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In this paper we propose a framework using multi-channel convolutional neural network (MC–CNN) for
recognizing the grammatical class (verb or noun) of covertly-spoken words from electroencephalogram
(EEG) signals. Our proposed network extracts features by taking into account spatial, temporal, and spec-
tral properties of the EEG signal. Further, sets of signals acquired from different regions of the brain are
processed separately within the proposed framework and are subsequently combined at the classification
stage. This approach enables the network to effectively learn discriminative features from the locations of
the brain where imagined speech is processed. Our network was tested using challenging experiments,
including cases where the test subject did not take part in system training. In our main application sce-
nario, where no instance of a specific noun or verb was used during training, our method achieved 85.7%
recognition. Further, our proposed method was evaluated on a publicly available EEG dataset and
achieved recognition rate of 93.8% in binary classification. These results demonstrate the potential of
our method.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Language plays an important role in human interaction and
constitutes the most essential aspect of communication. For that
reason, the development of brain computer interfaces (BCI) for
imagined speech recognition has been of interest to researchers
for more than two decades. BCI systems have enabled the recogni-
tion of imagined speech, and have led to possibilities of communi-
cation without speech production [1]. Research on recognition of
overt and covert speech has gained attention and has been the
focus of several studies [2]. These studies mainly focused on differ-
ent elements of speech, such as phonemes, syllables and vowels
[3]. Electroencephalogram (EEG) signals produced during of imag-
ined speech have been used for recognition of vowels, and subject
identification [4]. Recognition of covertly spoken (imagined) words
has also been performed in binary classification tasks [2,5]. Studies
with covert speech have focused on recognition of each word
individually.

It is known that the human brain interprets language by first
interpreting the semantics and grammatical roles of the spoken
words, such as the roles of nouns and verbs [6]. Therefore, in order
to build a BCI for the transcription of imagined speech into text, it
is important to recognise the grammatical classes of covertly spo-
ken words. Linguistic interactions have a specific object and
describe properties attributed to the object, this might be lexically
reflected in nouns and verbs [7]. Nouns promote the primary con-
cept, whereas verbs provide context to that concept [7]. Studies
have investigated the distinction between nouns and verbs in the
brain and explored brain areas associated with the processing of
nouns and verbs [8]. The study in [9] investigated neural activity
for nouns and verbs with magnetoencephalograph (MEG) signals.
The study concluded that the largest amplitude changes during
the processing of nouns and verbs occur in signals recorded from
the temporal lobe and the frontal of left hemisphere. Another work
with MEG signals [10] found more intensive activation in the fron-
tal, Parietal and Temporal areas of the head during the processing
of verbs rather than nouns. Further, several studies have tried to
distinguish between neural processing of nouns and verbs based
on evoked potentials [10]. However, to the best of our knowledge
no work so far has distinguished between nouns and verbs using
machine learning techniques.

In order to recognise imagined speech based on EEG signals it is
important to extract discriminative features representing different
classes. Several techniques have been proposed for feature extrac-
tion in imagined speech recognition from EEG signals. The study in
[2] proposed an feature extraction method using Rienmannian
manifold algorithm. In addition, the work in [11] used Riemannian
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distance of correntropy spectral density (CSD) matrices as feature
for classification of imagined speech. An artificial neural networks
(ANN) in combination with PCA have also been used to classify
imagined speech from EEG signals [12]. However, most feature
extraction methods are unable to adapt to variations within a given
class. Adaptation to variations is particularly important in imag-
ined speech recognition, where semantic variations lead to
changes in the processing of words in the brain [13].

Feature extraction and classification can also take place using
deep learning, which has exhibited excellent performance in vari-
ous recognition tasks [14] including the recognition of imagined
speech based on EEG signals. The work in [15] used deep learning
to perform multi-class classification phonemes and words. Artifi-
cial neural network (ANN) was used to classify bilingual unspoken
speech in [12]. In [16], a hybrid network consisting of CNN, recur-
rent neural network (RNN) and auto-encoder was used and
achieved a recognition rate of 79.9% with long imagined words.
However, none of these studies focused on the joint use of tempo-
ral, spatial, and spectral properties of the EEG signals. Further, the
feature extraction methods used in these works focused on either
using electrodes from a small region or using all the electrodes in
the EEG cap.

