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ABSTRACT 

Droplets and bubbles are thought to be two sides of the same coin; this work determines how true this 

is at the molecular scale. Stable cylindrical nanodroplets and nanobubbles are obtained in Molecular 

Dynamics (MD) simulations with three-phase contact lines pinned by alternate hydrophobic and 

hydrophilic patterns. The surface tension and Tolman length for both types of curved interfaces are 

obtained with the Kirkwood-Buff method, based on the difference between normal and tangential 

pressure components. Both bubble and droplet cases are compared to the flat interface case for 

reference. Results show that the surface tension decreases linearly while the Tolman length increases 

linearly with the gas/liquid density ratio. By running a careful parameter study of the flat interface over 

a range of densities, the effect of density ratio can be corrected isolating the effects of curvature on the 

surface tension and Tolman length. It is found that such effects start to be seen when the equimolar 

curvature radius goes down to 20 reduced LJ units. They have the same magnitude but act with opposite 

signs for nanodroplet and nanobubble interfaces. Considering effects of density ratio and curvature, a 

fitted Tolman equation was obtained which predicts the surface tension of a curved interface. Results 

obtained by the fitted Tolman equation agree well with those obtained by the MD simulations except at 

very small curvature radius (<10 reduced LJ units) due to the accumulation of the curvature 

dependence of the Tolman length. 
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Ⅰ. INTRODUCTION 

The surface tension is an important interfacial property of an inhomogeneous system and is of interest 

in the study of many areas of fluid dynamics, including droplet/bubble nucleation,1, 2 surface wetting,3-

5 and the moving contact line6. It results from the intermolecular forces at the interface between two 

bulk phases. Thus, the surface tension is directly related to pressure tensors, which in dense fluids is 

predominantly due to the intermolecular forces. The pioneering work on the surface tension dates back 

to the nineteenth century when the Young-Laplace equation7-12 was derived at the macroscale. For a 

spherical interface, it can be stated as: 

 ∆𝑃𝑃 =
2𝛾𝛾
𝑅𝑅

 (1) 

where ∆𝑃𝑃 is the pressure drop across a spherical interface, 𝛾𝛾 is the surface tension and 𝑅𝑅 is the curvature 

radius of the interface. This equation shows great accuracy at the macroscale and has been used for 

decades. In an inhomogeneous system, two bulk phases (such as liquid and vapour) transit to each other 

through a layer where the physical properties change dramatically. But there is not an exact physical 

interface which separates the two bulk phases. Mathematically, two interfaces which separate the two 

phases explicitly were defined by Gibbs. One is the equimolar surface where the superficial number 

density of particles (molecules) vanishes. The other one is the surface of tension where the surface 

tension is supposed to act. We can see that different molecules would contribute equally to the 

equimolar surface if they are at the same position, as the contribution to the equimolar surface is 

exclusively determined by the number of interacting molecules. On the other hand, the surface of 

tension depends on the intermolecular forces and therefore on the type of molecules. Thus, contributions 

of different types of molecules to the surface of tension differ from each other, so the equimolar surface 

and the surface of tension normally do not coincide.7-11 Tolman13, 14 was among the first of several 

researchers who investigated the distance between the equimolar surface and the surface of tension 

which was later named after him as the Tolman length (𝛿𝛿). At the macroscale, the curvature radius of 

an interface is much larger than the intermolecular interaction distance. The stress state of a molecule 

on a curved interface can be approximated as the same as the one on a flat interface. Thus, the curvature 

does not show appreciable effect on surface tension and it can be regarded as constant. However, when 

the curvature radius of the interface reduces to the scale of the molecular interaction, the curvature starts 

to show a strong effect on the surface tension. Based on Gibbs’s work, Tolman has derived an equation 

to show the curvature dependence of the surface tension.13, 14 By neglecting terms 𝒪𝒪(𝛿𝛿 𝑅𝑅⁄ )  and 

assuming that 𝛿𝛿 is constant, the equation for a spherical droplet interface reads:  

 
𝛾𝛾𝑅𝑅
𝛾𝛾∞

=
1

1 + 2𝛿𝛿
𝑅𝑅

 (2) 

where 𝛾𝛾𝑅𝑅 and 𝛾𝛾∞ are the surface tension for an spherical droplet interface with a radius of 𝑅𝑅 and a flat 

interface, respectively. However, recent studies have shown that 𝛿𝛿 also has a curvature dependence8, 9, 
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15-19. Neglecting the terms 𝒪𝒪(𝛿𝛿 𝑅𝑅⁄ )  may also have an appreciable effect on the results 18, 20, 21. 

Mathematically, the Tolman length is normally defined as 𝛿𝛿 = 𝑅𝑅e − 𝑅𝑅𝑠𝑠 , where 𝑅𝑅e  and 𝑅𝑅𝑠𝑠  are the 

curvature radii of the equimolar interface and the surface of tension, respectively.8, 9 Such definitions of 

the Tolman length, including Eq. (2), were derived based on a system with a liquid droplet surrounded 

by a vapour phase13 with the curvature radius for a droplet defined as being positive. This equation can 

be extended to systems with bubbles submerged in liquid by defining negative curvature radii for 

bubbles.11, 22 Based on Eq. (2), a constant Tolman length leads to opposite effects on the surface tension 

for droplets and bubbles.23 Although the curvature dependence of surface tension and the Tolman length 

for nanodroplets has drawn much attention in numerical simulations,19, 24-26 studies on nanobubbles are 

rare due to computational expense and difficulties in forming stable nanobubbles.  

In this study, a statistic mechanical approach, based on MD simulations, was adopted to simulate the 

surface tension and Tolman length of flat, nanodroplet and nanobubble interfaces. The research systems 

and methods adopted are introduced in section II. In section III, basic results for flat, nanodroplet and 

nanobubble interfaces are presented first. The effect of the gas/liquid density ratio (𝜌𝜌G 𝜌𝜌L⁄ , where 𝜌𝜌G 

and 𝜌𝜌L are the gas density and liquid density, respectively) on the surface tension and Tolman length 

for a flat interface is discussed next. Then, the results of surface tension and Tolman length for 

nanodroplet and nanobubble interfaces are compared and discussed. The curvature dependence of the 

surface tension and Tolman length is obtained. In the end of the third section, fitted Tolman equations 

considering the effect of gas/liquid density ratio and curvature are obtained. We conclude in section IV 

by highlighting the key findings of this work and their implication for practical applications. 

  



4 

Ⅱ. METHODOLOGY 

A. Theoretical investigation of the way for calculating the surface tension 

The surface tension of the flat, cylindrical nanobubble and nanodroplet interfaces were simulated with 

classical MD simulations. The equations for calculating the surface tension with pressure tensors of a 

flat interface are:25 

 𝛾𝛾F = � (𝑃𝑃N − 𝑃𝑃T)d𝑦𝑦
𝑦𝑦L

𝑦𝑦G
 (3) 

 𝛾𝛾F𝑦𝑦s = � 𝑦𝑦(𝑃𝑃N − 𝑃𝑃T)d𝑦𝑦
𝑦𝑦L

𝑦𝑦G
 (4) 

where 𝛾𝛾Fis the surface tension, 𝑃𝑃N and 𝑃𝑃T are the normal and tangential pressure components, respectively. 

𝑦𝑦 is the direction normal to the gas/liquid interface, 𝑦𝑦G and 𝑦𝑦L are two locations deep inside the bulk gas and 

the bulk liquid regions, respectively and 𝑦𝑦s is the location of the surface of tension where the surface tension 

acts.  

The location of the equimolar surface can be obtained by the following equation: 

 � 𝜌𝜌G
𝑦𝑦e

𝑦𝑦G
d𝑦𝑦 + � 𝜌𝜌L

𝑦𝑦L

𝑦𝑦e
d𝑦𝑦 = � 𝜌𝜌y

𝑦𝑦L

𝑦𝑦G
d𝑦𝑦 (5) 

where 𝜌𝜌G and 𝜌𝜌L are the molecule number density in the bulk gas and bulk liquid regions, respectively. 𝜌𝜌y 

is the molecule number density at location 𝑦𝑦. 𝑦𝑦e is the location of the equimolar surface.  

