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Abstract. Simultaneous Localization and Mapping (SLAM) is a critical
system for Unmanned Aerial Vehicles (UAV), Autonomous Navigation
(AN), Augmented Reality (AR) and Virtual Reality (VR). However, due
to volume and computation limitations, the current SLAM systems on
mobile devices are not robust enough for practical applications. In this
paper, a new SLAM system is proposed, which can be applied to AR
or VR. With the RGB-D input data, this SLAM system can produce
3D scene reconstruction and camera pose estimation in almost real time.
The parameters of the system are optimized for use on mobile devices. In
addition, an adaptive keyframe selection method is proposed to balance
trade-off between accuracy and speed of the system. Experimental results
demonstrated its superior performance in comparison with the state-of-
the-art methods in the same public benchmark dataset.

Keywords: SLAM, Keyframe selection, Augmented Reality, Virtual Re-
ality

1 Introduction

Simultaneous Localization and Mapping (SLAM) is an umbrella name for a
highly active research area in the field of computer vision and robotics for the
goal of 3D scene reconstruction and camera pose estimation from imaging sensors
[1]. SLAM finds applications in all scenarios in which a prior map is not available
and needs to be built [2]. The SLAM community has made witnessing a steady
transition of this technology to industry. A thorough historical review of the first
20 years of the SLAM problem is given by Durrant–Whyte and Bailey in this
survey [3].

Recently, more and more mobile devices are equipped with Depth cameras,
such as Apple iPad Pro 2020 and DJI Mavic2 Pro. When it comes to the SLAM
systems applied to mobile devices, it is an important problem that how to balance
the accuracy and speed of real-time SLAM systems. Therefore, in this paper,
one of the state-of-the-art SLAM systems, BAD-SLAM, is optimized for mobile
devices as an instance. The optimization procedure is also suitable for other
SLAM systems.
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2 Related work

Bundle Adjustment (BA) is a robust and widely used method in SLAM,, and
it is efficient in real-time SLAM in a state-of-the-art method BAD-SLAM [2].
Among all the current SLAM algorithms with RGB-D input for mobile devices,
BAD-SLAM [2] has the best result. Its front end uses the ICP algorithm and
the back end uses the BA optimization algorithm. However, in BAD-SLAM,
many parameters are not optimized for mobile devices. Therefore, in this paper,
improvements are made on the basis of BAD-SLAM. It will balance accuracy
and speed.

There is a crucial step in the front end of SLAM, which is the keyframe
selection method. A simple and popular keyframe selection method in many
SLAM systems ([2], [4], [5], [6]) is to select keyframes after a constant number
of interval frames. Researchers choose an optimal number of frames according
to different scenarios and equipment. The advantage of this method is that the
computation is small, but the disadvantage is also very obvious, that is, poor
adaptability. When the moving speed is slow, it is easy to generate too close
keyframes, which wastes computing resources. When the movement speed is too
fast, large errors will occur. Another popular method is to choose the keyframe
once the pose transformation is large than a constant distance from the last
keyframe [8] [11]. The advantage of this method is that it is flexible, suitable for
fast and slow motion. but the disadvantage is the larger calculation. When the
moving speed is slow, it is easy to finish the calculation before the next frame.
When the movement speed is too fast, the system will need more resources. The
keyframe selection method of BAD-SLAM uses an interval of a fixed number of
frames, which is far from efficient for mobile devices.

3 Methodology

3.1 System overview

The basic outline of the proposed SLAM algorithm is shown in Figure 1. It is
improved from an existing state-of-the-art SLAM system, BAD-SLAM [2]. There
are three main improvements as shown in the green parts of Figure 1, bilateral
filter, keyframe selection method and Robust kernel function. Firstly, While a
new frame comes, a common bilateral filter will smoothen the depth map, some
noise and large depth measurements will be removed. Secondly, the pose of
the current frame will be estimated via the ICP method. Then, the keyframe
selection method will be executed to determine whether the frame is selected as
a keyframe. Thirdly, if the current frame is selected as a new keyframe, the Loop
Closure Detection will be conducted. Finally, all the information will be given
to the Back End to conduct the Direct BA method.

