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ABSTRACT

Let F be the function which maps conformally a simple-connected domain
Q onto a rectangle R, so that four specified points on 0 are mapped
respectively onto the four vertices of R. In this paper we consider the
problem of approximating the conformal map F, and present a survey of the
available numerical methods. We also illustrate the practical significance
of the conformal map, by presenting a number of applications involving

the solution of Laplacian boundary value problems.

Keywords: Conformal mapping, conformal module, Laplacian problems.






1. Introduction
Let Q be a Jordan domain in the complex z-plane (z=x+iy) , and
consider a system consisting of Q and four distinct points z;, z,, z3,

z4 in counter-clockwise order on its boundary 06Q. Such a system is said

to be a quadrilateral Q and is denoted by

Q=1Q 7,,2,,25, 24}

The conformal module m(Q) of Q is defined as follows:

Let Ry denote a rectangle of the form

Rp = {(€M): 0<&<1,0<n<h}

in the w-plane (w=&+in). Then, m(Q) is the unique value of h for

which Q is conformally equivalent to the rectangular quadrilateral
{Rp: 0, 1, I+ih, ih}.

That is, for h = m(Q) and for this value only there exists a unique

conformal map
F:Q >Ry, (1.1a)

which takes the four points Zj; j = 1,2,3,4 respectively onto the four
vertices of Ry, i.e. F is such that
F(z,) = 0,F(z,) = 1,F(z3) = 1+ih and F(z4) = ih. (1.1b)

Of course, h = m(Q) is also the only value of h for which the inverse

conformal map

Ft ! :Rp—> Q> (1.2a)
with
F[—l] 0)=2z, F[—l] )=2z,,
0)=z )=z, (1.2b)
Fl7'l1+ih) =z, and Fl'1({ih)=z,,
exists.

This paper is concerned with the problem of determining approximations
to the conformal map F (or F''!y and to the corresponding conformal

module m(Q). This problem has received considerable attention recently,
most notably by Gaier [10] - [14] who, in particular, recognized the
important role that m(Q) and other similar conformal mapping domain



functionals play in many practical and theoretical investigations. The
main objectives of the paper are as follows:

. To discuss briefly some areas of application of the conformal map F,
and to list the main properties of the conformal module m(Q); Section 2.

To present a survey of some of the available numerical methods for
compuing approximations to F and to m(Q); Section 3.

To present two numerical examples illustrating the application of
the conformal map F to the solution of Laplacian mixed boundary value
problems, involving boundary singularities; Section 4.

To report some recent results concerning a domain decomposition
method for the mapping of a class of long quadrilaterals; Section 5.

2. Physical interpretation, applications and properties of m(Q).
2.1  Physical interpretation and applications.

With the notation of Section 1, let Q := {Q;zl, Z,, Zs, 24} , and

assume that the boundary 0Q of Q is piecewise analytic. Let
now Q represent a thin plate of homogeneous electrically conducting
material of specific resistance 1, and suppose that constant voltages
V, and V, are applied respectively to the boundary segments
(z1, z2) and (z3, z4 ) , whilst the remainder of 0Q is insulated.
Finally, let I be the current passing through the plate, and consider the

problem of determining the resistance
r=(V,_V,)/L (2.1)
The above problem may of course be solved by determining the solution

of the boundary value problem

Ayyu=0,1in Q , (2.2a)
u=1V,on (z,,2z,); u=1V,, on (z3, z4), (2.2b)
% =0, o0n (2, 2z3) U (24, 25) , (2.2¢)

where Ay, is the Laplace operator Ay.':82/8x22+62/6‘y2, and

0/on denotes differentiation in the direction of the outward normal.
Once u is found, r may be determined from (2.1) after first
computing I as a line integral of Odu/on along any line running
from (z4, z1) to (z2, z3); for example we may take



I:j%ds s Y10=(2y, Z,). (2.3)
il

Although the boundary value problem (2.2) appears to be rather simple,
its solution by standard numerical techniques may present serious
difficulties due to the geometry of Q and/or the presence of boundary
singularities. For example, if 0Q is smooth then the solution of (2.2)
has a serious singularity at each of the points Zj; j = 1,2,3,4, where
the boundary conditions change from Dirichlet to Neumann. By contrast, if

the conformal map F:Q —Ry, (h = m(Q)) is available, then the solution of

(2.2) can be obtained trivially from the solution of the transformed
problem inRy. More specifically, because the Laplace equation and the

boundary conditions (2.2b), (2.2c) are conformally invariant, the
transplanted potential 0 satisfies the following boundary value problem:

Ainﬁ =0, in Ry,

ﬁle ,onn=0,0<&§<1,

G:Vz ,onn=h,0<¢E<L1,

ou

—=0,on{=0and{=1,0<n<h.

ag
Thus, if p =(§ ,n)eRy is the image under the conformal map F of a
point PecQ, then

u(P) = (P)
=h ' (V, -V)n+V, .

That is, the solution of (2.2) at any point PeQ can be written down

immediately, once the imaginary co-ordinate of the image point P = F(P)
is found. Furthermore, since the integral (2.3) is conformally invariant
we have that

1 6u By
[I=] —d§ =h"(V,-V) ,
o =17 (V2= V)
and hence from (2.1) that
r=h=m(Q).