Thus the magnitude of the Tolman length, which is defined as the distance from the surface of tension to 

the equimolar surface in the direction from liquid to gas, for a flat interface (𝛿𝛿F) can be obtained: 

 𝛿𝛿F = 𝑦𝑦e − 𝑦𝑦s (6) 

  

In this work, for simplicity we consider two-dimensional examples of both droplets and bubbles, with 

a small depth in the z direction between periodic boundary conditions. As a result, the system is a 

cylindrical interface, so the equations for the surface tension and the curvature radius of the surface of 

tension based on pressure tensors are deduced following the method similar to that for a spherical 

interface (see the appendix A for detailed derivation): 

 𝛾𝛾 = �
𝑟𝑟
𝑅𝑅𝑠𝑠

(𝑃𝑃N − 𝑃𝑃T)𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
 (7) 

 
𝑅𝑅𝑠𝑠2 =

∫ 𝑟𝑟(𝑃𝑃N − 𝑃𝑃T)𝑑𝑑𝑟𝑟𝑅𝑅𝛽𝛽
𝑅𝑅𝛼𝛼

∫ 1
𝑟𝑟 (𝑃𝑃N − 𝑃𝑃T)𝑑𝑑𝑟𝑟𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼

 

 

(8) 
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where 𝑅𝑅𝛼𝛼  and 𝑅𝑅𝛽𝛽  are deep inside the droplet (or bubble) and outer bulk-gas (liquid) regions, 

respectively. 𝛾𝛾 and  𝑅𝑅𝑠𝑠 are the surface tension and the curvature radius of the surface of tension for both 

the cylindrical droplets and bubbles. Note here that both curvature radii for bubbles and droplets are 

defined as being positive in this study. Equations (7) and (8) are used in this study to calculate the 

surface tension and the curvature radius of the surface of tension. The equimolar curvature radius of the 

cylindrical droplets and bubbles (𝑅𝑅e) can be obtained by the following equation 27: 

 𝑅𝑅e2 =
∫ 𝑟𝑟2𝜌𝜌𝑑𝑑𝑟𝑟𝑅𝑅𝛽𝛽
𝑅𝑅𝛼𝛼

∫ 𝜌𝜌𝑑𝑑𝑟𝑟𝑅𝑅𝛽𝛽
𝑅𝑅𝛼𝛼

 (9) 

As the Tolman length is defined as the distance from the surface of tension to the equimolar surface in 

the direction from liquid to gas in this study, the Tolman length for nanodroplets (𝛿𝛿D) is 

 𝛿𝛿D = 𝑅𝑅e − 𝑅𝑅s (10) 

While the Tolman length for nanobubbles (𝛿𝛿B) is 

 𝛿𝛿B = 𝑅𝑅s − 𝑅𝑅e (11) 

Based on the Gibbs28 thermodynamic theory of capillary, a relationship between the surface tension and 

the Tolman length was deduced by Tolman13 for a spherical droplet interface within a one-component 

two-phase system which was later extended to multicomponent systems by Koenig:29 

 
1
𝛾𝛾SD

𝑑𝑑𝛾𝛾SD
𝑑𝑑𝑟𝑟

=
�2𝛿𝛿SD
𝑟𝑟2 � �1 + 𝛿𝛿SD

𝑟𝑟 + 1
3 �
𝛿𝛿SD
𝑟𝑟 �

2
�

1 + 2 𝛿𝛿SD𝑟𝑟 �1 + 𝛿𝛿SD
𝑟𝑟 + 1

3 �
𝛿𝛿SD
𝑟𝑟 �

2
�

 (12) 

where 𝛾𝛾SD and 𝛿𝛿SD are the surface tension and the Tolman length for spherical droplets. By assuming 

that 𝛿𝛿SD  is constant and neglecting the terms 𝛿𝛿SD
𝑟𝑟   and �𝛿𝛿SD

𝑟𝑟 �
2
 , a simplified Eq. (2) was obtained by 

integrating Eq. (12). Following this method, similar equations can be deduced for the cylindrical 

nanodroplet and nanobubble interfaces. Based on the definition of the Tolman length in this study, the 

equation for the cylindrical nanodroplet interface is 

 
1
𝛾𝛾D
𝑑𝑑𝛾𝛾D
𝑑𝑑𝑟𝑟

=
�𝛿𝛿D𝑟𝑟2� �1 + 1

2
𝛿𝛿D
𝑟𝑟 �

1 + 𝛿𝛿D
𝑟𝑟 �1 + 1

2
𝛿𝛿D
𝑟𝑟 �

 (13) 

where 𝛾𝛾D is the surface tension for the cylindrical droplets in this study. The equation for the cylindrical 

nanobubble interface is 

 
1
𝛾𝛾B
𝑑𝑑𝛾𝛾B
𝑑𝑑𝑟𝑟

=
−�𝛿𝛿B𝑟𝑟2� �1 − 1

2
𝛿𝛿B
𝑟𝑟 �

1 − 𝛿𝛿B
𝑟𝑟 �1 − 1

2
𝛿𝛿B
𝑟𝑟 �

 (14) 
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where 𝛾𝛾B is the surface tension for the cylindrical bubbles in this study. Adopting the same assumptions 

which Tolman used, Eqs. (13) and (14) can be integrated from the flat interface to a radius of interest 

𝑟𝑟 = 𝑅𝑅𝑠𝑠 respectively, giving the final expressions: 

 
𝛾𝛾D𝑅𝑅𝑠𝑠
𝛾𝛾F

=
1

1 + 𝛿𝛿D
𝑅𝑅𝑠𝑠

 (15) 

 
𝛾𝛾B𝑅𝑅𝑠𝑠
𝛾𝛾F

=
1

1 − 𝛿𝛿B
𝑅𝑅𝑠𝑠

 (16) 

B. Simulation setup 

The surface tension of flat, cylindrical nanodroplet and nanobubble interfaces were simulated with 

classical MD simulations using the open-source code LAMMPS (the large-scale atomic/molecular 

massively parallel simulator).30 All length units given in this work are presented in reduced Lennard-

Jones (LJ) units where not explicitly specified. Two types of molecules were used in the flat interface 

cases: one type of gas molecules (G) and one type of liquid molecules (L), with properties given in 

Table Ⅰ. A liquid slab was placed in the middle of the simulation domain which has a size of 

30 × 30 × 60 (see Fig. 1). Periodic boundary conditions were applied in all three directions. The 

molecules interact with each other through a truncated LJ potential with a cut off chosen to be 5 sigma: 

 𝑈𝑈𝑖𝑖𝑖𝑖(𝑙𝑙) = 4𝜖𝜖𝑖𝑖𝑖𝑖 ��
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

− �
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
6

� (17) 

where 𝑈𝑈𝑖𝑖𝑖𝑖(𝑙𝑙)  and 𝑟𝑟𝑖𝑖𝑖𝑖  are the potential and distance between molecule 𝑖𝑖  and 𝑗𝑗 . 𝜖𝜖𝑖𝑖𝑖𝑖  and 𝜎𝜎𝑖𝑖𝑖𝑖  are the 

interacting strength and the characteristic length between molecule 𝑖𝑖 and 𝑗𝑗.  

 
FIG. 1. Typical simulation box showing the coordinate system, equimolar surface, and surface of tension 
schematically for the flat interface case. 𝑦𝑦𝑒𝑒 and 𝑦𝑦𝑠𝑠 are the location of the equimolar surface and surface of 
tension, respectively. Red particles are the liquid molecules (L), blue particles are the gas molecules (G). 
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In addition to the gas and liquid molecular types, three more molecule types are introduced in the 

nanodroplet and nanobubble interface cases: two types of solid molecules (hydrophilic (Sphi) and 

hydrophobic (Spho)) and one type of tether site molecules (Ts). These are given in Table Ⅰ. The G, L, 

Sphi  and Spho  molecules in the nanodroplet and nanobubble cases interact with each other through 

truncated LJ potentials (Formula 17) with a cut-off of 5 sigma.  

