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Abstract: Research on enhancing power system resilience against extreme events is attracting sig-
nificant attention and becoming a top global agenda. In this paper, a preventive augmented power
dispatch model is proposed to provide a resilient operation. In the proposed model, a new N-1-1
security criterion is proposed to select disruptive N-1-1 contingency cases that might trigger cascad-
ing blackouts, and an iterative contingency assessment process based on the line outage distribution
factor is proposed to deal with security constraints. In terms of optimization objectives, two objectives
related to power flow on the transmission line are considered to reduce the possibility of overload
outages. Controllable series compensation devices are also considered in the model to improve the
power flow distribution. Case studies conducted on the modified IEEE 30-bus, 118-bus and Polish
2382-bus systems show that the power flow solution of the proposed power dispatch model can
avoid some branches from undertaking excessively heavy loads, especially lines forecasted to be
affected by extreme events. The results of blackout simulations through a hidden failure cascading
outage simulation model show that the average power losses of the proposed model are reduced by
around 40% in some cases as compared to the classical economic dispatch model.

Keywords: contingency assessment; controllable series compensation; power dispatch; power system
resilience; line outage distribution factor

1. Introduction
1.1. Background and Motivation

Blackouts caused by extreme weather events have been occurring with increasing
frequency in the past few decades and have caused considerable economic losses to electric
power utilities and society in general [1–3]. Research on enhancing power system resilience
against these extreme events is attracting significant attention and becoming a top global
agenda [4,5]. Resilience is defined as the ability of a power system to withstand extreme
events, adapt its operation and structure for preventing or mitigating their impact, and
recover quickly after its exposition to such events [6]. Generally, approaches to enhance
power system resilience can be summarized into two categories, namely infrastructure
hardening measures and operational resilience enhancement strategies [7,8]. Infrastruc-
ture hardening measures might be more effective than the operational ones but are less
economical and hard to implement [9]. Operational strategies could take advantage of
incoming information about extreme events, applying specific actions that are adaptive to
the prevailing conditions [10]. This paper focuses on enhancing the operational resilience
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of a power grid and proposes an augmented power dispatch model to offer a preventive
resilient generation dispatch solution for power system operators.

1.2. Related Works and Research Gap

The contribution of preventive scheduling of power generation resources to system
resilience has been well recognized [11]. Several studies have been carried out based on the
classical unit commitment and economic dispatch problems. In [12], a proactive resource
allocation model based on a stochastic unit commitment problem was proposed to mini-
mize the restoration cost and improve the operational resilience of electrics power grids
against hurricanes. Reference [13] proposed a resilience-constrained unit commitment
model considering the impact of microgrids in which contingency scenarios with higher
weather-related failure probability were considered. In general, microgrids can keep the
system stable operation and minimize blackout. Reference [14] applied the mean-variance
Markowitz theory and value-at-risk to assess the risk of system cost variability due to the
presence of high penetration of renewables such as PV. The risk of system cost can further
be reduced through energy storage participation. Reference [15] proposed a day-ahead
two-stage stochastic unit commitment optimization framework to offer a preventive op-
eration strategy to power system operators. Reference [16] presented a day-ahead and
intraday multi-objective dispatch model for an integrated biomass concentrated solar
system considering the conditional value-at-risk. Reference [17] developed a sequentially
proactive operation strategy in which a Markov process was used to model the uncertain
sequential transition of system states due to damages caused by extreme events. The
transition probabilities were evaluated according to weather-dependent failure rates. Our
previous work [18] proposed a resilience-constrained unit commitment framework in
which a proportional hazard model was used to calculate the forced outage rate of trans-
mission lines affected by extreme weather events. Reference [19] proposed a two-stage
robust unit commitment taking into account the weather-related failure probability of
transmission lines.

The main difference between the above resilience-based generation dispatch opti-
mization models and the traditional ones is the considered contingency set. Contingency
cases with higher failure probability related to extreme events are considered in the se-
curity constraints in resilience-based models. Fragility curves of system components in
different extreme events are considered to model the impact of the forecasted extreme
event on component outages in the above papers. However, fragility curves presented
in the literature are difficult to implement in practice since it is hard to obtain accurate
parameters of the curve. Moreover, it is also difficult to forecast or measure the specific
impact of extreme events on every electrical component. For example, it is not easy to get
the wind speed and angle acting on a transmission line during a hurricane. What we can
know from current extreme weather events prediction and waring service system in power
grids are the areas or components that will be affected and the general hazard level for the
event. This gives challenges in real operation to access the efficacy of the above methods.
Another problem of the existing works is that most of the studies only focus on changing
the security constraint to provide a resilient operation strategy. The security constraints
only ensure that the operation is safe for the defined contingency set. The system might be
violated if other high-order contingency cases occur.

1.3. Contributions of This Paper

In this paper, both security constraints and the objective function of the optimization
model are modified to offer a resilient generation dispatch solution. As for the security con-
straints, two types of contingency sets are considered. The first type is the N-1 contingency
of all transmission lines. The second type is the proposed N-1-1 contingency set. Given that
heavily loading lines have a high probability of overload outages or hidden failures [20],
transmission lines with heavy post-contingency power flow of N-1 outage are selected
as N-1-1 contingency sets in this work. By considering the security constraint of these
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N-1-1 contingency cases, the further propagation of N-1 contingency cases caused by the
extreme event might be reduced. It can be imagined that the number of the defined N-1-1
contingency cases is affected by the generation dispatch solution. In turn, the dispatch
solution may be changed after considering the contingency constraints. Therefore, an
iterative process is needed to address this issue. The iterative contingency filtering process
proposed in [21] is extended in this paper to generate the defined N-1-1 contingency cases
and incorporate the security constraints of the N-1 and N-1-1 contingency sets into the
optimization model.

The security constraints mentioned above only ensure that the operation is safe for
the defined contingency set. The system might be violated if other high-order contingency
cases occur (for example, the N-3 contingency case). Of course, we can avoid this situation
by considering higher-order security constraints in the optimization model, but considering
higher-order security constraints may lead to unsolvable problems.

In this paper, we try to cope with this situation by adjusting the optimization criteria
of the objective function. A key reason why initial failures of a few components caused by
extreme events develop into cascading failures that eventually lead to blackouts is the mas-
sive power flow transfer in the grid after the initial failure [22]. If we can improve the power
flow distribution in the network to prevent massive power flow transfer after disturbances,
the probability of blackouts caused by cascading failures could be reduced [23]. Referring
to our previous study [24], two objectives related to power flow are considered in this paper
to improve the power flow distribution in the transmission system. However, improving
the distribution of power flow by simply adjusting the generation of generators is limited
in some cases because the line flow is limited by the impedance and capacity of the trans-
mission line. In this paper, the adjustment of transmission line reactance by controllable
series compensation devices is considered in the optimization model. Controlled series
compensation devices are already part of the transmission network in many countries, and
it is expected that the number of controlled series compensation devices installed in the
grid will increase significantly in the future with advances in control methods [25]. This
paper focuses on devices that compensate for the reactance of the line they are installed
in [26], such as static synchronous series compensators (SSSC) and thyristor-controlled
series capacitors (TCSC). The main difficulty in incorporating series compensation de-
vices into the DC power flow-based security-constrained economic dispatch problem is
the computational complexity caused by the flexibility of line reactance. Reference [27]
reformulated this nonlinear programming problem as a mixed-integer linear programming
problem by using the big M relaxation technique. A more computationally efficient method
was proposed in [28] based on the PTDF-based power flow model. Referring to the above
study, this paper jointly optimizes the generator output and the reactance adjustment value
of the transmission line by a controllable series compensation device to improve the power
flow distribution in the transmission system. The main contributions of this paper are
summarized below:

1. A new N-1-1 security criterion is defined to select the disruptive contingency cases
that might trigger cascading failures. It is defined from the perspective of preventing
further propagation of N-1 contingency. The security constraints of the defined
contingency set are formulated by using the line outage distribution factors and
are taken into account in the proposed power dispatch model through an iterative
contingency filtering process.