In other words, the resistance of the conducting plate is given by the

conformal module of the quadrilateral Q := {Q; z,, z, , z3, Z4}. The
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conformal module is also closely related to the capacitance C between the
boundary segments (z; , z,,) and (z3, z4 ). This is defined as the charge
on (z;, z2), when (z3, z4) is at unit potential and the remainder
of 0Q is at zero potential; see e.g. [5]. If as before m(Q) = h, then
it is shown in [12] that

_ % S {@n—1)sinh [ 2n —T)zh ]}
n=l1

Regarding applications, we have come across a number of papers in the
scientific and engineering literature which, in our conformal mapping
terminology, are concerned specifically with the problem of determining
conformal modules of quadrilaterals. Examples of these are references
[26], [28], [43], [50], [53], and [55], in connection with applications in
electromagnetic field theory, and references [3], [27], and [29], in
connection with the measurement of diffusion coefficients of solid
materials. We also mention a recent paper by Gaier [14], which is

concerned with an area problem for quadrilaterals Q. In this, the
geometry of Q is partly described by three of its four boundary segments,
the conformal module m(Q) is fixed, and the fourth boundary segment is to

be determined so that the area of Q is minimized. The problem is closely
related to a corresponding area problem for symmetric doubly-connected
domains which, according to Acker [1], has several important physical
interpretations.

A more general application of the full conformal map F:Q—>R, (or

FI'") concerns the computer generation of orthogonal curvilinear

co-ordinate systems for the finite-difference solution of partial
differential equations. Examples of this can be found in [2], [30] and
[56], and in the review paper by Thompson et al [48] which includes
fourteen pages of discussion on the use of conformal transformations for
numerical grid generation; see also [49].

2.2 Properties of m(Q).

The properties of conformal modules are studied in detail in Section
6.11 of the recent book by Henrici [19]. Here, we merely state without

proofs six basic results, which are important in computational work for
estimating m(Q) and for comparing the modules of different quadri-

aterals.
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P2.1. IfQ :Z{Q; Z,, Z,, Zj, 24} and Q' ::{Q; Zy, Z3, Zy, zl}, then

m(Q') =1/m(Q) ;
see [10] and [19: p.432]. (The quadrilateral Q ' is said to be the con-

jugate (or reciprocal) quadrilateral to Q.) O

P22 LetQ :={Q; 7z, 2z, z3,z4} and assume the following: (a) The
domain Q is symmetric with respect to the straight line ¢ joining the
points z; and z3 . (b) The point z4 is the mirror image in ¢ of the
point z,. Then,

mQ) =1;
see [21] and [19: p433]. (A quadrilateral of the fl']orm described by (a) and
(b) is said to be a symmetric quadrilateral.)

P 2.3. Variational property of m(Q).
Let Q :={Q; z1, z2, z3 , z4}, let h := m(Q) and let K be the class of

real valued functions u which are continuous in Q , attain the boundary
values u = 0 on the segment (z,, z, ) and u = 1 on (z3, z4 ), and are

in the Sobolev space W,(Q, )i.e.
K:={u: usC(QNW(Q) ,u=0 on (z,,2,),u=1lon (z;, 2,)f. (24)

Also, let Dy[u] denote the Dirichlet integral of ue K with respect
to Q,1. ¢

Dg[u]: = j jQ (u +u?)dxdy . 2.5)
Then

h =min{DQ[u] :ueK}
:DQ[u] s
where ug is the solution of the Laplacian problem (2.2) corresponding to
the boundary values V; =0 and V, = 1; see [10:pl80], [13:p66], [19: p434]
and [58:p73] . O

P 2.4 Let Q :=(Q; z1, 22, 23, 24}, let 2, be any point other than z,,

A
z4 on the boundary segment (z4, z;,), and let Q:z{Q;%l,zz,z3,z4}.



Then,
m(Q)>m((Q);

see [19: p4360]. O
P 2.5. Let Q := {Q; z1, zo , z3 , z4, and CA):={SA2: Z, Z,, Zs, 24} be

two quadrilaterals which have the two boundary segments (z,, z3) and (z4,
z;) in common, and which are such that Q ¢ H, the inclusion being proper.
Then,

mQ)<m(Q);
(see [19: p436]). O

P 2.6. Let z; ; j = 1,2,...,6, be six points in counter-clockwise order
on 0Q and, by means of a cross-cut I' from z3 to zs, decompose

Q into two disjoint Jordan domains Q,, and Q, so that
0Q =(21,2,)U(25,25) VT U(z4,2)) ,

and
Q) =(23,24)V(24,26) I (2526) IT .

IfQ:Z{Q: Zy, Zy, Z4, 25},Q1:= {Ql D Zy, Zy , Zy 26}andQ2:={Qz .

Zg s Z3 5 Zy 25},then

m@Q) >2m(@Q ) + mQ»),

and equality occurs when the cross-cut I' is an equipotential of the
solution of problem (2.2), corresponding to the boundary values V; =
0 and V, = 1; see [19: p437]. O

Several other interesting results on conformal modules are derived in
the two papers by Hersch [20,21] where, in particular, the modules of
various non-trivial quadrilaterals are determined by elementary methods.



3. Numerical methods.

3.1 Methods based on approximating the conformal map of Q onto the unit

disc.
Let Q := {Q; Zi, Zy , Z4 ,24},, let h := m(Q), and let f be the
function which maps conformally Qonto the unit disc D := {C:|§\<l} SO

that f(z*) = 0 and f'(z* ) > 0, where z* is some fixed point in Q.