Another conceivable approach for imagined speech recognition
could be based on a recently proposed class of algorithms, termed
Spiking Neural Networks [17,18]. These approaches are biologi-
cally inspired and result in implementations with low power con-
sumption. Similarly, digital neuromorphic computing [19,20] has
been proposed for designing effective artificial intelligence sys-
tems. While these approaches are valuable and hold great poten-
tial, the patterns represented in EEG spectrograms include rich
spectro-spatio-temporal information that cannot be adequately
modelled by the spiking patterns of a spiking network [21]. For this
reason, in this work we focus our attention on comparisons with
traditional machine learning methods that have been used for
the interpretation of imagined speech using EEG signals.

In this paper, we present a framework for the recognition of the
grammatical class of mentally-spoken words using EEG signals.
The proposed framework constructs spectrograms that are classi-
fied by means of a multi-channel convolutional neural network
(MC–CNN) [22]. The contributions of this paper are:

1. A framework (shown in Fig. 1) for the recognition of the
grammatical class (noun, verb) from EEG signals produced dur-
Fig. 1. The proposed framework for recognition of gramma
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ing covertly (mentally) spoken words. Each MC–CNN channel
takes input from a different set of electrodes considering the
spatial, spectral and temporal structure of the EEG signals sep-
arately for each area. To the best our knowledge this is the first
work where an MC–CNN is used to classify EEG signals for the
purpose of recognition of the grammatical category of
covertly-spoken words.
2. A study of the brain areas that can be used as inputs to the
MC–CNN architecture in order to improve overall accuracy.
These brain areas are known to play significant role in the pro-
cessing of nouns and verbs.
3. A thorough evaluation of the performance of the proposed
framework, tested on our own database as well as on the pub-
licly available Kara-One EEG database [3] for covertly-spoken
nouns and verbs. We tried three different experimental proto-
cols, which included testing on previously unseen subjects,
and also on unseen nouns and verbs.

2. Data acquisition

In order to analyse grammatical classes of mentally spoken
words, we recorded EEG signals that were produced in response
to 10 imagined nouns or verbs. This is in contrast to other data-
bases, which recorded EEG signals for mentally spoken phonemes
or syllables and contains either no words or only a few words [3].
In the paper we refer to our dataset as CovertSpeech Database.

2.1. Head cap

EEG activity was recorded using a Neuroscan 64 channel Quik
cap of extended 10–20 system. Two electrodes, VEOG and HEOG,
were placed above and below the eye to record its horizontal
and vertical movement. Two reference electrodes were placed at
mastoid. To ensure good contact between the scalp and electrodes
abrasive gel (conductive electrolyte) was used. Further, dead skin
was removed using alcohol pads, which help reduce impedance.
Data was sampled at 1 kHz sampling rate using synamp amplifier.
Neuroscan Curry software was used to process the raw EEG signals.

2.2. Participants and stimuli

EEG signals produced in response to imagined speech were
recorded from 19 participants who were fluent in English and
tical class from EEG signals of covertly spoken words.



Fig. 2. The sequence in which stimulus was presented for single trial of covertly
spoken word. To avoid overlapping of inter-trial activity only three seconds of
signal was used for recognition of grammatical class of mentally spoken words.

Table 1
Words presented as stimulus during recording of EEG signals for covert speech.

Noun: ‘‘Apple” ‘‘Bottle” ‘‘Football” ‘‘Laptop” ‘‘Orange”

Verb: ‘‘Carry” ‘‘Run” ‘‘Swim” ‘‘Laugh” ‘‘Write”
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whose age was between 21 to 70 years. Ten words (stimuli), five
nouns and five verbs, were presented randomly on a computer
screen. This was done in order to avoid temporal effects [23]. A
blank screen appeared for 1 s before the stimulus onset, and the
ensuing stimulus was presented for 2 s. Subjects were asked to
mentally read the word as soon as it appeared on the screen. The
stimulus was followed by blank screen for 1 s. Therefore, the total
duration of a trial was four seconds. However, only three seconds
(�0.5 s to 2.5 s) of the trial was used for classification task in order
to avoid overlapping inter-trial activity. The sequence of EEG signal
recording is shown in Fig. 2. The words appeared in capital letters,
black in colour with white background presented on a computer
screen 1 meter away from the subject. White background was cho-
sen in order to avoid potential due to visual stimulus [24]. Subjects
were asked to read the word presented on the computer screen
covertly (speech imagery). Each word was presented 10 times, a
total of 100 trials were recorded for a given subject. The experi-
ment was designed using E-prime-2 software. The words (stimu-
lus) used in the experiment are presented in Table 1. During
recording all the subjects were instructed to refrain from any kind
of movement. This research has been approved by College of Engi-
neering, Design, and Physical Sciences Research Ethics Committee,
Brunel University London, reference number 7361-LR-Sep/2017–
8301-1.

