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In this paper, statistical emulation is shown to be
an essential tool for the end-to-end physical and
numerical modelling of local tsunami impact, i.e.
from the earthquake source to tsunami velocities
and heights. In order to surmount the prohibitive
computational cost of running a large number of
simulations, the emulator, constructed using 300
training simulations from a validated tsunami code,
yields 1 million predictions. This constitutes a record
for any realistic tsunami code to date, and is a
leap in tsunami science since high risk but low
probability hazard thresholds can be quantified.
For illustrating the efficacy of emulation, we map
probabilistic representations of maximum tsunami
velocities and heights at around 200 locations
about Karachi port. The 1 million predictions
comprehensively sweep through a range of possible
future tsunamis originating from the Makran
Subduction Zone (MSZ). We rigorously model
each step in the tsunami life cycle: first use of the
three-dimensional subduction geometry Slab2 in
MSZ, most refined fault segmentation in MSZ, first
sediment enhancements of seabed deformation (up
to 60% locally) and bespoke unstructured meshing
algorithm. Owing to the synthesis of emulation and
meticulous numerical modelling, we also discover
substantial local variations of currents and heights.
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1. Introduction
Following the unexpected damage incurred at ports from the tsunamis of 2004 (Indian Ocean),
2010 (Chile) and 2011 (Japan) [1,2], it is paramount to investigate the associated hazard. Despite
recent studies [1,3–5] and advances in high-fidelity modelling [6], probabilistic methods for
quantification of future tsunami hazard due to strong flows in harbours are sparse [7,8]. The
need for such a quantification is further accentuated by certain peculiarities related with the
phenomena of large tsunami currents in ports, e.g. the drifting of the 285 m ship Maersk Mandraki
on 26 December 2004 at the Omani port of Salalah [2], despite small wave heights. It is deceptive
to associate high wave amplitudes with high velocities. The treacherous nature of the currents was
aggravated by the fact that strong currents in harbours continued for hours after the waves with
maximum amplitude had arrived. This is all the more consequential since conventional tsunami
warnings may be lifted after visibly perceptible signs of the tsunami (i.e. vertical displacement)
have disappeared, whereas the strong currents may manifest later on.

Probabilistic scenario-based tsunami hazard assessment (PTHA) delivers a priori critical data
to buttress tsunami disaster planning and practice. Scenario-based assessment scores over its
catalogue-based counterpart through a more comprehensive exploration of plausible scenarios.
Probabilistic scenario-based assessment surpasses deterministic scenario-based assessment in its
assignment of probabilities and weighed integration of the different plausible scenarios. There
exist variants in the probabilistic methodologies employed in PTHA: Monte Carlo [9], logic-
tree [10] and Bayesian [11]. For an in-depth discussion on PTHA, the reader is referred to the
recent review of Grezio et al. [12]. However, apart from the difficulties in assigning probabilities
to scenarios, the computational burden expended for simulating each scenario prohibits an
exhaustive sweep over the entire range of plausible scenarios. In this work, we pursue another
probabilistic route via statistical emulation to quantify uncertainties in future tsunamis due to
the uncertain earthquake sources (see workflow in figure 1a). Since the probability of large
magnitude events is small, a comprehensive coverage of the Gutenberg–Richter (G–R) relation
requires a large number of runs for the diversity of plausible events to be well represented across
magnitudes and source locations (at least thousands for a coarse quantification and orders more
for realistic assessments). Due to the considerable computational complexity of each simulation
of coastal tsunami currents, such a probabilistic endeavour is made feasible by essentially
replacing the numerical tsunami model by a statistical surrogate: the emulator. To our knowledge,
this is the first time that Gaussian process (GP) emulation has been marshalled to generate
future earthquake-generated tsunami currents; it has been employed only once in the past for
currents, for a single source of landslide-generated tsunamis with considerable benefits in terms
of computational costs and hazard assessment [13]. Here, with a design of only 300 full-fledged
training runs, we fit an emulator to rapidly predict the impact of 1 million plausible tsunamis at
prescribed locations. These emulated runs enable us to characterize uncertainty in future tsunami
currents. A recent work by Kotani et al. [14] adopts a similar strategy of approximating the
input–output response surface, albeit using nonlinear regression. Zhang & Niu [15] showcase a
comparable 1.38 million scenarios, although using linear combination of waves from unit sources.
Another recent strategy for reduction of the number of tsunami simulations employs an event tree
coupled with cluster filtering of sources [16,17].

Additionally, formidable computational challenges must be addressed in order to accurately
represent both the actual geophysical processes and their uncertainties. Despite possible issues
arising from handling fine resolutions, our main challenge lies in encapsulating a large number of
these high-definition simulations within a statistical framework. This is an essential requirement
for PTHA and stretches the limit of current high-performance computing (HPC) facilities, even
with the latest graphics processing unit (GPU) acceleration [18]. Often, the trade-off between
capability and capacity in HPC is left unresolved by either radically simplifying the physics
(e.g. a linear tsunami propagation till say 100 m depth with the use of an empirical relationship
thereafter), or running very few fine resolution simulations as scenarios. Given a validated
tsunami model, we argue that our emulation framework, in this context of currents that are
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Figure 1. (a) Global workflow describing the integration of different work components in this study (see electronic
supplementary material for a more detailed workflow). (b) The Makran Subduction Zone (MSZ). (c) Fault dimensions, i.e.
length (L) and width (W) of 300 earthquake scenarios plotted over the scaling relation with respect to the moment magnitude
(Mw). It shows the maximum length (Lmax), width (Wmax) and moment magnitude (Msat

w ) accommodable in the eastern MSZ.
L saturates (ellipse) after Mw 8.65 (green line). The inset shows the fault dimensions (L,W) and epicentre coordinates (Xo, Yo)
for scenario no. 129. (Online version in colour.)

nonlinear and very sensitive to near shore bathymetry, attempts a solution to this trade-off
between precision and coverage of uncertainties. It requires manipulation of very large datasets
on HPC, as well as complex post-processing on diverse software and data platforms. Overall, this
work pushes the boundaries of current state-of-the-art in quantifying port hazard—with multi-
threaded emulation platform for large-scale (1 million) predictions, built on 300 high-definition
simulations on smart unstructured meshes (10 m), using massively parallel multi-GPU-enabled
simulations of validated tsunami model VOLNA, and hierarchical file formats—all integrated
in an overarching workflow. We illustrate the emulation framework for the Karachi port in the
Makran Subduction Zone (MSZ).