Then, the conformal map F: Q—>R, can be expressed as
F=Sof, @G.D
where S:D — Ry is a simple Schwarz-Christoffel transformation. In fact,

once the images Cj = f( Zj) ;] = 1,2,3,4, of the four boundary points

ZJ- are found, S can be written down in terms of an inverse Jacobian

elliptic sine, and the conformal module h can be determined by computing
the ratio of two complete elliptic integrals of the first kind; see e.g.
[4], [32] and [35]. For this reason, in theory at least, the problem of
approximating F may be regarded as solved once a suitable approximation
to f: Q— D is found. In particular, if f is known exactly then, in
theory, (3.1) gives the exact conformal map F. In practice however, the
application of (3.1) is restricted by a well-known numerical difficulty
which is caused by a certain crowding phenomenon. This can be described as
follows.

The points éj = f(zj); j = 1,2,3,4, divide the unit circle into the

four arcs Y; ::(z;j,gj+l)j = 1,2,3 and vy, 1:(C4,§1). Let ¢, be
the length of the smaller of the two arcs y, and y; , and let ¢,, be
the length of the smaller of y; and y,. Then, the numerical difficulty
mentioned above is due to the fact that ¢,, becomes very small even when

the conformal module h is only moderately large, and ¢, becomes very

small even when h is only moderately small. More precisely, it can be
shown that if h is "large" then

@, ~ exp(—rh/2), 3.2)
and if h 1s "small" then
¢, ~ exp(—n/2h) . (3.3)

Therefore, if h is either large or small then some of the images of the



points zj; j = 1,2,3,4, on the unit circle will be very close to each
other. This crowding of points may be regarded as a form of
ill-conditioning, in the sense that a numerical procedure based on the use

of (3.1) may fail to provide a meaniningful approximation to F:Q—>R;,

even if an accurate approximation to f:Q—D, is used. In particular,
the process will break down completely if, due to the crowding, the
computer fails to recognize the points &; ; j = 1,2,3,4, in the correct

order. For example, if h = 12 then it can be shown that ¢,, < 5.3x107%.

Thus, in this case, the procedure will fail on a computer with
precision 1077, even if the conformal map f is performed exactly. (A
more detailed discussion of the above can be found in [35: §2]. See also
[10: p179], [19: p428], the remarks of Trefethen in his preface of
[54: p4], and the paper by Zemach[60] which concerns a similar but more
general conformal mapping difficulty.)

As might be expected, all our remarks concerning crowding also apply to
the use of the composition

Fi =g st (34)

for computing approximations to the inverse map F[-1] : R, — Q. Thus, the
crowding phenomenon is a serious numerical drawback of procedures based on
the use of both (3.1) and (3.4). However, such procedures deserve strong
consideration for the following reasons:

(1) Methods based on the use of (3.1) and (3.4) benefit from a very
important advantage. This is connected with the fact that the problems of
determining the conformal maps f:Q—D and f'' : D - Q are very
well-studied. As a result, there are many efficient numerical methods for
computing approximations to f and to f [-1]. For details of such methods
we refer the reader to the following: (a) The classic monograph by Gaier
[9] which, although written in 1964, is still very relevant. (b) Volume
IIT of Henrici's Applied and Computational Complex Analysis [19]. (¢) The
collection of recent papers on numerical conformal mapping, which was
edited in 1986 by Trefethen [54]. (In particular, this collection contains
a survey [18] of almost all the known methods for approximating f [-1], and
a report [41] of recent developments for dealing with corner and pole-type
singularities in numerical methods for f. )

(i1)  Crowding difficulties can be anticipated by using the quantity
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8 exp{—m/(2h)} , if h is "small",
C= e 3.5)
8 exp{—mh/2} , if h is "large",

as a measure; see (3.2) - (3.3) and the discussion in [35: §2]. Although
the conformal module h is not known a priori, a reliable indication of
the extent of crowding can be provided by using a crude estimate of h in
(3.5). It is often possible to determine such crude estimates, by using

the properties of m(Q) listed in Section 2.2.

Unless C is small by comparison to the precision of the computer, or
to the accuracy of the available approximation to f (or f [-1]), the use
of (3.1) or (3.4) will not present any crowding difficulties. For example,
if he[0.4,2.5] then (3.5) gives that C > 0.157. There fore, for such
values of h there will be no difficulties due to crowding, unless the
approximation to f (or f [-1]) is very inaccurate.

(iii1) For an important class of quadrilaterals the numerical diff-
iculties assocated with crowding can be overcome by using a domain
decomposition method; see [38,39] and the discussion in Section 5 below.

(iv) Procedures based on the use of (3.1) and (3.4) have been applied
successfully to many problems, for determining the conformal maps of
non-trivial quadrilaterals. Examples of such applications can be found in
the following: (a) References [22] and [42], where numerical methods based
on the integral equation formulation of Symm [46] are used for the
approximation of the conformal map f:Q— D. (b) References [33] and

[37], where an orthonormalization method, based on the properties of the
Bergman Kernel function of Q, is used for the approximation of f. (¢) The
recent paper by Trefethen [53], who considers polygonal quadrilaterals, and
uses his Schwarz-Christoffel package [51,52] for approximating the
conformal map f [-1] : D -5 Q.