2. Two objectives related to active power flow on transmission lines are considered in
the dispatch model to avoid full or heavy loads on lines in the transmission system,
thus reducing the probability of massive power flow transfer and overload cascading
outages after the initial outage. The adjustment of transmission line reactance by
controllable series compensation devices is considered in the optimization model.

3. The proposed augmented power dispatch model is nonlinear due to the line flow-
related objective function and the consideration of controllable series compensation
devices. Linear relaxation techniques are introduced to convert the model into a
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mixed-integer linear program. Although MILP is less challenging compared to the
original nonlinear programming, it is not preferred, especially for large-scale real
power systems. A computationally efficient two-stage solution is proposed to further
reduce computational complexity.

The remainder of the paper is organized as follows: section two introduces the
proposed augmented power dispatch optimization model and its solution methodology.
Section three presents the simulation results of the case studies conducted on the IEEE
30-bus, 118-bus, and Polish 2383-bus systems. Section four presents the discussions.
Conclusions are given in section five.

2. The Proposed Augmented Power Dispatch Model and Solution Methodology
2.1. Definition of the Defined N-1-1 Contingency Set

The classical security-constrained economic dispatch mainly considers the N-1 security
constraints and is not resilient enough to ensure the safe operation of the grid. However,
since there is a large number of transmission lines in the grid, it is impractical to have a
solution that satisfies the security constraints for all N-k contingencies [29]. Contingency
selection is often employed to reduce computational complexity.

As mentioned in the introduction, two types of contingency sets are considered in this
paper. The first type is the N-1 contingency of all lines. The second type is the proposed
N-1-1 contingency set. It is defined from the point of preventing the further propagation
of N-1 contingency cases. Although the N-1 security constraints have already ensured
that the loss of any single line does not result in power flow violation of the remaining
online lines, there exist some lines whose post-contingency power flows exceed steady-state
operating limits and are close to the emergency operating limits. These lines have a high
probability of hidden failure and are also susceptible to cascading outages if disturbances
occur. Therefore, in this work, these lines are considered as potentially disruptive N-1-1
contingency cases. By considering these contingency cases in the optimal power dispatch
problem, the further propagation of N-1 contingency cases caused by an extreme event
might be reduced.

Since the selection of the defined N-1-1 contingency cases is based on the analysis
of the post-contingency power flow for each N-1 contingency case, the number of N-1-1
contingency cases is affected by the power dispatch solution. In turn, the solution may be
changed after considering the security constraints of these contingency cases. We will first
introduce the power dispatch optimization model in the next section and then the method
for handling the security constraints of the defined contingency set.

2.2. Mathematical Formulation of the Proposed Power Dispatch Optimization Model

The security constraints of the defined contingency set only ensure that the power
flow solution is secure for specific contingency cases. If other high-order contingency cases
occur, such as the N-3 contingency case, the system might be violated. As mentioned in
the introduction, the optimal criteria of the generation dispatch optimization model are
modified in this paper to improve the resilience of the solution. Two objectives related to
power flow are considered in this paper to reduce the probability of overload outage of N-k
contingency cases. Firstly, the disaster forecast information is used to select the lines that
will be affected by the upcoming extreme events. It can be seen that only the forecasted
information about whether a component is affected by an extreme weather event is needed,
which makes it more applicable for system operators. The first objective is to reduce the
loading rate of lines that are forecast to be affected by extreme weather events, as these
lines have a higher probability of outages. The second one minimizes the difference in the
loading rate of all transmission lines. These two objectives interact with each other. By
optimizing both objectives in the optimal power flow problem [30], not only the loading
rate of the transmission line can be reduced, but also the overall utilization of the grid can
be improved. By defining the loading rate rl as the ratio of the active power flow on a
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transmission line to its transmission capacity, the detailed mathematical representation for
each objective is given below.

rl =

∣∣∣∣ fl
f max
l

∣∣∣∣ (1)

F1 = ∑
l∈SAL

rl (2)

F2 =
1
N ∑

l∈SL

∣∣∣∣∣∣∣rl −
∑

l∈SL

rl

N

∣∣∣∣∣∣∣ (3)

F3 = ∑
g∈SG

(
ag pg

2 + bg pg + cg

)
(4)

where fl is the active power flow of line l. f max
l is the active power flow capacity of line l

in the normal operating state. SAL, SL, and SG are set of transmission lines that are forecast
to be affected by an extreme weather event, all lines, and generators. N is the number of
the line. pg is the active power output of generator g. ag, bg, cg are quadratic, linear, and
no-load cost coefficients of generator g, respectively.

The first objective F1 is created based on the sum of the loading rate of the lines
affected by an extreme event, and the second objective F2 is created based on the mean
absolute deviation of the loading rate of all transmission lines. The second objective
reflects how close the loading rate of a transmission line is to the average loading rate.
It provides a measure of the homogeneity of power flow distribution. The difference
in the power flow on all lines is reduced when this measure becomes smaller. With the
cooperation of these two objectives, the loading rate of every transmission line is optimized
to be in equilibrium at a low level. The last objective F3 is the total production cost of
all generators, and the production cost of a generator is usually a quadratic function of
generation. Considering the above three objectives and the adjustment of transmission line
reactance through controllable series compensation devices, we propose an augmented
power dispatch model to improve the power flow distribution in the transmission system
and minimize generation costs, thus improving the resilience of the power system under
extreme weather events, as follows:

min α ∑
l∈SAL

rl + β ∑
l∈SL

∣∣∣∣∣∣∣rl −
∑

l∈SL

rl

N

∣∣∣∣∣∣∣+ γ ∑
g∈SG

(
ag pg

2 + bg pg + cg

)
(5)

pmin
g ≤ pg ≤ pmax

g ∀g ∈ SG (6)

∑
g∈SG

Kb,g · pg − db − ∑
l∈SL

Ab,l · fl = 0 ∀b ∈ SB (7)

fl = f int
l + f facts

l ∀l ∈ SL (8)

f int
l = ∑

b∈SB

SFl,b · p
inj
b ∀l ∈ SL (9)

pinj
b = ∑

g∈SG

Kb,g · pg − db − ∑
l∈SL

Ab,l · f facts
l ∀b ∈ SB (10)

δmin
l · f int

l −Mzl ≤ f facts
l ≤ δmax

l · f int
l + Mzl ∀l ∈ SL (11)

δmax
l · f int

l −M(1− zl) ≤ f facts
l ≤ δmin

l · f int
l + M(1− zl) ∀l ∈ SL (12)

−Mzl ≤ f int
l ≤ M(1− zl) ∀l ∈ SL (13)

zl ∈ {0, 1} ∀l ∈ SL (14)
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δmin
l =

{
∆bmin

l /bl ∀l ∈ Sfacts
0 ∀l /∈ Sfacts

(15)

δmax
l =

{
∆bmax

l /bl ∀l ∈ Sfacts
0 ∀l /∈ Sfacts

(16)

− f max
l ≤ fl ≤ f max

l ∀l ∈ SL (17)

rl =

∣∣∣∣ fl
f max
l

∣∣∣∣ ∀l ∈ SL (18)

where α, β, λ are coefficients of the considered three optimization objective terms.pmin
g , pmax

g
are the minimum and maximum active power output of generator g. db is the active power
demand at the bus b. SB is the set of buses. Kb,g is the element located in row b and column
g of the bus-generator incidence matrix K. Ab,l is the element located in row b and column
l of bus-line incidence matrix A. f int

l is the initial active power flow on the transmission
line without considering the control of controllable series compensation. f facts

l is the active

power flow on the transmission line injected by the controllable series compensation. pinj
b

is the active power injected to bus b. δmin
l , δmax

l are the minimum and maximum relative
adjustment of the susceptance of line l. bl is the initial susceptance of line l. ∆bmin

l , ∆bmax
l

are the minimum and maximum adjustment of the susceptance of line l. Sfacts is the set of
lines with controllable series compensation. zl represents the direction of power flow fl
and takes a value of 0 for positive power flows and a value of 1 for negative power flows.
Sfacts is the set of lines equipped with controllable series compensation devices. M is a
sufficiently large positive number. SFl,b is the shift factor between line l and bus b, which
denotes a change in the power flow on line l when one unit of power is injected to bus
b. Since the classical DC power flow model is used in the proposed model, the following
equation can calculate the shift factor matrix of a given transmission network topology.