The MSZ has given rise to tsunamis in 1524 [19], 1945 [20,21] and 2013 [22]. Recent studies
estimate the mega-thrust potential for the eastern part of the MSZ (blue rectangle in figure 1b) to
be Mw 8.8–9.0 [23]. Thus, here is a pressing need for a comprehensive quantification of tsunami
hazard, especially port velocities and associated uncertainties. However, the accurate simulation
of tsunami currents at shallow depths requires accurate coastline definition and bathymetry, with
adequately refined meshes over a long duration to capture the maximum. Thus, in this study, we
employ spatial resolutions of 10 m for the computational mesh, 30 m for bathymetry and 10 m for
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coastline, locally in the vicinity of Karachi port, for a total simulation time of 12 h. Furthermore,
we employ here an earthquake source designed with segments of size 5 × 5 km with carefully
constructed positive slip kernels to preserve fidelity to both magnitude scaling [24] and slip
scaling relations [25]. The presence of a considerable sediment layer over the MSZ demands
incorporation of its influence on the seabed deformation, since an appreciable amplification of
up to 60% can be generated [26]. Section 2 describes the models and methods, §3 details the
emulation framework, §4 discusses the results and conclusions are drawn in §5.

2. Models, data and methods
In this section, we describe in §2a the MSZ, in §2b the finite fault (FF) apparatus and slip profile,
in §2c integration of the sediment amplification over the slips for generating seabed deformation
(or uplift) and in §2d tsunami propagation.

(a) MSZ
The MSZ is formed by the subduction of the Arabian plate under the overriding Eurasian plate. It
extends approximately 900 km from the Ornach Nal fault (approx. 67◦ E) in the east to the Minab-
Zendan-Palami fault (approx. 52◦ E) in the west [20,27,28]. The mega-thrust potential of the entire
MSZ is estimated at Mw 9.07–9.22 [23]. Constraints imposed by GPS data resulted in three major
segments and an estimated approximately 58% mean coupling ratio between the plates [27]. The
subduction interface is divided into the eastern and western MSZ, with the eastern half being
more seismically active. Given the scope of this work, we limit ourselves to the eastern MSZ,
since tsunamis from western MSZ would have less appreciable effects on Karachi port than those
arising from the western MSZ. Furthermore, paleoseismic accounts hypothesize that the western
MSZ is seismically inactive compared with the eastern MSZ [29,30].

Here, the probability distribution function (pdf) for the G–R relation is modelled as the doubly
truncated exponential distribution [31]

G(m) =

⎧⎪⎨
⎪⎩

βe−β(m−Mm
w )

1 − e−β(MM
w −Mm

w )
Mm

w ≤ m ≤ MM
w

0 m > MM
w

, (2.1)

where β = b loge 10, and the lower Mm
w and upper MM

w limits of truncation are 4 and 8.8,
respectively. The upper limit of Mw 8.8 derives from the mega-thrust potential of eastern MSZ
[23]. The rate parameter b of 0.92 is taken from the recent Earthquake Model of Middle East
database (see electronic supplementary material, table S2 in [32]), and refers to the whole MSZ.
For the scope of this work, we assume it as representative of the eastern MSZ. The complementary
cumulative distribution function (ccdf), also called probability of exceedance or survival function,
is then:

g(m) =

⎧⎪⎨
⎪⎩

1 − 1 − e−β(m−Mm
w )

1 − e−β(MM
w −Mm

w )
Mm

w ≤ m ≤ MM
w

0 m > MM
w

. (2.2)

Two cases of the truncated G–R distributions are plotted in figure 2a, i.e. for maximum
magnitudes MM

w of 8.8 and 8.6. Figure 2b shows histograms of actual samples from the distribution
(used later in this work).

(b) Finite fault and slip profile
A FF on the eastern section of MSZ (blue rectangle, figure 1b) is constructed using a total
number (nF) of 2295 rectangular segments. The overall dimension of the FF model is 420 ×
129 km2 (Lmax × Wmax). The slip on a segment is denoted by Si, where i varies from 1 to 2295.
Okada’s closed-form equations transform the slips and other FF parameters into a static vertical
displacement denoted by U [33]. The final vertical displacement field results from the combined

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 A

ug
us

t 2
02

1 



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210180

...........................................................

7.5 8.0 8.5

102

103

104

105

4 5

moment magnitude (Mw) moment magnitude (Mw)

pdf G(m) for Mw
M 8.8

Mw
m = 4.0  Mw

M = 8.8 (8.6)

b = 0.920

pdf G(m) for Mw
M 8.6

1 M samples with Mw
M = 8.8

1 M samples with Mw
M = 8.6

10 k samples with Mw
M = 8.8

ccdf g(m) for Mw
M 8.8

ccdf g(m) for Mw
M 8.6

range for prediction

6 7 8 9
10–6

10–5

10–4

10–3pr
ob

ab
ili

ty

fr
eq

ue
nc

y10–2

10–1

1

10

(a) (b)

Figure 2. Magnitude-frequency distribution for the Makran Subduction Zone (MSZ). (a) The Gutenberg–Richter (G–R)
relation, showing probability and complementary cumulative distribution functions for two maximum moment magnitude
MM
w assumptions, viz. 8.6 and 8.8. (b) Histograms of 1 million (and 10 000) samples ofMw . (Online version in colour.)

superposition of vertical displacements due to all the activated fault segments. Among the FF
parameters, the dip angle and fault depth (df ) are sourced from the recent plate boundary model,
Slab2 [34,35]. The strike and rake angles are kept constant at 270◦ and 90◦.

A segment size (h2
s ) is approximately 5 × 5 km2 (li × wi), and the segments are arrayed in an

85 × 27 grid. This segment size is not chosen arbitrarily. It is selected based on a numerical study
of the fidelity of the segmentation viz. 5 × 5 km2, 10 × 10 km2 and 20 × 20 km2 (figure 15a) to the
earthquake dimension-magnitude scaling relation [24] (figure 1c). The discrepancy to the scaling
relation appears as discontinuities in the realizable fault lengths (L) and widths (W) (figure 15a,
inset). The size of the discontinuities are ∼hs.

We use the definitions of the seismic moment M0 = ∑nF
i=1 μliwiSi and moment magnitude

Mw = (2/3)(log10 M0 − 9.1), with μ = 3 × 1010 N m−2 being the modulus of rigidity. Our
implementation of the Okada suite is adapted from the dMODELS1 code [36,37]. Slips are usually
modelled to be uniform on the FF segments, even though inversions of seismic sources evidence
localized concentrations of high slips (asperities) over a backdrop of lower slips [12]. Appendix A
details the construction of the non-uniform slip profile used in this work.