 
(a)                                           (b) 

FIG. 2. Typical simulation boxes showing the coordinate system, equimolar surface and surface of tension 
schematically. (a) and (b) are nanodroplet and nanobubble cases, respectively. 𝑅𝑅𝑒𝑒 and 𝑅𝑅𝑠𝑠 are the curvature 
radii of the equimolar surface and the surface of tension. Red particles are the liquid molecules (L), blue 
particles are the gas molecules (G ), yellow particles are the hydrophilic wall molecules (Sphi ) and pink 
particles are the hydrophobic molecules (Spho). The nanodroplet and nanobubble have a cylindrical shape and 
the z axis is along the length of the cylinder. 

The Ts molecules are fixed in a fcc lattice at the wall region with its density being 0.8  during the whole 

simulation. The Sphi  and Spho  molecules are tethered to the Ts  molecules one by one through the 

following potential with a cut off of 5 sigma: 

 𝑈𝑈𝑖𝑖𝑖𝑖(𝑙𝑙) = 𝜖𝜖𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖0�
2
 (18) 

where 𝜖𝜖𝑖𝑖𝑖𝑖 = 150 is the interaction strength31 and 𝑟𝑟𝑖𝑖0 = 0 is the equilibrium bond distance. Thus, the Sphi 

and Spho molecules can vibrate around their tethering sites Ts. 

The nanodroplets and nanobubbles have a cylindrical shape (see Fig. 2). Periodic boundary conditions 

were employed in the x and z directions. The top of the simulation domain has a wall boundary condition 

which interacts with G and L molecules through a soft potential to model an extended liquid region 

beyond the domain: 

 𝑈𝑈�𝑟𝑟𝑦𝑦𝑖𝑖� = 𝜖𝜖 �
2

15
�
𝜎𝜎
𝑟𝑟𝑦𝑦𝑖𝑖
�
9

− �
𝜎𝜎
𝑟𝑟𝑦𝑦𝑖𝑖
�
3

� (19) 

𝜃𝜃
𝑟𝑟

𝑧𝑧
𝑅𝑅𝑠𝑠

𝑅𝑅𝑒𝑒

𝜃𝜃
𝑟𝑟

𝑧𝑧
𝑅𝑅𝑠𝑠
𝑅𝑅𝑒𝑒
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applied to molecules within a distance 2.5 from the wall. Here 𝜖𝜖 = 1.0 and 𝜎𝜎 = 1.0 are the interacting 

strength and the characteristic length between the wall and molecules. 𝑟𝑟𝑦𝑦𝑖𝑖  is the distance between 

molecule 𝑖𝑖 and the location of the wall. The thickness of the simulation domain in the 𝑧𝑧 direction is set 

to 5, making the simulations effectively two dimensional. 

 
(a)                                                             (b) 

 
(c)                                                             (d) 

 
(e)                                                             (f) 

 
FIG. 3. Snapshots of droplets and bubbles on a homogeneous solid surface with 𝜖𝜖SL being 0.2 for (a) and (b), 
0.4 for (c) and (d) and 0.7 for (e) and (f). 

For curved interface cases, there is a hydrophilic (hydrophobic) strip in the middle of the wall while the 

other part of the wall is hydrophobic (hydrophilic) for the nanodroplet (nanobubble) cases to control 

the size and anchor the position of the droplet (bubble). As a starting point, values of the interactions 

were chosen based on relevant values from Ref. 32. This was followed by a preliminary study to 

determine the parameters that provide stability for the simulations in terms of bubble/droplet size and 

interactions between liquid, gas and solid wall. As mentioned above, this was essential to overcome the 

potential limitations associated with the stable formation of nanobubbles reported in the literature. 
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Particular attention was placed on the parameters for tuning the behaviour of the surface/fluid 

interactions (hydrophilic vs. hydrophobic). The hydrophobicity of the solid walls is controlled by tuning 

the interacting strength between solid and liquid molecules (𝜖𝜖SphiL and 𝜖𝜖SphoL). The interacting strength 

between gas and wall molecules (𝜖𝜖SphiG  and 𝜖𝜖SphoG) were also controlled to obtain aerophilic and 

aerophobic properties on the hydrophobic and hydrophilic wall surfaces, respectively. This helps to 

anchor the droplet (bubble) on the hydrophilic (aerophilic) area. The interacting strength and length 

between gas molecules were increased to form a thin but at the same time stable gas phase. Examples 

of the investigation on the effect of 𝜖𝜖SphiL and 𝜖𝜖SphoL on the wettability of the solid wall are shown in 

Fig. 3. The interacting strength and characteristic length between different molecules are the same 

except 𝜖𝜖SL, which is set to 0.2 for (a) and (b), 0.4 for (c) and (d) and 0.7 for (e) and (f). Each image is a 

snapshot of the simulation when the system is balanced. It is shown that the liquid contact angle of the 

droplet on the solid wall decreases as 𝜖𝜖SL increases while the air contact angle of the bubble increases. 

Following this preliminary investigation, the parameters set in this study are chosen as shown in Table 

Ⅰ.  

TABLE Ⅰ. Values of LJ potential parameters used in the MD simulations 

𝑖𝑖 − 𝑗𝑗 𝜖𝜖𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 

L − L 1.0 1.0 

Sphi − L 1.0 1.0 

Spho − L 0.1 1.0 

L − G 0.52 1.18 

Sphi − G 0.1 1.18 

Spho − G 0.5 1.18 

G − G 0.5 1.7 

C. Simulation procedure 

All the simulations were performed in a three-dimensional Cartesian coordinate system. The time step 

was set at ∆t = 𝜎𝜎LL�(𝑚𝑚/𝜖𝜖𝐿𝐿𝐿𝐿  )/500 = 0.002, where m=1 is the mass of the liquid molecules. It is 

sufficiently smaller than the shortest time scale available in the system. For the flat interface cases, 

initially, regions of gas and liquid molecules are added to the simulation domain. The thickness of the 

liquid slab is around 20. First, the system is equilibrated in an NVT ensemble at a temperature of 𝑇𝑇𝑠𝑠𝑒𝑒𝑠𝑠 =

0.8  using a Nose-Hoover thermostat with a heat bath size of Q=0.2 for 3 million time steps. 

Measurements of the density and pressure tensor are then obtained using a grid of 0.5×0.5 chunks 

covering the 𝑥𝑥 − 𝑦𝑦 plane in an NVE ensemble run over 500,000 time steps. The time-average values 

are calculated by taking a sample every 50 time steps. As the flat gas/liquid interface is parallel to the 
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𝑥𝑥 − 𝑦𝑦 plane, the normal pressure component is 𝑃𝑃N = 𝑃𝑃𝑦𝑦𝑦𝑦  and the tangential pressure component is 

𝑃𝑃T = (𝑃𝑃𝑥𝑥𝑥𝑥 + 𝑃𝑃𝑧𝑧𝑧𝑧) 2⁄ . 

For the nanodroplet and nanobubble cases, initially, gas and liquid molecules were placed on the 

hydrophobic and hydrophilic surfaces, respectively. Then the system was equilibrated for 3 million time 

steps in an NVT ensemble using a Nose-Hoover thermostat with the temperature of the wall molecules 

(Sphi and Spho) thermostatted at a temperature of 𝑇𝑇𝑠𝑠𝑒𝑒𝑠𝑠 = 0.8. The heat bath size was Q=0.2. When the 

system is equilibrated, gas molecules tend to stay on the hydrophobic surfaces and the liquid molecules 

preferentially stay on the hydrophilic surfaces. In this way, we were able to form cylindrical 

nanodroplets and nanobubbles on solid surfaces. Data collection follows the same process as the flat-

interface case. Time-averaged density and pressure tensor measurements were obtained in a grid of 

chunks with the size being 0.5×0.5 covering the 𝑥𝑥 − 𝑦𝑦 plane in an NVE ensemble run over 500,000 

time steps by taking a sample every 50 time steps. After that, a cylindrical coordinate system was 

established by fitting a circle to the location halfway between bulk liquid and bulk gas density. Then 

the pressure tensors in the three-dimensional Cartesian coordinate system were transferred to the 

cylindrical coordinate system (Fig. 4) using the following equations: 

