43] 

Diffusion-based 
method* 

Easy easy Easy Yes Moderate - [42, 45] 
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3 Description of the porosity Coarse Graining Approaches 

In the current study, six coarse graining methods are assessed.  These comprise two binning methods; 
the Particle centroid method (PCM) and an Analytical method as well as two new approaches, a Voxel-
based method and a Hybrid method where porosity is calculated combining analytical and a pixel/voxel 
grid. Additionally, two smoothing approaches, the Diffusion-based and Kernel-based methods are 
considered.  A diagram, illustrating and classifying the considered methods is presented in Fig. 3. 

  

Fig. 3 Diagram of coarse graining methods analyzed here 

3.1 General methodology 

Any coarse-graining algorithm must consider particles moving freely in a specific domain, so that their 

centroid can be located at any random position within each Eulerian cell. Four different cases can be 

identified.  In Category A particles are completely contained within the cell; in this case the whole area 

/ volume of the particle is attributed to the specific cell. Category B considers the particles that 

intercept the boundary between two cells and as a result the particles are divided into two segments. 

For Category C the particles overlap the intersection of 4 (2D) or 8 (3D) Eulerian cells. The fourth 

category refers to the case where particles intersect the external boundaries of the sample (Category 

D). The applications considered in this study used periodic boundaries, consequently the portion of 

the particle located outside the sample boundaries is essentially attributed to the opposite Eulerian 

cell. 

3.2 Particle centroid method (PCM) 

This is the simplest but crudest approach to obtain a porosity coarse-grained field. The whole particle 

area is attributed to the cell containing the particle’s centroid even when the particle extends beyond 

the cell boundaries. The porosity of a Eulerian cell using the PCM is as follows: 

𝑛 =
𝑉𝑐𝑒𝑙𝑙 − ∑ 𝑉𝑖

𝑝𝑁𝑝

𝑖=1

𝑉𝑐𝑒𝑙𝑙
 

(1) 

where  𝑉𝑐𝑒𝑙𝑙 is the volume of the Eulerian cell, 𝑉𝑖
𝑝

 is the volume of particle 𝑖 and 𝑁𝑝 is the number of 

particles contributing to the cell considered. 

Methods

Exact/close to 
exact methods

Approximate 
methods

Voxel 
method 
(new)

Analytical method 
(based on calculus 

solutions)

Hybrid 
method (new) PCM

Kernel method

Diffusion based 
method
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3.3 Analytical method 

This method calculates the exact overlap volume (or area in 2D) of a particle and a cuboid bin by 

integrating the sphere’s (or circle’s in 2D) equation. Referring to Fig. 4(left) the integral limits are 

defined as the intersection of the planes defining the bin boundaries and the particle. This method 

assumes that the smallest dimension of the bin is larger than the circle’s diameter and the implication 

of this assumption is that a 2D particle (circle) can be in contact with at most two mutually 

perpendicular bin walls or planes and a sphere with at most three. The mathematical formulations 

used are based on Strobl et al. [50], Richards [52] and Freireich et al. [30]. The overlapping area Acap is 

calculated from Eq. (2) [53] and the segment A4  by Eq. (3): 

𝐴𝑐𝑎𝑝 = r𝑝
2cos−1 (

r𝑝 − ℎ

r𝑝
) − (r𝑝 − h)√2r𝑝h − h2 (2) 

𝐴4 = ∫ ((√r𝑝
2 − (𝑥 − 𝒙𝑐)

2) + 𝒚𝑐)
𝐿2

𝐿1

𝑑𝑥 (3) 

 

where r𝑝 is the particle radius, ℎ is the disk segment height, 𝑥𝑐 , 𝑦𝑐 are the particle centroid coordinates 

and 𝐿1, 𝐿2 are the limits of the integral along the 𝑥 − 𝑎𝑥𝑖𝑠. The remaining segments are calculated by 

simple subtractions and the portions are allocated to the corresponding bins. 

 

In three dimensions the complexity of the algorithm increases as the sphere can be divided in up to 

eight segments and the solution of the integrals is more computationally demanding. Fig. 4(right) 

illustrates the decomposition of a particle intercepted by a bin.  

 

Fig. 4 (left) Indicative segment segregation and depiction of the integration limits in the 2D Analytical method. 

(right) Schematic showing the segment segregation (3D Analytical method) when the particle is intercepted 

in with a bin corner. The volumes in the Analytical method are calculated by double integrating to the 

depicted limits. 
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The first step to estimate each partial volume is to calculate the total sphere volume and the spherical 

cap volume, see Eq. (4). Next the volumes due to edge overlap, see Eq. (5) and corner overlap, see Eq. 

(6) are determined. Finally, after all the portions are known the volumes are allocated to the relevant 

bin.  