(c) Influence of sediment amplification on seabed deformation
Incorporation of the effect of sediments influences tsunami modelling mainly in two ways. First,
the interplay of sediment transport and tsunami flow gives rise to enhanced coupled morph- and
hydro-dynamics [38,39]. Second, the Okada deformation model [33], with the assumptions of an
elastic, homogeneous, isotropic medium in a semi-infinite domain, can be improved by sediment
models that exhibit nonlinear, non-homogeneous and an-isotropic behaviour. Considerable
amplification (up to 60% locally) of crustal deformation due to the presence of layers of sediments
on the seafloor can occur [26]. In this section, we limit the incorporation of the effect of sediments
to the deformation model by making use of a sediment amplification curve (figure 3c), extracted
from elastodynamic simulations of layered sediment-rock seabed [26]. The curve uses the relative

1v. 1.0 available at pubs.usgs.gov/tm/13/b1/.
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depth (di
r) of the ith segment (figure 3b) calculated as

di
r = di

s

di
f

, (2.3)

where di
s is the sediment thickness over the segment interpolated from GlobSed2 [40], and di

f

is the down-dip fault depth of the segment taken from Slab2 [34] (figure 3a). Given di
r, the

sediment amplification curve supplies the sediment amplification factor (Si
a) on the segment

(figure 3d). The amplification due to the sediments is incorporated by multiplying the slip Si

with the sediment amplification factor Si
a resulting in an effective slip Se

i (figure 3e)

Se
i = Si(1 + Si

a). (2.4)

Okada’s closed-form equations transform the effective slips Se
i into the effective vertical

displacement Ue (figure 4b) [33]. The influence of sediments not only increases the slips effectively
but also modifies the profile, as evident in the emergence of a double-lobed profile (figure 3e). The
effect is more conspicuous in the associated deformations (compare figure 4a,b). The amplification
factor (Sa) peaks at a relative depth of approximately 0.13, after which it decreases. Given the
geometry of the fault and overlying sediment profile, a significant number of segments have
an amplification factor between 0.4 and 0.6 (or, equivalently 40–60% amplification) (figure 3c

2Available from ngdc.noaa.gov/mgg/sedthick/.
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inset and d). Furthermore, the sediment amplification factor is strongly dominated by the fault
depth rather than the sediment thickness, which is near-uniform. The sediment amplification
curve is defined only till a relative depth of 0.23 [26]. We linearly extrapolate the curve in order
to be as conservative as possible in the region where it is not defined as well as to smoothly
transition from regions of higher to lower fault depths. The counterparts of average slip Savg

and maximum slip Smax of S (without sediments) are defined as average effective slip Se
avg and

maximum effective slip Se
max of Se (with sediments). Similarly, effective moment magnitude Me

w
is defined, by replacing Si with Se

i in the expression of Mw. The effect of sediments on slips are
compared in figure 5a. Here, the increased scatter of Se

max compared with Se
avg is due to the spatial

distribution of Sa, which significantly amplifies Se
max depending on the epicentre (Xo, Yo). Also,

the increase in scatter of Se
max as Mw decreases is due to the decrease in fault dimensions that

allow many earthquake scenarios to be situated in areas of lower Sa. This aspect is pronounced in
a similar comparison of Me

w with Mw in figure 5b.

(d) Tsunami propagation
Analysing wave heights requires few hours of simulation, while investigating the velocities needs
longer simulation times. Thus, each scenario is run for 12 h of simulation time Ts to obtain the
maximum tsunami velocity and wave height, and is therefore computationally expensive. It is
not only imperative that the numerical algorithms in the computer code for tsunami simulations
run efficiently at fine mesh resolutions (10 m) needed to capture the currents, but also that the
code is amenable to adequate parallelization, e.g. [41,42]. Thus, to run 300 such scenarios, we
employ VOLNA-OP23 that runs efficiently for unstructured meshes on parallel GPUs [18]. The
number of full-fledged scenarios (i.e. 300) is considerably higher than in existing studies related to
MSZ [43–45]. Usual simulations employ the Green’s functions approach to superpose the tsunami
wave heights from a multi-segment FF source. Here, the nonlinear shallow water equations
model not only the propagation of the tsunami but also the run-up/down process at the coast
[46]. The finite volume (FV) cell-centred method for tessellation of control volume is used in
VOLNA, and the barycentres of the cells are associated with the degrees of freedom. Details
of numerical implementation, validation against standard benchmarks and comprehensive error
analysis are available [18,47]. An important factor affecting the fidelity of long-lasting simulation
of currents is numerical dissipation. Giles et al. [48] studied the numerical errors in VOLNA-OP2,
wherein they are analysed by decomposing them into dispersion and dissipation components.
Furthermore, an inter-model benchmarking of different numerical models highlighted the pitfalls
in high-resolution current simulations [6]. In line with the scope of this work, we limit our
numerical studies using VOLNA-OP2. It may be noted that although the emulation framework
is independent of the specific numerical model employed, the accuracy of the emulator is limited
by the accuracy of the underlying numerical model. VOLNA models the tsunami life cycle with

δH
δt

+ ∇ · (Hv) = 0 (2.5)

and
δHv

δt
+ ∇ ·

(
Hv ⊗ v + g

2
H2I2

)
= gH∇b, (2.6)

where H(x, t) = b + η is the total water depth defined as the sum of free surface elevation η(x, t),
and time-dependent bathymetry b(x, t). The two horizontal components of the depth-averaged
fluid velocity are in v(x, t), g is the standard gravity and I2 is the 2 × 2 identity matrix. The
maximum tsunami velocity vmax and wave height ηmax at location x at time t are computed as

vmax(x) = max
0<t≤Ts

‖v (x, t)‖2 (2.7)

3v. 1.5 available at github.com/reguly/volna, with improvements to second-order FV scheme and boundary conditions.
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Figure 4. Comparison of slip and deformation profiles for sample nos. 1 (left column) and 129 (right column). (a) Slip S and
uplift U before incorporation of sediment influence. (b) Effective slip Se and uplift Ue with sediment influence. The colourbar
for slip is in log2 scale. (See animations in the electronic supplementary material for a detailed graphical overview of the 300
samples.) (Online version in colour.)

and

ηmax(x) = max
0<t≤Ts

η(x, t). (2.8)

The dynamic bathymetry b(x, t) is the sum of static bathymetry bs(x) and Ue, the effective
deformation due to the influence of sediments. Here, an instantaneous fault is assumed, i.e. Ue

is supplied once at the beginning of the simulation. Furthermore, to reduce the computational
burden of calculating deformations from 300 events, Ue is computed only within a uplift
calculation box covering the fault (green box in figure 4).