SF = XATB−1 (19)

B−1= TT
(

TBTT
)−1

T (20)

B = AX−1AT (21)

where SF is the shift factor matrix with the size of (N × NB). SFl,b is in row l and column b
of matrix SF. X is a diagonal matrix with elements representing the reactance of all lines
with the size of (N × N). A is a bus-lines incidence matrix with the size of (NB × N). T is
a reduced identity matrix with the size of [(NB − 1)× NB]. N, and NB are the number of
all lines and all buses.

Constraints in (6) limit the minimum and maximum output of all generators. Equa-
tions in (7) ensure power balance for each bus. Active power flow on a transmission line is
calculated by constraints (8) to (16), and limited by (17). In this paper, reactance control of
series compensation devices is modelled as power flow injection to keep the initial shift
factor matrix of the transmission network without compensation devices unchanged, thus
improving the computational efficiency. The detailed model is shown below. Assuming
that the susceptance adjustment range of a line equipped with a series compensation device
is [∆bmin

l , ∆bmax
l ], the active power flow on the line can be calculated by separating the

effect of the series compensation device and the initial power flow of the line as follows [28]:

fl = bl(θl,to − θl,from) + ∆bl(θl,to − θl,flom)

= f int
l + ∆bl

bl
f int
l

∆bmin
l ≤ ∆bl ≤ ∆bmax

l
δl =

∆bl
bl

f facts
l = δl f int

l

(22)
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where θl,to and θl,from are the voltage angle of the from bus and to bus of line l, respectively.
∆bl are the susceptance adjustment of line l by the control of the series compensation in
line l. δl is the relative adjustment of the susceptance of line l.

The equation f facts
l = δl f int

l in (22) includes the production of adjustment variable δ
and line flow fl . It needs further reformulation to avoid computational complexity. By
using the big M reformulation technique and variable zl representing the direction of line
flow fl , this equation can be reformulated as a set of mixed-integer linear constraints shown,
as in (11) to (16).

The modelling of an augmented power dispatch model with controllable series com-
pensation devices has been completed. However, it is difficult to solve the optimization
model directly due to the absolute value terms in the objective function in (5) and the
constraints in (18).

According to optimization theory with absolute values, the objective and constraints
with absolute values can be reformulated as linear or mixed-integer linear by introducing
some auxiliary variables. First, to linearize (18), the binary variable zl used in (11) to (13)
and two new continuous variables ml and nl are introduced to reformulate each absolute
value constraint as a set of linear constraints (23) to (26). To linearize the second objective
term in (5), only two additional constraints (27) and (28), and one auxiliary variable ul , are
needed for each term. As for the quadratic cost functions, they can be approximated by a
set of piecewise linear functions along with constraints (29) and (30). Thus, the proposed
nonlinear problem can be reformulated as a mixed-integer linear programming problem
(MILP) as follows:

min α ∑
l∈SAL

rl + β ∑
l∈SL

ul + γ ∑
g∈SG

(
F3(pmin

g ) + IFg,q · pxg,q

)
s.t. (6) to (17)

fl
f max
l

= ml − nl ∀l ∈ SL (23)

rl = ml + nl ∀l ∈ SL (24)

0 ≤ ml ≤ 1− zl ∀l ∈ SL (25)

0 ≤ nl ≤ zl ∀l ∈ SL (26)

rl −
∑

l∈Sl

rl

Nl
≤ ul ∀l ∈ SL (27)

∑
l∈Sl

rl

Nl
− rl ≤ ul ∀l ∈ SL (28)

pg = pmin
g + ∑

q∈Sq

pxg,q ∀g ∈ SG (29)

0 ≤ pxg,q ≤ pig ∀g ∈ SG, ∀q ∈ SG (30)

where,

pig =
pmax

g − pmin
g

NQ
∀g ∈ SG (31)

IFg,q =
F3(pg,q)− F3(pg,q−1)

pig
∀g ∈ SG, ∀q ∈ SQ (32)

 pg,q = pmin
g +

q
∑
1

pig ∀g ∈ SG, ∀q ∈ SQ

pg,0 = pmin
g ∀g ∈ SG

(33)
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where pxg,q is the active power output of generator g at segment q. pig is the maximum
active power output of generator g at segment q.

Although MILP is less challenging compared to the original nonlinear program prob-
lems, it is not preferred, especially for large-scale real power systems. As mentioned before,
the binary variables in the proposed problem determine the flow direction of the lines.
Assuming that the power flow direction of each line is known, the binary variables can be
fixed and the proposed problem will become a linear problem. Based on the above analysis,
a computationally efficient two-stage solution method is introduced for large-scale real
power systems. The first stage solves the classical economic dispatch model without the
two proposed objectives and controllable series compensation devices and initializes the
direction of the power flows for the second stage. The second stage enforces the power
flows in the initial direction of the first stage; that is, the binary variables zl in (11) to (13)
and (25) to (26) are fixed. The proposed power dispatch model becomes a linear problem.
It can be easily solved. Though the solution may or may not be globally optimal, the
significance of this method does not vanish in the absence of optimality; the algorithm can
very quickly find a solution with a significantly lower cost and line loading rate.

2.3. Iterative Contingency Filtering Process

As described in Section 2.1, the defined N-1-1 contingency set is created after getting
the optimal power flow dispatch solution, and the security constraints in turn affect the
solution of the optimization model. Therefore, the iterative contingency filtering process
proposed in [21] is extended in this paper to generate the defined N-1-1 contingency
cases and incorporate the security constraints of the N-1 and N-1-1 contingency sets into
the optimization model. The line outage distribution factor is used to calculate the post-
contingency power flow on each online line as well as to create security constraints for
active N-1 contingency and N-1-1 contingencies cases in the process. The post-contingency
power flow is calculated by using the line outage distribution factor (LODF) of the DC
power flow. The LODF is defined as the incremental active power flow on the monitored
transmission line caused by the outage of a contingent line with a pre-contingency active
power flow of one unit [31]. LODF under a single-line outage or multi-line outage can be
generalized by using the power transfer distribution factor (PTDF) of a pre-contingency
network with the following equations [32,33].

LODF = PTDF0
M,O (E− PTDF 0

O,O

)−1
(34)

PTDF0
M,O= X−1

M ΦT B−1 Ψ (35)

PTDF0
O,O= X−1

O ΨTB−1Ψ (36)

where LODF is a line outage distribution factor matrix with the size of (NM × NO).
PTDF0

M,O and PTDF0
O,O are power transfer distribution factor matrices with the size of

(NM × NO) and (NO × NO), respectively. E is an identity matrix with the size of (NO × NO).
XM and XO are diagonal matrices with elements representing the reactance of monitored
lines and outaged lines with the size of (NM × NM) and (NO × NO), respectively. Φ and
Ψ are bus to monitored lines and bus to outaged lines incidence matrices with the size of
(NB × NM) and (NB × NO), respectively. NM and NO the number of monitored lines and
outaged lines in a contingency. NB are the number of all buses.

Figure 1 shows the flowchart of this iterative contingency filtering process. The
detailed mathematical equations for each step are presented below:

Step 1: Solve the power dispatch problem without contingency constraints and obtain
the power flow solution. The classical DC power flow model is used in this paper.