3.2 Optimization for parameters

The Bilateral filter can smoothen the depth map. It constructs a convolution
kernel based on the adjacent pixels for every pixel. The convolution kernel of the
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Fig. 1. Top: the basic structure of a SLAM system. Bottom: the outline of the proposed
SLAM algorithm
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where  4A=4;2;>B4=4BB (ℎ, F) is a gauss matrix relative to the distance between
(ℎ, F) and kernel center,  4A=4;B8<8;0A8C H (ℎ, F) is a gauss matrix relative to the
similarity between (ℎ, F) and (A, 2), 0 < ℎ < F8=�, 0 < F < F8=, , F8=�
represents the hight of the kernel, F8=, represents the width of the kernel, f1

and f2 represent the standard deviation of two gauss matrices.

In the BA optimization, the errors need to be minimized as the objective
function. However, there is a serious problem: the optimization algorithm cannot
distinguish outliers. These outliers can be generated for reasons such as moving
objects or shadow changes. optimization method will treat all data as edges to be
optimized. In order to let the optimization algorithm distinguish the outliers, the
Tukey’s biweight robust loss function is applied to errors before the optimization.

In order to let the optimization algorithm distinguish the outliers, the Tukey’s
biweight robust loss function is applied to errors before the optimization. Its
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equation is given by Equation 2. Now, the loss function is given by Equation 3.
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)2
for |4 | < 2

0 for |4 | > 2
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Where 2 represents the parameter for Tukey’s biweight robust loss function.
Several experiments will be conducted on different values of 2 to determine the
most suitable value for the indoor environment. The Jacobian matrices K and L
here are the derivatives of the overall objective function to the overall variables.
In our system, the optimized values f1, f2 and 2 were determined empirically
according to experiments and results.

3.3 Adaptive Keyframe Selection

The keyframe selection method aims to determine the suitable density of the
keyframes. In order to find the best keyframe selection method for real-time
SLAM systems in the indoor environment, three different methods will be tested.
A simple and popular keyframe selection method is to select keyframes after a
constant number of interval frames. In mathematics, the Euclidean distance or
Euclidean metric is the ordinary straight-line distance between two points in
Euclidean space. The Euclidean distance can be applied to determine the dis-
tance between two frames in this keyframe selection method, once the Euclidean
distance between the current frame and last keyframe is large than the maxi-
mum distance ��D2 or  <0G frames have passed from the last keyframe, set the
current frame as a new keyframe. Keyframe selection method with Euclidean
distance will be compared with the proposed method.

Proposed Mixed Distance There are two different parts in the camera
poses’ vector /, translation and rotation movement. And the impacts of these
two parts are different, SLAM systems are more sensitive to rotation movement.
Therefore, in this project, two coefficients for translation and rotation are pro-
posed in a new keyframe selection method.

A new mixed Euclidean distance is proposed which combines translation and
rotation movement. This mixed Euclidean distance is given by equation

3mixed = `C ‖ t1, t2‖ + `@ ‖q1 q2‖

= `C

√√√
3∑
8=1

(
/18 − /28

)2 + `@
√√√

7∑
8=4

(
/18 − /28

)2 (4)

where `C and `@ represent the coefficients of translation and rotation move-
ment, they satisfy the relationship shown in Equation 5. Therefore, once the
value of one of `C or `@ is determined, another one is determined as well. The
value of `@ from 0.1 to 0.9 will be tested in several experiments, and the best
values of these coefficients will be determined. /: represents the 7 DOF camera
pose of the :Cℎ keyframe.

`C + `@ = 1 (5)
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4 Experimental results

4.1 Dataset and parameters

An experimental evaluation is provided to validate the contributions of the pro-
posed method in terms of tracking accuracy and computation cost, by means of a
comparison against the state of the art on a public benchmark dataset, ETH3D
dataset, which can be found in the ETH3D website [12], which is one of the
latest datasets. ETH3D SLAM datasets have 61 training datasets and 35 test
datasets. Only the ground truth of training datasets is available on the website.
Therefore, the training datasets will be adopted to conduct the experiments.

A laptop with an Intel Core i5 4200H CPU and a Nvidia GTX 850M graphic
card is used in this work. The whole project is implemented on an Ubuntu 18.04
operating system.