 

𝑉𝑐𝑎𝑝 =
1

3
𝜋ℎ2(3r𝑝 − ℎ) (4) 

 𝑉𝑒𝑑𝑔𝑒 =
2

3
𝑎𝑏 √r𝑝

2 − 𝑎2 − 𝑏2 + 2r𝑝
3 tan−1 (

𝑏√r𝑝
2−𝑎2−𝑏2

r𝑝𝑎
)+

2

3
r𝑝

3 tan−1 (
𝑎√r𝑝

2−𝑎2−𝑏2

r𝑝𝑏
)−

1

3
(3𝑏r𝑝

2 − 𝑏3) tan−1 (
√r𝑝

2−𝑎2−𝑏2

𝑎
)−

1

3
(3𝑎r𝑝

3 − 𝑎3) tan−1 (
√r𝑝

2−𝑎2−𝑏2

𝑏
) 

(5) 

 𝑉𝑐𝑜𝑟𝑛𝑒𝑟 = 𝑉𝑠𝑒𝑔𝑚.7 =
1

2
𝑉𝑒𝑑𝑔𝑒 −

1

6
[6𝑎𝑏𝑐 − 2𝑎𝑐√r𝑝

2 − 𝑎2 − 𝑐2 − 2𝑏𝑐√r𝑝
2 − 𝑏2 − 𝑐2 −

(3𝑎r𝑝
2 − 𝑎3) tan−1 (

𝑐

√r𝑝
2−𝑎2−𝑐2

)+ 2r𝑝
3 tan−1 (

𝑏𝑐

r𝑝√r𝑝
2−𝑏2−𝑐2

)+ (𝑐3 −

3𝑐r𝑝
2) tan−1 (

𝑏

√r𝑝
2−𝑏2−𝑐2

)− (3𝑏r𝑝
2 − 𝑏3) tan−1 (

𝑐

√𝑅2−𝑏2−𝑐2
) +

2r𝑝
3 tan−1 (

𝑎𝑐

r𝑝√r𝑝
2−𝑎2−𝑐2

)+ (3𝑐r𝑝
2 − 𝑐3) tan−1 (

√r𝑝
2 −𝑎2−𝑐2

𝑎
)] 

(6) 

 

where 𝑟𝑝 is the particle radius and 𝑎, 𝑏, 𝑐 are the distances between the particle centroid and the 

corresponding bin face. The detailed descriptions of each scenario and the derivation of the equations 

are presented in [54]. 

3.4 Voxel method 

The Voxel method was developed in the current study as an alternative to the Analytical method. The 

algorithm is based on the discretization of the whole sample domain introducing a dense secondary 

grid of small regular “pixel” cells. The density of the grid can be user-defined to control the resolution 

so that accuracy increases as the voxel size reduces. Two loops are used to scan the 2D sample in both 

horizontal and vertical direction in order to define the location of each voxel in respect to the particle's 

location. Similarly, in 3D samples the same procedure is applied with an additional loop to cover the 

extra dimension. Voxels that are covered by particles (particle voxels) are assigned with one and those 

which are covered by fluid (fluid voxels) are assigned with zero. The application of this method 

requires the secondary mesh to be few times smaller than the mean particle diameter. Fig. 5 illustrates 

with “𝒙” and “+” symbols the voxel cells centroids of the Eulerian cell (𝑖 + 1, 𝑗 + 1), where crosses 

denote the fluid voxels and exes the Particle voxels. In other words, a binary logic is applied to 

determine whether a specific voxel centroid is covered by a particle. The distance of each voxel to the 
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nearest cell corner is then calculated and the volume of the particle voxel is added to the 

corresponding Eulerian cell. 

3.5 Hybrid method 

The Hybrid method can be considered as a special case of the Voxel method, where the Analytical 

method is employed for trivial calculations. Specifically, the area/volume of the particles is calculated 

analytically only when the circle/sphere overlaps one cell face or is entirely inside one Eulerian cell. 

Otherwise, when the sphere overlaps more than two cell faces, and the analytical approach becomes 

more complex, the calculation is achieved by pixel/voxel summation. In two dimensions the area of 

the circular particle is approximated by applying a second dense square grid extending one diameter 

from the particle’s centre and the area is calculated by summing the area of the boxes that are shaped 

between the grid lines and are located within the circle’s area. Similarly, in three dimensions the 

volume of the spherical particle is approximated by applying a cuboid grid and the volume is calculated 

by summing the volume of the corresponding boxes. An example of the method is described in Fig. 6., 

where the volume of particle voxel 1 is allocated in Eulerian cell (𝑖, 𝑗 + 1), the volume of particle voxel 

2 in Eulerian cell (𝑖 + 1, 𝑗 + 1), the volume of particle voxel 3 in Eulerian cell (𝑖, 𝑗) and the volume of 

particle voxel 4 in Eulerian cell (𝑖 + 1, 𝑗). 

   

Fig. 5 Depiction of Voxel method double grid. The 

voxels that their centre is located in the particle 

area are counted and then allocated to the 

corresponding bins. 

Fig. 6 Shematic of Hybrid method function when the 

particle is intercepted by more than two fluid cells. 

3.6 Kernel method 

This method differs from the previous methods as porosity is calculated indirectly and a heuristic 

approach is taken to explain the procedure. The current naïve MATLAB implementation will be less 

efficient than implementation of each method in a low-level language optimized for efficiency [40]. 

The volume fraction can be calculated in arbitrary positions on the sample’s domain as a summation 

of the particles’ distributed volumes included in the zone of influence of the kernel. Here, a Gaussian 

kernel is allocated to each particle and porosity of each Eulerian cell is estimated based on the 

contribution of each particle volume. Consequently, the smeared volume is a function of the distance 

between the particle and the Eulerian cell, as well as the shape of the kernel. Fig. 7 shows 

schematically the process that porosity of Eulerian cell (𝑖, 𝑗 + 1) is calculated. The contribution of 
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particles 1, 2, 3 to the volume fraction (𝑉𝑖,𝑗+1
𝑐𝑒𝑙𝑙 ) depends on the distance (𝑟) between the particle and 

the cell centroid, which should be less than the kernel’s bandwidth (𝑏𝑘) (𝑟𝑘 ≤ 𝑏𝑘). The contribution 

of a particle to a cell is given by Eq. (7) for the 2D case and Eq. (8) for the 3D case, assuming a Gaussian 

kernel in both cases.  