3. Pre-processing

EEG signals are contaminated by artifacts and noise, these could
be physiological and/or environmental. Although subjects were
told not to move during the recording, certain physiological arti-
facts cannot be avoided, especially those due to breathing, eye
blinks and movement. To remove noise from the data, pre-
processing was applied using Neuroscan curry 8 software. Low
voltage shifts at lower frequencies were avoided by high-pass fil-
tering at 0.01 Hz. Most of the high frequency noise due to muscle
movement was eliminated using the EMG electrode. Similarly, arti-
facts due to eye movement were removed using VEOG electrode,
by measuring VEOG signal peak-to-peak voltage along with thresh-
old voltage [24]. Baseline correction was done in real time and off-
line processing. Information above a threshold of ±200 lV was
eliminated, and contaminated electrodes were interpolated using
neighbouring electrodes. Also, 50 Hz line noise was eliminated by
applying notch filter.

4. Feature extraction

EEG signals have discriminatory characteristics that appear in
both temporal and frequency domain. Considering that, in this
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work we used time–frequency features as input to our neural net-
work. We used Short Time Fourier Transform (STFT) for calculating
spectrograms from EEG signals. The STFT [25] is defined as:

Xðm;xÞ ¼
X1
n¼�1

x½n�w½n�m�e�jxn ð1Þ

where x½n� is the EEG signal,w½n� is the window function, andm rep-
resents the time index. Windowing was performed during STFT in
order to avoid the discontinuities known as leakage. In our imple-
mentation of STFT we used the Hann windowwith a window length
of 256 samples and temporal overlap of 87% between consecutive
windows. We used a shorter window in order to improve temporal
resolution, which can help detect temporal events. We did not
include lower frequencies (below 5 Hz). The spectrogram can be
trivially obtained from (1) as

Sx ¼ jXðm;xÞj2 ð2Þ
The spectrogram of (2) was the time–frequency feature that

was input to our neural network.
Spectrograms were subject to baseline normalization Fig. 3. This

was done because EEG signals suffer from 1/f phenomena (low
power at high frequencies), which can cause uneven power repre-
sentation at different frequency ranges. As a result, important
events can be misinterpreted as background activity, making the
comparison between classes difficult [25]. A short time period of
300 msec was chosen from the 500 msec pre-stimulus time period
(when the blank screen before the stimulus appears) and was used
for averaging over all training trials for all given classes from 64
electrodes. Although the pre-stimulus time period is considered
to have no event related activity, due to the effects of windowing
(overlapping pre-trial and post-trial time periods) a safer temporal
window (t1 = �400 to t2 = �100 msec) was chosen. It was consid-
ered that the time before the onset of the stimulus does not pro-
vide any useful information with regards to the word being
mentally spoken. A baseline vector Bðf Þ was calculated, comprising
of frequencies averaged over the baseline time window (average
column of the spectrogram). Therefore, the baseline vector is

Bðf Þ ¼ 1
t2 � t1

Xt2
t1

Sxðt; f Þ

and the normalized spectrogram (in decibels) is

SdBðt; f Þ ¼ 10log10ðSxðt; f Þ
Bðf Þ Þ ð3Þ

Although baseline normalization is computed with respect to
baseline (task unrelated activity) it also helps in discarding back-
ground activity. This leads to spectrograms where only the task-
specific brain events are represented [25,26].
5. Multi-channel model

For each subject, a total of 50 trials per class (noun, verb) were
used. However, some subjects ended up having only 45 trials
because certain trials had to be removed due to excessive noise.
The spectrograms calculated using the acquired EEG signals were
combined to form a multi-dimensional feature array that was
input to our neural network architecture.



