
Neurocomputing 463 (2021) 545–553
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
No routing needed between capsules
https://doi.org/10.1016/j.neucom.2021.08.064
0925-2312/� 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Department of Computer Science and Information
Systems Bradley University, 1501 WPeoria, Peoria, IL 61615, USA..

E-mail address: abyerly@fsmail.bradley.edu (A. Byerly).
Adam Byerly a,b,⇑, Tatiana Kalganova a, Ian Dear a

aDepartment of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK
bDepartment of Computer Science and Information Systems Bradley University, Peoria, IL 61615, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 April 2021
Revised 9 August 2021
Accepted 16 August 2021
Available online 19 August 2021
Communicated by Zidong Wang

Keywords:
Capsules
Convolutional Neural Network (CNN)
Homogeneous Vector Capsules (HVCs)
MNIST
Most capsule network designs rely on traditional matrix multiplication between capsule layers and com-
putationally expensive routing mechanisms to deal with the capsule dimensional entanglement that the
matrix multiplication introduces. By using Homogeneous Vector Capsules (HVCs), which use element-
wise multiplication rather than matrix multiplication, the dimensions of the capsules remain unentan-
gled. In this work, we study HVCs as applied to the highly structured MNIST dataset in order to produce
a direct comparison to the capsule research direction of Geoffrey Hinton, et al. In our study, we show that
a simple convolutional neural network using HVCs performs as well as the prior best performing capsule
network on MNIST using 5.5� fewer parameters, 4� fewer training epochs, no reconstruction sub-
network, and requiring no routing mechanism. The addition of multiple classification branches to the
network establishes a new state of the art for the MNIST dataset with an accuracy of 99.87% for an ensem-
ble of these models, as well as establishing a new state of the art for a single model (99.83% accurate).
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction and related work

Capsules (vector-valued neurons) have become a more active
area of research since [1], which demonstrated near state of the
art performance on MNIST [2] classification (at 99.75%) by using
capsules and a routing algorithm to determine which capsules in
a previous layer feed capsules in the subsequent layer. MNIST is
a classic image classification dataset of hand-written digits consist-
ing of 60,000 training images and 10,000 validation images. Study-
ing MNIST, due to the more highly structured content as compared
to many other image datasets, allows for the use of more informed
data augmentation techniques and when using capsules, the ability
to investigate the capsules’ interpretability. In [3], the authors
extended their work by conducting experiments with an alternate
routing algorithm. Research in capsules has since focused mostly
on various computationally expensive routing algorithms [4,5]).
In [6], we proposed a capsule design that used element-wise mul-
tiplication between capsules in subsequent layers and relied on
backpropagation to do the work that prior capsule designs were
relying on routing mechanisms for. We referred to this capsule
design as homogeneous vector capsules (HVCs). In this work, we
directly extend the work of [7,1] on capsules applied to MNIST
by applying HVCs to MNIST.By using this capsule design, we avoid
the computationally expensive routing mechanisms of prior cap-
sule work and we surpass the performance of [1] on MNIST, all
while requiring 5.5� fewer parameters, 4� fewer epochs of train-
ing, and using no reconstruction sub-network.

Many of the best performing convolutional neural networks
(CNNs) of the past several years have explored multiple paths from
input to classification [8–13]. The idea behind multiple path
designs is to enable one or more of the following to contribute to
the final classification: (a) different levels of abstraction, (b) differ-
ent effective receptive fields, and (c) valuable information learned
early to flow more easily to the classification stage.

In [10] (and subsequent extensions [14–17]) the authors added
extra paths through the network with residual blocks which are
meta-layers that contained one or more convolutional operations
as well as a ‘‘skip connection” that allowed information learned
earlier in the network to skip over the convolutional operations.
Similarly, in [8,9], the authors presented a network architecture
that made heavy use of inception blocks, which are meta-layers that
branch from a previous layer into anywhere from 3 to 6 branches
of varying layers of convolutions. Then the branches were merged
back together by concatenating the filters of those branches. Let n
be the average number of branches of different length (in terms of
successive convolutions) andm be the number of successive incep-
tion blocks. Then n�m effective receptive fields and levels of
abstraction are present at the output of the final inception block.
Additionally, the designs presented in both of these papers
included two output stems (one branching out before going

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.08.064&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2021.08.064
http://creativecommons.org/licenses/by/4.0/
mailto:abyerly@fsmail.bradley.edu
https://doi.org/10.1016/j.neucom.2021.08.064
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. The proposed network from input to classification.

A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
through additional inception blocks and the other after all incep-
tion blocks) each producing classification predictions. These classi-
fications were combined via static weighting to produce the final
prediction. In contrast to the aforementioned work, in this work,
we present a network design that produces 3 output stems, each
coming after a different number of convolutions, and thus repre-
senting different effective receptive fields and levels of abstraction.
We conduct experiments that include statically weighted combi-
nations as in [8,9]. We then go further and investigate learning
the branch weights simultaneously with all of the other network
parameters via backpropagation. Again, in contrast to the aforemen-
tioned work, in these experiments, each of the separate classifica-
tions were performed with capsules rather than simple fully
connected layers.