3.2 Methods based on approximating the conformal map of an associated
doubly-connected domain onto a circular annulus.

Methods of this type can be used only in cases where the
quadrilateral Q := {Q; z,, z,, z3, z4 }has one of the two special forms

illustrated in Fig 1.
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Figure 1

Following [35: §3] we consider first the case where Q is of the form
illustrated in Fig I(a). That is, Q, is bounded by a segment L, : =
(z4, z1) of the real axis, a straight line L, := (z2, z3.,) inclined at an
angle Tl/n to L;, with n > 1 an integer, and two Jordan arcs '} and
I,. Proceeding exactly as in [35], we assume that the arcs I'y and T,

are given in polar co-ordinates by
ri={z:2=p,(0)e!,0<0 <mn}; j=12,

with 0 < p> (8) <p: (0), 6<[0,n/n], and denote by €, the 2n-fold symmetric

doubly-connected domain obtained by first reflectingQ about the straight
line L,. That is,

Q4= Int(T}) N Ext(T,), (3.62)
where

I o= {z:z=f)j(9)ei6, 0<0<2n)j=12, (3.6b)
with

p;(0)=p;(0), 0 €[0,m/n],
and (3.6¢)

Pj(kn/n+0)=p;(kn/n+6), 6<[0,mn], k=1(1)2n-1.

Then, for a certain value of q, 0 < q <1, Q, is conformally equivalent

to the annulus
Aq={C:q<g <1y,

and the reciprocal of the inner radius, i.e. the value M: = 1/q, is called
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the conformal modulus of Q.

Let g be the function which maps Q,; conformally onto Aq so that

the curve fl is mapped onto the unit circle |§|:1. Also, let

T(C(:={nlogl} /i,

and let Sq denote the sector

Sq = {¢ :§=rei(P,q <r<i,0<e<mn} .

Then, the function T maps Sq conformally onto the rectangle

R, ={w=£+n:0<E<1,0<n<h},
where

h = —(n logq)/no

so that the four corners of Sq are mapped respectively onto those of Ry
It follows from the above that

m(Q) = h
-(n logq )/ m,

and that the conformal map F:Q — R, can be expressed as

F=Tog.
In other words, the problem of determining F is equivalent to that of
determining the conformal map 9:Q4 > Aqg.

Consider now the case where Q is of the form illustrated in Fig 1(b),
and let the arcs (z;, z2 ) and (zs3, z4) have cartesian equation y:rj{x}:
j = 1,2 . That is, let

Q=1{Q;z, 25, 23, 24}, (3.7a)
where

Q={(x,y):0<x<l,1y(x)<y<1,(x)}, (3.7b)
and

z,=11,(0), z,=1-1t(1),

z, =1+it,(1), z, =i1,(0) . (3.7¢)
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Then, the function
v(z) =exp(inz),

maps Q conformally onto the upper half of a symmetric doubly-connected
domain Q  which has the form (3.6) with n=1 and

pj(66= exp{—mj(%/n); j=12.

Therefore,
F=TogoV,
and the equivalence of the conformal maps F:Q—>R; and 0:Qj —Aq-

persists.

We end this section by making the following remarks in connection
with the use of the compositions
F=Tog, F=TogoV, (3.8)
And
il = g F1) o i), pltl = il g g B Tl (3.9)
for computing approximations to F and to the inverse conformal map FU''):
R, — Q.

(1) As was previously remarked, the application of (3.8) and (3.9) is
restricted to quadrilaterals having one of the two special forms
illustrated in Fig 1. We note however that the mapping of such
quadrilaterals has received considerable attention recently; see e.g. [6],
[15], [30], [45], and [56].

(i1)  Procdures based on the use of (3.8) and (3.9) are not affected by
crowding of the form described in Section 3.1.

(ii1) The use of (3.8) or (3.9) for approximating F or pi-!l depends
on the availability of a suitable approximation to g:Q4 > A .or gl-'h

A, — Q4. Although the conformal mapping of doubly-connected domains has
received much less attention than that of simply-connected domains, there
are several good numerical methods for approximating g and gl™'! ; see

e.e. [71, [81, [9: Kap.V], [15], [19: §17.2-17.5], [23], [34], [47] and



13

[57]. Furthermore, some of these methods involve more or less the same
computational effort as the corresponding methods for approximating
f:Q—>D or f''7: D—>Q . This can be seen by comparing, for example,
the following: (a) The numerical methods for f and g that arise from
the integral equation formulations of Symm [46,47]; see in particular
[23: §2.3]. (b) The Bergman kernel method for f and the corresponding
orthonormalization method for g; see [33,34] and [40]. (c¢) The
Theodersen method for fI''! and the Garrick method for g[-1] ; see e.g.
[9: pp 61-107, 194-207], [19: pp 404-408, 474-478] and [15].

3.3 A finite element method

Let h := m(Q), where as before Q := { Q.; z,, z2, z3, z4}, and recall
the variational property P2.3, i.e.

h' = min{D¢, [u] :u ek}

=D, [u], (3.10)

where K, D,[u] and ug are respectively the class of functions (2.4), the

Dirichlet integral (2.5) and the solution of problem (2.2) with V; = 0 and
V, = 1. Also, let

k:i={u:uc@Q)nw, (QQu=0o0n (z,,z;),u=1on {z,,z,} ,
and observe that
h = min{D,[u] :uek'}
=Dg[u,]. (3.11)

where u, is the solution of the Laplacian problem

Axyuy =0, in Q (3.12a)
u'O =0, on (2,,25); u'0 =1, on (z,7,) (3.12b)
%:0, on (z,,2,)U(2,,2,) . (3.12¢)

n

(This follows by applying P2.3 to the conjugate quadrilateral
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Q' = {Q.; z2, z3, Z4, 1}, and recalling that m(Q'") = h'l; see property
P2.1). Finally, let

a=min{Dg[u]:ueK} , (3.13a)
and

B=min{DH[ufueK} , (3.13b)

where K and K are respectively subclasses of K and K'. Then, it follows
at once from (3.10) and (3.11) that

o '<h<p. (3.13¢)

The above observations form the basis of a finite element method due to
Gaier [10], for computing approximations to h := m(Q) in cases where Q. is a
polygonal domain. More precisely, the method of [10] determines upper and
lower bounds to h of the form (3.13), by computing finite element solutions
to the two Laplacian problems associated with the quadrilaterals Q and Q';
i.e. to problem (2.2) with V; = 0 and V, = 1, and to problem (3.12). The
finite element discretization used in [10] involves the following: (a)

Partitioning the polygonal region Q into regular triangular (or rectang-
ular) elements, so that each of the points Zj; j = 1,2,3,4, coincides with
a node of the subdivision, (b) Takingf( and K' to be finite- dimensional
spaces of linear (or bilinear) functions.