𝑉𝑖
𝑐𝑒𝑙𝑙,𝑘 =

𝑉𝑖
𝑝

𝜋𝑏2
𝑒
−
(𝒙−𝒙𝑐,𝑘)

𝑇
(𝒙−𝒙𝑐,𝑘)

𝑏2  
(7) 

𝑉𝑖
𝑐𝑒𝑙𝑙,𝑘 =

𝑉𝑖
𝑝

(𝜋𝑏2)3/2
𝑒
−
(𝒙−𝒙𝑐,𝑘)

𝑇
(𝒙−𝒙𝑐,𝑘)

𝑏2  
(8) 

where, 𝑉𝑖
𝑐𝑒𝑙𝑙,𝑘 is the volume “contributed” by particle 𝑘  to Eulerian cell 𝑖, 𝑉𝑖

𝑝
is the volume of particle 

𝑘, 𝑏 is the kernel bandwidth, 𝒙 a vector of the Eulerian cells coordinates and 𝒙𝑐,𝑘  a vector of particle 

coordinates. 

 

Fig. 7 Illustration of distributed volumes in Kernel method. Porosity of Eulerian cell (𝑖, 𝑗 + 1) is calculated 

by summation of the smeared volumes of particles 1, 2, 3. 

3.7 Diffusion based method 

This method was established to smooth the porosity coarse grained field that is produced by the PCM 

method and increase accuracy. Porosity essentially is redistributed by solving the diffusion equation  

[55] with initial conditions being the Eulerian cell porosity values derived from the PCM. The initial 

conditions correspond to time 𝑡, where porosity redistribution has not occurred yet and the final 

conditions correspond to time 𝑡 + 𝛥𝑡, i.e after diffusion is completed, see  Fig. 8. Time is introduced 

to describe a pseudo-timestep between the initial and final conditions and is used only to solve 

diffusion equation.  



 17 

 

Fig. 8 Schematic explaination of diffusion prossess. 

 

The numerical finite difference method (using a simple first order forward Euler in time and central-

difference in space) is adopted to solve the diffusion equation, formulated as follows: 

 

𝜕𝑛(𝑟, 𝑡)

𝜕𝑡
= 𝐷 ∇2𝑛(𝒙, 𝑡) (9) 

Where, 𝑛 is the diffused quantity at location 𝒙 and time 𝑡 and 𝐷 is the diffusion coefficient. In two 

dimensions the solution is as follows: 

 

𝑛𝑡 →
𝑛𝑖,𝑗
𝑡+∆𝑡 − 𝑛𝑖,𝑗

𝑡

∆𝑡
 

(10) 

𝑛𝑥 →
𝑛𝑖+1,𝑗
𝑡 − 2𝑛𝑖,𝑗

𝑡 + 𝑛𝑖−1,𝑗
𝑡

∆𝑥2
 

(11) 

𝑛𝑦 →
𝑛𝑖,𝑗+1
𝑡 − 2𝑛𝑖,𝑗

𝑡 + 𝑛𝑖,𝑗−1
𝑡

∆𝑦2
 (12) 

By substituting Eq. (10), Eq. (11) and Eq. (12) into Eq. (9) we have:  

𝑛𝑡 = 𝐷(nx + ny) (13) 

For ∆𝑥 = ∆𝑦 = ∆𝑠 (square Eulerian cells) and 𝑎 = 2𝐷
∆𝑡

∆𝑠2
   

𝑛𝑖,𝑗
𝑡+∆𝑡 = 𝑎(𝑛𝑖+1,𝑗

𝑡 + 𝑛𝑖−1,𝑗
𝑡 + 𝑛𝑖,𝑗+1

𝑡 + 𝑛𝑖,𝑗−1
𝑡 − 4𝑛𝑖,𝑗

𝑡 ) + 𝑛𝑖,𝑗
𝑡  (14) 

In three dimensions the solution is as follows: 
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𝑛𝑡 →
𝑛𝑖,𝑗,𝑘
𝑡+∆𝑡 − 𝑛𝑖,𝑗,𝑘

𝑡

∆𝑡
 

(15) 

𝑛𝑥 →
𝑛𝑖+1,𝑗,𝑘
𝑡 − 2𝑛𝑖,𝑗,𝑘

𝑡 + 𝑛𝑖−1,𝑗,𝑘
𝑡

∆𝑥2
 

(16) 

𝑛𝑦 →
𝑛𝑖,𝑗+1,𝑘
𝑡 − 2𝑛𝑖,𝑗,𝑘

𝑡 + 𝑛𝑖,𝑗−1,𝑘
𝑡

∆𝑦2
 (17) 

𝑛𝑧 →
𝑛𝑖,𝑗,𝑘+1
𝑡 − 2𝑛𝑖,𝑗,𝑘

𝑡 + 𝑛𝑖,𝑗,𝑘−1
𝑡

∆𝑧2
 

(18) 

By substituting Eq. (15), Eq. (16), Eq. (17) and Eq. (18) to Eq. (9) we have,  

 𝑛𝑡 = 𝐷(𝑛𝑥 + 𝑛𝑦 + 𝑛𝑧) (19) 