Our analysis of the existing literature shows that of the many
branching methods explored, those that produced multiple final
classifications merged those classifications via static weighting,
which presupposes the relative importance of each output. In this
work we include and compare the results of both statically weight-
ing the classification branches and learning the weights of the clas-
sification branches via backpropagation.

1.1. Our contribution

Our contribution is as follows:

1. We present a novel method for branching a CNN that allows for
multiple effective receptive fields and levels of abstraction
where each branch makes it’s own classification prediction.
These classifications are then merged together, each contribut-
ing a ‘‘vote”. We present the results of experiments that include
and compare both statically weighting the votes and learning
the weights of the votes via backpropagation simultaneously
with the rest of the network parameters.

2. We do classification without any fully connected layers, but
rather with HVCs. HVCs are simpler, less computationally
expensive, and our network design requires 5.5� fewer param-
eters and 4� fewer training epochs compared to the previously
best performing capsule network, all while using no reconstruc-
tion sub-network and no computationally expensive routing
mechanism.

3. This design, in combination with a domain-specific set of ran-
domly applied augmentation techniques, establishes a new
state of the art for the MNIST dataset with an accuracy of
99.87% for an ensemble of these models, as well as establishing
a new state of the art for a single model (99.83% accurate).

2. Proposed network design

The starting point for the network design was a conventional
convolutional neural network following many widely used prac-
tices. These include stacked 3� 3 convolutions, each of which with
ReLU [18] activation preceded by batch normalization [19]. We
also followed the common practice of increasing the number of fil-
ters in each subsequent convolutional operation relative to the
previous one. Specifically, our first convolution uses 32 filters
and each subsequent convolution uses 16 more filters than the pre-
vious one. Additionally, the final operation before classification
was to softmax the logits and to use categorical cross entropy for
calculating loss.

One common design element found in many convolutional neu-
ral networks which we intentionally avoided was the use of any
pooling operations. We agree with Geoffrey Hinton’s assessment
[20] of pooling (a method of down-sampling) as an operation to
be avoided due to the information it ‘‘throws away”. With the
MNIST data being only 28� 28, we have no need to down-
546
sample. In choosing not to down-sample, we face the potential
dilemma of how to reduce the dimensionality as we descend dee-
per into the network. This dilemma is solved by choosing not to
zero-pad the convolution operations and thus each convolution
operation by its nature reduces the dimensionality by 2 in both
the horizontal and vertical dimensions. We deem choosing not to
zero-pad as preferable in its own right in that zero padding effec-
tively adds information not present in the original sample.

Rather than having a single monolithic design such that each
operation in our network feeds into the next operation and only
the next operation, we chose to create multiple branches. After
the first two sets of three convolutions, in addition to feeding to
the subsequent convolution, we also branched off the output to
be forwarded on to an additional operation (detailed next). Thus,
after all convolutions have been performed, we have three
branches in our network.

1) The first of which has been through three 3� 3 convolutions
and consists of 64 filters each having an effective receptive
field of 7 of the original image pixels.

2) The second of which has been through six 3� 3 convolu-
tions and consists of 112 filters each having an effective
receptive field of 11 of the original image pixels.

3) The third of which has been through nine 3� 3 convolutions
and consists of 160 filters each having an effective receptive
field of 15 of the original image pixels.

For each branch, rather than flattening the outputs of the con-
volutions into scalar neurons, we instead transformed each filter
into a vector to form the first capsule in a pair of homogeneous
vector capsules. This operation is represented by ‘‘Caps 1(a)”, ‘‘Caps
2(a)” and ‘‘Caps 3(a)” in Fig. 1.

We then performed element-wise multiplication of each of
those capsules with a set of weight vectors (one for each class) of
the same length. This results in ntimesm weight vectors where n



A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
is the number of capsules transformed from filter maps and m is
the number of classes. We summed, per class (m), each of the n
vectors to form the second capsule in each pair of homogeneous
vector capsules. After this that we applied batch normalization
and then ReLU activation. The process elucidated in this paragraph
is represented by ‘‘Caps 1(b)”, ‘‘Caps 2(b)” and ‘‘Caps 3(b)” in Fig. 1.

After the pairs of capsules for each breach, the second capsule
vector in each pair is reduced to a single value per class by sum-
ming the components of the vector. These values can be thought
of as the branch-level logits.

Before classifying, the three branch-level sets of logits need to
be reconciled with the fact that each image only belongs to one
class. This is accomplished by stacking each class’s branch-level
logits into vectors of length 3. Then, each vector is reduced by sum-
mation to a single value to form the final set of logits to be classi-
fied from. Fig. 1 shows the high-level view of the entire network.