Fig. 3. (a) Before baseline normalization there is limited power representation at
higher frequencies. (b) Baseline normalization amplifies higher frequency compo-
nents and enables extraction of discriminatory features.
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5.1. Brain signal selection

Brain signals were selected from three different brain areas. The
respective electrodes are presented in Table 2. These electrodes
were selected based on certain factors. Firstly, electrodes in group
1 cover Broca’s and Wernicke’s area. Work in [27] suggests that
Broca’s area is activated during different stages of word produc-
tion. However, Broca’s area is suggested to be strongly activated
during verb production in comparison to noun production [28].
Broca’s area and Wernicke’s areas are connected through a junc-
tion of nerves known as arcuate fasciculus. Wernicke’s area is
recruited in translating auditory input to overt and also covert
Table 2
Groups of electrodes used as input channels to the MC–CNN network.

Electrode Group 1: F5, F3, FC3, FC5, C5, CP5, P1
Electrode Group 2: F1, FZ, F2, F4, F6, F7, FCZ, FC2, FPZ, FP2, AF3, AF4
Electrode Group 3: P1, PZ, P2, P4, POZ, PO4, PO6
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speech [29], and in speech production and comprehension [30].
Although these two areas are considered the main language
regions of the brain, the processing of nouns and verbs has been
reported to involve areas outside these two regions [31]. To exploit
the discriminatory potential of the signal acquired outside the
main language processing areas of the brain, we used electrodes
from two more areas.

Electrode group 2 covers a large part of the frontal lobe, which is
known to play a major role in the processing of verbs [32]. The
work in [33] showed frontal lobe activation during word process-
ing. Further, the study found that word production results in acti-
vation of the inferior frontal region along with Wernicke’s area and
temporal gyrus.

Electrode group 3 covers the Occipital lobe and the Parietal
lobe. The Parietal lobe is known to be active during the silent read-
ing task [34]. An important factor we considered when selecting
this brain area was that Occipital and Parietal lobes are known to
be recruited during word processing when written words are pre-
sented visually [35]. This is because visually perceived information
is first processed by the Occipital lobe and subsequently communi-
cated to the parieto-frontal region of the brain [36]. Further, the
Occipital lobe is known to play a crucial role in the processing of
nouns [31]. Therefore, electrodes in these areas are important for
our study and are used in our system. In addition, considering that
signals from neighbouring electrodes have high correlation [37], in
each electrode group we used electrodes with spatial proximity to
make it easier for the MC–CNN to learn features from the input.
5.2. Network architecture

We trained a multi-channel convolutional neural network (MC–
CNN) [22] to recognize the grammatical class of imagined words
from EEG signals. As CNNs can adapt to variations in the input sig-
nal [38], they can learn discriminative features for covert speech
recognition from the time–frequency information captured in
spectrograms. The architecture of our MC–CNN is not the same
as that of conventional CNN. Instead, it includes three channels,
with each channel receiving a three dimensional tensor as input.
For each channel, the input is of dimension T � f � C, where T is
time, f is frequency, and C is the number of electrodes. The number
of electrodes depends on the brain area, as detailed in Table 2. Fea-
ture learning is done separately on each channel and the resultant
channel feature maps are converted into vectors. The vectors from
the three channels are concatenated together and fed to the fully
connected layer.

The proposed model architecture, shown in Fig. 4, consists of
three channels, where each channel has three blocks and the net-
work has three fully-connected layers in the classifier. All three
channels have the same architecture. However, channels 1 and 3
take as input spectrograms from seven electrodes whereas channel
2 takes spectrograms form twelve electrodes. Each block contains
two-dimensional convolutional layers followed by a batch-
normalization layer [39], and a dropout layer.