 𝑃𝑃N = 𝑃𝑃𝑥𝑥𝑥𝑥(cos(𝜃𝜃))2 + 𝑃𝑃𝑦𝑦𝑦𝑦(sin(𝜃𝜃))2 + 𝑃𝑃𝑥𝑥𝑦𝑦 sin(2𝜃𝜃) (20) 

 𝑃𝑃T = 𝑃𝑃𝑥𝑥𝑥𝑥 �cos �𝜃𝜃 +
𝜋𝜋
2
��

2
+ 𝑃𝑃𝑦𝑦𝑦𝑦 �sin �𝜃𝜃 +

𝜋𝜋
2
��

2
+ 𝑃𝑃𝑥𝑥𝑦𝑦 sin(2𝜃𝜃 + 𝜋𝜋) (21) 

 
FIG. 4. A typical density profile of a nanobubble case. The three-dimensional Cartesian coordinate system at 
the down-left corner was used in the MD simulation. The cylindrical coordinate system was established by 
fitting the equal-density profile. The 𝑧𝑧 axis is along the length of the cylindrical bubble. In the 𝑟𝑟 direction, the 
integration of the surface tension starts from the bulk gas region inside the bubble (the inner red circle) and ends 
at the bulk liquid region (the outer red circle). 
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Ⅲ. RESULTS AND DISCUSSION 

A. The ‘average after’ procedure of calculating the surface tension and Tolman length 

To calculate the surface tension (𝛾𝛾) and the Tolman length (𝛿𝛿) with the density (𝜌𝜌), normal (𝑃𝑃N) and 

tangential (𝑃𝑃T) pressures, there are two procedures available. Procedure i) (referred to as ‘average after’) 

is to get the local profiles of 𝜌𝜌, 𝑃𝑃N, and 𝑃𝑃T in the normal direction (𝑦𝑦 and 𝑟𝑟 directions for the flat and 

curved interface cases, respectively). These profiles are then used to calculate the local 𝛾𝛾 and 𝛿𝛿 in the 

whole range of the tangential direction (𝑥𝑥 and 𝜃𝜃 directions for the flat and curved interface cases, 

respectively). Finally, the mean values of 𝛾𝛾 and 𝛿𝛿 can be obtained by averaging the local values along 

the tangential direction. Procedure ii) (referred to as ‘average before’) is to obtain the mean profiles of 

𝜌𝜌, 𝑃𝑃N, and 𝑃𝑃T in the normal direction first by averaging the local profiles along the tangential direction. 

Then, the mean value of 𝛾𝛾 and 𝛿𝛿 can be calculated using the mean profiles of 𝜌𝜌, 𝑃𝑃N, and 𝑃𝑃T. 

 
       (a)                                                                                 (b) 

 
    (c)                                                                                   (d) 

FIG. 5. (a) Surface tension, and (b) Tolman length along a flat liquid/gas interface. (c) Surface tension and (d) 
Tolman length along the liquid/gas interface of a nanobubble case. 
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Figure 5 (a) and (b) show the local and mean values of 𝛾𝛾 and 𝛿𝛿 along a flat gas/liquid interface. The 

mean 𝛾𝛾 and 𝛿𝛿 are obtained by averaging the local values along the whole range in the 𝑥𝑥 direction which 

is parallel to the interface. It can be seen that the local 𝛾𝛾 slightly fluctuates while the data points are 

evenly scattered around the mean value. Because periodic boundary conditions are applied in all 

directions, the lateral boundaries do not show any effect on the local surface tension. While the 

fluctuation of the local 𝛿𝛿 is relatively high compared to the mean value. But the data points are also 

evenly scattered around the mean value. 

Distributions of the local 𝛾𝛾 and 𝛿𝛿 in the 𝜃𝜃 direction obtained with the local 𝜌𝜌, 𝑃𝑃N and 𝑃𝑃T profiles for a 

nanobubble case are shown in Fig. 5 (c) and (d). We can see that the solid wall has a strong effect on 𝛾𝛾 

and 𝛿𝛿 near the wall region. As the focus of this study is on the liquid/gas interface, the mean surface 

tension in the ‘average after’ method is obtained by averaging the value in the middle flat area which is 

far from the wall region. It is shown that the distribution of the local 𝛾𝛾 and 𝛿𝛿 as a function of 𝜃𝜃 for the 

nanobubble interface far from the wall region is similar to that for the flat interface case. 

B. The ‘average before’ procedure of calculating the surface tension and Tolman length 

The ‘average before’ procedure of calculating the surface tension is shown in this section. In this 

procedure, the profiles of the mean density, normal and tangential pressure components are obtained 

first by averaging the local profiles along the tangential direction (𝑥𝑥 and 𝜃𝜃 direction for the flat and 

curved interface, respectively). The surface tension is then calculated using the mean pressure 

component profiles. 

Figure 6 shows examples of the mean density and pressure component profiles for both flat and curved 

interfaces. As already discussed, since the wall can have a strong effect on the density and pressure 

components for curved interface cases, the mean profiles are calculated using data from the range of 𝜃𝜃 

far from the wall. For the flat interface cases, given the absence of solid walls, the mean profiles are 

obtained using data in the whole range of 𝑥𝑥. 

For the flat interface (Fig. 6 (a) and (b)), the profiles start from the bulk gas region and ends in the bulk 

liquid region. For the droplet (Fig. 6 (c) and (d)) cases, the origin of the system is at the centre of the 

nanodroplet and the profile starts from inside the droplet and ends deep inside the bulk gas region. For 

the nanobubble (Fig. 6 (e) and (f)) cases, the origin of the system is at the centre of the nanobubble and 

the profile starts from inside the bubble and ends deep inside the bulk liquid region. 
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      (a)                                                                                   (b) 

 
    (c)                                                                                   (d) 

 
        (e)                                                                                   (f) 

FIG. 6. Average density and pressure component profiles for both flat and curved interfaces. (a), (c) and (e) 
Density, normal and tangential pressure component profiles for flat, nanodroplet and nanobubble interfaces, 
respectively. (b), (d) and (f) Kinetic and virial components of the normal and tangential pressure for flat, 
nanodroplet and nanobubble interfaces, respectively. 

We can see from Fig. 6 (a) that normal and tangential pressure components are the same in both bulk 

gas and liquid regions, which means there is no pressure difference across the flat interface. Near an 

interface in a balanced system, a constant normal pressure is required for momentum balance. While 

this is known to not occur for solid–liquid interfaces with the virial or IK1 pressure (note here that IK1 

is the first term in the Irving Kirkwood expansion, which is the same as the virial from LAMMPS) 33 
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and the default pressure measured by LAMMPS. This observation motivates the use of the VA and 

MOP formulations for liquid/solid studies 34, 35. Calculation of  these pressures is complicated 36, 

especially for a curved interface. In this work, the IK1 pressure is used for simplicity, as the normal 

pressure does not affect the resulting surface tension (the integration of the two opposite peaks in the 

normal pressure component with respect to radius is zero). The Tolman length is known to be affected 

by choice of contour (see e.g. Ref. 25), but the presented trends compare bubbles and droplets calculated 

in a consistent manner; as there is no unique form, we use the simplest, leaving a more detailed study 

of the a full interface tracking pressure to future work. Thus, for all the interfaces, the normal pressure 

component (Fig. 6 (a), (c) and (e)) shows a higher peak on the liquid side and a lower peak on the gas 

side. The tangential pressure component instead is shown to have a single deep valley. It is this 

difference between the normal and tangential pressure components which is a direct manifestation and 

can be used to quantify the surface tension. 

Figure 6 (b) (d) and (f) show the kinetic and virial parts of the normal and tangential pressure 

components. It can be seen that no matter if the interface is curved or not, the magnitude of both the 

kinetic and virial parts of the normal and tangential pressure components increase monotonically from 

the gas region to the liquid region (except the virial part of the tangential pressure, which shows a peak 

on the liquid side near the interface). The kinetic part of the pressure is positive while the virial part is 

negative. When these kinetic and viral parts are added up, the total pressure follow the Young-Laplace 

law which predicts a higher total pressure on the side to which the interface is curved. It is also shown 

that the kinetic parts of the normal and tangential pressure components equal each other for all interfaces 

which means that the kinetic part of the pressure does not contribute to the surface tension. The 

difference between the virial parts of the normal and tangential pressure components near the interface 

is the origin of the surface tension.  