For visual SLAM systems, the global consistency of the estimated trajectory
is an important quantity. The global consistency can be evaluated by comparing
the absolute distances between the estimated and the ground truth trajectory
[13]. Therefore, the RMSE of ATE will be used as the final indicator to judge
the accuracy of the SLAM system. For each dataset, the ground truth given by
ETH3D will be compared to the results from experiments.

To get the best results for this real-time SLAM system, all undefined parame-
ters mentioned in section 3 have been tested in a proper range, and corresponding
ATE RMSE results will be compared with the results from BAD-SLAM [2], all
their original results can be found in the paper and website [10]. We will use
”Original” to represent the results from BAD-SLAM in the comparison.
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Fig. 2. The comparison between its performance and other algorithms. For a given
threshold on the ATE RMSE (x-axis), the graph shows the number of datasets for
which the evaluated variant has a smaller ATE RMSE. ATE RMSE stands for the
Root Mean Square Error of Absolute Trajectory Error, which should be as small as
possible. Left: the number of datasets for which the ATE RMSE is smaller than 8.
Right: the number of datasets for which the ATE RMSE is smaller than 2.

Several experiments are conducted with different f1,2 in Equation 1, 2 in
Equation 2 and `@ in Equation 4. The best result is 5.89 cm which is given by
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f1 = 14 and f2 = 0.4 3.72 cm which is given by 2 = 7 and 1.26 cm which is given
by `@ = 0.7.

4.2 Performance

The final system will adopt all the best parameters and the keyframe selection
method with mixed distance, and several experiments for the final system have
been conducted. The comparison between the final system, each system with
an optimized parameter and the original system is shown in Figure 2. In order
to display the difference between two keyframe systems clearly, the numbers
of datasets with the ATE RMSE less than 2 for both methods are also shown
in Figure 2. To demonstrate the overall performance of the system with dif-
ferent improvements, the corresponding distributions of the ATE RMSE that
mentioned above are shown in Table 1.

To show the improvement of the final system intuitively, the comparisons of
the estimated trajectory and the ground truth of dataset 201;4B − 3 from final
and original systems are shown in Figure 3.

Table 1. The distribution of the ATE RMSE for the system with best f. AKS repre-
sents adaptive keyframe selection, SD represents standard deviation

Method AKS Mean(cm) SD(cm)

DVO-SLAM [9] Yes 8.62 19.77
ORB-SLAM2 [16] Yes 9.62 20.33
BAD-SLAM [2] No 7.91 19.25
With the best f No 5.89 12.44
6 frames interval No 3.63 10.22

Euclidean distance Yes 1.31 2.65
With the best 2 No 3.72 11.72
Mixed distance Yes 1.26 2.65

Mixed distance with best parameters Yes 1.01 2.55

4.3 Resources utilization

For the real-time SLAM system, the resource consumption of the system is
critical as well. In order to evaluate the resource consumption of the proposed
system, the time consumption and VRAM consumption of each system with
different keyframe selection methods will be shown in this section. The average
time consumption and VRAM consumption of 61 datasets from each system are
shown in Table 2.

5 Conclusion

This paper improves the current state-of-the-art RGB-D SLAM system for mo-
bile devices with optimized parameters and better keyframe selection method.
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Fig. 3. The comparisons of the estimated trajectory and the ground truth of dataset
201;4B − 3 from the original system. The red line represents the difference between
the estimated trajectory and the ground truth. Therefore, the shorter the red line, the
more precise the estimated trajectory. Left: the estimated trajectory of original system.
Right: the estimated trajectory of the final system.

Table 2. The time and VRAM consumption for each system.

Method Final System Mixed Euclidean 6 frames Interval BAD-SLAM

Average Time
(seconds per 100 frames) 11.6 11.3 11.1 22.3 9.5

VRAM
(Megabyte per 100 frames) 50.33 49.23 55.83 77.83 42.9

The mean ATE RMSE has been improved from 7.91cm to 1.01cm. In addition,
the time consumption of the proposed system is 23% larger than the original
system, and the VRAM consumption of the proposed system is 19% larger than
original system, which is still acceptable for mobile devices. In contrast to the
original system with 6 frames interval keyframe selection method, the proposed
system has a better performance but 46% less time consumption. Overall, the
problem to balance the accuracy and the speed for mobile devices, is solved by
the proposed keyframe selection method with mixed distance and better param-
eters.
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