A single convolutional layer was used in each block because of
small data dimensions of 86� 86. The convolutional layer in the
first block filters the data using 32 kernels with a receptive field
of size 3� 3 and stride of size 2� 2, a process that can capture
high-level features from the spectrogram. The convolutional layers
in the second and third block have 64 and 128kernels of size
3� 3applied with a stride of size 2� 2. These layers learn intricate
features that are important for class discrimination. The perfor-
mance of the architecture was assessed using filters of different
sizes, among which the 3� 3 filter performed best. The ability of
the CNN to extract features from different time–frequency patches
in the EEG spectrogram is particularly useful, as different feature



Fig. 4. Architecture of the MC–CNN (best viewed in color). The network layers in
blue, green and pink refers to block 1, 2, and 3. The CNN layer in blue used the
sigmoid activation function, whereas the CNN in green and pink layer used the ELU
activation function. All the CNNs used stride of size 2� 2. The final layer used the
sigmoid function to making the prediction (classification) for a given input.
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maps can represent activity at different time–frequency windows.
The feature map y at level l is calculated as [40]:

yjði; jÞ ¼ f ððWl � xÞij þ blÞ ð4Þ

where x is the input spectrogram, � is the convolution operation,

bðlÞ is the bias value, and Wl is the weight matrix of filter l, with
l ¼ 1;2; . . . ; lf ; lf = 32, 64 or 128. For convolution we used ‘‘same”
(zero) padding in order to preserve the spatial resolution of the
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input. This also results in better edge detection. The padding is
defined as:

p ¼ f r � 1
2

ð5Þ

where f r is receptive field size. The used activation function f is the
exponential linear unit (ELU) or the sigmoid. Specifically, the first
convolutional layer used the sigmoid activation function:

sigmoidðaÞ ¼ 1
1þ e�a

ð6Þ

However, the sigmoid function is known to suffer from the van-
ishing gradient problem when used in the hidden layers [41].
Therefore, the rest of the network used the (ELU) activation func-
tion [42], which endows the network with the ability to learn
non-linear features. The ELU is defined as:

ELUðaiÞ ¼
ai if ai P 0
aðeai � 1Þ; otherwise

�
ð7Þ

where ai is the ith value in the feature map, and a is a parameter. The
ELU was chosen over the ReLU function because the ReLU performs
poorly when placed after the sigmoid function [43], and also
because the ReLU suffers from the dying ReLU problem [44].

Batch-normalization was used in every block, which helped
speed up system learning by centering the data [42]. In the classi-
fication block, the number of nodes in fully connected layers were
256, 128, and 2 in the last dense layer (classification layer) with
sigmoid function (6) for classification. The use of the ELU function
after dense layers makes the network capable of learning complex
features passed from previous blocks.

We tried different variants of our MC–CNN architecture, by
varying the number of input channels (i.e., using more electrodes
from different areas), activation functions, the kernel size and the
filter size. The additional signals were input to the MC–CNN by
using an architecture with more than three inputs. This approach
was meant to test whether the information contributed by a larger
set of electrodes, from different areas of the brain, could improve
the recognition rate. Another approach was to use a larger set of
electrodes in inputs 2 and 3 of the MC–CNN network, covering
more areas of the head at the Frontal and Parieto-Occipital lobe.
However, in both cases the recognition rate was reduced. This
highlights the importance of selecting electrodes from areas that
play a role in the processing of nouns and verbs.

5.3. Network training

The MC–CNN network was implemented in keras [45] with ten-
sorflow backend [46]. Weight optimization was performed using
Adam optimizer [47] with learning rate of 0.0001 in order to min-
imize the cross-entropy loss. A slower learning rate was used in
order to avoid varying gradient at different layers [38]. Since
unsuitable initialization can lead to unstable gradient [48], ‘‘He”
initialization [49] was used to initialize weights. This initialization
method was used as it works best with the ELU activation function
[42]. The network was trained for 500 epochs, with batch gradient
descent (i.e., a batch consisted of all the samples in the training
data). In order to avoid overfitting, we used batch-normalization
as well as dropout regularization [50] with dropout rate of 20%.
These techniques were shown to be effective in [14].