For ∆𝑥 = ∆𝑦 = ∆𝑧 = ∆𝑠 (square Eulerian cells) and  𝑎 = 𝐷
∆𝑡

∆𝑠2
 

𝑛𝑖,𝑗,𝑘
𝑡+∆𝑡 = 𝑎(𝑛𝑖+1,𝑗,𝑘

𝑡 + 𝑛𝑖−1,𝑗,𝑘
𝑡 + 𝑛𝑖,𝑗+1,𝑘

𝑡 + 𝑛𝑖,𝑗−1,𝑘
𝑡 + 𝑛𝑖,𝑗,𝑘+1

𝑡 + 𝑛𝑖,𝑗,𝑘−1
𝑡 − 6𝑛𝑖,𝑗,𝑘

𝑡 ) + 𝑛𝑖,𝑗,𝑘
𝑡  (20) 

 

The diffusion coefficient 𝑎 describes the rate of diffusion and is used to in place of the constants 𝐷, 

𝛥𝑡 and 𝛥𝑠, which have no physical meaning here. Selecting a suitable value for coefficient 𝑎 is the 

main challenge associated with using this approach. The rationale for selection of a representative 

value is discussed in section 5. 

4 Parametric investigation of the proposed algorithms 

In order to fairly compare the methods, the optimal performance of each method must be determined 

by tuning the parameters such as voxel size, kernel bandwidth or diffusion coefficient. This can be 

thought of as a calibration of the various methods to ensure a fair comparison and achieve optimal 

accuracy, smoothness, and computational cost. Computational cost is determined by implementation 

of all the methods in MATLAB® [56], an interpreted language which allows us to focus on just 

algorithmic cost with no compiler optimization. Naturally, some bias may be introduced by the author 

as the algorithms have not been optimized, however all approaches have been implemented using 

the same programming language and operating system. 

The accuracy of the results of each implementation is judged relative to the Analytical method, which 

calculates the exact fraction of each sphere inside a cubic cell. The relative error between the two 

porosity fields is defined as follows: 

𝐸𝑟𝑟𝑜𝑟 (%) =
1

𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠
∑

|𝑛𝑐𝑒𝑙𝑙,𝑖
𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 − 𝑛𝑐𝑒𝑙𝑙,𝑖

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
|

𝑛𝑐𝑒𝑙𝑙,𝑖
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

∗ 100 

𝑁𝑜 𝑐𝑒𝑙𝑙𝑠

𝑖=1

 (21) 

where  𝑛𝑐𝑒𝑙𝑙,𝑖
𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 is the porosity value of the Eulerian cell 𝑖 calculated by the examined method, 

𝑛𝑐𝑒𝑙𝑙,𝑖
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

 is the porosity value of the Eulerian cell 𝑖 calculated by the Analytical method (reference 

method) and 𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠 is the total number of cells considered in the sample.  
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As stated in the introduction (Section 1) achieving a “smooth” averaged field from the DEM is an 

important factor to achieve a numerically stable CFD simulation. Smoothness is measured as the 

gradient of porosity between the adjacent cells as follows: 

𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =
1

𝑁𝑜 𝑐𝑒𝑙𝑙𝑠
∑ ∇𝑛(𝒙)𝑖

𝑁𝑜 𝑐𝑒𝑙𝑙𝑠

𝑖=1

 
(22) 

where 𝒙 = 𝑥, 𝑦 in two dimensions and 𝒙 = 𝑥, 𝑦, 𝑧 in three dimensions. The computational cost is 

assessed as the CPU time required to obtain the porosity field for an identical system run on the same 

computer with timing obtained as the average of several repeats.  

The Kernel, Diffusion, Voxel and Hybrid methods have user-specified parameters which determine 

how well they perform based on competing accuracy, smoothness, and computational cost 

considerations. For the Kernel methods this is the adjustable bandwidth "𝑏”, while the Diffusion 

method has diffusivity coefficient included in the parameter 𝛼, see Eq. (20). Similarly, the number of 

pixels can be varied in the Voxel and Hybrid methods along with the number of Eulerian cells selected 

for the sample. According to this calibration process the number of Eulerian cells is studied indirectly 

and is defined as 𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠 = (
𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

𝑋∗2𝑟𝑝
𝑚𝑎𝑥 )𝑑, where 𝑟𝑝

𝑚𝑎𝑥 is the largest particle radius, 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 is the width of the Sample (square or cubic samples are considered), 𝑑 is the number of 

dimensions (2D versus 3D) and 𝑋 is a multiplier that controls the size of the cells. To this end, the 

𝑁𝑜𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛−𝑐𝑒𝑙𝑙𝑠 is different for each sample but the multiplier 𝑋 allows us to directly compare 

samples of different size. A multiplier 𝑋 greater than 1 is proposed in order to avoid Eulerian cells fully 

occupied by particles, therefore the following five multipliers were adopted in this study:  𝑋 =2, 𝑋 =3, 

𝑋 =4, 𝑋 =5 and 𝑋 =6.  

Note that the present analysis is performed under static conditions for simplicity. Instead of running 

the algorithms in each time step, as the particle positions are updated, time frames have been 

extracted from the DEM-CFD analysis and porosity is evaluated based on the particle’s positions in the 

specific frame. In practice, coarse graining is applied to dynamic systems which increases the 

complexity of the performed calculations. However, porosity coarse-grained fields calculated statically 

can provide a basis for representative comparisons, as long as the same assumptions apply. 