In [6], we experimented with a variety of methods for con-
structing the first layer of capsules out of the preceding filter maps.
In this work, we limited our experiments to 2 of these methods
(see Fig. 2). The first method constructs each capsule from each
distinct feature map (a method that, for brevity, we will refer to
as XY-Derived Capsules in this work), whereas the second method
constructs each capsule from each distinct x and y coordinate of
the combination of all of the feature maps (a method that, for brev-
ity, we will refer to as Z-Derived Capsules in this work).

We used no weight decay regularization [21], a staple regular-
ization method that improves generalization by penalizing the
emergence of large weight values. Nor did we use any form of
dropout regularization [22,23] which are regularization methods
designed to stop the co-adaptation of weights. We also did not
use a reconstruction sub-network as in [1]. These decisions were
made in order to investigate the generalization properties of our
novel network design elements in the absence of other techniques
associated with good generalization. In addition, we intentionally
left out any form of ‘‘routing” algorithm as in [1,3], preferring to
rely on traditional trainable weights and backpropagation.
Fig. 2. Illustrating the construction of capsules from 4 3 � 3 filter maps. These are

547
3. Experimental setup

3.1. Merge strategies

In [8,9], the authors chose to give static, predetermined weights
to both output branches and then added them together. In our
case, for both capsules configurations from Fig. 2, we conducted
three separate experiments of 32 trials each in order to investigate
the effects of predetermined equal weighting of the branch outputs
compared to learning the branch weights via backpropagation:

1) Not learnable. For this experiment, we merged the three
branches together with equal weighting in order to investi-
gate the effect of disallowing any one branch to have more
impact than any other.

2) Learnable with randomly initialized branch weights.
(Abbreviated as Random Init. subsequently.) For this exper-
iment, we allowed randomly initialized weights to be
learned via backpropagation.

3) Learnable with branch weights initialized to one. (Abbre-
viated as Ones Init. subsequently.) For this experiment, we
also allowed the weights to be learned via backpropagation.
The difference with the Random Init. experiment being that
we initialized the weights to 1. We conducted this experi-
ment in addition to the Random Init. experiment in order
to understand the difference between starting with random
weights and starting with equal weights that are subse-
quently allowed to diverge during training.

3.2. Data augmentation

Most (but not all [24,25]) of the state of the art MNIST results
achieved over the past decade have used data augmentation
[26,23,13]. In addition to the network design, a major part of our
work involved applying an effective data augmentation strategy
the processes denoted by ‘‘Caps 1(a)”, ‘‘Caps 2(a)”, and ‘‘Caps 3(a)” in Fig. 1.



A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
that included transformations informed specifically by the domain
of the data. For example, we wanted to be sure we did not rotate
our images into being more like a different class (e.g. rotating an
image of the digit 2 by 180 degrees to create something that would
more closely resemble a malformed 5). Nor did we want to trans-
late the image content off of the canvas and perhaps cut off the left
side of an 8 and thus create a 3. Choosing data augmentation tech-
niques specific to the domain of interest is not without precedent
(see for example [13,1], both of which used data augmentation
techniques specific to MNIST).

By modern standards, in terms of dataset size, MNIST has a rel-
atively low number of training images. As such, judicious use of
appropriate data augmentation techniques is important for achiev-
ing a high level of generalizability in a given model. In terms of
structure, hand-written digits show a wide variety in their rotation
relative to some shared true ‘‘north”, position within the canvas,
width relative to their height, and the connectedness of the strokes
used to create them. Throughout training for all trials, every train-
ing image in every epoch was subjected to a series of four opera-
tions in order to simulate a greater variety of the values for these
properties.

1) Rotation. First, we randomly rotated each training image by
up to 30 degrees in either direction. Whether to actually
apply this rotation was chosen by drawing from a Bernoulli
distribution with probability p of 0.5 (a fair coin toss).

2) Translation. Second, we randomly translated each training
image within the available margin present in that image.
In [1], the authors limited their augmentation to shifting
the training images randomly by up to 2 pixels in either or
both directions. The limit of only 2 pixels for the translation
ensured that the translation is label-preserving. As the
MNIST training data has varying margins of non-digit space
in the available 28� 28 pixel canvas, using more than 2 pix-
els randomly, would be to risk cutting off part of the digit
and effectively changing the class of the image. For example,
a 7 that was shifted too far left could becomemore appropri-
ately classed as a 1, or an 8 or 9 shifted far enough down
could be more appropriately classed as a zero. The highly
structured nature of the MNIST training data allows for an
algorithmic analysis of each image that will provide the
translation range available for that specific image that will
be guaranteed to be label-preserving. Fig. 3 shows an exam-
ple of an MNIST training image that has an asymmetric
translation range that, as long as any translations are per-
formed such that the digit part of the image is not moved
by more pixels than are present in the margin, will be label
Fig. 3. Example MNIST digit w/annotated margins.

548
preserving. In other words, the specific training example
shown in Fig. 3 could be shifted by up to 8 pixels to the left
or 4 to the right and up to 5 up or 3 down, and after doing so,
all of the pixels belonging to the actual digit will still be in
the resulting translated image. The amount within this mar-
gin to actually translate a training image was chosen ran-
domly. Whether to translate up or down and whether to
translate left or right were drawn independently from a Ber-
noulli distribution with probability p of 0.5 (a fair coin toss).