C. The surface tension and Tolman length 

The errors for all the results in this work are from time-average values of four subsequent subsets of 

500,000 time steps. The 𝛾𝛾 and 𝛿𝛿 calculated using the two different procedures are compared. The results 

show that the 𝛾𝛾 and 𝛿𝛿 of the flat interface calculated using the two procedures are identical while those 

for curved interfaces are slightly different. Examples of the 𝛾𝛾  and 𝛿𝛿  for nanodroplet interfaces 

calculated with two procedures are shown in Fig. B.1. The differences of 𝛾𝛾 calculated by the two 

procedures are small while the differences in 𝛿𝛿  increases slightly as the curvature radius of the 

nanodroplet increases. The results discussed later in this study are all calculated using the ‘average 

before’ procedure (“average before” chosen arbitrarily given no clear advantage of either, but not 

expected to affect conclusions). 
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FIG. 7. Surface tension depicted as 𝛾𝛾F and Tolman length depicted as 𝛿𝛿F for flat interfaces with different 
𝜌𝜌G 𝜌𝜌L⁄ . 

The effect of 𝜌𝜌G 𝜌𝜌L⁄  on 𝛾𝛾 and 𝛿𝛿 is studied with flat interface cases and the results are shown in Fig. 7, 

where we change 𝜌𝜌G 𝜌𝜌L⁄  by change the number of gas molecules in the gas region of the system, which 

has a fixed volume. It should be noted here that the density used in this study is the particle number 

density. The density is directly related to pressure at the same temperature. The smallest 𝜌𝜌G 𝜌𝜌L⁄  we can 

get is the case where there are no gas molecules in the gas region, with the gas region filled by the liquid 

vapour molecules. The highest 𝜌𝜌G 𝜌𝜌L⁄  we can get is around 0.25, above which the boundary between 

the gas and liquid is hard to identify. It should be noted that in the whole density ratio range, the density 

of the liquid region is quite stable and stays around 0.8. That is because liquid is less compressible than 

gas. We can see from Fig. 7 (a) that 𝛾𝛾  decreases as 𝜌𝜌G 𝜌𝜌L⁄  increases (or as the density difference 

between gas and liquid decreases). 

 
FIG. 8. Schematic diagram showing typical force state of liquid molecules. 

The reason for this decrease is that 𝛾𝛾 results from the unbalanced intermolecular forces at the interface 

between the gas and liquid regions (as shown schematically in Fig. 8). The molecules on the interface 

experience a resultant force pointing into the liquid which means it tends to contract. As the liquid 
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density is relatively constant, when there are fewer gas molecules in the gas region, they contribute less 

force to the interface which results in an unbalanced force state at the interface and a higher surface 

tension. When the gas density increases, the unbalanced force state of the interface eases and the surface 

tension decreases. 

It is shown in Fig. 7 (a) that the surface tension of a flat interface (𝛾𝛾F) has an approximately linear 

relationship with 𝜌𝜌G 𝜌𝜌L⁄ , which is in agreement with results from other researches where the surface 

tension decreases linearly with the supersaturation ratio 37. Thus, a linear fitting is applied to the data: 

 𝛾𝛾F = −1.3352
𝜌𝜌G
𝜌𝜌L

+ 0.7695 (22) 

Moreover, 𝜌𝜌G 𝜌𝜌L⁄  also shows an effect on the Tolman length (see Fig. 7 (b)). The Tolman length ranges 

from 1.2 to 3.5 reduced units. Similar to the results of surface tension, a linear relationship is used to fit 

the increase of the Tolman length with 𝜌𝜌G 𝜌𝜌L⁄ : 

 𝛿𝛿F = 3.6941
𝜌𝜌G
𝜌𝜌L

+ 1.6605 (23) 

where 𝛿𝛿F represents the Tolman length for a flat interface. It should be noted here that as the relative 

uncertainty of 𝛿𝛿F is high, the linear fit can have a big variation. 

These linear fits will be used to subtract 𝛾𝛾F and 𝛿𝛿F (with the same 𝜌𝜌G 𝜌𝜌L⁄  as the curved interfaces) from 

curved interfaces to obtain the effect of curvature. 

Molecular dynamics simulations necessarily contain a finite number of molecules, with periodic 

boundaries used at the edges. In order to ensure the finite-size of these systems do not affect the 

observed 𝛾𝛾 and 𝛿𝛿, simulations have been performed to parameterise the effect of the simulation domain 

size. To demonstrate this, a set of simulations (referred to as ‘larger simulation domain’) which use 

twice as much space between the nanobubble/nanodroplet and the boundary as the remaining 

simulations were conducted. Results of these larger simulation domains are consistent with the smaller 

domains used in the majority of this work. 

 
FIG. 9.Nanodroplets with close curvature radii but different intrusions into the simulation domain. 

The effect of the intrusion of the curved interface into the simulation domain on 𝛾𝛾 and 𝛿𝛿 has also been 

studied. Here, the intrusion of the curved interface is defined as distance between the fitted origin of the 

interface and the flat wall in the direction from wall to the curved interface normalised by the equimolar 
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curvature radius of the curved interface. It is determined by the curvature radius of the curved interface 

and the length of the pinning pattern. By controlling the length of the pinning pattern and the number 

of the liquid molecules, droplets with similar curvature radii but different intrusion can be obtained 

(referred to as ‘different intrusions’ and examples of droplets with close curvature radius but different 

intrusions are shown in Fig. 9). 

 
      (a)                                                                                     (b) 

 
     (c)                                                                                  (d) 

FIG. 10. The surface tension and Tolman length as a function of 𝑅𝑅𝑒𝑒. (a) and (b) Surface tension against 𝑅𝑅𝑒𝑒 for 
nanodroplets (𝛾𝛾D) and nanobubbles (𝛾𝛾B), respectively. (c) and (d) Tolman length against 𝑅𝑅𝑒𝑒 for nanodroplets 
(𝛿𝛿D) and nanobubble (𝛿𝛿B), respectively. This figure shows all curved interface cases run. 

Figure 10 shows 𝛾𝛾  and 𝛿𝛿  for all curved interface cases run in this work. Results labelled ‘larger 

simulation domain’ and ‘different intrusions’ show similar values of 𝛾𝛾 and 𝛿𝛿 to the remaining results 

which confirms that the size of the simulation domain used in the remaining studies is sufficient to 

avoid finite size effects, and the intrusion of the nanodroplet interface does not affect the measured 

values of 𝛾𝛾 and 𝛿𝛿. Figure 10 (a) and (b) show the surface tension of nanodroplet (𝛾𝛾D) and nanobubble 

interfaces (𝛾𝛾B) with different 𝑅𝑅𝑒𝑒 and 𝜌𝜌G 𝜌𝜌L⁄ . In all simulations, nanodroplets stay on the solid surfaces 

and are surround by gas region (see Fig. 2 (a)). For the uncompressed nanodroplet cases (labelled as 

‘uncompressed’), there are no gas molecules added in the system, thus the pressure in the bulk gas 

10 20 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 uncompressed  compressed 
 compressed      larger simulation domain 
 different intrusions

γ D
 

Re

5 10 15 20 25 30 35
0.50

0.55

0.60

0.65

0.70

0.75

0.80

 uncompressed  compressed
 compressed     larger simulation domain

γ B
 

Re

5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 uncompressed  compressed
 compressed      larger simulation domain
 different intrusions

δ D
 

Re

5 10 15 20 25 30 35

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 uncompressed  compressed
 compressed      larger simulation domain

δ B
 

Re



18 

region is the saturated liquid-vapour pressure. While the pressure inside the droplet is governed by the 

Yong-Laplace law. For the compressed nanodroplet cases (labelled as ‘compressed’), different amounts 

of gas molecules are added in the bulk gas region to adjust the pressure of the system. All the 

nanobubbles stay on the solid surface and are submerged in liquid (see Fig. 2 (b)). For the uncompressed 

nanobubble cases (labelled as ‘uncompressed’), there is a vapour region above the liquid region which 

ensures that the pressure in the bulk fluid equals the saturated liquid-vapour pressure. While the pressure 

inside the bubble is determined by the Young-Laplace law. For the compressed nanobubble cases 

(labelled as ‘compressed’), there is no vapour region above the bulk liquid region, and the pressure of 

the system can be adjusted by the number of gas molecules added inside the bubble.  