4.1 Assessment of the Implementations  

The 2D implementations were calibrated based on five samples of disks generated by Summersgill 

[57] using the two-dimensional DEM code, PFC-2D [5]. The simulation parameters are particle density 

𝜌=2600kg/m3. The Gaussian distribution generates discs using the Gaussian curve with the minimum 

radius 1m (one standard deviation from the average) and absolute minimum radius 0.5m. Fig. 9 gives 

visual illustrations of the examined 2D samples, where both Gaussian and uniform distributions of 

particle sizes were considered. The simulation parameters are summarized in Table 3. Where the 

simulation is named, the notation which identifies its variables is as explained in the following example 

(Table 2).  
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Table 2 Notation for 2D simulations 

Simulation Maximum 

number 

of discs 

Distribution 

g=Gaussian, 

u=Uniform 

Radius Range of 

radii, p is 

decimal 

point 

Friction 

coefficient 

of ball (aka 

disc) 

Friction 

coefficient 

Simulation 

identification 

(letter) 

10000gr12p5fb0a 10000 g r 12p5 Fb 0 a 

 

  

Fig. 9 Images of the 2D samples considered for the calibration. (a) 10000gr12p5fb0a, (b) 10000gr15fb1b, (c) 

10000gr120fb0a, (d) 10000ur15fb0b, (e) 100000gr15fb0p5b.  The particles are shaded by increasing radius. 

Table 3 Summary of 2D DEM samples considered 

Sample 
Maximum 
number of discs 

Distribution for 
Disc 
generation 

Maximum radius 
(m) 

Wall length (m) 
Disc Friction 
Coefficient 

10000gr12p5fb0a 10000 Gaussian 2.5 500 0 

10000gr15fb1b 10000 Gaussian 5 1000 1 

10000gr120fb0a 10000 Gaussian 20 4000 0 

10000ur15fb0b 10000 Uniform 5 850 0 

100000gr15fb0p5b 100000 Gaussian 5 3300 0.5 

 

(a) (b) (c)

(d) (e)
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The 3D DEM data were generated using a modified version of LAMMPS [58] by Shire [59]. The eight 

cubic samples were created within periodic boundaries and the Hertz-Mindlin contact model [29,30] 

was adopted. The simulation parameters are Poisson ratio 𝜈=0.3, shear modulus 𝐺=27GPa and particle 

density 𝜌=2670kg/m3. Table 4 summarizes samples with linear Particle Size Distributions (PSD) and 

different Coefficients of Uniformity (𝐶𝑢 = 𝑑60/𝑑10, term 𝑑60 is grain diameter below which 60% of 

particles exist, and term 𝑑10 is grain diameter below which 10% of particles exists.); sample density 

was controlled by the coefficient of friction.  As detailed in Table 5, bimodal samples with different 

particle size ratios 𝑥 = 𝑑𝑐𝑜𝑎𝑟𝑠𝑒/𝑑𝑓𝑖𝑛𝑒 and fines content 𝐹𝑓𝑖𝑛𝑒(%) are also studied, where 𝑑𝑐𝑜𝑎𝑟𝑠𝑒 is the 

diameter of a coarse particle and 𝑑𝑓𝑖𝑛𝑒 is the diameter of a fine particle. A similar notation strategy to 

the 2D samples was also followed here. For example, sample L1.2a is a linearly graded sample with 

𝐶𝑢 = 1.2, where L stands for Linearly Graded (or B for bimodal) and 1.2 is 𝐶𝑢 in case of a Linearly 

graded sample or size ratio in case of a bimodal. The inclusion of a or b is a simulation identification 

letter. Pictures of the 3D samples are given in Fig. 10. Hereinafter, the results of the parametric 

analyses that were conducted both on two and three dimensional implementations are presented.  

 

Fig. 10 Images of the 3D samples considered for the calibration: (a) B2a, (b) B2b, (c) B2c, (d) B2d. (e) B6a, (f) 

L1.2a, (g) L1.2b, (h) L1.2c. 

(a) (b) (c)

(d) (e) (f)

(g) (h)
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Table 4 Summary of the 3D linearly graded samples. 

Sample Coefficient of 
uniformity 
(𝑪𝒖) 

Interparticle 
friction 
coefficient 
(𝝁) 

Sample 
characterisation 

Number of 
particles 

Average 
particle 
radius (m) 

Wall length 
(m) 

L1.2a 1.2 0 Dense 8262 0.000117 0.00223 

L1.2b 0.1 Medium 

L1.2c 0.3 Loose 

L3a  3 0 Dense 22600 0.000148 0.0049 

L3b 0.1 Medium 

L3c 0.3 Loose 

L6a 6 0 Dense 59183 0.00015 0.0076 

L6b 0.1 Medium 

L6c 0.3 Loose 

Table 5 Summary of the 3D bimodal samples. 

Sample Size ratio, 
𝒅𝒄𝒐𝒂𝒓𝒔𝒆/𝒅𝒇𝒊𝒏𝒆 

Fines content, 
𝑭𝒇𝒊𝒏𝒆(%) 

Number of 
particles 

Average 
particle 
radius (m) 

Wall 
length (m) 

B2a 2 20 307 0.000666 0.0046 

B2b 25 367 0.000636 0.0047 

B2c 30 443 0.000613 0.0048 

B2d 35 531 0.000594 0.0049 

B6a 6 20 5588 0.000182 0.0043 

B10a 10 20 25376 0.000103 0.0043 

 

4.2 Hybrid method 

The performance of Hybrid method in two dimensions was assessed for the four different resolutions 

depicted in Fig. 11. From visual observation, it is apparent that when the coarse grid is utilized only a 

crude approximation of the particle is obtained, while a more accurate representation of the particle 

shape is available when more than 50x50 pixels are used. Fig. 12a shows the method’s accuracy and 

computational time as an average of the studied samples for Eulerian cell size multiplier values of 𝑋=2 

to 6. In other words, every sample has been tested for different number of Eulerian cells and accuracy 

is depicted as the average error of these tests, whilst the maximum and minimum deviation is 

presented with error bars. A fitting curve has been added to provide an estimation of the expected 

error, see Eq. (23), where 𝑃𝑖 is the number of Pixels along each direction of the sample (𝑃𝑖 =