Step 2: Calculate and analyze the post-contingency power flow of all N-1 contingency
cases to generate a set of N-1 contingency violation lines set and a set of the defined N-1-1
contingency cases. For example, for a given N-1 contingency case of the outage of line i,
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the post-contingency power flow f c
j,i of any monitored line j calculated by using LODF can

be represented as follows [32]:

f c
j,i = f o

j + LODFj,i × f 0
i (37)

where f 0
i and f 0

j are the active power flow on transmission lines i and j before contingency.
LODFj,i is the LODF between lines j and i when line i is on an N-1 contingency.
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After getting the post-contingency power flow, if
∣∣∣ f c

j,i

∣∣∣ is bigger than the emergency
operating limits f emax

j , line j will be marked as a violation line of line i and saved to the N-1
contingency violation lines set Svio,i, which will be used to create N-1 security constraints

later. If
∣∣∣ f c

j,i

∣∣∣ is smaller than emergency operating limits f emax
j but bigger than the steady-

state operating limits f max
j , line j is marked as a potential N-1-1 contingency line following

the outage of line i. Lines i and j are saved to the disruptive N-1-1 contingency line set
SN−1−1,i. The above N-1 post-contingency power flow analysis is conducted for all N-1
contingency cases in the set of SN−1. Note that N-1 and N-1-1 contingency cases that will
split the system are not considered.

Step 3: Calculate the post-contingency power flow of all N-1-1 contingency cases
selected in Step 2. For example, for an N-1-1 contingency case of lines i and j, the post-
contingency power flow f c

k,ij of any monitored line calculated by using LODF can be
directly represented as follows:

f c
k,ij = f 0

k + LODFk,i × f 0
i + LODFk,ij,j × f c

j,i
+LODFk,ij,i × f c

i,i
(38)
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where LODFk,ij,i and LODFk,ij,j are the LODF between line k and lines i and j when lines i
and j are on outage together or in sequence.

Equation (38) can be further simplified. By substituting (37) into (38) and given that
f c
i,i is equal to zero after the outage of line i, there is:

f c
k,ij = f 0

k + LODFk,ij,j × f 0
j

+
(

LODFk,i + LODFk,ij,i × LODFj,i

)
× f 0

i
(39)

According to the LODF calculation equation shown in (34)

LODFk,i =
PTDFk,i

1− PTDFi,i
(40)

LODFj,i =
PTDFj,i

1− PTDFi,i
(41)

LODFk,ij,i =
PTDFk,i × (1− PTDFj,j) + PTDFk,j × PTDFj,i

(1− PTDFi,i)(1− PTDFj,j)− PTDFj,i × PTDFi,j
(42)

LODFk,ij,j =
PTDFk,i × PTDFi,j+PTDFk,j × (1− PTDFi,i)

(1− PTDFi,i)(1− PTDFj,j)− PTDFj,i × PTDFi,j
(43)

It can be further proved that:

LODFk,i + LODFk,ij,j × LODFj,i= LODFk,ij,i (44)

By substituting (44) into (39), and a more simplified equation could be obtained to
calculate the post-contingency power flow of an N-1-1 contingency case as below, which is
the same as an N-2 contingency case [32]:

f c
k,ij = f 0

k + LODFk,ij,j × f 0
j +LODFk,ij,i × f 0

i (45)

After getting f c
k,ij, if

∣∣∣ f c
k,ij

∣∣∣ is bigger than f emax
k , line k will be marked as a violation line

of N-1-1 contingency of lines i and j, and it is added into the violation lines set Svio,ij. The
above N-1-1 post-contingency power flow analysis for all N-1-1 contingencies cases in the
set of SN−1−1,i is conducted.

Step 4: Check if both N-1 and N-1-1 violation line sets are empty. If they are empty,
stop. Otherwise, continue.

Step 5: Create N-1 and N-1-1 security constraints of the active contingency scenarios
for the optimization model. With the obtained violation line sets Svio,i and Svio,ij, the N-1
and N-1-1 security constraints for each contingency case in the above two sets can be
formulated as follows:

f s
j,i = f j + LODFj,i × fi ∀j ∈ Svio,i, ∀i ∈ SN−1 (46)

− f emax
j ≤ f s

j,i ≤ f emax
j ∀j ∈ Svio,i, ∀i ∈ SN−1 (47)

f s
k,ij = fk + LODFk,ij,j × f j+LODFk,ij,i × fi ∀k ∈ Svio,ij, ∀j ∈ SN−1−1,i, ∀i ∈ SN−1 (48)

− f emax
k ≤ f s

k,i−j ≤ f emax
k ∀k ∈ Svio,ij, ∀j ∈ SN−1−1,i, ∀i ∈ SN−1 (49)

where fl , f s
j,i, and f s

k,ij are optimization variables of the optimal power dispatch model which
represent the power flow on a line in normal operating state, N-1, and N-1-1 contingency
cases, respectively.

Step 6: Add the above constraints (46)–(49) to the proposed augmented power dispatch
problem and re-optimize and solve the problem until all security checks are satisfied. If
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security constraints could not be ensured, a load shedding variable is needed in the model
to guarantee a feasible solution [34].

For the final power dispatch solution derived through the contingency assessment
process described above, any N-1 contingency on all affected transmission lines would not
result in a violation. In addition, there will be no disruptive N-1-1 contingency cases, and if
there are, these contingency cases will be inactive. This means that their outages will not
cause other lines to be overloaded.

Overall, with the consideration of the proposed optimization objective and security
constraints, a power dispatch solution with better power flow distribution can be obtained
as compared with the classical economic dispatch optimization model. The possibility of
cascading failures is reduced, and the power system resilience is enhanced.

3. Case Studies

To evaluate the effectiveness of the proposed model and solution techniques, simula-
tion studies on the modified IEEE 30-bus, IEEE 118-bus, and Polish 2383-bus systems were
carried out.

3.1. IEEE 30-Bus System

Three cases were studied to test the effectiveness of the power dispatch solution
obtained from the proposed model in enhancing power system resilience to extreme
weather events.

Case 1 studies generation costs and power flow solutions for different power dispatch
models. In this case, three different power dispatch models without considering the security
constraints of contingency cases are studied. Model 1 is a classical single-objective economic
dispatch model in which only the generation cost is considered as the optimization objective.
Model 2 is the resilience-constrained economic dispatch model proposed in our previous
work [24], where objectives related to power flows are considered, but the adjustment of
transmission line reactance by controllable series compensation devices is not considered.
Model 3 is the proposed augmented power dispatch model considering the control of
series compensation devices. For the sake of brevity, in the following discussion Models 1
through 3 are denoted as ED, RCED, and APD, respectively.

Case 2 studies the effectiveness of the proposed N-1-1 security criterion and the
contingency assessment process. In this case, the pre-contingency and post-contingency
power flows of different models are analyzed and compared.

Case 3 studies the reliability and resilience performances of the above models by using
a modified cascading collapse assessment with the consideration of hidden failure [20].
The probability distribution curve of the blackout size will be used to show the resilience
performance of a power system in this case.

Detailed data for the test system are in Appendix A. SAL is formed by assuming
lines 10, 16, 22, 29, 30, 33, 35, 37, and 38, which are affected by an extreme weather event.
Assuming that all lines are equipped with controllable series compensation devices, the
maximum adjustment value of line susceptance is set to 90% of the initial value. In all cases,
for power dispatch models considering line flow adjustment objectives, the coefficients of
the different objective terms are set to α = 1000, β = 1000, and γ = 1, which are determined
according to the order of magnitude of the different objective terms. In Cases 2 and 3, the
emergency limit is set to 120% of the steady-state operation limit. All cases were tested
in MATLAB 2016a using the Gurobi solver on a personal computer with a 3.20 GHz i5
processor and 8 GB RAM.

3.1.1. Case 1

Since the first and second objectives are introduced to minimize the active power
flow in the transmission system, taking into account the series compensation devices, first
the active power distribution in the transmission system was studied to investigate the
effectiveness of the proposed objectives and the joint control action. Figure 2a,b show the
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loading rate distribution of affected lines and all lines, respectively. As shown in Figure 2,
the loading rate of the affected lines and all lines of the RCED are similar to those of the
ED. This indicates that, in some cases, the power flow distribution cannot be improved by
controlling outputs of generators alone, even when the objectives related to power flow
adjustment are considered. One reason for this result is that as load demand increases, the
number of units committed to generation increases and the dispatch capacity to adjust
power flows decreases. With the adjustment of transmission line impedance by controllable
series compensation devices, the proposed augmented power flow dispatch model APD
has good performance in improving the power flow distribution on the line. The loading
rates of the affected lines in the APD are much lower than the others. The loading rates
of all lines in the proposed model are also smoother than those of the other two models.
That is, the inhomogeneity of power flow on the branches is small and the power flow
distribution in the transmission system is uniform. In addition, the relatively small number
of heavy and light load lines in the APD means that not only can heavily loading lines
be avoided, ensuring safe system operation during extreme weather events but also light
loading lines can be reduced, improving the overall utilization of transmission capacity.
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Figure 2. Loading rates for (a) lines affected by extreme weather and (b) all lines ranked from highest
to lowest.