Accurate bathymetry, precise coastline and good quality computational mesh are vital for
a proper modelling of velocities and currents in shallow water and near the coast. Thus, bs

uses GEBCO 2019 (15′′ resolution) [49] complemented with hydrographic charts for Karachi
port (approx. 30 m resolution), and SRTM v3 topography (1′′ resolution) [50]. For delineating
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Figure 5. Effective slip and moment magnitude. (a) Comparison of average and maximum slips with (Seavg S
e
max) and without

(Savg Smax) the influence of sediments for the 300 scenarios. (b) Same as (a) but for moment magnitude. (Online version in
colour.)

port structures and breakwaters along the coastline, Google Earth’s satellite imagery (approx.
10 m resolution) is used. The merging is described in the electronic supplementary material. The
non-uniform unstructured mesh is designed in three stages corresponding to three regions, viz.
offshore, onshore and near the port. This three-pronged strategy strikes a balance between having
a fine mesh resolution (10 m) near Karachi port and reducing the overall computational cost
with approximately 2.64 × 106 triangles in total. The mesh is generated using Gmsh4 [51]. The
construction of the mesh is described in appendix B.

The outputs vmax and ηmax for two training samples (nos. 1 and 129) are plotted in figures 6
and 7, respectively, alongside snapshots taken at various time instants during the simulation.

3. Statistical emulation
In this section, emulator training (§3a), diagnostics (§3b) and predictions (§3c) for 1 million events
are described.

(a) Emulator construction
The numerical simulation of the tsunami life cycle, i.e. its generation, propagation and inundation
at fine mesh resolutions is computationally expensive due to model nonlinearity, and typically
consumes hours on supercomputers. This is all the more prohibitive for a probabilistic
quantification where thousands of runs of the tsunami code are required to exhaust the range
of plausible scenarios. Statistical surrogates (or emulators) provide a computationally cheap
approximation of the complex tsunami solvers, together with estimates of uncertainties in
the predictions. In this study, the three input model parameters are moment magnitude (Mw)
and epicentre coordinates (Xo, Yo) (figure 1c, inset). The coordinates have their origin as the
southwest corner of the MSZ. The inputs are transformed into effective seafloor deformation.
The consequent tsunamis are propagated till Karachi port. The outputs of interest in our case are
the maximum wave height (ηmax) and maximum wave velocity (vmax) at nG (193) virtual gauge
locations around the port.

4v. 4.4.1 available at gmsh.info.
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Figure 6. Tsunami velocity. (a) Maximum velocity at Karachi port over 12 h for sample no. 1. (b) Two snapshots of velocities for
sample no. 1 restricted to the box (dashed line) in (a). (c,d) Same as (a,b) but for sample no. 129. (Online version in colour.)
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Figure 7. Tsunami height. (a) Maximum height at Karachi port over 12 h for sample no. 1. (b) Two snapshots of heights for
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Figure 8. Three hundred training scenarios of input parameters (Mw , Xo, Yo) generated by Latin hypercube design: projections
on (a)Mw − Xo, (b)Mw − Yo and (c) Xo − Yo planes. Sample nos. 1 and 129 are marked with stars. (Online version in colour.)

Thus, the computer code (denoted by M) simulates a multi-physics two-stage physical model,
i.e. from the input parameters (Mw, Xo, Yo) to deformation Ue, then from Ue to tsunami outputs
vmax and ηmax. An essential stage is the creation of an informative dataset for constructing the
emulator. This is also called the design of computer experiments and the dataset is termed as
the training set. The specific purpose of the design stage is to capture the functional relationship
between the input parameters (Mw, Xo, Yo) and output quantities (ηmax, vmax) at a location. The
Latin Hypercube Design (LHD) generates a set of points that are nearly uniformly spread to cover
the input parameter space. Specifically, it maximizes the minimum distance between points in the
set, a feature that explores the functional relationship better than a random scatter. In a physical
sense, this spread of points endeavours to capture the information inherent in the input–output
relationship as much as possible. The model is evaluated by computer runs of M at the training
points. Here, we employ an LHD of size 300 for three parameters (figure 8). This is large enough
to capture complex nonlinear combined sensitivities to the input parameters (e.g. the influence
of size and location in relatively small and mid-size events closer to Karachi, or large regional
variations in spatial distributions of slips), but still fits within our computational budget. The GP
emulator (denoted by M) interpolates across the input–output points in the training set. In other
words, the constructed emulator works as an approximation of M, and can be used to generate
predictions (or, evaluated) at any point in the space of input parameters. The predictions will be
exact at the training points, but uncertain elsewhere. This uncertainty is modelled by a normal
distribution whose mean and standard deviation are calculated using the Kriging formula (mean
quantities denoted by v̄max and η̄max) explicitly accounting for the design. This structure allows
for any nonlinear relationship to be modelled with uncertainties dependent on the location of the
design points, unlike in more standard linear or even nonlinear regressions where the structure is
fixed a priori. Derivations and exact equations can be found in Beck & Guillas [52]. GP emulation
has been instrumental in successfully quantifying uncertainties in tsunami heights generated
by landslides over the North Atlantic and the Western Indian Ocean as well as earthquakes
over Cascadia [13,53–55]. We use the efficiently implemented multiple-output Gaussian process
emulator (MOGP)5 for emulation.

The covariance kernel is a key component in the construction of the emulator. Here, we use
the Matern 5/2 kernel that is smooth enough to avoid a rough GP, but not extremely smooth
thus being suitable for modelling the physics. The piecewise polynomial, rational quadratic,
exponential and squared exponential functions are other candidates [56]. The parameters (or
length scales) in the kernels and other hyperparameters are found via nonlinear optimization

5v. 0.2.0 available at github.com/alan-turing-institute/mogp_emulator.
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Figure 9. Emulator diagnostics (maximum velocity). (a) L-O-O data for emulation of maximum velocity vmax at a gauge in
Karachi port (gauge no. 91). The vertical line segments connect the training data to its predicted counterpart. (b) Enlargement of
lowermomentmagnitude region in (a). (c) Enlargement of highermomentmagnitude region in (a). (d) Data in (a) on predicted
v̄max—training vmax axes. (e) Data in (a) on Xo-axis. (f ) Data in (a) on Yo-axis. (Online version in colour.)

(L-BFGS-B) using maximum-likelihood estimation. MOGP also entertains Bayesian approaches
as well as a selection of optimization algorithms.

Maximum velocity magnitudes (and heights) are positive. In order to respect this physical
constraint and not predict negative velocities (and heights), we feed the logarithm of vmax

(and ηmax) into the construction of the emulator. Since the constructed emulator is now in the
logarithmic scale, we transform the predicted quantities back to the original scale by accounting
for the lognormal nature of the predicted distributions. Hence, the confidence intervals for the
predictions, representing uncertainties, are all rendered positive, and naturally skewed in that
direction. Once the emulator is constructed, it needs to be validated before employing it for
predictions.