√𝑃𝑖𝑥𝑒𝑙𝑠
2

). For a resolution of 𝑃𝑖=5 the error is 6% and is reduced to 2.7% when 𝑃𝑖=10, while further 

increasing resolution to 𝑃𝑖 =50 the error drops to 0.44%. Any additional increase of the resolution 

only provides a relatively minor reduction in error. For example, with 𝑃𝑖=100 the error is 0.34%. An 

indication of the expected computational time can be found by Eq. (24).  
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𝐸𝑟𝑟𝑜𝑟 (%) = 27.829 ∗ 𝑃𝑖−2 (23) 

𝐶𝑜𝑚𝑝. 𝑡𝑖𝑚𝑒 (𝑠𝑒𝑐. ) = 4 ∗ 10−5𝑃𝑖2 − 0.0005 ∗ 𝑃𝑖 + 2.0524 (24) 

 

The 3D Hybrid method was studied for three different resolutions (5x5x5, 20x20x20, 50x50x50) 

presented in Fig. 12b. When the method’s resolution increases from 𝑃𝑖=5 to 𝑃𝑖=20 the average error 

reduces from 2% to 1.2 %, following with an increase in computational time from 0.2 to 0.9.  When a 

higher resolution is selected, i.e. 𝑃𝑖=50 the error is estimated 0.4%, yet the computational time is one 

order of magnitude higher than before. The approximate relationship between error and number of 

pixels, where 𝑃𝑖 = √𝑃𝑖𝑥𝑒𝑙𝑠
3

 is described by Eq. (25) and  the relationship between the computational 

time and the number of pixels is given by Eq. (26). Consequently, a resolution of 𝑃𝑖=50 is considered 

the most suitable selection for the 2D samples and 𝑃𝑖=20 for the 3D samples. These will be used as 

the calibrated values in section 5. 

 

𝐸𝑟𝑟𝑜𝑟 (%) = 7.0052 ∗ 𝑃𝑖−0.702  
(25) 

𝐶𝑜𝑚𝑝. 𝑡𝑖𝑚𝑒 (𝑠𝑒𝑐. ) = 0.0037 ∗ 𝑃𝑖2 − 0.0477 ∗ 𝑃𝑖 + 0.3697 
(26) 

 

 

Fig. 11 Illustration of particle images produced by the Hybrid method for 

resolution (a) 𝑃𝑖 =5 (5x5 pixels), (b) 𝑃𝑖 =10 (10x10 pixels), (c) 𝑃𝑖 =50 (50x50 

pixels) (d) 𝑃𝑖 =100 (100x100 pixels). 

(a) (b)

(c) (d)
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Fig. 12 Calibration of Hybrid method (left) Error (%) vs Number of 𝑃𝑖, (right) Computational time vs Number 

of 𝑃𝑖 (a) 2D (b) 3D. 

 

4.3 Voxel method 

The same procedure as used when considering the Hybrid method was followed for the calibration of 

the Voxel method. In two dimensions four different resolutions (𝑃𝑖 =100, 𝑃𝑖 =300, 𝑃𝑖 =500 and 

𝑃𝑖 =1000) were studied per sample. Fig. 13a shows that when the resolution is low, for example  

𝑃𝑖 =100 the average error is 53%, although the computational time is just 6 sec. On the other hand, 

when resolution is increased to 𝑃𝑖 =300 or 𝑃𝑖 =500 the average error reduces to 15% and 10%, 

respectively. Unfortunately, the computational cost increases approximately two order of magnitude 

compared with the low-resolution case, reaching 140 sec. for 𝑃𝑖 =300 and 590 sec. for P𝑖 =500. A 

final high-resolution case of 𝑃𝑖 =1000 was also studied to highlight the potential of the method in 

terms of accuracy. For this resolution, the average error drops to less than 5%. Equation (27) describes 

the expected average error based on the selected resolution and Eq. (28) provides an estimation of 

the expected computational time in seconds.  

 

0.1

1

10

100

0 20 40 60 80 100
0.1

1

10

100

1000

10000

100000

0 20 40 60 80 100

0.1

1

10

100

0 10 20 30 40 50

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50

(a)

(b)

 
𝒓
𝒓
𝒐
𝒓
 (
%

)

 𝒊

𝑪
𝒐
 

 
. 
𝒊 

𝒆
 (
𝒔
)

 
𝒓
𝒓
𝒐
𝒓
 (
%

)

𝑪
𝒐
 

 
. 
𝒊 

𝒆
 (
𝒔
)

 𝒊

 𝒊  𝒊



 25 

𝐸𝑟𝑟𝑜𝑟 (%) = 6130.8 ∗ 𝑃𝑖 − 1.038 (27) 

𝐶𝑜𝑚𝑝. 𝑡𝑖𝑚𝑒 (𝑠𝑒𝑐. ) = 10−5 ∗ 𝑃𝑖3 − 0.0055 ∗ 𝑃𝑖2 + 1.5032 ∗ 𝑃𝑖 − 99.286 (28) 

 

For the 3D Voxel method four different resolutions were tested, namely 𝑃𝑖 =20, 𝑃𝑖 =50, 𝑃𝑖 =100 

and 𝑃𝑖 =200. Of course, the lowest resolution of 𝑃𝑖=20 which corresponds to 8000 pixels cannot 

accurately represent the porosity coarse grained field (average error=24%), although it looks 

appealing showing tolerable computational cost (8 sec.), see Fig. 13b. A large error reduction is 

observed when the resolution increases to 𝑃𝑖 =50 where the average error is 13% and the average 

computational time is 70 sec., while looking at the two highest resolutions a further improvement in 

accuracy (error= 10% and 9%) occurs, which is accompanied with an almost prohibitive increase in 

computational time; 450 sec. and 3000 sec., respectively. Eq.(29) and Eq.(30) express the relationship 

of resolution with accuracy and computational time.   