To quantify the power flow distribution in the transmission system, we calculated
seven indices, including the average loading rate (Ave.rl) and (Ave.ral), the variance of
the loading rate (Var.rl), the maximum loading rate (Max.rl), and the number of heavily
loading lines (Num. rl = 1, Num. rl > 0.8 and Num. rl > 0.6). The obtained results are
shown in Table 1 below.

Table 1. Comparison of power flow distribution indices of different power dispatch models tested
on the IEEE 30-bus system.

Model Cost ($) Ave.rl Ave.rl Var.rl Max.rl
Num.
rl = 1

Num.
rl > 0.8

Num.
rl > 0.6

ED 801.57 0.352 0.79 0.072 1 4 4 6
RCED 826.62 0.35 0.78 0.068 1 3 4 7
APD 819.3 0.323 0.382 0.033 1 1 1 3

As shown in Table 1, the classical economic dispatch model ED has the worst results.
Four lines operate at their operating limits (Num.rl = 1). These lines are more likely
to experience overload outages or hidden failure outages when power flows fluctuate.
Outages on these fully loading lines will also result in large-scale power flow transfers,
which may result in cascading failure outages. As for the proposed model APD, the power
flow distribution is significantly improved compared to the other two models, thanks
to the adjustment of the transmission line reactance by the series compensation device.
The average loading rate and loading rate variance for all lines, as well as the average
loading rate for the affected lines, were significantly reduced (by almost half compared
to the other models). As for the heavily loaded lines, only one transmission line operates
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at its capacity in the proposed model, while in the ED and RCED models there are four
and three, respectively. As the loading rate decreases, the probability of relay malfunction
is also greatly reduced, which will make the power system more secure. Compared with
RCED, APD has a lower generation cost (that is, the proposed model can achieve a better
power flow distribution with less cost). In summary, the simulation results obtained in
this case validate the effectiveness of the proposed augmented power dispatch model and
the solution.

3.1.2. Case 2

Case 2 investigates the effectiveness of the proposed N-1-1 security criteria and the
contingency assessment process. In this case, security constraints for the defined N-1 and N-
1-1 contingency cases are considered in the proposed augmented power dispatch model. In
the following discussion, the model with security constraints is denoted as SCAPD. In this
case, the pre-contingency and post-contingency power flow distributions of the different
models are compared. The analysis of Case 1 shows that the APD has a good power flow
distribution state when the power system is in steady-state operation. However, since it
does not take into account the security constraints of any contingency case, the system may
experience load shedding when transmission line failure occurs. To study this problem, first
N-1 and N-1-1 contingency analyses are performed on the generation scheduling schemes
obtained from different models to see how many power flows exceed the operating limits.
The analysis results are shown in Table 2. S1 denotes the number of scenarios in which the
post-contingency power flow exceeds the emergency limit for N-1 contingency cases. S2
denotes the number of scenarios in which the post-contingency power flow exceeds the
steady-state operating limit but is less than the emergency limit for N-1 contingency cases.
These scenarios are used to generate the proposed N-1-1 contingency cases. S3 denotes the
number of scenarios in which the post-contingency power flow exceeds the emergency
limit for the proposed N-1-1 contingency cases.

Table 2. Comparison of the pre-contingency and post-contingency power flow distributions for
different models tested on the IEEE 30-bus system.

Models Cost ($) Ave.rl Var.rl Max.rl S1 S2 S3

ED 801.5 0.352 0.072 1 13 59 68
APD 819.3 0.323 0.033 1 5 21 35

SCAPD 777.1 0.313 0.029 0.77 0 0 0
SCAPD(N-1) 802.6 0.320 0.029 0.93 0 2 3

As can be seen from Table 2, scenario S1 for APD is much smaller than that for ED.
However, in the APD model, there are still five lines with post-contingency power flows
exceeding the emergency limit under the N-1 contingency. For example, when line 10 is
out of service, the post-contingency loading rates of lines 40 and 41 are 1.282 and 1.296,
respectively, which means that lines 40 and 41 will be out of service immediately after
Line 10 is out of service. N-1 security constraints should be added to lines 40 and 41
to ensure the security of system operation. Scenarios S2 for APD shows that there are
21 scenarios in which the post-contingency power flow exceeds the steady-state operating
limit but is less than the emergency limit of the transmission line. For example, when line
15 fails, line 10 has a post-contingency loading rate of 1.016. When there is a disturbance in
the system, line 10 may experience an overload outage. If line 10 fails, two lines will be
overloaded and this will develop into a cascading failure outage. Therefore, the proposed
N-1-1 security constraint for preventing cascading blackouts should be considered in the
power dispatching problem, especially in extreme weather conditions.

The proposed N-1-1 security constraints are added in the APD by using the iterative
contingency assessment process described in Section 2.3. The model converged after two
iterations. This validates the computational efficiency of the LODF-based contingency
assessment process. the power flow distribution indices of SCAPD are shown in row three
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of Table 2. The SCAPD model has no overloaded lines in all N-1 and N-1-1 contingency
analyses due to the security constraints of the N-1 and N-1-1 contingency cases. However,
if only the traditional N-1 security constraint is considered in the APD model, there are
two lines with post-contingency line flows exceeding the operating limits but under the
emergency limits in all N-1 contingency analyses, as shown in the fourth row of Table 2.
For example, when line 10 fails, line 41 has a post-contingency loading ratio of 1.2. Lines 10
and 41 will become one scenario in S2. If this N-1-1 contingency case occurs, it will result in
three lines being overloaded, which could develop into a cascading outage. Therefore, by
considering the security constraints of the defined N-1-1 contingency in the power dispatch
model, to a certain extent, the risk of cascading failures in the power system can be reduced,
thus improving the operational recovery of the system.

3.1.3. Case 3

In this case, the reliability and resilience performances of different power dispatch
models in an extreme weather event are studied by using a modified cascading collapse
assessment considering hidden failure. The initial first step of the cascading simulation
procedure presented in [35] was changed to consider an initial trigger event caused by an
extreme weather event, which was generated by Monte Carlo sampling. It is assumed that
each line has a probability of outage in the initial state, but the affected lines have a higher
probability of failure. In this case, for lines affected by the extreme weather event, each line
has a probability of failure between 0 and 0.05, which is randomly generated in each simu-
lation. The rest of the lines have a smaller random failure probability between 0 and 0.005.
To avoid initial triggering events leading to system disconnections, a maximum of three
lines were allowed to fail in the initial event. We performed one thousand simulations and
calculated the percentage of load shedding in each simulation to represent the cascading
blackout size. The probability distribution curves of the blackout sizes for different models
are given in Figure 3, and the detailed results are shown in Table 3.
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Table 3. Simulation results of cascading failure blackouts for different models tested on the IEEE 30-bus system.