(b) Emulator diagnostics
In order to validate the quality of the emulation, we provide Leave-one-out (L-O-O) diagnostics
here. Our training set consists of 300 pairs of input–output quantities. In L-O-O, a reduced
training set of 299 pairs is employed to build an emulator, which is then used to predict the
output at inputs of the one pair that was left out. The predicted output (and its uncertainty) is
compared with the actual output of the left out pair. This procedure is repeated 300 times to
cover all the pairs in the training set. These tests are passed by the emulator, as seen for predicted
v̄max in figure 9 and η̄max in figure 10. The comparison between the mean of predictions from
the emulator M and the training data from the tsunami simulator M shows that the emulator
approximates well the simulator. The vertical line segments connect the predicted mean with
its counterpart in the training data. More importantly, the uncertainties in the predicted mean,
quantified in the form of 90% prediction intervals (green bars in figures 9 and 10), represent
well the uncertainties about these predictions (or are even slightly conservative), since around
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Figure 10. Emulator diagnostics (maximum height). (a) L–O–O data for emulation of maximum height ηmax at a gauge in
Karachi port (gauge no. 91). The vertical line segments connect the training data to its predicted counterpart. (b) Enlargement of
lowermomentmagnitude region in (a). (c) Enlargement of highermomentmagnitude region in (a). (d) Data in (a) on predicted
η̄max—training ηmax axes. (e) Data in (a) on Xo-axis. (f ) Data in (a) on Yo-axis. (Online version in colour.)

90% or more of the outputs from the training set fall within these intervals. GP approximation
works well inside the convex hull of the training points, but deteriorates near the hull’s boundary
or exterior giving rise to larger uncertainties in the predictions. For our design, these locations
include design limits of Mw, and corners or boundaries of the FF, which are limits of (Xo, Yo).
The L-O-O diagnostic indeed shows inadequate fit and larger uncertainties in these regions of the
input space. Still, L-O-O provides validation of the emulator inside the convex hull. Furthermore,
the L-O-O diagnostics show that some of the lower Mw events do not generate appreciable
velocities. In these cases, the location with respect to the port is such that negligible wave energy
is radiated to the port. Conversely, the low Mw events that do show appreciable velocities are
located such that considerable wave energy reaches the port. The L-O-O also shows a decrease in
this positional dependence as Mw increases, due to an accompanying increase in fault area and
energy. Additionally, numerical dissipation in the model does play a role here, and numerical
schemes tailored for reducing numerical dissipation would increase the accuracy [48].

(c) Emulator predictions
Although the 300 simulations by themselves generate a good description of the hazard, a large
number of scenarios are essential for a comprehensive probabilistic hazard assessment. Thus, we
evaluate the model at nP (1 million) values of (Mw, Xo, Yo) at 193 virtual offshore gauges. The
constructed emulator is used to evaluate the model at inputs that are different from those in the
training set. These evaluations are termed predictions. A prediction returns the mean value of the
emulated quantity and a measure of inherent statistical error/uncertainty in the approximation,
e.g. the standard deviation. Cumulatively, these 193 million predictions not only comprehensively
cover the geography around Karachi port but also exhaustively sweep through the range of events
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in the magnitude-frequency distribution. Additionally, such a high number of samples is also
needed to thoroughly explore the interplay among the three parameters in the input space of
(Mw, Xo, Yo).

The Mw for the 1 million events are obtained by sampling the truncated G–R distribution for
the MSZ within our region of interest, i.e. Mw 7.5 to Mw 8.8 (figure 2a). The lower limit of Mw 7.5
is chosen for illustrative purposes. The 1 million values of (Xo, Yo) are sampled from a uniform
distribution defined over the rectangle [0 Lmax] × [0 Wmax] of area 420 × 129 km2. Any changes
in the parameters of the G–R relation (i.e. β, Mm

w , MM
w , etc.) only affect the earthquake samples

generated for the prediction stage. These changes can be handled in a very efficient manner as
the prediction stage is the cheapest component in the entire workflow. In fact, cheap prediction
permits fast propagation of uncertainties in the G–R parameters to the hazard intensities. Here, we
demonstrate this for two values of one such parameter, the maximum magnitude MM

w . Assuming
a reduction of maximum magnitude MM

w from 8.8 to 8.6 gives a perturbed G–R relation (figure 2a).
In this case, the 1 million samples come from the range Mw 7.5 to Mw 8.6. The histograms of 1
million samples for Mw are shown in figure 2b. It also shows 10 000 samples from the range Mw 7.5
to Mw 8.8 for performing comparisons.

To be able to generate 1 million predictions, we employ MOGP. Once the predictions are
finished, we are left with two histograms (one each for v̄max and η̄max) at every virtual gauge,
each made up of 1 million samples of predicted quantity. The histograms are processed to extract
Pe(I(x) ≥ I0), the probability of exceedance. Pe is the probability of the tsunami having I(x) ≥ I0 at
a gauge x. The intensity I is the measure of hazard, i.e. either v̄max or η̄max, and I0 is the intensity
threshold for the hazard quantity under consideration.

4. Results and discussion
We first plot the raw output from the 1 million predictions, i.e. the histograms at 193 gauges in
figure 11a,b. At each gauge, two histograms are superimposed on each other. These correspond
to the two G–R relations with varying maximum moment magnitude assumptions, i.e. MM

w 8.6
and MM

w 8.8 (figure 2). The histograms also act as visual indicators for the measure of the hazard
at the gauge, and will be cast as hazard maps in figures 13 and 14. Near the tip of breakwaters
and the mouth of the harbour, we observe relatively higher velocities than in other regions. We
also observe a complementary relation between the histograms of velocities and wave heights:
the gauges having thicker histograms for velocity have thinner histograms for wave heights and
vice versa. These phenomena can also be observed in the snapshots (compare figure 6b with 7b).

As expected, there is a clear reduction of hazard when the maximum moment magnitude
is reduced. For closer inspection, we enlarge the normalized histograms at gauge no. 91 in
figure 11c,d. Gauge no. 91 is located in the centre of the map near the mouth of the port and
is chosen since there is substantial spread of both maximum velocities and wave heights in its
histograms. In figure 11c, the normalized histograms for maximum velocity are plotted. The range
of velocities for Mw 8.8 extends till approximately 16 ms−1, while it extends to only approximately
6.2 ms−1 for Mw 8.6. Thus, we observe approximately 61% reduction in maximum velocity hazard
for a Mw 0.2 reduction in maximum moment magnitude. By comparison, for the same reduction
in maximum moment magnitude, the reduction in hazard from maximum wave height is only
approximately 38% (from approx. 4.5 to 2.8 m in figure 11d). The probability of exceedance Pe that
is extracted from the histograms is plotted in the inset of the respective figure.