 

Here, the target is to keep a balance between accuracy and computational time. Thus, a resolution of 

𝑃𝑖 =300 for the 2D samples and 𝑃𝑖 =50 for the 3D samples is suggested.  

 

𝐸𝑟𝑟𝑜𝑟 (%) = 77.814 ∗ 𝑃𝑖−0.429 (29) 

𝐶𝑜𝑚𝑝. 𝑡𝑖𝑚𝑒 (𝑠𝑒𝑐. ) = 0.0003 ∗ 𝑃𝑖3 + 0.0217 ∗ 𝑃𝑖2 − 0.5481 ∗ 𝑃𝑖 + 8.1295 (30) 
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Fig. 13 Calibration of Voxel method (left) Error (%) vs Number of 𝑃𝑖 (right) Computational cost vs Number of 

𝑃𝑖 (a) 2D (b) 3D. 

 

4.4 Kernel method 

When using the Kernel method the appropriate bandwidth (𝑏) was selected by introducing a 

normalized bandwidth (𝑏/𝛥𝑠), where Δs = 𝑋 ∗ 2𝑟𝑝
𝑚𝑎𝑥 is the Eulerian cell size. Accuracy, which is 

translated to minimum error compared to the Analytical method, is again the criterion here for the 

selection of the optimum bandwidth. Specifically, a parametric analysis has been conducted for each 

sample to reveal the normalized bandwidth (𝑏/𝛥𝑠) that demonstrates the minimum error. The 

optimization algorithm searched for minimum error for  𝑏/𝛥𝑠 between 0.1 and 2, ignoring any local 

minima and the investigation was repeated for all five multipliers 𝑋, which as was stated previously, 

control the size of the cells. Hereinafter, the normalized bandwidth values that yielded the minimum 

error are plotted against the multiplier 𝑋, see Fig. 14.  

The 2D investigation results show little variation in optimum 𝑏/𝛥𝑠. Thus, a trendline is introduced in 

both plots, as optimum, that describes the relationship between 𝑏/𝛥𝑠 and 𝑋 multiplier based on the 

average values defined in each case, see Eq. (31) and Eq. (32). Furthermore, the data suggest that an 
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average normalized bandwidth 𝑏/𝛥𝑠 = 1 may be used across a range of 2D samples. Likewise, Fig. 

14(right) indicates that a universal bandwidth 𝑏/𝛥𝑠 = 0.4 can be used across the 3D samples without 

severely compromising the method’s accuracy. 

 

(b/Δs)2𝐷 = −0.038 ∗ 𝑋 +  1.112 

 

 

 

(31) 

 

 

(b/Δs)3𝐷 = −0.0075 ∗ 𝑋 +  0.409 
(32) 

 

Fig. 14 Selection of optimal user-specified parameters in case of the Kernel method for (a) 2D 

implementations (b) 3D implementations. 

 

4.5 Diffusion based method 

Following the same logic as used in the calibration of the Kernel method, the porosity of every sample 

was initially estimated for several values of the smearing parameter, 𝛼, with range 0.01 to 0.3. Then 

the parameter 𝛼 that revealed the minimum error for each studied case was plotted against the 

multiplier 𝑋. As seen in Fig. 15, the data accumulate around specific values of 𝛼 for both the 2D (left) 

and the 3D (right) implementations plots irrespectively of the 𝑋 multiplier. Specifically, in case of the 

2D samples the average accuracy improves for 𝛼 values between 0.15 and 0.22 and in case of the 3D 

samples between 0.10 and 0.15. A trendline is introduced in both plots, as optimum, that describes 

the relationship between 𝛼 and 𝑋 multiplier based on the average values defined in each case. This 

relationship is expressed in Εq. (33) for the 2D approach and in Eq. (34) for the 3D approach. Finally, 

it is observed that the selection of a suitable 𝛼 is not severely affected by the 𝑋 multiplier, and crudely 

a universal parameter 𝛼 = 0.17 can be used across the 2D samples and 𝑎=0.12 across the 3D samples. 

 

𝑎2𝐷 = −0.0042 ∗ 𝑋 +  0.211  
(33) 

𝑎3𝐷 = −0.003 ∗ 𝑋 +  0.1327 
(34) 
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Fig. 15 Selection of optimal user-specified parameters in case of the Diffusion based method for (left) 2D 

implementations (right) 3D implementations. 

5 Comparison – Discussion 

In order to understand and identify the differences in the 2D and 3D porosity methods, each method 

was applied to one 2D sample and one 3D sample. Having established the parameters and 

characteristics of each algorithm, the comparison is conducted in terms of error (%), computational 

cost and smoothness. The smoothness metric quantifies how much noise is introduced by the DEM 

course-graining process.  

Sample 10000gr12p5fb0a is used to compare the 2D algorithms and the comparison is based on the 

optimal parameters (see Table 6) derived in section 4. For this example, a Eulerian cell size multiplier 

𝑋 =3 is selected which corresponds to 144 Eulerian cells. 