3) Width. Third, we randomly adjusted each training image’s
width. MNIST images are normalized to be within a
20� 20 central patch of the 28� 28 canvas. This normaliza-
tion is ratio-preserving, so all images are 20 pixels in the
height dimension but vary in the number of pixels in the
width dimension. This variance not only occurs across digits,
but intra-class as well, as different peoples’ handwriting can
be thinner or wider than average. In order to train on a wider
variety of these widths, we randomly compressed each
image’s width and then added equal zero padding on either
side, leaving the digit’s center where it was prior. This was
inspired by a similar approach adopted in [13]. In our work,
we compressed the width of each sample randomly within a
range of 0–25%.

4) Random Erasure. Fourth, we randomly erased (setting to 0)
a 4� 4 grid of pixels chosen from the central 20� 20 grid of
pixels in each training image. The X and Y coordinates of the
patch were drawn independently from a random uniform
distribution. This was inspired by the random erasing data
augmentation method in [27]. The intention behind this
method was to expose the model to a greater variety of (sim-
ulated) connectedness within the strokes that make up the
digits. An alternative interpretation would be to see this as
a kind of feature-space dropout.

3.3. Training

We followed the training methodology from [6] and trained
with the Adam optimizer [28] using all of the default/recom-
mended parameter values, including the base learning rate of
0.001. Also, as in both [6,1], we exponentially decayed the base
learning rate. For our experiments, which trained for 300 epochs,
we applied an exponential decay to the learning rate at a rate of
0.98 per epoch.

Test accuracy was measured using the exponential moving
average of prior weights with a decay rate of 0.999. [29].
4. Experimental results

4.1. Individual models

For both of the capsule construction methods (see Fig. 2) and
each of the three merge strategies (see subsection 3.1) we ran 32
trials. Each trial had weights randomly initialized prior to training
and, due to the stochastic nature of the data augmentation, a dif-
ferent set of training images. As a result, training progressed to dif-
ferent points in the loss surface resulting in a range of values for
the top accuracies that were achieved on the test set. See Table 1.

4.2. Ensembles

Ensembling multiple models together and predicting based on
the majority vote among the ensembled models routinely outper-
forms the individual models’ performances. Ensembling can refer
to either completely different model architectures with different
weights or the same model architecture after being trained multi-



Table 1
Test accuracy of the individual models.

HVC Config. Experiment Min Max Mean SD

XY-Derived Not Learnable 99.71% 99.79% 0.997500 0.0002190
Random Init. 99.72% 99.78% 0.997512 0.0001499
Ones Init. 99.70% 99.77% 0.997397 0.0001885

Z-Derived Not Learnable 99.74% 99.81% 0.997731 0.0001825
Random Init. 99.73% 99.80% 0.997684 0.0002023
Ones Init. 99.72% 99.83% 0.997747 0.0002509

In all cases, using the Z-Derived Capsules was superior to using the XY-Derived Capsules. For Z-Derived Capsules, no merge strategy produced statistically significantly
superior test accuracy. For XY-Derived Capsules, the only statistically significant test accuracy result was that the Ones Init. strategy produced inferior accuracy. It should be
noted that, though no strategy produced statistically significantly superior test accuracies, when branches were allowed to learn their weights, the weights learned were
statistically significant. (Bold indicates a surpassing of the previous state of the art for individual models on MNIST.) (SD abbreviates Standard Deviation).

A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
ple times and finding different sets of weights that correspond to
different locations in the loss surface. The previous state of the
art of 99.82% was achieved using an ensemble of 30 different ran-
domly generated model architectures [30]. Our ensembling
method used the same architecture but with different weights.
We calculated the majority vote of the predictions for all possible
combinations of the weights produced by the 32 trials. See Table 2.

4.3. Branch weights

What follows are visualizations of the final branch weights
(after 300 epochs of training) for each of the branches in all 32 tri-
als of the experiment wherein the branch weights were initialized
to one for both HVC configurations.

In Fig. 4a, we see that for all trials, the ratio between the all
three learned branch weights is consistent, demonstrating that
the amount of contribution from each branch plays a significant
role. In Fig. 4b, we see a similar, though less pronounced consis-
tency between the first branch’s weight and the other two
branches, however, branches two and three show no significant
difference. Strikingly, when using XY-Derived Capsules we see that
branch three (the one having gone through all nine convolutions)
has learned to be a more significant contributor. When using Z-
Derived Capsules, branch one (the one having gone through only
three convolutions) has learned to be a more significant contribu-
tor, but only slightly. Indeed, in the latter configuration, the contri-
butions from all three branches is much more equal.

The experiments with randomly initialized branch weights
showed the same relative weight of the branches for the magni-
tude of the weights learned. However, when the initial random
branch weight was a negative number, it learned the negative
value of that magnitude, and backpropagation took care of flipping
the signs of weights as needed further up the network.