Figure 12a,b compare normalized histograms for 1 million (1 M) and 10 000 (10 k) samples of
input parameters (figure 2b). The corresponding probability of exceedance Pe plots with their
99% confidence intervals can be seen in the inset. In figure 12a, we observe that the histogram
corresponding to 10 000 predictions is curtailed around 7.5 ms−1 and becomes very sparse for
higher velocities. This is due to a deficit of samples that results in the isolated bars for higher
velocities. This behaviour also translates into larger uncertainties (or wider confidence intervals)
for estimates of low probabilities of Pe. By contrast, 1 million predictions adequately sweep
through the entire range of velocities resulting in lower uncertainties (or narrower confidence
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Figure 11. 1million emulator predictions at 193 gauges. (a) Histograms of predictedmaximumvelocities v̄max. Histograms from
maximummoment magnitudeMM

w of 8.8 and 8.6 are superimposed. (b) Same as (a) but for predicted maximum heights η̄max.
(c) Normalized histograms of v̄max at gauge no. 91. Inset shows probability of exceedance curves, with 99% confidence interval.
(d) Same as (c) but for η̄max. (Online version in colour.)

intervals) for the tail probabilities. It may be noted that tail probabilities in the Pe curve correspond
to extreme events with higher velocities. Similar behaviour is seen in figure 12b, where the deficit
of samples is observed for maximum wave heights higher than 2.7 ms−1 for the case of 10 000
predictions.

In figure 12c,d, we plot the probability of exceedance curves extracted from the histograms
of 1 million predictions for the 193 gauges. Superimposed on top are the Pe curves for 10 000
predictions. The horizontal lines in the plots are the chosen values of probability of exceedance,
10−1, 10−2 and 10−3, progressively decreasing by an order of magnitude. The vertical lines in
figure 12c denote maximum velocities of 1.5, 3.1 and 4.6 ms−1 (or 3, 6 and 9 knots, respectively),
values that demarcate categories of damage [5]. The vertical lines in figure 12d denote maximum
wave heights of 0.75, 1.5 and 3 m. These values are used to construct hazard maps in figures 13
and 14. In both figure 12c,d, the reach of the Pe curve is extended beyond the low probability
of 10−4 to include even extreme events only in the case of 1 million predictions. Additionally,
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although the lower probabilities (around 10−4) have been made accessible by 10 000 events, they
require 1 million events for accurate resolution: with only 10 000 samples, both probabilities and
quantities are overestimated between 10−3 and 10−4. Hence, being able to produce a very large
number of predictions is crucial to hazard assessment. Only with the utilization of the emulator—
needing only 300 simulations—are we able to afford realistic predictions of velocities and wave
heights at high resolution.

Port hazard is represented on maps by velocity zonations, a time-threshold metric and safe
depths for vessel evacuation [3,5]. In this work, the probability of exceedance curves in figure 12
are cast as hazard maps [7,8]. We plot the probability of exceedance at the 193 gauges on the
map for the chosen values of maximum velocities in figure 13a. Similar plots for chosen values of
maximum wave heights are shown in figure 13b. For both velocities and wave heights, the overall
probability decreases as the intensity threshold increases. Specifically, the bulk of Pe for maximum
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velocities is concentrated at the tip of breakwaters and along the dredged channel leading into the
port (seen in port bathymetry, electronic supplementary material), as also observed in Lynett et al.
[4]. This is also supported by the patterns of localized higher maximum velocities in figure 6a,c.
By contrast, the spatial distribution of Pe for maximum wave height shows a complementary
behaviour and is more spread out.

Conversely, for chosen probabilities of exceedance, the corresponding hazard thresholds at
the gauges are plotted in figure 14. As expected, the overall intensity thresholds increase with
decrease in probability of exceedance. Again, the bulk of the maximum velocity threshold is
concentrated at the tip of breakwaters and along the dredged channel (figure 14a). Here too, we
see a complementary behaviour for maximum wave height in figure 14b.

Velocities have more spatial variation than heights [57], and show increased sensitivity to
port configurations, compared with wave heights [58]. The larger spatial variation of velocities
in figure 12c compared with wave heights in figure 12d is evident in the probability of exceedance
plotted for all the gauges. This can be attested in figure 11a,b, where the bulkiness of velocity
histograms varies spatially much more than that of the heights. Additionally, at a given gauge,
we observe that the spread of velocities is much more than those of the heights for the same set
of earthquake scenarios, e.g. compare figure 11a,b for gauge no. 91. These behaviours can also be
observed for individual runs from the spatial variations of maximum velocity and wave height,
compare (a) and (c) in figure 6 to those of figure 7.

The probability of exceedance extracted in this work acts as the basic input for common
hazard outputs of probability of occurrence (and return periods), especially the approximately
2475 year mean return period for the maximum considered tsunami as laid out in ch. 6 of ASCE
7-16 [59]. It also feeds into loss estimation functions [60]. Although a full/complete probabilistic
description of hazard may remain elusive, a realistic goal of ‘fullness’ will be to carefully define
and perform each step in the PTHA. In these terms, a ‘full’ probabilistic assessment would ideally
need to include further sources of uncertainties, including a thorough analysis of the source
uncertainties in its seismic and tectonic setting. These include layers of uncertainties that are
either epistemic or aleatoric in nature. Epistemic uncertainties include the scaling relation, and
the G–R approximation of the occurrence-magnitude relationship [61], i.e. both the maximum
moment magnitude and the b-value. For MSZ, the major influence of the maximum magnitude
was illustrated in an initial work [62], with a simplified tsunami modelling strategy. Here, we only
assess two cases, for MM

w 8.6 and MM
w 8.8. Uncertainties in the near shore bathymetry also have a

large influence on near shore hazard [63]. Furthermore, the entire MSZ needs to be modelled
for an area-wide assessment of hazard at the major ports in Pakistan, Iran, Oman and India,
while accounting for crustal, outer-rise and imbricate faults. Secondary tsunamigenic effects from
earthquakes in the continental crust (submarine slumps and slides) need additional parameters,
e.g. 27 November 1945 Mw 8.1 [64], and 24 September 2013 Mw 7.7 [22] events. Similarly, with
appropriate additional parameters, outer-rise and splay faults can be incorporated into the
source, e.g. barrier models. Although a large increase in the number of parameters (especially
for spatial fields of parameters) presents a challenge to emulation, a solution presents itself in the
combination of dimension reduction and emulation [63].