5.4. Event related potential

We also investigated the evoked potential or event related
potential (ERP) for two speech parts, i.e., nouns and verbs. ERPs
are used in neuroscience to detect the onset of an event produced



Fig. 5. Grand averaged evoked potential for Nouns and Verbs, showing the four main components (best viewed in color). The negative deflection between 0.2s to 0.3s is the
ERP component that is associated with imagined nouns and verbs.
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by a particular activity [24]. ERP was calculated by averaging trials
for the same class (nouns and verbs) over 19 subjects. The grand
average ERP is shown in Fig. 5. The ERPs from several sites were
investigated, but the most informative were from electrode group
1 (Table 2). Therefore, we focus on the ERPs from electrode group 1.
In our investigation of ERPs associated with nouns and verbs we
found four components. The first component was a positive peak
between 0.70s and 80 ms post stimulus. The second component
was a negative peak at around 0.110s which is also known as
N100. The P70 and N100 components are manifestations of an
early processing of the presented stimulus [31]. The third compo-
nent was a very strong positive deflection at 200ms known as P200,
which may reflect sensation-seeking behaviour of an individual
[51]. The fourth component was noted to be most important as it
is produced in response to imagined nouns and verbs in covert
speech. A negative deflection around 0.250s was observed. This
deflection was stronger for verbs in comparison to nouns. Past
studies [10] have also observed similar temporal event (ERP) which
validates the presence of distinctive activity produced by covertly-
spoken nouns and verbs in imagined speech. These events were
observed within 500ms of the onset of the stimulus. Therefore,
only ERPs from that time range are presented. Topographical maps
of the fourth event are shown in Fig. 6. The topographical maps
show that covertly spoken nouns result in reduced power at the
temporal regions of the head and slightly increased power at the
Occipital area. In contrast, the processing of the covertly-spoken
verbs results in reduced power in the frontal lobe. A similar obser-
Fig. 6. Topographical maps of grand averaged imagined speech evoked potential
(ERP). (a) The map for the noun class shows power variation in temporal regions, (b)
The map for the verb class shows reduced power in the frontal part of the brain.

306
vation was made by [52]. As can be seen in Fig. 5, the ERPs do not
provide any discriminatory information about the two grammati-
cal classes. However, the topographical maps (Fig. 6) indicate pro-
cessing of nouns and verbs at different areas of the head.

6. Results

In order to distinguish mentally spoken nouns from verbs, we
used EEG signals produced during covert (imagined) speech of
ten words, i.e., five nouns and five verbs. In general, 50 trials of a
mentally-spoken word for each class (noun, verb) were recorded
from each subject. However, some subjects ended up having only
45 trials because some of the recorded trials had to be removed
due to excessive noise.

Three different approaches were used for the evaluation of the
effectiveness of the proposed network. In particular, two sets of
results were obtained in a subject-dependent manner, i.e., the net-
work was trained and tested for each subject separately. In addi-
tion, a third experiment was conducted, in which results were
obtained in a subject-independent manner, i.e., the network was
trained on data from several subjects and was tested on data from
a different subject. The three experimental protocols are summa-
rized in Table 3.

On Nvidia Tesla K40, one iteration of subject-dependent train-
ing needs about 2 min, while subject-independent training needs
about 15 min. As multiple iterations were run, the overall training
time was a few hours. For a single testing trial, the response time of
the algorithm is less than 1 s. Therefore, in practical situations, the
response of the system would be extremely fast.

6.1. Leave One Subject Out (LSO)

The first experimental protocol evaluated the performance of
our network in a subject independent manner, where the MC–
CNN was trained on EEG data from 18 subjects and tested using
EEG trials from a different subject. This training and testing
approach was repeated for all the subjects in a Leave one Subject
Out (LSO) cross validation manner. Due to the large dataset and
the limited GPU memory, trials from each subject were divided
into two different sets that were used separately for the training
and testing of our network. Results from both sets were averaged
for each subject. In this experimental protocol the network was
trained for 100 epochs with mini-batch gradient descent of size
64. Classification results, in terms of recognizing whether a trial
corresponds to an imagined noun or verb, are shown in Table 4.
As can be seen, the average classification rate is 78.5%, which



Table 3
Three experimental protocols: leave one subject out (LSO) is a subject-independent experiment; leave trial out (LTO) and leave one word out (LWO) are done on subject-by-
subject basis, i.e., training and testing take place using different data from the same subject.