Because the models using Z-Derived Capsules are clearly supe-
rior to XY-Derived Capsules, unless otherwise stated, all analyses
throughout the remainder of this work will restrict attention to
these 96 trials, and thus, when the text reads ‘‘all 96 trials”, it
Table 2
Test accuracy of the ensembles.

99.87% 99.86% 99

Using XY-Derived Capsules
Not Learnable 0 0 0
Random Init. 0 0 0
Ones Init. 0 0 0

Using Z-Derived Capsules
Not Learnable 184 4,029 89
Random Init. 0 1,226 53
Ones Init. 64 9,920 1.1

Shown here are the number of ensembles that were generated that either matched the

549
should be understood that this refers to all 96 trials using Z-
Derived Capsules.

4.4. Troublesome digits

Across all 96 trials there was total agreement on 9,912 out of
the 10,000 test samples. There were only 14 digits that were mis-
classified more often than not across all 96 trials. This shows that
although the accuracies of the models in the three experiments
were quite similar, the different merge strategies of the three
experiments did have a significant effect on classification. Across
all 96 trials, only 5 samples were misclassified in all models. Those
samples, as numbered by the order they appear in the MNIST test
dataset (starting from 0) are 1901, 2130, 2597, 3422, and 6576.

4.5. MNIST state of the art

In Table 3 we present a comparison of previous state of the art
MNIST results for both single model evaluations and ensembles
along with the results achieved in our experiments.

How long a model takes to train is an important factor to con-
sider when evaluating a neural network. Indeed, it is an enabling
factor during initial experimentation as faster training leads to a
greater exploration of the design space. In Table 4 we present a
comparison of the number of epochs of training used in experi-
ments for the results achieved in the networks shown in Table 3.
Across all 96 trials, the design achieved peak accuracy in an aver-
age of 168 epochs, with a minimum peak achieved in 38 epochs
and a maximum peak achieved at epoch 296. Since, all trials were
allowed to run for up to 300 epochs, that is the number reported in
Table 4.

4.6. Interpreting capsules’ dimensions

By adding a reconstruction sub-network to the overall network,
it can be trained not just to classify the input digits, but also to
reconstruct them. Then, by following the method in [1], we can
.85% 99.84% 99.83% 99.82%

0 4 1,183
0 21 2,069
1 19 1,292

.3K 1.58M 17.7M 121M
3K 17.3M 148M 554M
1M 34.6M 426M 1.27B

previous state of the art of 99.82% or exceeded it.



Fig. 4. Final branch weights (after 300 epochs) for 32 trials of the experiments for which the branch weights were initialized to one.

Table 3
Current and previous MNIST state of the art results.

Paper Year Accuracy

Single Models
Dynamic Routing Between Capsules [1] 2017 99.75%
Lets keep it simple, Using simple architectures to

outperform deeper and more complex architectures
[24]

2016 99.75%

Batch-Normalized Maxout Network in Network [25] 2015 99.76%
APAC:Augmented PAttern Classification with Neural

Networks [26]
2015 99.77%

Multi-Column Deep Neural Networks for Image
Classification [13]

2012 99.77%

The method proposed in this work 2021 99.83%

Ensembles
Regularization of Neural Networks using DropConnect

[23]
2013 99.79%

RMDL:Random Multimodel Deep Learning for
Classification [30]

2018 99.82%

An ensemble of the method proposed in this work 2021 99.87%

Table 4
Epochs of training.

Paper Epochs

Dynamic Routing Between Capsules [1] 1,200
APAC:Augmented PAttern Classification with Neural Networks [26] 15,000
Multi-Column Deep Neural Networks for Image Classification [13] 800
Regularization of Neural Networks using DropConnect [23] 1,200
RMDL:Random Multimodel Deep Learning for Classification [30] 120
The method proposed in this work 300

Neither [24] nor [25] report on how many epochs their designs were trained for.

Table 5
Dimensional perturbations.

Table 6
Comparison of loss methods.

Loss Method Mean
Accuracy

SD

Categorical Cross-Entropy (no
reconstruction)

99.7741% 0.000186455

Categorical Cross-Entropy (with
reconstruction)

99.7740% 0.000245764

Margin Loss (with reconstruction) 99.7820% 0.000198997

A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
examine the effects of perturbing individual dimensions of the sec-
ond set of capsules in a pair of HVCs. The experiments using Z-
Derived Capsules had capsules with 64, 112, and 160 dimensions.
When perturbing only one of that many dimensions the changes
to the resulting constructed images are very subtle. So we ran
another experiment with no branches, reconstruction, and using
multiple 8-dimensional capsules for each distinct x and y coordi-
nate of the feature maps. By perturbing one of only eight dimen-
sions the effects are more visible and allows us to interpret the
meaning of values in the digits’ capsules (see Table 5).
550
4.7. Ablation experiments

In each of the following set of experiments, we compared the
first 10 trials of the 32 trials for the Ones Init. merge strategy with
10 trials each of the additional experiments.