The method of [10] has been analyzed fully, particularly by Weisel
[58], and estimates of the order of convergence are given in both [10] and
[58]; see also [13: pp.69-70]. This is of course an important theoretical
advantage of the method. Unfortunately however, the speed of convergence
is in general slow, because in any non-trivial application the Laplacian
problems associated with Q and Q' contain boundary singularities, i.e.
"corner" singularities of the type that arise frequently in the study of
elliptic mixed boundary value problems. In particular, serious
singularities occur when the polygon 0Q contains re-entrant corners, or
when one or more of the points Zj; j = 1,2,3,4, do not coincide with
corners of 0QQ . The damaging effect of such singularities is predicted by
the analysis of [58], and also by the more general finite element theory of
Laplacian boundary value problems which has been developed in recent years;
see e.g. [17]. Furthermore, it is now well-known from this general theory
that the situation can be improved by the use of singular elements. This
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approach has been applied successfully by Weisel [58] in connection with
the use of a different, but similar, method for computing approximations to

the conformal modules of doubly-connected domains.

3.4 A Fourier series method

Let Q be of the form illustrated in Fig. I(b) and assume that (z,,z; )

is a segment of the real axis. That is, let

Q =1{ Q;2z, 2,27, 7}, (3.14a)
where

Q={xy):0<x<l,0<y<1(x)}, (3.14b)
And

z,=0, z,=1, zy=1+it1t(l ,z, =1it7(0) (3.14¢)
Also, let h := m(Q) and, as before, let FI'!l denote the conformal map

Fi-t. R, > Q. Then, if follows from the Schwarz reflection principle that

the conformal map FU''! can be extended to map the infinite strip
{(E(M):—w<E<mo,0<n<h} onto the infinite domain bounded by the

x-axis and the curvey=r7(x), where 7 is the periodic function defined
by 7t(+x) = 1 (X), 0 < x <1, and t©2+x)=1(x). This implies that the
function FU' (w) - w is periodic with period 2, and that FI'' has a

series representation of the form

Frl(w)=w+> ¢, sinkmi , (3.15)

k=1

where the coefficients ¢; are all real.
Let
x(§(=Re FI' (& +ih) ,
so that
F (g +ih) = x(€) + itn(x(8))

Then, it is easy to see that the Fourier series expansions of the functions
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x(§) and 1(x(§)) are of the form

x(€) ~ &+ a,. cothknh sinkmi , (3.16)
k=1
and
(x(§)) ~ h+ D ay. coskno , (3,17)
k=1

where the coefficients a) are related to those of (3.15) by
aj =cy sinhkrh , (3.18)
Also, from (3.17) we have that

h = [tz - (3.19)

The above results lead to a numerical conformal mapping method for
quadrilaterals of the form (3.14), which was proposed, but not analyzed, by
Challis and Burley [6]. This method of [6] is based on solving a set of
nonlinear equations that arise from the discrete Fourier series analogues
of (3.16), (3.17) and (3.19), corresponding to the nodes & := r/N;
r = 0,1,...,N. More precisely, the method involves solving iteratively, by

a Jacobi type algorithm, the equations

N N-1_ -
x(Er) =&+ D, ap cothknh sinkng; r=0,1,....,N,
K=1

- N -
a =% D 'ux(&p)) cosknEr; k=1.2,..,N,
r=0
~ N -
h =L > 1(x(E,)) .
r=0

for the unknowns Ek; k=1,2,...,N, and h. Once these unknowns are found,

the conformal map FI'' is approximated by
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~ N - -
FI™ (w) =w+ ) a) cosechknh sinkmi ;
k=1

See Eqs (3.15) and (3.18).

It turns out that the above method of Challis and Burley is equivalent
to a known method of the type discussed in Section 3.2, although this is
not immediately apparent from the work of [6]. More specifically, the
method of [6] is equivalent to expressing Fl''in the composite form given
by the second equation in (3.9), i.e. as

Frl =yt gt TH (3.20)
and using the well-known method of Garrick ([9], [16], [19], [25]) for

approximating the conformal map gl™'! : A, —> Q4. This equivalence is

established in [15], where also the theory of the method of Garrick is used
to provide some theoretical justification for the numerical method proposed
in [6].

We end this section by making the following remarks:

(i) The doubly-connected domain Q. corresponding to (3.14) isofthe form
(3.6) with n = 1, p;®)=1 andp,(0)=exp{—nt(0/xr)}. That 1is, for
quadrilaterals of the type considered in [6], the outer boundary component
of Q,. 1is the unit circle and, because of this, the Garrick algorithm

simplifies considerably. This simplified algorithm 1is particularly
efficient if use is made of the fast Fourier transform (FFT). The
algorithm is then fast, in the sense that it requires the application of
only two FFT's in each iterative step; see [15: 4.2,5] and [18: p.74].