As we can see from Fig. 10 (a), 𝛾𝛾D of uncompressed nanodroplets increases monotonically with the 

molecular curvature radius and levels off at a 𝑅𝑅𝑒𝑒 of around 20. Meanwhile, 𝛾𝛾D of compressed droplets 

is smaller than that of the uncompressed droplets with the same 𝑅𝑅𝑒𝑒 which is in accordance with the flat 

interface cases where 𝛾𝛾F decreases as 𝜌𝜌G 𝜌𝜌L⁄  increases. 𝛾𝛾B of the uncompressed nanobubble interface 

(shown in Fig. 10 (b)) decreases first and then increases slightly as 𝑅𝑅𝑒𝑒  increases. Similarly, 𝛾𝛾B  of 

compressed bubbles is smaller than that of the uncompressed bubbles with the same 𝑅𝑅𝑒𝑒. When 𝑅𝑅𝑒𝑒 is 

smaller than 20, 𝛾𝛾D shows an opposite trend compared to 𝛾𝛾B, where 𝛾𝛾D decreases as 𝑅𝑅𝑒𝑒 decreases while 

𝛾𝛾B increases. 

The results for Tolman length of the nanodroplet (𝛿𝛿D) and nanobubble (𝛿𝛿B) interfaces are shown in Fig. 

10 (c) and (d), respectively. For both nanobubble and nanodroplet results, 𝛿𝛿 for compressed cases is 

slightly higher than the uncompressed cases which is in accordance with the flat interface cases where 

higher 𝜌𝜌G 𝜌𝜌L⁄  leads to bigger 𝛿𝛿F . When 𝑅𝑅𝑒𝑒  is smaller than 20, 𝛿𝛿 also shows opposite trends for the 

nanodroplet and nanobubble interfaces, where 𝛿𝛿D increases as 𝑅𝑅𝑒𝑒 decreases while 𝛿𝛿B decreases. When 

𝑅𝑅𝑒𝑒 is larger than 20, the 𝛿𝛿D levels off smoothly while 𝛿𝛿B shows a slight decrease and then levels off. 

The results show that 𝛾𝛾 and 𝛿𝛿 for nanodroplet and nanobubble interfaces have different trends with the 

curvature radius. However, this is a combination of the effect of 𝜌𝜌G 𝜌𝜌L⁄  and curvature. In the following 

section, the effect of curvature is obtained and discussed. 

D. The effect of curvature on the surface tension and Tolman length 

As Fig. 7 (a) has shown, the effect of 𝝆𝝆𝐆𝐆 𝝆𝝆𝐋𝐋⁄  on 𝜸𝜸𝐅𝐅 can be fitted to a linear relationship described with 

Eq. (22). Thus, the effect of the density ratio can be corrected in the droplet and bubble cases by using 

𝜸𝜸𝐅𝐅 with the same 𝝆𝝆𝐆𝐆 𝝆𝝆𝐋𝐋⁄ . 
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     (a)                                                                                 (b) 

 
  (c)                                                                                 (d) 

FIG. 11. Effect of curvature on 𝛾𝛾 and 𝛿𝛿 obtained by subtracting the effect of 𝜌𝜌G 𝜌𝜌L⁄  from the results in Fig. 7. 
(a) and (b) Curvature dependence of 𝛾𝛾 for nanodroplets and nanobubbles, respectively. (c) and (d) Curvature 
dependence of 𝛿𝛿 for nanodroplets and nanobubbles, respectively. This figure shows all cases run. 

The difference between 𝛾𝛾F  and 𝛾𝛾  for the curved interface (𝛾𝛾D  for nanodroplet interface and 𝛾𝛾B  for 

nanobubble interface) can be regarded as the effect of curvature on 𝛾𝛾 (∆𝛾𝛾), which is  

  ∆𝛾𝛾D = 𝛾𝛾D − 𝛾𝛾F (24) 

for nanodroplet cases and  

 ∆𝛾𝛾B = 𝛾𝛾B − 𝛾𝛾F (25) 

for nanobubble cases. 

The results for the effect of curvature on γ are shown in Fig. 11 (a) and (b). As we can see, when the 

effect of 𝜌𝜌G 𝜌𝜌L⁄  on 𝛾𝛾 is corrected, the effect of the curvature on 𝛾𝛾 for both compressed nanodroplets and 

nanobubbles follows the uncompressed trends. Moreover, it is shown that the curvature shows an 

opposite effect on 𝛾𝛾D and 𝛾𝛾B. The same method applied here was used to obtain the effect of curvature 

on 𝛿𝛿 (∆𝛿𝛿), which is  

  ∆𝛿𝛿D = 𝛿𝛿D − 𝛿𝛿F (26) 

0 10 20 30

-0.3

-0.2

-0.1

0.0

0.1

 uncompressed
 compressed
 compressed
 larger simulation domain
 different intrusions

∆
γ D

Re

5 10 15 20 25 30 35
-0.05

0.00

0.05

0.10

0.15

0.20

0.25  uncompressed
 compressed
 compressed
 larger simulation domain

∆
γ B

Re

5 10 15 20 25 30

-0.5

0.0

0.5

1.0

1.5

2.0  uncompressed  compressed
 compressed     larger simulation domain
 different intrusions

∆
δ D

Re

5 10 15 20 25 30 35
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
 uncompressed  compressed
 compressed     larger simulation domain

∆
δ B

Re



20 

for nanodroplet cases and  

 ∆𝛿𝛿B = 𝛿𝛿B − 𝛿𝛿F (27) 

for nanobubble cases. 

The results for the effect of curvature on 𝛿𝛿 are shown in Fig. 11 (c) and (d). It is shown that, as with the 

results for 𝛾𝛾 , by subtracting the flat interfaces value of 𝛿𝛿  from both compressed nanodroplet and 

nanobubble cases, it can be made to agree with the uncompressed trends. Similarly, the curvature 

presents opposite effects on 𝛿𝛿D and 𝛿𝛿B. The absolute values of Tolman length may change using a 

different definition of pressure, which might be a factor in the Tolman length not tending to zero in Fig 

11 c) and d). This will constitute the subject of further future investigations. 

  
     (a)                                                                                 (b) 

FIG. 12. Effect of curvature on (a) the surface tension and (b) Tolman length.  

Figure 12 (a) shows ∆𝛾𝛾 normalised by 𝛾𝛾F with the same 𝜌𝜌G 𝜌𝜌L⁄  (note here that opposite values to the 

results for nanodroplet interfaces are used). We can see that ∆𝛾𝛾/𝛾𝛾F increases with the curvature of the 

interfaces. As the effect of curvature is expected to fade away when the curvature decreases, a linear 

relationship is fitted to the curvature dependence of the surface tension. The data points agree well with 

the fitted line as the effect of 𝜌𝜌G 𝜌𝜌L⁄  is corrected. The results scatter evenly around the fitted line within 

the error bars. The effect of curvature on the surface tension vanishes at a curvature of around 0.02 

where the fitted line intersects the 𝑥𝑥 axis. Figure 12 (b) shows ∆𝛿𝛿 normalised by 𝛿𝛿F  with the same 

𝜌𝜌G 𝜌𝜌L⁄  (note here that opposite values of the results for nanobubble interfaces are used). Similar to the 

surface tension, a linear relationship is fitted to the Tolman length. The data points do not agree as well 

as that for the surface tension with the fitted line. The reason is that the relative uncertainty of the 

Tolman length for the flat interface case is high 11, 24 (as shown in Fig. 7 (b)) and the linear fit to Tolman 

length and 𝜌𝜌G 𝜌𝜌L⁄  for flat interface has a big possible variation. 