Models Max. LS% Probability
(LS% > 15%)

Ave.
LS%

Outages Caused
by the Event

Outages Caused
by Overload

ED 19.5% 0.085 4.21% 1.03 2.22
RCED 20.21% 0.050 4.24% 1.02 2.43
APD 19.23% 0.015 2.98% 1.05 1.52

SCAPD 18.07% 0.005 2.57% 1.03 1.05
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As shown in Figure 3, the proposed augmented power dispatch model with control-
lable series compensation devices (APD) has a better blackout size distribution than the
classical ED and RCED; this result is consistent with the discussion in Case 1 and Case 2.
SCAPD is the most resilient strategy among all models due to the consideration of N-1 and
the proposed N-1-1 security constraints. Table 3 shows the detailed results of all cascade
failure simulations. It can be seen that the average outage lines caused by extreme weather
events at the initial trigger (the fifth column) are similar for all four models. This indi-
cates that the different blackout sizes between models are not caused by the initial outage,
but by subsequent cascading outages. The sixth column of Table 3 shows the average
overload failure lines per simulation for the different models. The ED and RCED models
have relatively more overload failures due to weaker power flow distribution conditions.
The SCAPD produces the least overload failures. The average load shedding for SCAPD
is only 2.57%, which is about 40% less compared to the results for ED and RCED. The
probability of outage size exceeding 15% in the SCAPD model is very rare, at 0.005. From
these simulation results, it can be seen that the proposed model gives a more secure power
dispatch solution that is more resilient in extreme events.

Overall, power flow distribution conditions have a significant impact on the oper-
ational security of the system. The fewer highly loaded lines in a system, the lower the
probability of overload cascading failures, thus making the system more resilient to extreme
events. Considering the security constraints of the disruptive N-1-1 contingency cases in
the prevention strategy contributes to the resilience of the power system under extreme
weather conditions.

3.2. IEEE 118-Bus and Polish 2383-Bus Systems

Detailed data for the IEEE 118-bus test system are in Appendix A. For the model
considering power flow-related objectives, the coefficients of the different objective terms
are set as, α = 1, 000, 000, β = 1, 000, 000, and γ = 1, depending on the order of magnitude
of the different objective terms. It is assumed that lines 1 to 90 are affected by extreme
weather events. Assuming that all lines are equipped with controllable compensation
devices, and the maximum adjusted value of line susceptibility is set to 90% of the initial
value. The limit of the contingency is set to 120% of the steady-state operating limit. Data
for the Polish 2383-bus test system are MATPOWER “case2383wp”. It is assumed that
lines 300 to 500 are affected by extreme weather events. Lines 1 to 100 are equipped with
controllable compensation devices and the maximum adjusted value of line susceptibility
is set to 20% of the initial value. The coefficients of the different objective terms are set as,
α = 1, 000, 000, β = 1, 000, 000 and γ = 1. All cases were tested in MATLAB 2016a, using
the Gurobi solver, on a PC with a 3.20 GHz i5 processor and 8 GB of RAM. Table 4 shows
the results of the iterative contingency filtering process of the SCAPD model tested in the
IEEE 118-bus system. Table 5 shows the results of the iterative contingency filtering process
of the SCAPD model tested in the Polish 2383-bus system. Total iterations and computation
time for solving SCAPD in different test systems are demonstrated in Table 6.

As shown in Tables 4 and 5, as the number of iterations increases, the number of N-1
and N-1-1 violations decreases. Case studies on the IEEE 118-bus system converge after
three iterations. Case studies on the Polish 2383-bus system converge after four iterations.
Table 6 summarizes the total iteration and computation time for the three test systems
used in the paper. It can be seen that with the increase of the system size, the computation
time increases. However, the largest computation time is still within the acceptable range.
These results illustrate the computational efficiency of the proposed two-stage and iterative
contingency filtering solution techniques.

As for the effectiveness of the proposed power dispatch model, we will discuss the
results of case studies for different power dispatch models in the IEEE 118-bus system in
detail. Figure 4a,b show the loading rates of the lines affected by extreme weather events
and all lines in the four models mentioned above. Figure 5 shows the probability distri-
bution curves of blackout sizes obtained from 1000 cascading blackout simulations. The
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detailed generation cost, power flow distribution index, and cascading outage simulation
results are shown in Table 7.

Table 4. Results of the iterative contingency filtering process of the SCAPD model tested on the IEEE 118-bus system.

Iterations Generation Cost Number of N-1 Violation Scenarios Number of N-1-1 Violation Scenarios Computation Time (s)

0 582,259.3 10 15 4.9
1 575,352.5 3 19 4.4
2 563,046.5 1 3 2.1
3 572,850.9 0 0 3.1

Table 5. Results of the iterative contingency filtering process of the SCAPD model tested on the Polish 2383-bus system.

Iterations Generation Cost Number of N-1 Violation Scenarios Number of N-1-1 Violation Scenarios Computation Time (s)

0 1,851,036.5 65 711 174.6
1 2,006,177.3 5 9 170.0
2 1,981,281.7 6 5 195.9
3 2,018,414.2 0 1 185.6
4 2,004,039.8 0 0 171.2

Table 6. Total iterations and computation time for solving SCAPD in different test systems.

Test Systems Total Iterations Total Time (s)

IEEE 30-bus 3 7.8
IEEE 118-bus 3 14.5

Polish 2383-bus 4 897.3
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Table 7. Pre-contingency and post-contingency power flow distribution indices and cascade blackout simulation results for
different models tested on the IEEE 118-bus system.

Models Cost ($) Ave.rl Var.rl Max.rl
Num.
rl = 1

Num.
rl > 0.8

Num.
rl > 0.6 S1 S2 S3 Max.

LS%
Ave.
LS%

Outages
Caused
by the
Event

Outages
Caused

by
Overload

ED 489,152.5 0.382 0.074 1 8 18 38 44 535 719 10.93% 1.23% 2.23 9.35
RCED 556,491.5 0.301 0.051 1 2 8 24 15 111 136 4.57% 0.36% 2.13 2.46
APD 582,259.3 0.257 0.041 1 1 4 13 10 57 13 4.12% 0.30% 2.11 2.26

SCAPD 572,850.9 0.251 0.032 0.86 0 1 11 0 8 0 3.86% 0.19% 2.17 1.57

As shown in Figure 4a,b, in the study conducted for the IEEE 118-bus system, as with
the IEEE 30-bus system, the loading rates of the affected lines in APD and SCAPD are
lower than in the other models because of the objective one. The loading rates of all lines
in APD and SCAPD are also smoother than the other models because of objective two. As
can be seen in Table 7, the average loading rate in SCAPD is very small; no lines operate
on the operating limit. The number of heavily loaded lines is only one-third of that of ED;
this indicates that the joint control of generators and controllable compensation devices
in collaboration with objectives one and two can reduce the overall loading rate of the
transmission system.

For security and resilience performance, it can be seen from Table 7 that the classical
ED model has 44 violations in the N-1 contingency analysis, while the proposed APD
model only has 10. The classical ED model has 535 N-1-1 contingency cases, and these
contingency cases would result in 719 violations. However, APD has only 57 potential
N-1-1 contingencies, which is much smaller than ED. SCAPD has no violations in both
N-1 and N-1-1 contingency analysis. The power system would operate more safely with a
smaller number of violations. Figure 5 shows the probability distribution curves of outage
sizes obtained from the 1000 cascading outage simulations.

As shown in Figure 5, the probability distribution curves of APD and SCAPD are
much better than that of ED because of the lower loading rate. SCAPD gives the most
resilient strategy among all models due to the consideration of N-1 and the proposed N-1-1
security constraints. The maximum load shedding percentage is only 3.86%, which is
about 60% lower compared to ED. The average number of overload and hidden failure
lines in each simulation is only 1.57 compared to 9.35 in ED. This indicates that security
constraints of the N-1 and N-1-1 contingency cases effectively prevent the propagation of
initial outages caused by extreme weather events. In summary, the proposed objective
function and the adjustment of the transmission line reactance by a controllable series
compensation device help to improve the power flow distribution. By considering the
proposed N-1-1 security criteria and contingency assessment process, the power system
operation scheme is more resilient to extreme weather events. The proposed model and
solution methodology can be effectively applied to large-scale power systems.

4. Discussions

This paper proposes an augmented power dispatch model that takes into account
controllable series compensation devices and disruptive N-1-1 contingency security con-
straints to provide a resilient operating scheme for power system operators to mitigate
damage from extreme events.