(i1) The method of Garrick can, of course, also be used in conjunction
with (3.20) for the mapping of quadrilaterals having the more general form
(3.7). In this case however, the associated doubly-connected domain Q4

does not display any special simplifying features, apart from symmetry.
Thus, the general Garrick algorithm must be used, and this involves the
application of four FFT's in each iterative step; see [15].

(ii1) The results of several numerical experiments illustrating the above
comments and also the convergence properties of the method of Garrick, are
given in [15: Sect.6]; see also [35: Sect.4].
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(iv) A Fourier series method has also been used by Wanstrath et al [56],
for the mapping of quadrilaterals of the form (3.7). It is of interest to
note that their series representation of the mapping function FU''! can
also be derived from the theory of the Garrick method, via the use of
(3.20).

3.5 A finite difference method
Let Q := { Q.; z1, z2, 23, z4}, where the domain Q. is bounded by four

Jordan arcs, and the points z;, z,, z3, z4 are the corners where these arcs
intersect. That is, the quadrilaterals under consideration are of the form
illustrated in Fig. 1, except that now all four sides of Q are allowed to
be curved.

The conformal mapping of quadrilaterals of the above special form has
been considered recently by Seidl and Klose [45]. Their numerical method
involves the use of an iterative algorithm which solves by finite
differences a coupled pair of Laplacian mixed boundary value problems in
Ry, for the unknown functions

x(Em) = ReF'(g,m) and y(@E(m) = ImF(E, )

(Of course, the height of the rectangle Ry, i.e. the conformal module

h := m(Q), is also an unknown of the two Laplacian problems.)

The method of [45] is based to a large extent on experimental
observations. Also, in the numerical examples the authors are mainly
interested in comparing the efficiencies of methods for solving the
discretized Laplacian problems; e.g. the SLOR and the multigrid.

3.6 A modified Schuarz-Christoffel transformation method
This is a recent method due to Howell and Trefethen [24], for computing
approximations to h := m(Q) and to FU'': R, > Q in cases where Q is a

polygonal domain. The method is designed to overcome the crowding
difficulties which, when h is large, affect the use of procedures based on
(3.4); see Section 3.1. This is done by using an infinite strip, instead
of the unit disc, as the intermediate canonical domain. More precisely the
method of [24] is based on expressing FI"'! in the form

Fi= f00 o 501, (3.21)

where si™Y and fI'Y are as follows:
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A1 PO .
(a) S “denotes the conformal map of Ry onto the infinite strip
o ::{(s,t) ;. —0<§ <0, O<t<1} , (This map is known exactly in terms

of h and the logarithm of a Jacobian elliptic sine.)

(b) %H]: o — Q is a modified Schwarz-Christoffel transformation

that maps the strip o onto the polygon Q. (An algorithm for constructing
/flfl] is described with full computational details in [24].)

The efficiency of methods based on the use of (3.21) is illustrated in
[24] by several impressive examples, involving the conformal map of highly
elongated quadrilaterals.

4. Numerical examples

In this section we present three numerical examples, chosen to
illustrate the following:

. The application of the conformal map F:Q —>R, to the solution of

"singular" Laplacian boundary value problems of the form (2.2); Examples 1
and 2.

. The remarks (i), (i1) and (iv) made in Section 3.1, in connection
with the use of procedures based on expressing the conformal maps F or
F["'] in the composite forms (3.1) or (3.4); Examples 1 and 2.

. The crowding difficuties associated with the use of procedures of the
type described in Section 3.1, in cases where the conformal module h is
"large" or "small"; Example 3.

. The efficiency of procedures of the type described in Section 3.2,
for the mapping of quadrilaterals having one of the two special forms
illustrated in Fig. 1; Example 3.

Example 1. Consider the solution of the Laplacian problem (2.2) in the
case where:

(a) The quadrilateral Q :Z{Q;zl,zz, zs , 24} consists of the
rectangle

Q:{xy) x[<1, 0<y<l},
and the points
z1=-1, 22=0, z3=1, z4=1+1.

(b) The Dirichlet boundary values are
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V=500 and V,=1,000.

This problem has a serious boundary singularity at the point z, =0, in the
sense that the first derivatives of its solution become unbounded at z,.
More specifically, the singularity occurs because in the neighbourhood of
Z, the solution u has a series expansion of the form

0 1’1+l
u(rcos0, rsinf) = 500 + Zanr 2cos(n+1/2)60, (4.1)
n=0
where (r,0) are polar coordinates. (In fact, it can be shown that the
expansion (4.1) is valid everywhere in Q; see [44].)

The above problem is often referred to as the "Motz problem", because
it was first considered by Motz [31] in 1946, as an example for solving
singular Laplacian problems by a modified finite difference technique.
Since then it has become a standard test problem, for comparing the
performances of numerical methods in the presence of boundary
singularities. Here, we consider the solution of the Motz problem by
conformal transformations and, in particular, by expressing the conformal

map F: Q — R, in the composite form (3.1), i.e. as

F=Sof. (4.2)

The use of (4.2) recommends itself because in this case the conformal
map f: Q—>D is known exactly in terms of a Jacobian elliptic sine; see
e.g. [4: p44], [32: p280] and [59]. In addition, the conformal module h is
known exactly in terms of two complete elliptic integrals of the first
kind; see [44: Eq. (6.23)] and [59]. In fact, to nine decimal places,

h=1.469 218 032 .
Hence the measure of crowding (3.5) is
C =0.795 805 280 .