As the effects of 𝜌𝜌G 𝜌𝜌L⁄  and curvature on ∆𝛾𝛾 are investigated separately, the results for surface tension 

in Fig. 10 can be discussed more thoroughly here. For the uncompressed nanobubble cases, on the one 

hand, the pressure in the bulk liquid region is the saturated liquid-vapour pressure as there is a vapour 
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region above the bulk-liquid region. However, inside the nanobubbles the pressure follows the Young-

Laplace law and it increases when 𝑅𝑅𝑒𝑒  decreases which causes the density inside the nanobubble 

increase, while the density of the liquid stays relatively the same. Then 𝜌𝜌G 𝜌𝜌L⁄  increases and leads to a 

decrease of the surface tension as 𝑅𝑅𝑒𝑒 decreases. On the other hand, the curvature also has an effect on 

the surface tension which leads to an increase of the surface tension as 𝑅𝑅𝑒𝑒 decreases. When 𝑅𝑅𝑒𝑒 is larger 

than 20, the effect of 𝜌𝜌G 𝜌𝜌L⁄  dominates, and the surface tension shows a slight decrease as 𝑅𝑅𝑒𝑒 decreases. 

When 𝑅𝑅𝑒𝑒  is smaller than 20, the effect of curvature dominates, and the surface tension shows an 

increasing trend as 𝑅𝑅𝑒𝑒 decreases. For the uncompressed nanodroplet cases, there are no gas molecules 

in the vapour region and the pressure there is the saturated liquid vapour pressure. While inside the 

nanodroplets, the pressure follows the Young-Laplace law and increases as 𝑅𝑅𝑒𝑒 decreases. However, 

because the liquid is incompressible, its density stays relatively constant. Thus 𝜌𝜌G 𝜌𝜌L⁄  does not change 

for the nanodroplet cases and there is only the effect of the curvature. This is why the surface tension 

of the nanodroplet cases decreases monotonously as 𝑅𝑅𝑒𝑒 decreases. Similar effects can also be seen from 

the results for Tolman length in Fig. 10. 

E. Fitted Tolman equation considering both effects of density ratio and curvature 

The relationship between γ and δ for cylindrical nanodroplet (Eq. (15)) and nanobubble (Eq. (16)) 

interfaces were obtained following the methods adopted by Tolman. 

 
      (a)                                                                                (b) 

FIG. 13. Surface tension for (a) nanodroplets and (b) nanobubbles obtained from MD simulations without 
correction and the (fitted) Tolman equation for interfaces with different curvature.  

By substituting the fitted surface tension (Eq. (22)) and Tolman length (Eq. (23)) for the flat interface, 

considering the effect of 𝜌𝜌G 𝜌𝜌L⁄ , into Eqs. (15) and (16), we obtain the fitted Tolman equations for 

cylindrical nanodroplets and nanobubbles, respectively: 

 𝛾𝛾D𝑅𝑅𝑠𝑠 =
𝑅𝑅𝑠𝑠 �−1.3352𝜌𝜌G𝜌𝜌L

+ 0.7695�

𝑅𝑅𝑠𝑠 + �3.6941𝜌𝜌G𝜌𝜌L
+ 1.6605�

 (28) 

5 10 15 20 25 30

0.5

0.6

0.7

0.8

γ D
 

Re

 MD simulations
 Fitted Tolman equation

5 10 15 20 25 30 35

0.65

0.70

0.75

0.80

γ B
 

Re

 MD simulations
 Fitted Tolman equation



22 

 𝛾𝛾B𝑅𝑅𝑠𝑠 =
𝑅𝑅𝑠𝑠 �−1.3352𝜌𝜌G𝜌𝜌L

+ 0.7695�

𝑅𝑅𝑠𝑠 − �3.6941𝜌𝜌G𝜌𝜌L
+ 1.6605�

 (29) 

With the fitted Tolman equations, 𝛾𝛾 for nanodroplet and nanobubble cases with a certain curvature 

radius and 𝜌𝜌G 𝜌𝜌L⁄  were obtained. The results are compared with the MD simulations in Fig. 13. It is 

shown that 𝛾𝛾 obtained with the MD simulations and the fitted Tolman equation show similar trends for 

both nanodroplet and nanobubble interfaces. When the curvature radius is larger than 10 for 

nanodroplets and 12 for nanobubbles, 𝛾𝛾  obtained with the two methods agree relatively well. For 

smaller curvature radius, 𝛾𝛾  obtained with the fitted Tolman equation tends to be higher than that 

obtained with MD simulations. Such difference at the small curvature radius might come from the 

assumption that 𝛿𝛿 is constant, while from the results shown earlier in this study, we know that it varies 

with curvature radius when the curvature radius is smaller than 20. Equations (15) and (16) are obtained 

by integrating Eqs. (13) and (14) with respect to 𝑅𝑅 from infinite (flat interface) to the radius of interest 

(𝑅𝑅𝑠𝑠). Thus, the effect of the curvature dependence of Tolman length will accumulate when the curvature 

radius is smaller than 20. This causes the higher values in the fitted Tolman equation for curvature 

radius smaller than around 10 for nanodroplets and around 12 for nanobubbles. 
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Ⅳ. CONCLUSIONS 

In this study, we have presented a detailed comparison of nanobubbles and nanodroplets. Positive values for the 

Tolman length are obtained for flat, nanobubble and nanodroplet interfaces with MD simulations using 

the Kirkwood-Buff method. The Tolman length is defined as the distance from the surface of tension 

to the equimolar surface, assuming the convention that the direction from liquid to gas is positive. The 

effect of the gas/liquid density ratio is parameterised by measuring the surface tension and Tolman 

length for the case of a flat interface. It is found that the surface tension decreases linearly while the 

Tolman length increases linearly with the gas/liquid density ratio. Fittings are obtained which 

parameterise both surface tension and Tolman length as a function of density ratio. Next, the surface 

tension and Tolman length for nanobubbles and nanodroplets confined to solid surfaces with alternate 

hydrophobic and hydrophilic patterns are simulated for various curvature radii. Using the density ratio 

relations from the flat interface case, the effect of gas/liquid density ratio is removed and the curvature 

dependence of the surface tension and Tolman length for cylindrical nanobubble and nanodroplet 

interfaces were isolated and compared. The curvature started to show an effect when the radius of the 

equimolar surface is smaller than 20. The droplet and bubble show equal but opposite trends in both 

surface tension and Tolman length as a function of radius. Using the effect of gas/liquid density ratio 

obtained from flat interface cases, a fitted Tolman equation can be obtained to predict the surface tension 

of a curved interface with certain curvature radius and gas/liquid density ratio. Results showed that the 

surface tension obtained with the fitted Tolman equation are comparable with those obtained with the 

MD simulations. They agree well, except the higher values obtained using the fitted Tolman equation 

at smaller curvature radius, attributed to the accumulation of the curvature dependence of the Tolman 

length. Our results on the similarity and difference between droplets and bubbles, the density and 

curvature dependence of the surface tension and the Tolman length have important implications for 

nanoscale processes linked to bubble nucleation, droplet formation, wetting, moving contact line and 

their relevant technological applications. 
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Ⅶ. SUPPORTING INFORMATION 

A. Deduction of the Tolman equations for cylindrical interfaces.  

For a cylindrical interface, the equations for surface tension based on pressure tensors can be deduced 

following the method similar to that for a spherical interface. The system can be simplified as a 

cylindrical drop of phase 𝛼𝛼 immersed in phase 𝛽𝛽 within a cylindrical coordinate system  𝑟𝑟, 𝜃𝜃, 𝑧𝑧. The 

pressure tensor of the system is: 

 𝑷𝑷 = 𝑃𝑃N(𝒆𝒆𝑟𝑟𝒆𝒆𝑟𝑟) + 𝑃𝑃T(𝒆𝒆𝜃𝜃𝒆𝒆𝜃𝜃) + 𝑃𝑃𝑧𝑧(𝒆𝒆𝑧𝑧𝒆𝒆𝑧𝑧) (A.1) 

 
FIG. A.1. Stress state of a strip in a longitudinal plane of a cylindrical interface. 