In [1], the authors used a custom loss function they called mar-
gin loss combined with the mean squared error of the difference
between the input images and the result of reconstructing them.
In our work and with our design, we chose to rely solely on cate-
gorical cross-entropy and not to use a reconstruction loss, as recon-
struction adds a considerable number of parameters to the model
(2.1M). We ran two additional experiments to understand the



Table 8
Comparison of data augmentation strategies.

Data Augmentation Strategy Mean Accuracy SD

Translation (full margin), rotation, 99.7741% 0.000186455
width adjustment, and random erasure
Translation only (max. 2 pixels) (as in [1]) 99.7570% 0.000195192
Translation only (using full margin) 99.7430% 0.000118743

A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
effect of our choice of loss strategy (which used categorical cross-
entropy and no reconstruction). The first used margin loss and
reconstruction, and the second used categorical cross-entropy
and reconstruction. There was no statistically significant difference
among the three loss methods (see Table 6).

In order to understand the relative importance of using HVCs
vs. a fully connected layer and 3 branches vs. a single branch, we
ran a series of experiments that ablated these components of the
architecture. Table 7 shows that HVCs are statistically significantly
superior to a fully connected layer for both 1 and 3 branches, and
shows that 3 branches are superior to 1 branch for both HVCs and a
fully connected layer.

In [1], the authors used translation, by a maximum of 2-pixels,
as the only data augmentation method. In our work, we devised a
method for translating by up to the full margin available in any
given direction. We compared the effect of using only 2-pixel
translation, only maximum margin translation, and our full suite
of data augmentation methods. Using the full suite of data aug-
mentation methods was shown to be statistically superior to either
of the other two methods. Much to our surprise, we found that the
2-pixel translation method just barely crossed the threshold of
being statistically significantly superior to the full margin transla-
tion method (see Table 8).

The result we obtained by when using 2-pixel translation as the
only data augmentation strategy allows for a direct comparison to
the work of [1]. We obtained the same level of accuracy as they did,
but using 5.5� fewer parameters, 4� fewer training epochs, no
reconstruction sub-network, and requiring no routing mechanism.
4.8. Additional datasets

In order to better understand the effect of the Z-Derived HVCs
and additional branches, we ran additional sets of paired experi-
ments for several additional datasets. The first set of experiments
in each pair used the network design as described in this work,
using Z-Derived HVCs and 3 branches (labeled M1 in Table 9)
and the second set of experiments excluded the Z-Derived HVCs
and additional branches (labeled M2 in Table 9). These second sets
of experiments thus use a very small and typical convolutional
neural network with 9 3 � 3 convolutions and a final fully con-
nected layer.

For MNIST and Fashion-MNIST we used the data augmentation
strategy discussed in subsection 3.2. For CIFAR-10 and CIFAR-100,
this data augmentation strategy is inappropriate, so we used a very
typical strategy of randomly flipping the images horizontally and
applying random adjustments to brightness, contrast, hue, and
saturation.

For all four datasets, the model that included Z-Derived HVCs
and 3 branches achieved the higher mean accuracy with statistical
significance (see Table 9).

The fact that the accuracies for Fashion-MNIST [31], CIFAR-10,
and CIFAR-100 [32] were not competitive with current state of
the art for those datasets is not especially surprising for several
reasons. First, our network was designed for optimal accuracy on
classification of Arabic numerals which are highly structured and
Table 7
Comparison of network structures.

Network Structure Mean
Accuracy

SD

Using HVCs and 3 branches 99.7741% 0.000186455
Using HVCs and 1 branch 99.7140% 0.000185472
Using a fully connected layer and 3

branches
99.7550% 0.000111803

Using a fully connected layer and 1 branch 99.6870% 0.000141774

551
significantly simpler than the types of data in the other three data-
sets. Second, due to the significantly simpler nature of MNIST, we
used a small number of parameters for our network (1.5M). For
comparison, models competitive with state of the art for CIFAR-
10 and CIFAR-100 use 10s and even 100s of millions of parameters.
Finally, models competitive with state of the art for CIFAR-10 and
CIFAR-100 use additional training data beyond the canonical set for
each, and we used no additional training data.

5. Conclusion

In this work, we proposed using a simple convolutional neural
network and established design principles as a basis for a network
architecture. We then presented a design that branched out of the
series of stacked convolutions at different points to capture differ-
ent levels of abstraction and effective receptive fields, and from
these branches, rather than flattening to individual scalar neurons,
used Homogeneous Vector Capsules instead.

We also investigated three different methods of merging the
output of the branches back into a single set of logits. Each of the
three merge strategies generated models that could be ensembled
to create new state of the art results.

Beyond the network architecture, we proposed a robust and
domain specific data augmentation strategy aimed at simulating
a wider variety of renderings of the digits.