Therefore, we can conclude that, in this case, the implementation of (4.2)
will not be affected by crowding of the form described in Section 3.1.

It follows from the above that (4.2) gives the exact solution of the
Motz problem, in terms of elliptic functions and integrals. Surprisingly,
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this does not appear to be generally recognized, althoug the exact solution
has been available in [59], since 1972.

The conformal map (4.2) has also been used by Rosser and Papamichael
[44], for developing a procedure that computes accurate approximations to
the coefficients a, of the expansion (4.1). This procedure is essentially
based on expressing the coefficients ap, in terms of the coefficients in

the series expansions of the various elliptic functions and integrals
involved in the conformal maps f and S. The computed approximations to the
values a,/500; n = 0,1,...,19, corresponding to the first twenty
coefficients of (4.1), are listed in pages 34 and 35 of [44]. From these
we can conclude, for example, that the exact values of the first four
coefficients are given, to fourteen significant figures, by:

ap=401.16 24537 4523,
a; = 87.655 92019 5088,

ay-17.23741507 9446 ,

and
a3 =-8.0712 15259 6981 .

Example 2. We consider again the solution of a Laplacian problem of the

form (2.2), where now:

(a) The quadrilateral Q := {Q; zy, z2, z3, z4} consists of the

L-shaped domain
Q ={xy):-1<x<3, |y|<tfulxy): x| <l-1<y<3}

and the points
z21=3-1, zp=3+1, zz3=-1+31, zs=-1-1.
(b) The Dirichlet boundary values are
Vi=0 and V,-1.

The above problem also has a boundary singularity, which this time occurs
because the first derivatives of the solution u become unbounded at the

re-entrant corner
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In this case the exact conformal map f : Q—D is not known. However,
by using elliptic integrals or symmetry arguments, it can be shown that

h :=m(Q) = 1/+3;
see [10], and [20,21], That is, the conformal module of Q is given to six
decimal places by

h=0.577 350 .

Also, although the exact solution of the Laplacian problem is not known, it
is easy to show by using symmetry arguments that the value of u at the

re-entrant corner zg 1s

For the numerical solution of the problem we use again the composite
transformation (3.1). However, since in this case the conformal map
f : Q—>D isnot known exactly, we perform the transformation F : Q—->Ry

approximately by means of
F =S f |, (4.3)

where f is an approximation to f. More specifically, the approximation f
is obtained by using the Bergman kernel method (BKM), i.e. an orthonormal-
ization method based on the properties of the Bergman kernel function of Q.
Full details of the BKM procedure used can be found, for example, in [33].
Here, we only note that the BKM leads to approximations of the form

@)=Y av.@
n=I

that in our casef =f,,, and that the coefficients o, and basis functions

Vos; N = 1,2,...,26, involved in the formula for f, are listed in [36: Ex.

2.3]. We also note that the estimate of the maximum error in |f| is

_ -5
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Regarding crowding, in this case (3.5) gives
C=8exp{-nv3/2} =0.526 629,

i.e. there are no crowding difficulties. We can therefore conclude that
the estimate (4.4) also gives a good indication of the accuracy of the
approximation (4.3) and of our numerical solution to the Laplacian problem.
This is confirmed by the computed approximations to the conformal module h
and to the value u., which are as follows:

h =0.570 340 and U = 0.666 674 .

~

i.e., h - h=1.0x10" and ﬁc—uc=7.0><10_6 . (The computed approx-

imations to u at several other points in Q are listed in [37: p82].) By
comparison, the finite element method outlined in Section 3.3 gives the
following lower and upper bounds to h:

0.577 25 <h < 0.577 45 .

These bounds were obtained in [10: p191], by solving a set of 12,351 linear
equations corresponding to a discretization based on the use of rectangular
elements and bilinear test functions.

Further examples, illustrating the application of the composite
transformation (3.1) to the solution of Laplacian and other more general
elliptic boundary value problems, can be found in [37] and [42].

Example 3. Let Q,,denote thequadrilateralillustrated in Fig. 2. That

is, Q,={Q);2,2,, 2y, z,} where:
(a) €Q, is the trapezium bounded by the real and imaginary axes and
the lines x=/ and y=x+/—-1,where />1.
(b) The points z;, z,, z3, z4 are the corners of Q,, i.e.
Z,=0, z,=1, z3=1+1l, z4=1(0 - 1) .

Also, let h, = m(Q,) and observe that the exact values of h, are known in

terms of elliptic integrals; see [4: p104]. For example, the exact values
of hy s, hs o and h;o ¢ are given, to nine decimal places, by:

hos = 1.779 359 959, hso=4.279 364 400 ,



24

and

h10,0=9.279 364 400 .

In this example we compute approximations to h,; ¢/ =2.5,5.0, 10.0,

by using each of the following two methods:
Method I: This method is based on using the composite form (3.1), i.e. on
approximating the conformal map f, :QQ, > D; see Section 3.1. As in

Example 2, the approximation to f, is obtained by using the BKM.

Figure 2
Method 2: This method is based on using the composite form (3.8), i.e. on
approximating the conformal map g, - Q) > A, ,where Q, is the
doubly-connected domain associated with the quadrilateral Q, ; see Section
3.2. The approximation to g, is obtained by an orthonormalization method

(ONM), which may be regarded as the generalizaiton of the BKM to the
mapping of doubly-connected domains. (The details of the ONM procedure
used can be found in [34].)