Then, consider a longitudinal strip with a width of 𝑊𝑊𝑧𝑧 in the 𝑧𝑧 direction, stretching from 𝑅𝑅𝛼𝛼 (in the bulk 

𝛼𝛼 region) to 𝑅𝑅𝛽𝛽 (in the bulk 𝛽𝛽 region) in the 𝑟𝑟 direction, at a constant 𝜃𝜃 (shown in Fig. A.1). The surface 

of tension is at 𝑅𝑅𝑠𝑠 in 𝑟𝑟  direction. The force acting on one side of the strip can be expressed in two ways: 

as an integral of 𝑃𝑃T(𝑟𝑟) over the strip, or, as a result of the pressure 𝑃𝑃𝛼𝛼 acting on the surface between 𝑅𝑅𝛼𝛼 

and 𝑅𝑅𝑠𝑠, of the pressure 𝑃𝑃𝛽𝛽  acting on the surface between 𝑅𝑅𝑠𝑠 and 𝑅𝑅𝛽𝛽, and of the surface tension 𝛾𝛾 acting 

at 𝑅𝑅𝑠𝑠. The two expressions of the force and the momentum of the force about 𝑧𝑧 axis equal each other: 

 � 𝑟𝑟𝑛𝑛𝑊𝑊𝑧𝑧𝑃𝑃T𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
= � 𝑟𝑟𝑛𝑛𝑊𝑊𝑧𝑧𝑃𝑃𝛼𝛼𝑑𝑑𝑟𝑟

𝑅𝑅𝑠𝑠

𝑅𝑅𝛼𝛼
+ � 𝑟𝑟𝑛𝑛𝑊𝑊𝑧𝑧𝑃𝑃𝛽𝛽𝑑𝑑𝑟𝑟

𝑅𝑅𝛽𝛽

𝑅𝑅𝑠𝑠
+ 𝑅𝑅𝑠𝑠𝑛𝑛𝑊𝑊𝑧𝑧𝛾𝛾 (A.2) 

where 𝑛𝑛 = 0 and 1 represent the force acting on the strip and its momentum about 𝑧𝑧 axis, respectively. 

Here we define a pressure 𝑃𝑃𝛼𝛼,𝛽𝛽(𝑟𝑟;𝑅𝑅𝑠𝑠) which equals 𝑃𝑃𝛼𝛼 for 𝑟𝑟 between 𝑅𝑅𝛼𝛼 and 𝑅𝑅𝑠𝑠 and 𝑃𝑃𝛽𝛽  for 𝑟𝑟 between 

𝑅𝑅𝑠𝑠 and 𝑅𝑅𝛽𝛽. Then Eq. (A.2) can be rewrote as: 

 𝛾𝛾 = � �
𝑟𝑟
𝑅𝑅𝑠𝑠
�
𝑛𝑛
�𝑃𝑃𝛼𝛼,𝛽𝛽(𝑟𝑟;𝑅𝑅𝑠𝑠) − 𝑃𝑃T� 𝑑𝑑𝑟𝑟

𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
 (A.3) 

At the same time, from the hydrostatic equilibrium condition of the system 𝛁𝛁 ∙ 𝑷𝑷=0 we have: 

 �
𝑑𝑑𝑟𝑟𝑚𝑚𝑃𝑃N
𝑑𝑑𝑟𝑟

𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
= � 𝑟𝑟𝑚𝑚−1[(𝑚𝑚− 1)𝑃𝑃N + 𝑃𝑃T]𝑑𝑑𝑟𝑟

𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
 (A.4) 

where 𝑚𝑚 is an integer. Integrate the left side of Eq. (A.4): 

𝑅𝑅s

𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼

𝑊𝑊z

𝛽𝛽

𝛼𝛼

𝑧𝑧
𝑟𝑟
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 𝑅𝑅𝛽𝛽𝑚𝑚𝑃𝑃𝛽𝛽 − 𝑅𝑅𝛼𝛼𝑚𝑚𝑃𝑃𝛼𝛼 = � 𝑟𝑟𝑚𝑚−1[(𝑚𝑚− 1)𝑃𝑃N + 𝑃𝑃T]𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
 (A.5) 

In the meanwhile, form the integration of 𝑚𝑚𝑟𝑟𝑚𝑚−1𝑃𝑃𝛼𝛼,𝛽𝛽(𝑟𝑟;𝑅𝑅𝑠𝑠): 

 

� 𝑚𝑚𝑟𝑟𝑚𝑚−1𝑃𝑃𝛼𝛼,𝛽𝛽(𝑟𝑟;𝑅𝑅𝑠𝑠)𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
= � 𝑚𝑚𝑟𝑟𝑚𝑚−1𝑃𝑃𝛼𝛼𝑑𝑑𝑟𝑟

𝑅𝑅𝑠𝑠

𝑅𝑅𝛼𝛼
+ � 𝑚𝑚𝑟𝑟𝑚𝑚−1𝑃𝑃𝛽𝛽𝑑𝑑𝑟𝑟

𝑅𝑅𝛽𝛽

𝑅𝑅𝑠𝑠
 

=𝑅𝑅𝛽𝛽𝑚𝑚𝑃𝑃𝛽𝛽 − 𝑅𝑅𝛼𝛼𝑚𝑚𝑃𝑃𝛼𝛼 + �𝑃𝑃𝛼𝛼 − 𝑃𝑃𝛽𝛽�𝑅𝑅𝑠𝑠𝑚𝑚 

 

(A.6) 

Substitute Eq. (A.5) into (A.6): 

 �𝑃𝑃𝛼𝛼 − 𝑃𝑃𝛽𝛽�𝑅𝑅𝑠𝑠𝑚𝑚 = � �𝑚𝑚𝑟𝑟𝑚𝑚−1𝑃𝑃𝛼𝛼,𝛽𝛽(𝑟𝑟;𝑅𝑅𝑠𝑠) − 𝑟𝑟𝑚𝑚−1[(𝑚𝑚− 1)𝑃𝑃N + 𝑃𝑃T]�𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
 (A.7) 

At the surface of tension we have: 

 𝑃𝑃𝛼𝛼 − 𝑃𝑃𝛽𝛽 =
𝛾𝛾
𝑅𝑅𝑠𝑠

 (A.8) 

Substitute Eq. (A.8) into (A.7): 

 𝛾𝛾 = � �𝑚𝑚 �
𝑟𝑟
𝑅𝑅𝑠𝑠
�
𝑚𝑚−1

𝑃𝑃𝛼𝛼,𝛽𝛽(𝑟𝑟;𝑅𝑅𝑠𝑠) − �
𝑟𝑟
𝑅𝑅𝑠𝑠
�
𝑚𝑚−1

[(𝑚𝑚− 1)𝑃𝑃N + 𝑃𝑃T]�𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
 (A.9) 

Equation (A.3) times 2 for n = 1 minus Eq. (A.9) for m = 2: 

 𝛾𝛾 = �
𝑟𝑟
𝑅𝑅𝑠𝑠

(𝑃𝑃N − 𝑃𝑃T)𝑑𝑑𝑟𝑟
𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼
 (A.10) 

Equation (A.10) divided by Eq. (A.9) for m = 0: 

 
𝑅𝑅𝑠𝑠2 =

∫ 𝑟𝑟(𝑃𝑃N − 𝑃𝑃T)𝑑𝑑𝑟𝑟𝑅𝑅𝛽𝛽
𝑅𝑅𝛼𝛼

∫ 1
𝑟𝑟 (𝑃𝑃N − 𝑃𝑃T)𝑑𝑑𝑟𝑟𝑅𝑅𝛽𝛽

𝑅𝑅𝛼𝛼

 

 

(A.11) 
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B. Examples of the 𝜸𝜸 and 𝜹𝜹 for nanodroplet interfaces calculated with two procedures. 

 
         (a)                                                                               (b) 

FIG. B.1. The surface tension for nanodroplet cases depicted as 𝛾𝛾D (a) and the Tolman length for nanodroplet 
cases depicted as 𝛿𝛿D (b) calculated with different procedures. 
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