In doing this work, we established new MNIST state of the art
accuracies for both a single model and an ensemble. In addition
to the network design and augmentation strategy, the ability to
use an adaptive gradient descent method [6] allowed us to achieve
this on consumer hardware (2x NVIDIA GeForce GTX 1080 Tis in an
otherwise unremarkable workstation) and was an enabling factor
in both initial explorations and the training of all 322 trials of
experiments referenced in this work.

The code used for all experiments and summary level data is
publicly available on GitHub at: https://github.com/AdamByerly/
BMCNNwHFCs.

CRediT authorship contribution statement

Adam Byerly: Conceptualization, Methodology, Software,
Investigation, Writing - original draft, Visualization. Tatiana Kal-
ganova: Conceptualization, Writing - review & editing, Supervi-
sion. Ian Dear: Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A

A.1. Digits disagreed upon

What follows is the complete set of 88 digits that were predicted
correctly by at least one model and incorrectly by at least one
model. These in combination with the digits from Fig. 5 represent

https://github.com/AdamByerly/BMCNNwHFCs
https://github.com/AdamByerly/BMCNNwHFCs


Table 9
Effects of Z-Derived HVCs and branching on additional datasets.

Dataset Network Max Mean SD p-value

MNIST M1 99.81% 99.7741% 0.0001864 1:824� 10�7
M2 99.71% 99.6870% 0.0001417

Fashion-MNIST M1 93.89% 93.6850% 0.0016391 5:243� 10�6
M2 93.36% 93.0410% 0.0014616

CIFAR-10 M1 89.23% 88.9290% 0.0015514 0.020898
M2 89.06% 88.7500% 0.0017515

CIFAR-100 M1 64.15% 63.8260% 0.0026743 6:859� 10�6
M2 62.96% 62.3760% 0.0035046

M1 denotes the network design as described in this work, using Z-Derived HVCs and 3 branches. M2 denotes a network design that excludes the Z-Derived HVCs and
additional branches. MNIST results come from the same experiments detailed in Table 7 and are repeated here to facilitate ease of comparison. We conducted 10 trials of each
unique type of experiment in order to establish statistical significance.

Fig. 5. The most troublesome digits.

A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
the complete set of digits that were not predicted correctly by all
96 trials. Each image is captioned first by the class label in the test
data set associated with the image, then the number of trials that
predicted it correctly, and last the index of the digit in the test data.
For example, the first image presented below has a class label of 3,
95 trials predicted that correctly, and it exists at index 87 in the
MNIST test data.
552
References

[1] Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton, Dynamic routing between
capsules, in: Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS 2017), 2017.

[2] Yann LeCun, Corinna Cortes, C.J. Burges, MNIST handwritten digit database,
ATT Labs [Online] 2 (2010), URL: http://yann. lecun.com/exdb/mnist.

[3] Geoffrey E. Hinton, Sara Sabour, Nicholas Frosst, Matrix Capsules with EM
Routing, in: Proceedings of the 6th International Conference on Learning
Representations (ICLR 2018), 2018.

[4] Sai Raam Venkataraman, S. Balasubramanian, R. Raghunatha Sarma, Building
Deep Equivariant Capsule Networks., in: International Conference on Learning
Representations, 2020. .

[5] Mohammed Amer, Tomás Maul, Path Capsule Networks 52 (2020) 545–559.
doi: 10.1007/s11063-020-10273-0. .

[6] Adam Byerly, Tatiana Kalganova, Homogeneous vector capsules enable
adaptive gradient descent in convolutional neural networks, IEEE Access 9
(2021) 48519–48530, https://doi.org/10.1109/ACCESS. 2021.3066842.

[7] Geoffrey E. Hinton, Alex Krizhevsky, Sida D. Wang, Transforming auto-
encoders, in: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6791 LNCS,
2011, pp. 44–51. doi: 10.1007/978-3-642-21735-7_6..

[8] Christian Szegedy et al., Going Deeper with Convolutions, in: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[9] Christian Szegedy et al., Rethinking the Inception Architecture for Computer
Vision, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 2818–2826.

[10] Kaiming He et al., Deep Residual Learning for Image Recognition, in: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
770–778.

[11] B. Zhou, et al., BBN: Bilateral-Branch Network With Cumulative Learning for
Long-Tailed Visual Recognition, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 9716–9725. doi: 10.1109/
CVPR42600.2020.00974..

[12] C. Wang et al., CSPNet: A New Backbone that can Enhance Learning Capability
of CNN, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2020, pp. 1571–1580, https://doi.org/
10.1109/CVPRW50498.2020.00203.

[13] Dan C. Ciresan, Ueli Meier, Jürgen Schmidhuber, Multi-Column Deep Neural
Networks for Image Classification, in: 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649.

[14] Rupesh Kumar Srivastava, Klaus Greff, Jürgen Schmidhuber, Highway
Networks, 2015, arXiv: 1505.00387 [cs.LG]..

[15] S. Xie, et al., Aggregated Residual Transformations for Deep Neural Networks,
in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 5987–5995. doi: 10.1109/CVPR.2017. 634. .