Compared with the conventional economic dispatch model that only considers gener-
ation cost as the optimization objective, the proposed augmented power dispatch model
aims to optimize the power flow distribution in the transmission system to reduce the
loading rate of the transmission lines. Compared with the resilience-constrained economic
dispatch proposed by [24], the adjustment of transmission line reactance by controllable
series compensation devices is considered in this paper. Figures 2 and 4 demonstrate the
loading rate distribution of the above models in the two test systems. Tables 1 and 7 show
the comparison of operation cost and power flow distribution indices of these models. It
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can be seen that the average loading rate of the proposed model is smaller than the other
two models and the number of heavy loading lines is reduced in the proposed model.
The power dispatch model considering the defined N-1-1 and N-1 security constraints
is compared with the model considering only the conventional N-1 security constraints.
Table 2 shows the comparison of the pre-contingency and post-contingency power flow
distributions for these models. The results indicate that the proposed N-1-1 security con-
straints have an impact on mitigating the further propagation of N-1 contingency cases and
reducing the risk of overload cascade failures. However, it can be imagined that the con-
sidered security constraints cannot ensure the safe operation of the system for high order
contingency cases. This is one of the reasons that the objective for power flow improvement
is considered in the optimization model, which makes the proposed model much different
from the existing related studies. Figures 3 and 5 show the probability distribution curves
of the blackout sizes for different models, which reflect the reliability and resilience per-
formances of the models. Table 3 shows simulation results of cascading failure blackouts
for different models tested on the IEEE 30-bus system. From the simulation results, it
can be seen that the proposed model gives a more secure power dispatch solution that
is more resilient in extreme events. Table 4 shows the results of the iterative contingency
filtering process of the SCAPD model tested in the IEEE 118-bus system. Table 5 shows
the results of the iterative contingency filtering process of the SCAPD model tested in the
Polish 2383-bus system. Table 6 shows the total iterations and computation time for solving
SCAPD in different test systems. These results illustrate the computational efficiency of the
proposed two-stage and iterative contingency filtering solution techniques.

In future work, AC power flow models are considered to obtain more practical solu-
tions for power system operators. Renewable energy and energy storage systems will also
be considered to increase the application of the model.

5. Conclusions

In this paper, an augmented power dispatch model is proposed to provide a resilient
operating scheme for power system operators to mitigate damage from extreme events.
The major findings are summarized below:

1. By controlling series compensation devices to adjust the impedance of transmission
lines, the proposed augmented power dispatch model can avoid some lines from
taking excessive loads, especially those lines affected by extreme weather events.

2. The reduction of power flow on lines can reduce the possibility of overload cascade
faults, thus reducing load shedding under extreme weather events and improving
the resilience of the power system.

3. The proposed N-1-1 security criteria have an impact on mitigating the further propa-
gation of N-1 contingency cases and reducing the risk of overload cascade failures.

4. The proposed iterative contingency assessment process enables us to solve the
security-constrained power dispatch problem iteratively, reducing the problem size
and computation time.
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Appendix A

The system data of the modified IEEE 30-bus and 118-bus test systems used in the
paper is shown in Tables A1–A6.

Table A1. Generator data of the modified IEEE 30-bus system.

U Bus
No.

Unit Cost Coefficients
Pmax
(MW)

Pmin
(MW)a

(MBtu)
b

(MBtu/MW)
c

(MBtu/MW2)

G1 1 0 2.0000 0.0200 120 0
G2 2 0 1.7500 0.0175 120 0
G3 22 0 1.0000 0.0625 75 0
G4 27 0 3.2500 0.0083 82.5 0
G5 23 0 3.0000 0.0250 45 0
G6 13 0 3.0000 0.0250 60 0

Table A2. Bus data of the modified IEEE 30-bus system.

Bus No. d(MW) Bus No. d(MW) Bus No. d(MW) Bus No. d(MW)

1 0 9 0 17 11.7 25 0
2 28.21 10 7.54 18 4.16 26 4.55
3 3.12 11 0 19 12.35 27 0
4 9.88 12 14.56 20 2.86 28 0
5 0 13 0 21 22.75 29 3.12
6 0 14 8.06 22 0 30 13.78
7 29.64 15 10.66 23 4.16
8 39 16 4.55 24 11.31

Table A3. Line data of the modified IEEE 30-bus system.

Line
No.

From
Bus

To
Bus X (pu)

Flow
Limit
(MW)

Line
No.

From
Bus

To
Bus X (pu)

Flow
Limit
(MW)

1 1 2 0.06 123.5 22 15 18 0.22 15.2
2 1 3 0.19 123.5 23 18 19 0.13 15.2
3 2 4 0.17 61.75 24 19 20 0.07 30.4
4 3 4 0.04 123.5 25 10 20 0.21 30.4
5 2 5 0.2 123.5 26 10 17 0.08 30.4
6 2 6 0.18 61.75 27 10 21 0.07 30.4
7 4 6 0.04 85.5 28 10 22 0.15 30.4
8 5 7 0.12 66.5 29 21 22 0.02 30.4
9 6 7 0.08 123.5 30 15 23 0.2 15.2

10 6 8 0.04 30.4 31 22 24 0.18 15.2
11 6 9 0.21 61.75 32 23 24 0.27 15.2
12 6 10 0.56 30.4 33 24 25 0.33 15.2
13 9 11 0.21 61.75 34 25 26 0.38 15.2
14 9 10 0.11 61.75 35 25 27 0.21 15.2
15 4 12 0.26 61.75 36 28 27 0.4 61.75
16 12 13 0.14 61.75 37 27 29 0.42 15.2
17 12 14 0.26 30.4 38 27 30 0.6 15.2
18 12 15 0.13 30.4 39 29 30 0.45 15.2
19 12 16 0.2 30.4 40 8 28 0.2 30.4
20 14 15 0.2 15.2 41 6 28 0.06 30.4
21 16 17 0.19 15.2
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Table A4. Generator data of the modified IEEE 118-bus system.

Unit Bus
No.

Unit Cost Coefficients
Pmax
(MW)

Pmin
(MW)

U Bus
No.

Unit Cost Coefficients
Pmax
(MW)

Pmin
(MW)a

(MBtu)
b

(MBtu/MW)
c

(MBtu/MW2)
a

(MBtu)
b

(MBtu/MW)
c

(MBtu/MW2)

1 1 0 40 0.010 300 0 28 65 0 20 0.026 1473 0
2 4 0 40 0.010 300 0 29 66 0 20 0.026 1476 0
3 6 0 40 0.010 300 0 30 69 0 20 0.019 2415.6 0
4 8 0 40 0.010 300 0 31 70 0 40 0.010 300 0
5 10 0 20 0.022 1650 0 32 72 0 40 0.010 300 0
6 12 0 20 0.118 555 0 33 73 0 40 0.010 300 0
7 15 0 40 0.010 300 0 34 74 0 40 0.010 300 0
8 18 0 40 0.010 300 0 35 76 0 40 0.010 300 0
9 19 0 40 0.010 300 0 36 77 0 40 0.010 300 0
10 24 0 40 0.010 300 0 37 80 0 20 0.021 1731 0
11 25 0 20 0.045 960 0 38 85 0 40 0.010 300 0
12 26 0 20 0.032 1242 0 39 87 0 20 2.500 312 0
13 27 0 40 0.010 300 0 40 89 0 20 0.016 2121 0
14 31 0 20 1.429 321 0 41 90 0 40 0.010 300 0
15 32 0 40 0.010 300 0 42 91 0 40 0.010 300 0
16 34 0 40 0.010 300 0 43 92 0 40 0.010 300 0
17 36 0 40 0.010 300 0 44 99 0 40 0.010 300 0
18 40 0 40 0.010 300 0 45 100 0 20 0.040 1056 0
19 42 0 40 0.010 300 0 46 103 0 20 0.250 420 0
20 46 0 20 0.526 357 0 47 104 0 40 0.010 300 0
21 49 0 20 0.049 912 0 48 105 0 40 0.010 300 0
22 54 0 20 0.208 444 0 49 107 0 40 0.010 300 0
23 55 0 40 0.010 300 0 50 110 0 40 0.010 300 0
24 56 0 40 0.010 300 0 51 111 0 20 0.278 408 0
25 59 0 20 0.065 765 0 52 112 0 40 0.010 300 0
26 61 0 20 0.063 780 0 53 113 0 40 0.010 300 0
27 62 0 40 0.010 300 0 54 116 0 40 0.010 300 0

Table A5. Bus data of the modified IEEE 118-bus system.