Aleatoric uncertainties in the variations of the geometry in the seafloor uplift and subsidence
can be readily incorporated. An alternative to our slip profile generation is to directly
parameterize the co-seismic deformation profile using three parameters (or more) [55]. The Okada
model that transforms the slips to the vertical deformation is then bypassed. This route is quite
attractive since it allows the creation of very realistic deformation patterns with a fixed number
of parameters, and does away with the dependency of the deformation/slip on the resolution of
the segmentation (shown in figure 15a, inset). Our work uniformly samples the 1 million samples
for epicentre coordinates (another aleatoric uncertainty). However, a recent spatial distribution of
locking has been made available for the MSZ [27]. It would be even more realistic to sample the
epicentre coordinates using the locking distribution, since zones of high locking act as a major
cause for earthquake recurrence, as recently hypothesized [65]. The locations could be further
distributed based on the depth-dependent rigidity [66].
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Randomness in tide levels at the time of impact (consequent changes of up to 25% reported
[67]) could be included. A better approximation of the currents would be through three-
dimensional modelling that accounts for fluid behaviour of the vertical water column and
variable vertical flow [6,68]. Better designs of computer experiments than the LHD could be
employed to reduce uncertainties in the emulator’s approximation, such as sequential design
[52]. Instead of investigating a range of scenarios, if one only wants to examine the maximum
wave height in order to build defences for instance, a recent surrogate-based optimization could
be pursued whereby the design of the experiment is combined with a search for the maximum,
saving large quantities of computational time and increasing accuracy due to the focus on the
optimization [69]. To be able to emulate a sequence of multiple models of seabed deformation and
tsunami propagation, and possibly a three-dimensional model of currents locally, a new approach,
called integrated emulation, allows even better designs [70]. The most influential models are run
more times where it matters, and the integrated emulator propagates uncertainties with higher
fidelity by taking into account the intermediate models in the system of simulators. This approach
has the potential to enable fully realistic end-to-end coupling of three-dimensional earthquake
sources models with tsunami models [71].

5. Conclusion
In this paper, we provide a novel end-to-end quantification of uncertainties of future earthquake-
generated tsunami heights and currents in the MSZ:

(i) We replace the complex, expensive high-resolution tsunami simulator by a functionally
simple, cheap statistical emulator trained using 300 tsunami simulations at 10 m mesh
resolution in the vicinity of the port. We propagate uncertainties from the G–R relation
to tsunami impacts of maximum velocities and wave heights in the port area of Karachi,
Pakistan. We observe maximum (extreme event) velocities and wave heights of up to
16 ms−1 and 8 m, respectively, for the range Mw 7.5–8.8 (figure 11).

(ii) We perform the largest emulation using 1 million predictions/source scenarios. To our
knowledge, this is the first large-scale uncertainty quantification of earthquake-generated
tsunami current hazard. We are able to display the necessity of this very large number
of predictions for resolving very low probabilities of exceedance (less than 10−3)—very
high impact extreme events (vmax > 7.5 ms−1 and ηmax > 3 m) with tighter uncertainties
(figure 12).

(iii) We observe that reduction in hazard due to a reduction in maximum moment magnitude
is more for velocities than wave heights. Near the mouth of the harbour, the reduction
in hazard is approximately 61% for maximum velocity, but only approximately 38% for
maximum wave height (corresponding to a reduction in maximum moment magnitude
from 8.8 to 8.6) (figure 12c).

(iv) We generate the first area-wide probabilistic hazard maps of tsunami currents from 1
million predicted scenarios at the Karachi port (figures 13a and 14a). It shows patterns
that are geophysically meaningful and important for the next steps of disaster risk
reduction. We identify concentrations of high probability of exceedance around the port
for given intensity threshold (a maximum of approx. 18%, 10% and 4% for 3, 6 and 9
knots, respectively) (figure 13a). Conversely, the same regions also have high intensity
thresholds given the probability of exceedance (a maximum of approx. 3.1, 7.5 and
10.3 ms−1 for 10%, 1% and 0.1%, respectively) (figure 14a). Overall, without the large-
scale emulation, such outputs would be impractical to produce due to computational
costs.

(v) We display more spatial variations for maximum velocity compared with wave heights
around the port and their complementary behaviour for the aggregate of 1 million
scenarios (figures 6, 7 and 11–14).
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Algorithm 1 Slip profile generation.

1: For a given earthquake moment magnitude Mw, find the fault length L and width W from the
scaling relation.

2: Fit the fault rectangle of size L × W into the FF. There are two possibilities, the epicentre
(Xo, Yo) being located: (i) at the centre of the fault and equidistant from the boundaries of
the fault rectangle, i.e. with distances L/2 and W/2, and (ii) away from the centre of the fault.
In this case, (Xo, Yo) is not equidistant from the boundaries of the fault rectangle.

3: Use equation (A 2) to construct the lobes φ(x; rE, α) and φ(x; rW , α) and form the bi-lobed
kernel for fault length Φ(x; rW , rE, α). Similarly, form the bi-lobed kernel for fault width
Φ(x; rN , rS, α) by constructing the lobes φ(x; rN , α) and φ(x; rS, α).

4: Use equation (A 3) to construct the tensor product Φ⊗ of Φ(x; rW , rE, α) and Φ(x; rN , rS, α).
5: Multiply the values of Φ⊗ at the centres of each segment (i.e. Φ⊗

i ) with a factor

Mw
(∑nF

i=1 μliwiΦ
⊗
i

)−1 to get the slip Si on the segment.

Appendix A. Slip profile generation
We fix the dimension hs of an FF segment based on: (i) computational effort required—scales as
O(nF) ∼ O(h−2

s ) and, (ii) fidelity to the scaling relation (figure 15a, inset)—earthquake dimensions
are resolved to O(hs) (figure 15a). An hs ∼ 5 km gives 2295 segments for the overall FF dimensions
of Lmax ∼ 420 km and Wmax ∼ 129 km. To resolve the slip profile adequately, we require a fault to
span a minimum of four segments along both the length and width directions. Using the scaling
relation for hs ∼ 5 km, this requirement gives a minimum Mw 6.32 that can be accommodated on
the FF. This is sufficient as our region of investigation starts at Mmin

w = 7.5. The scaling relation
also limits the maximum Mw that can be accommodated on the FF area of Lmax × Wmax, giving
Msat

w = 8.65 (figure 1c). Since our region of investigation is till Mw 8.8, for Msat
w < Mw < 8.8, we
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proportionately increase the slip on the maximum dimensions. Now, to generate the slip profile,
a positive kernel function φ is used (figure 15b, inset):

φ(x; r, α) =
⎧⎨
⎩

Γ (2α + 2)
22α+1Γ (α + 1)2

(
1 −

∣∣∣x
r

∣∣∣2)α

|x| ≤ r

0 |x| > r
, (A 1)

where the gamma function Γ enters the normalization constant, length scale r defines where φ is
non-zero and α adjusts the steepness of φ. With φ as the core, the bi-lobed kernel Φ is defined as