The approximations }_1Z to h,; ¢=25,5.0,10.0 , computed by each of the

above methods are listed in Tables 1 and 2 respectively. In the tables we
also list the values E£ and e”, whose meanings are as follows:

. E, denotes the estimate of the maximum error in modulus in the BKM
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approximation to f, :Q, > D (Table 1), or the ONM approximation to
g, Qe > Ay(table 2).

.€, denotes the absolute error in the approximation h,, i.e. g, :=

In addition, in Table 1 we list the values

¢, =8exp{-mh,/2}; ¢,=2.5,5.0,10.0,

which measure the "crowding" associated with the use of Method 1; see
Eq. (3.5).
TABLE 1 (Method 1)

V4 E, C, EZ €y
25 3,5x107° 4.9x10"" 1.779 360 754 8.0x107
5.0 1.4%x107° 9.6x107° 4279 424389 6.0x107°
10.0 1.1x107* 3.7x10° Method fails -
TABLE 2 (Method 2)
V4 E, Ez €y
2.5 1.8x10°° 1.799 359 961 2.0x107°
5.0 6.3%x1077 4.279 364 401 1.0x107°
10.0 1.3x107° 9.279 364 291 1.1x1077

We make the following remarks in connection with the results of Method
I, listed in Table 1:

The valueC, s indicates that no crowding occurs in the case ¢ = 2.5.
For this reason, Method 1 gives an accurate approximation to h, s, with
€2.5 < Eas

Although the value Cs.( indicates a noticeable amount of crowding, the

method leads to a perfectly adequate approximation Es,o. This occurs
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because Cs o is substantially larger than Es ¢ However, the computed
approximation is contaminated somewhat by the effects of crowding and, as a
result, €5, > Eg,

When ¢ = 10.0, the crowding on |Q| = 1 is severe. In this case

Ci0.0< Ei0.0 and , not surprisingly, the BKM fails to compute the images of
the points Zj in the correct order. For this reason, Method 1 fails
completely in this case.

The results to Table 2 illustrate the high accuracy that can be
achieved by methods of the type discussed in Section 3.2. We note in
particular that, for each of the three values of /¢, the error ¢, is

substantially smaller than the corresponding error estimate E,. This is
due to the fact that, in general, numerical methods for the conformal map

g: Q4 > A, (or gl Ay > Qy)approximate q (and hence h) more

accurately than g (or g'™').

Further numerical examples, similar to the one considered here, can be
found in [35: Sect.4].
5. A domain decomposition method for long quadrilaterals

In this section we discuss briefly some recent work, concerning a
domain decomposition method for the mapping of quadrilaterals of the form
illustrated in Fig. 1(b).

In order to motivate our discussion, we consider again the
quadrilateral Q,illustastrated in Fig. 2 and, with the notation of Example 3,

we list below the exact values of h,:=m(Q,);¢ = 2.0,2.5,4.0,5.0,10.0,
which were computed to twelve decimal places from the formulae of Bowman
[4]:

h,o = 1.279 261571171 ,

h,s = 1.779 359 959 478 ,
hso = 3.279 364 399 489 ,
hso = 4.279 364 399 847 ,
hiopo = 9.279 364 399 847 ,

The above values indicate that h, s , hso, hso, and hj;po are given
respectively, to three, five, eight and twelve decimal places by
h) o + 0.5, h, 5 + 1.5, hy o + 1.0 and hy o + 5.0. In fact, a closer

inspection suggests that, for "large" h,,
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h,,.—(h, +c)—exp{—2nn[} , ¢>0.

This is an example of a much more general phenomenon, which can be
described as follows:

Let Q :={Q; zy, zy, 73, Z4 }be a quadrilateral of the form illustrated

in Fig. I(b), where:

Q:={xy:0<x<l 1,x) <y <1, X)}
T,(x) > 0 ,xe[01]; j=12

and
z) =—it(0), z, =1 -it(1),
zy = 1+ity(1), z, =it,(0) . }
Also let
Q ={(xy:0<x<l, -1,x) <y <0},
and

Q, :={(x,y:0<x<1, 1,0 <y <1, )},
So that Q = Q, UQ,, and let
Qi :={Qy;21,22,1,0 } and . Q2 := {Q,; 1,0, z3, z4} .

Finally, let h := m(Q), h; := m(Q;); j = 1.2, and h* = min(h,,h;). Then
for large h™ ,

h-(h; +h)~exp{-27h*} . (5.1)

That is, if Q is a "long" quadrilateral, then h := m(Q) can be approximated
closely by the sum h; + h, of the conformal modules of the two smaller
quadrilaterals Q; and Q. . In fact, by imposing certain smoothness
conditions on the functions T,; j = 1,2, it is possible to obtain precis
estimates of h - (h; + hy). Such estimates are derived in [39], where also
the analysis of a decomposition method, for determining the full conformal
map F:Q—>R, in terms of F .:Q, >R, and F,:Q, >R,,, is given; see

also [38].
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To illustrate the practical significance of (5.1), we recall the
numerical results which were obtained in Example 3, by the use of Method 1.
In particular, we recall that the crowding on the unit circle had affected
the accuracy of the approximation to hs ¢, and had caused the procedure to
fail completely in the case ¢=10.0. These crowding difficulties can be
overcome, quite simply, by domain decomposition. For example, hs( and
hio.0 can be approximated respectively by

hs, = h, s +2.5=4.279 360 754 ,
and
hyoo = hys+7.5=9.279 360 754 ,

where HZ_S is the accurate Method 1 approximation to h , s listed in Table 1

In this way we find that the error in both 1A15A0 and lAlmAO is£=3.6x10"°,

i.e. €=E,; .
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