Table 6 Summary of the parameters (sample - 10000gr12p5fb0a) used in the comparison of the 2D methods 

Kernel method 

(𝒃/𝜟𝒔) 

Diffusion based 

method (𝜶) 

Hybrid method 

(pixel grid) 

Voxel method 

(pixel grid) 

1 0.17 50x50 300x300 

 

Fig. 16 is a depiction of the sample’s coarse-grained fields. The variations in cell shading show that the 

Analytical and the Hybrid methods yield almost identical porosity fields, which is not surprising, due 

to their common characteristics. The Voxel method follows the exact methods with a visually similar 

field, although there are still regions resembling to the PCM field. The PCM field reveals substantial 

variations among neighbouring cells, whereas after the application of diffusion the field is much 

smoother and closer to that of the Analytical method. The Kernel method has blurred out some local 

features of the porosity map, yet it is still comparable to that produced by the Diffusion and Analytical 

method.  
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A direct comparison among the methods is presented in the bar chart of Fig. 17. The PCM was found 

the least accurate (approximately 17% error) and the Hybrid (approximately 0.3% error) together with 

the Analytical the most accurate methods. The Diffusion based method manages to increase the PCM 

accuracy by almost 3 times, giving an error of 6.1%, while the Kernel method performed even better 

reporting 3.8% error. The Voxel method is ranked fourth in terms of accuracy, presenting 8.8% error. 

The computational cost varies significantly amongst the implemented methods. The most cost-

efficient methods are the PCM and Analytical method, while the Voxel method is over 3,000 times 

more computationally demanding. The Diffusion based method is 3 times slower and both the Hybrid 

and the Kernel 26 times slower than the PCM.  

Regarding the smoothness metric PCM demonstrates the highest gradients (worst case) and the Kernel 

method the lowest (best case). The Analytical and Hybrid methods show comparable smoothness 

values which are 70% reduced compared with the PCM. The Diffusion method is the second-best 

method in terms of the smoothness metric reducing the PCM average gradient to more than half but 

still is not as efficient as the Kernel method which yielded only the 20% of the average PCM gradient.  

 

Fig. 16 Graphical presentation of sample 10000gr120fb0a by shading the Eulerian cells by porosity using (a) the 

PCM, (b) the Analytical, (c) the Hybrid, (d) the Voxel, (e) the Kernel and (f) the Diffusion based method. 
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Fig. 17 Illustration of (a) the Error (%) (b) the computational time (s) and (c) smoothness of each method when 

applied to the 2-D sample 10000gr12p5fb0a.  

 

The comparison among the 3D algorithms was carried out based on sample L1.2a and a Eulerian cell 

size multiplier 𝑋=3 which corresponds to 125 Eulerian cells. The calibration parameters are presented 

in Table 7. The bar charts in Fig. 18 show that the Voxel method yielded the highest error, 

approximately 8%, which is attributed to the low resolution that was selected. In contrast, the Hybrid 

method displays the greatest accuracy, 1.4% error, while the performance of the Kernel and Diffusion 

methods is again remarkable displaying 1.7% and 2.5% error, respectively. In terms of computational 

time the Voxel method was again the most demanding, requiring almost 7,000 times more 

computational time compared with the PCM and Analytical method. The Hybrid method is the second 

most demanding, cost wise, however is still two orders of magnitude faster compared with the Voxel. 

All methods managed to reduce the high gradients observed at the PCM smoothness tests, with the 

Kernel method to be proven the most appealing as an average reduction of 76% is attained. 

 

Table 7 Summary of the parameters (sample – L1.2a) used in the assessment of the 3D methods  
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Fig. 18 Illustration of the (a) Error (%) (b) computational time (s) and (c) smoothness of each method when applied 

to the 3D sample L1.2a. 

6 Conclusions   

In this study, six different porosity coarse graining schemes were reviewed and applied to 2D and 3D 

systems of circular / spherical particles with periodic boundaries. This work was motivated by the 

inability of the most commonly used Particle centroid Method to accurately reproduce the required 

coarse graining of porosity and similar fields. The schemes studied were the Particle centroid method, 

an Analytical method, a Kernel based method, a Diffusion based method, together with two novel 

methods called the Voxel and Hybrid methods. The foundations and the mathematical background of 

each method were explored from a theoretical perspective outlining the rationale behind each 

approach. The optimal user-defined parameters needed to apply the methods were selected by 

considering “accuracy”, “smoothness” and “computational cost” based on available two and three-

dimensional DEM-CFD samples. Note that the analysis was conducted under static conditions and 

some assumptions may have to be reconsidered for realistic, dynamic systems, however the 

comparison clearly illustrates the major characteristics of each method.  

In conclusion, it was shown that the Kernel and Diffusion based methods required calibration in terms 

of the kernel width and diffusion magnitude, before any further evaluation is conducted, but once 

tuned they can provide cost-effective and reasonable representations of coarse-grained fields for the 

studied samples. The proposed Voxel and Hybrid methods showed high accuracy, giving the user 

control over accuracy against computational cost, an advantage that is not included in any other 

method found in Literature. The main drawback identified is the high computational resources 

required in case of the Voxel method, especially when 3D implementations are assessed.  A wider 

range of samples could be examined in order to confirm a universal validity of the suggested 

parameters. All studied schemes demonstrated a more accurate depiction of the calculated fields 

compared to the PCM with varying degrees of smoothness and ease of implementation in CFD solvers.  
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