Φ(x; rl, rr, α) =
{

φ(x; rl, α) −rl ≤ x ≤ 0
φ(x; rr, α) 0 ≤ x ≤ rr

, (A 2)

where rl and rr are the length scales of the left and right lobes, their values depending on the
position of epicentre (Xo, Yo) with respect to fault length (L) and width (W). The tensor product
of two bi-lobed kernels, one along the length and another along the width of the fault, yields the
surface Φ⊗ (figure 16):

Φ⊗(x, y; r⊗, α) = Φ(x; rW , rE, α) ⊗ Φ(y; rS, rN , α) (x, y) ∈ [−rW , rE] × [−rS, rN], (A 3)

where [−rW , rE] × [−rS, rN] denotes the domain of the fault and r⊗ = {rW , rE, rS, rN}, the distances
of western, eastern, southern and northern sides of the fault rectangle from (Xo, Yo). A
normalization of Φ⊗ with the required moment magnitude yields the final slip profile S (e.g.
figure 4). We select α = 1 by varying α to mirror the maximum slip Smax and average slip Savg

curves from empirical scaling relations (see table 2 in [25]) (figure 15b).

Appendix B. Non-uniform unstructured mesh with local refinement

(a) Offshore region
The mesh sizing function h(bs) is based on the merged bathymetry bs (figure 17a, inset). With the
dimensions of the FF earthquake source (L × W), we assume an approximate source wavelength
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version in colour.)

λo (<
√

L2 + W2) of the tsunami, and a representative ocean depth of the Makran trench bo

(approx. 3 km), to calculate the time period Tλ of the wave as

Tλ = λo√
gbo

. (B 1)

Here, λo is 60 km, which is approximately 60% of the diagonal in the smallest fault, i.e. of size
approximately 94 km × 34 km for a Mw 7.5 event (sample no. 300). Assuming the time period to
be the same everywhere, the wavelength λn at depth bs(x) is found as [73]

λn√
bs(x)

= λo√
bo

. (B 2)

This relates the characteristic length of mesh triangle (or mesh size) hλ(bs) at depth bs(x) as

hλ(bs) =
(

λo

nh

)√
bs(x)

bo
, (B 3)

where nh = λn/hλ(bs) = 10 is the number of triangles in one wavelength λn. At the coast (i.e. bs = 0),
a minimum mesh size hm (500 m) is specified. The mesh sizing hλ may be steep, or having a high
gradient with respect to the bathymetry bs (green curve, figure 17a). A reduction in gradient is
achieved by linearly interpolating the mesh size λo/nh at bo and the minimum mesh size hm at the
coast, i.e. bs = 0 (red curve, figure 17a)

hI (bs) = bs(x) ∗ (λo/nh − hm)
(bo − 0)

+ hm. (B 4)

The mesh sizing function h(bs) is then given by the minimum

h(bs) = min(hλ(bs), hI (b)). (B 5)
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Figure 17. Localized non-uniform unstructured mesh. (a) Mesh sizing for offshore region based on bathymetry bs (inset).
(b) Mesh sizing for onshore region based on coast proximityπ (inset). (c) Mesh sizing function h supplied to Gmsh. (d) Mesh
sizes h̄ in mesh generated by Gmsh using h in (c). (Online version in colour.)

(b) Onshore region
The mesh sizing function h(π ) is based on the coast proximity π (x) (figure 17b inset), which is
defined as the minimum distance of point x from the coastline C of the merged bathymetry bs

π (x) = min
xc∈C

‖x − xc‖2. (B 6)

The construction of h(π ) is split into three regions, viz. inundation, stretch and blow-up
(figure 17b). In the inundation region, which is defined to extend inland for a distance πI (2.5 km)
from the coast, the mesh size is prescribed as the minimum mesh size hm (500 m). Thus, the
inundation region facilitates smooth transition between the onshore and offshore meshes. Further
inland, we require the triangle sizes to explode quickly to the maximum mesh size hM (25 km).
This region is called the blow-up region (from πS to πB in figure 17b). We introduce the stretch
region between the end of the inundation region and the beginning of the blow-up region (i.e.
from πI to πS in figure 17b), for a gradual transition of corresponding mesh sizes, i.e. from hm

to hS (10 km). This gradual change is achieved by setting the size ratio ρ, which is the ratio of
characteristic lengths of adjacent triangles (or grading gauge [74]) to 1.3. The stretch distance
πS − πI is calculated as

πS − πI = hm + ρhm + ρ2hm + . . . + ρnS hm. (B 7)

Equation (B 7) is a geometric series that approximates the distance by summing up the sizes of
nS + 1 triangles, lined up end-to-end in a straight line, monotonically increasing in size by a factor
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coastline

coastline merged coastline

(a) (i) (ii) (iii)

(i) (ii) (iii)(b)

Figure 18. Localized non-uniform unstructured mesh. (a) Mesh without local refinement at Pasabandar shown at scales of
(i) 64 km × 64 km, (ii) 32 km × 32 km and (iii) 8 km × 8 km, respectively. (b) Locally refined mesh at Karachi port shown at
scales of (i) 64 km × 64 km, (ii) 16 km × 16 km and (iii) 0.5 km × 0.5 km, respectively. (Online version in colour.)

of ρ [74], starting from hm to ρnS hm. Equating the last term to hS, solve for integer nS as

nS =
⌈

logρ

(
hS

hm

)⌉
, (B 8)

where ·� denotes the ceiling function. Similarly, the blow-up distance πB − πS is calculated as

πB − πS = hS + ρhS + ρ2hS + . . . + ρnB hS. (B 9)

The description of equation (B 9) is similar to equation (B 7). Equating the last term to hM, get
integer nB as

nB =
⌈

logρ

(
hM

hS

)⌉
. (B 10)

Note: The mesh sizing functions h(bs) and h(π ) are specified to Gmsh on a background rectangular
grid that has half the resolution (approx. 210 m) of GEBCO 2019 grid, sufficient for specifying the
minimum mesh size hm (500 m). The number of levels in figure 17b are the number of grid points
needed in the background mesh to specify mesh sizes in the respective region.

Port region: The strategy is similar to that in the stretch region, but the radial distance from the
centre (xp, yp) of the DOI (or port) is used instead of the coast proximity. The mesh size is fixed
at hp

m (10 m) in the DOI where resolved bathymetry is available. The resolution of background
rectangular grid near the port is 10 m ∼ hp

m. A smaller size ratio ρp of 1.05 ensures a gradual
transition of mesh sizes. In increasing radii extending outwards from the DOI, the mesh size
increases similar to equation (B 7), but iteratively with an increasing number of terms in the
geometric progression. The iterative procedure is employed to effect a smooth transition of the
mesh at the port with existing offshore and onshore meshes (figure 18b). For contrast, figure 18a
shows Pasabandar port, where local refinement of mesh is absent.
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