Exp Training Testing

Subjects Trials Words Subjects Trials Words

LSO All but one All All one All All
LTO – 80% All – 20% All
LWO – All All but one – All All but one

Table 4
Classification accuracy for EEG signals in our CovertSpeech dataset recorded during imagined speech of Nouns and Verbs. Results for three experimental protocols are shown.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 Avg

LSO 85.4 62.2 88.3 52 49.25 82.45 87.8 69.2 73 88 85.5 84.1 86.85 90.45 74.8 87 92.4 91.3 62.1 78.5
LTO 93 91.6 86 77.3 63.6 91.4 82.6 73.9 84.3 86.5 77.8 78 89.9 94.3 80 91.9 93.7 81.8 89 84.6
LWO 91.2 94.2 90.5 66.8 69.8 90.8 88.3 84.5 82.3 89.3 72.7 80.6 88.3 94.6 84 93.4 93.1 87.1 88 85.7
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shows that our system can accurately classify EEG signals from
subjects that have not been used in the training of our network.

6.2. Leave Trial Out (LTO)

In the LTO experimental protocol, 80% of the trials were used for
training the network, while 20% were used for testing. EEG data
from all covertly-spoken words were used for both training and
testing. Training and testing took place on a subject by subject
basis and results from all the test trials were averaged together
for each subject. To avoid variations in network parameters due
to the stochastic nature of learning algorithms [53], the MC–CNN
network was trained and tested 10 times for each trial. Test results
were averaged. Subject-by-subject results are shown in Table 4. As
seen, an average recognition rate of 84.6% was achieved. This
demonstrates that it is possible to infer whether a subject has
thought of a noun or verb by observing a subject’s EEG signals.

6.3. Leave One Word Out (LWO)

Another experimental protocol for the evaluation of network
performance was to train the MC–CNN network using EEG signals
from four words and test it using the EEG signals from the remain-
ing (fifth) word in the noun or verb class. In this case, 80% of the
data was used for training and 20% data was used for testing.
Henceforth, this approach will be referred to as Leave one Word
Out (LWO) cross validation. The network was tested on EEG data
from each word separately and the classification rates were aver-
aged for each subject. These results are shown in Table 4. As seen,
the mean classification rate is 85.7%, which shows that the system
has the ability to recognize the grammatical class of previously
unseen nouns or verbs.

6.4. Comparison with single channel processing

In order to evaluate the effectiveness of forming electrode
groups that are processed using separate channels, we compared
our architecture with a system where all spectrograms were fed
to a single-channel CNN. Two sets of results were obtained, first
when spectrograms from all 64 electrodes were input simultane-
Table 5
Classification accuracy for EEG signals in our CovertSpeech dataset when network was trai

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

64 47.7 59 51.6 57.2 49.7 46.5 51.7 52.8 54.3 51
26 64.8 63.8 78 55.2 49.3 68.6 63.3 58.2 65.6 65.3

307
ously to single-channel CNN. Another set of results were obtained
by providing to the network spectrograms from three brain areas
(26 electrodes in total), which were fed simultaneously to the
single-channel CNN. The results were evaluated in leave trial out
(LTO) fashion and on a subject-by-subject basis. The results are
shown in Table 5. As can be seen, the single-channel results are
inferior to those of multidimensional method reported in Table 4.
Specifically, our grouped approach, in conjunction with using three
separate channels of MC–CNN, outperforms the best-performing
single channel architecture by at least 25% in terms of recognition
performance.

6.5. Kara-one data-set

In addition to the assessment we conducted on our own data,
we validated our model on the publicly available Kara-one [3]
EEG dataset of covertly spoken words. In our analysis we used
EEG data from ten subjects recorded during covert speech of four
words, containing two nouns (‘‘Pat”, ‘‘Pot”) and two verbs (‘‘Gnaw”,
‘‘Knew”). The raw signals were band pass filtered between 0.01 Hz
to 475 Hz and 60 Hz line was removed using a notch filter, other
artifacts and noise were removed as described in Section 3. Both
classes (noun, verb) had 24 trials each, where 22 trials were used
for the training of the network and two trials were used for testing.
The sets of the training and testing trials were changed in a Leave
One Trial Out (LTO) cross validation manner, with results for all
test trials being calculated separately and later averaged for each
subject. Classification rates for ten subjects are presented in
Table 6. As seen, a mean accuracy of 93.8% was achieved by our
model. In addition, we used the Kara-one database in order to test
the performance of our network in a subject-independent manner.
The system was trained on EEG data from nine subjects and tested
on data from one (different) subject, i.e., the experiment was per-
formed in a Leave One Subject out (LSO) cross validation manner.
An average accuracy of 82.2% was achieved.