Bus
No.

D
(MW)

Bus
No.

D
(MW)

Bus
No.

D
(MW)

Bus
No.

D
(MW)

1 153 31 129 61 0 91 30
2 60 32 177 62 231 92 195
3 117 33 69 63 0 93 36
4 117 34 177 64 0 94 90
5 0 35 99 65 0 95 126
6 156 36 93 66 117 96 114
7 57 37 0 67 84 97 45
8 84 38 0 68 0 98 102
9 0 39 81 69 0 99 126

10 0 40 198 70 198 100 111
11 210 41 111 71 0 101 66
12 141 42 288 72 36 102 15
13 102 43 54 73 18 103 69
14 42 44 48 74 204 104 114
15 270 45 159 75 141 105 93
16 75 46 84 76 204 106 129
17 33 47 102 77 183 107 150
18 180 48 60 78 213 108 6
19 135 49 261 79 117 109 24
20 54 50 51 80 390 110 117
21 42 51 51 81 0 111 0
22 30 52 54 82 162 112 204
23 21 53 69 83 60 113 18
24 39 54 339 84 33 114 24
25 0 55 189 85 72 115 66
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Table A5. Cont.

Bus
No.

D
(MW)

Bus
No.

D
(MW)

Bus
No.

D
(MW)

Bus
No.

D
(MW)

26 0 56 252 86 63 116 552
27 213 57 36 87 0 117 60
28 51 58 36 88 144 118 99
29 72 59 831 89 0
30 0 60 234 90 489

Table A6. Line data of the modified IEEE 118-bus system.

Line
No.

From
Bus

To
Bus X (pu)

Flow
Limit
(MW)

Line
No.

From
Bus

To
Bus X (pu)

Flow
Limit
(MW)

1 1 2 0.0999 176 94 55 56 0.0151 176
2 1 3 0.0424 176 95 55 59 0.2158 176
3 2 12 0.0616 176 96 56 57 0.0966 176
4 3 5 0.108 176 97 56 58 0.0966 176
5 3 12 0.16 176 98 56 59 0.251 176
6 4 5 0.00798 352 99 56 59 0.239 176
7 4 11 0.0688 176 100 59 60 0.145 176
8 5 6 0.054 176 101 59 61 0.15 176
9 5 11 0.0682 176 102 60 61 0.0135 352
10 6 7 0.0208 176 103 60 62 0.0561 176
11 7 12 0.034 176 104 61 62 0.0376 176
12 8 9 0.0305 880 105 62 66 0.218 176
13 8 5 0.0267 704 106 62 67 0.117 176
14 8 30 0.0504 176 107 63 59 0.0386 352
15 9 10 0.0322 880 108 63 64 0.02 352
16 11 12 0.0196 176 109 64 61 0.0268 176
17 11 13 0.0731 176 110 64 65 0.0302 352
18 12 15 0.0707 176 111 65 66 0.037 176
19 12 17 0.0834 176 112 65 68 0.016 176
20 12 117 0.14 176 113 66 67 0.1015 176
21 13 15 0.2444 176 114 68 69 0.037 352
22 14 15 0.195 176 115 68 81 0.0202 176
23 15 17 0.0437 352 116 68 116 0.00405 352
24 15 19 0.0394 176 117 69 70 0.127 352
25 15 33 0.1244 176 118 69 75 0.122 352
26 16 17 0.1801 176 119 69 77 0.101 176
27 17 19 0.0505 176 120 70 71 0.0355 176
28 17 31 0.1563 176 121 70 74 0.1323 176
29 17 113 0.0301 176 122 70 75 0.141 176
30 18 19 0.0493 176 123 71 72 0.18 176
31 19 20 0.117 176 124 71 73 0.0454 176
32 19 34 0.247 176 125 74 75 0.0406 176
33 20 21 0.0849 176 126 75 77 0.1999 176
34 21 22 0.097 176 127 75 118 0.0481 176
35 22 23 0.159 176 128 76 77 0.148 176
36 23 24 0.0492 176 129 76 118 0.0544 176
37 23 25 0.08 352 130 77 78 0.0124 176
38 23 32 0.1153 176 131 77 80 0.0485 352
39 24 70 0.4115 176 132 77 80 0.105 176
40 24 72 0.196 176 133 77 82 0.0853 176
41 25 27 0.163 352 134 78 79 0.0244 176
42 26 25 0.0382 176 135 79 80 0.0704 176
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Table A6. Cont.

Line
No.

From
Bus

To
Bus X (pu)

Flow
Limit
(MW)

Line
No.

From
Bus

To
Bus X (pu)

Flow
Limit
(MW)

43 26 30 0.086 528 136 80 96 0.182 176
44 27 28 0.0855 176 137 80 97 0.0934 176
45 27 32 0.0755 176 138 80 98 0.108 176
46 27 115 0.0741 176 139 80 99 0.206 176
47 28 31 0.0943 176 140 81 80 0.037 176
48 29 31 0.0331 176 141 82 83 0.03665 176
49 30 17 0.0388 528 142 82 96 0.053 176
50 30 38 0.054 176 143 83 84 0.132 176
51 31 32 0.0985 176 144 83 85 0.148 176
52 32 113 0.203 176 145 84 85 0.0641 176
53 32 114 0.0612 176 146 85 86 0.123 176
54 33 37 0.142 176 147 85 88 0.102 176
55 34 36 0.0268 176 148 85 89 0.173 176
56 34 37 0.0094 352 149 86 87 0.2074 176
57 34 43 0.1681 176 150 88 89 0.0712 352
58 35 36 0.0102 176 151 89 90 0.032 528
59 35 37 0.0497 176 152 89 91 0.032 176
60 37 39 0.106 176 153 89 92 0.0505 176
61 37 40 0.168 176 154 90 91 0.0505 528
62 38 37 0.0375 528 155 91 92 0.1272 176
63 38 65 0.0986 352 156 92 93 0.032 176
64 39 40 0.0605 176 157 92 94 0.158 176
65 40 41 0.0487 176 158 92 100 0.295 176
66 40 42 0.183 176 159 92 102 0.0559 176
67 41 42 0.135 176 160 93 94 0.0732 176
68 42 49 0.323 176 161 94 95 0.0434 176
69 42 49 0.323 176 162 94 96 0.0869 176
70 43 44 0.2454 176 163 94 100 0.058 176
71 44 45 0.0901 176 164 95 96 0.0547 176
72 45 46 0.1356 176 165 96 97 0.0885 176
73 45 49 0.186 176 166 98 100 0.179 176
74 46 47 0.127 176 167 99 100 0.0813 176
75 46 48 0.189 176 168 100 101 0.1262 176
76 47 49 0.0625 176 169 100 103 0.0525 352
77 47 69 0.2778 176 170 100 104 0.204 176
78 48 49 0.0505 176 171 100 106 0.229 176
79 49 50 0.0752 176 172 101 102 0.112 176
80 49 51 0.137 176 173 103 104 0.1584 176
81 49 54 0.289 176 174 103 105 0.1625 176
82 49 54 0.291 176 175 103 110 0.1813 176
83 49 66 0.0919 352 176 104 105 0.0378 176
84 49 66 0.0919 352 177 105 106 0.0547 176
85 49 69 0.324 176 178 105 107 0.183 176
86 50 57 0.134 176 179 105 108 0.0703 176
87 51 52 0.0588 176 180 106 107 0.183 176
88 51 58 0.0719 176 181 108 109 0.0288 176
89 52 53 0.1635 176 182 109 110 0.0762 176
90 53 54 0.122 176 183 110 111 0.0755 176
91 54 55 0.0707 176 184 110 112 0.064 176
92 54 56 0.00955 176 185 114 115 0.0104 176
93 54 59 0.2293 176
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