6.6. Transfer learning

In order to evaluate the robustness of the proposed method, the
network was trained on spectrograms from our Noun–Verb EEG
ned on 64 and 26 electrodes together.

S11 S12 S13 S14 S15 S16 S17 S18 S19 Avg

55.4 53.4 52.3 56.6 57.4 58.7 61.3 64.2 54.8 54.7
60 57.5 63.4 79.6 78.2 69.7 62.2 56.3 55.2 63.8



Table 6
Classification accuracy of our proposed model when training and testing took place using the Kara-one dataset [3].

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

LSO 76.7 69.4 86 93.8 83.3 61 88.1 89.8 91.5 81.9 82.2
LTO 97.7 96.8 87 99.6 97 82.3 99.3 98.1 100 79.8 93.8

Table 7
Classification accuracy when the network was trained on our CovertSpeech database and tested on Kara-one dataset. Subject-dependent (SD) and subject-independent (SD) testing
was performed.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

SD 94 50 63.5 54 76 93.7 83.3 62.5 92.7 50 71.9
SI 61.7 76.7 76 71 61.2 70.4 72.5 53.1 76.5 68.1 68
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Database and was tested on Kara One database as a transfer learn-
ing model. For transfer learning, the last three dense layers of the
pre-trained network were fine-tuned [56]. The weights of all layers
except the last three dense layers were frozen. The network was
fine-tuned with a slow learning rate equal to 10�4 to avoid over-
fitting [41]. The network was evaluated for subject-dependent
(SD) classification, where the last layers were fine-tuned and tested
for each subject separately. Due to limited availability of data in
subject-dependent evaluation, the network was fine-tuned and
tested using leave-one-trial-out cross validation, followed by aver-
aging the results for each trial. In the second approach, i.e., subject-
independent (SI) classification, the network was fine-tuned on data
from one subject and tested on data from all the other subjects. The
results are shown in Table 7. As can be seen, our method achieves
excellent recognition on a previously unseen dataset. This shows
the robustness of the proposed method in recognizing grammatical
class of imagined words.

6.7. Comparison

Although past works (e.g., [6,7,9]) have studied distinctive brain
activity associated with the processing of words of different gram-
matical classes, to the best of our knowledge, no work in the past
has performed recognition of the grammatical class (noun or verb)
of mentally spoken words. For that reason, we compared our
results with existing techniques that perform binary classification
of imagined speech. Due to the different datasets used, a direct
comparison may not be perfectly conclusive. We included in our
comparison the method in [55], which performed classification of
long words: ‘‘cooperate” and ‘‘independent”, as well as the system
in [54], which classified between two classes: ‘‘yes”, ‘‘no”. We also
compared our results with the state-of-the-art method in [2]. As
seen in Table 8, in the two-class scenario, our method outperforms
the other methods in the comparison despite the fact that we used
data from 19 subjects, a population that is substantially wider than
that of other studies which included only few subjects [24]. This
increases our confidence in the proposed system. Further, although
our method used multiple nouns and multiple verbs, which
increases intra-class variation and makes recognition more diffi-
Table 8
Comparison of our method with past studies in a binary classification task.

Method Class Type Dataset Recognition Rate

[54] Words [54] 63%
[55] Words [2] 79.9%
[2] Words [2] 80.1%
[11] Words [3] 90.2%
Ours Words Ours 84.6%
Ours Words [3] 93.8%
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cult, our system reached excellent results using three different
experimental protocols and achieved a maximum classification
rate of 85.7%.
7. Conclusion

We propose a framework for recognizing grammatical class
(noun, verb) from EEG signals produced during covertly spoken
words. Our proposed multi-channel convolutional neural network
(MC–CNN) uses EEG signals captured from different areas of the
head that were most appropriate for our application. The proposed
method uses MC–CNN to extract time–frequency features from
spectrograms belonging to different electrode groups and combine
them to achieve high classification rate. Experimental results with
the proposed framework showed that the proposed method can
recognize the grammatical class of imagined nouns and verbs.
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