[16] S. Jégou et al., The One Hundred Layers Tiramisu: Fully Convolutional
DenseNets for Semantic Segmentation, in: 2017 IEEE Conference on

http://refhub.elsevier.com/S0925-2312(21)01254-6/h0005
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0005
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0005
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0005
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0010
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0010
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0015
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0015
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0015
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0015
https://doi.org/10.1109/ACCESS.2021.3066842
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0040
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0040
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0040
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0045
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0045
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0045
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0045
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0050
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0050
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0050
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0050
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/CVPRW50498.2020.00203
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0065
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0065
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0065
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0065
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0080
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0080


A. Byerly, T. Kalganova and I. Dear Neurocomputing 463 (2021) 545–553
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1175–
1183.

[17] Hang Zhang et al., ResNeSt: Split-Attention Networks, ArXiv abs/2004.08955
(2020).

[18] Xavier Glorot, Antoine Bordes, Yoshua Bengio, Deep Sparse Rectifier Neural
Networks, in: Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics (AISTATS 2011), 2011.

[19] Sergey Ioffe, Christian Szegedy, Batch Normalization, Accelerating Deep
Network Training by Reducing Internal Covariate Shift, in: Proceedings of
the 32nd International Conference on Machine Learning (ICML 2015), 2015.

[20] Geoffrey E. Hinton, What’s wrong with convolutional nets? MIT Tech TV, 2018.
URL: https: // techtv. mit. edu/ collections/ bcs/ videos/30698-what-s-wrong-
with-convolutional-nets. .

[21] Geoffrey E. Hinton, Learning translation invariant recognition in a massively
parallel networks, in: PARLE Parallel Architectures and Languages Europe,
Springer, Berlin Heidelberg, 1987, pp. 1–13, isbn: 978-3-540-47144-8..

[22] Geoffrey E. Hinton, et al., Improving Neural Networks by Preventing Co-
Adaptation of Feature Detectors, 2012. arXiv: 1207.0580v1 [cs.NE]..

[23] Li Wan et al., Regularization of Neural Networks using DropConnect, in:
Proceedings of the 30th International Conference on Machine Learn- ing (ICML
2013)., 2013.

[24] Seyyed Hossein Hasanpour, et al., Lets keep it simple, Using simple
architectures to outperform deeper and more complex architectures, 2016,
arXiv: 1608.06037 [cs.CV]. .

[25] Jia-Ren Chang, Yong-Sheng Chen, Batch-Normalized Maxout Network in
Network, 2015. arXiv: 1511.02583 [cs.CV]. .

[26] Ikuro Sato, Hiroki Nishimura, Kensuke Yokoi, APAC: Augmented PAttern
Classification with Neural Networks, 2015. arXiv: 1505.03229 [cs.CV]..

[27] Zhun Zhong, et al., Random Erasing Data Augmentation, 2017. arXiv:
1708.04896 [cs.CV]..

[28] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization,
in: Proceedings of the 6th International Conference on Learning
Representations (ICLR 2014)., 2014.

[29] Pavel Izmailov et al., Averaging weights leads to wider optima and better
generalization, in: Proceedings of the 34th Conference on Uncertainty in
Artificial Intelligence (UAI 2018), 2018.

[30] Kamran Kowsari et al., RMDL: Random multimodel deep learning for
classification, in: Proceedings of the 2nd International Conference on
Information System and Data Mining (ICISDM 2018), 2018, pp. 19–28.

[31] Han Xiao, Kashif Rasul, Roland Vollgraf, Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms, 2017. arXiv: 1708.07747 [cs.
LG]..

[32] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Tech.
rep. (2009).
553
Adam Byerly received the M.S. degree in Computer
Science from Bradley University, Peoria, IL, USA, in 2015
and is currently pursuing the Ph.D. degree with the
Department of Electronic and Electrical Engineering at
Brunel University London, Uxbridge, UK. He now lec-
tures in the Department of Computer Science and
Information Systems at Bradley University, Peoria, IL,
USA. Prior to transitioning to academia, he accumulated
over 20 years of industry experience in software engi-
neering and architecture in various industries including
marketing, financial, insurance, and manufacturing.
Tatiana Kalganova (BUL:PI:TK) BSc (Hons), PhD, is a
Reader in Intelligent Systems and Postgraduate
Research Director in Electronic and Electrical Engi-
neering and Director of the AI Center at Brunel Univer-
sity London, Uxbridge, UK. She has over 20 years of
experience in design and implementation of applied
Intelligent Systems.
Ian D. Dear BSc (Hons), MSc, PhD in Digital VLSI Test
strategies, is a Senior Tutor in Electronic and Electrical
Engineering at Brunel University London, Uxbridge, UK.
He has over 35 years of experience in design and testing
of complex Digital Systems.

http://refhub.elsevier.com/S0925-2312(21)01254-6/h0080
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0080
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0080
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0085
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0085
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0090
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0090
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0090
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0090
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0095
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0095
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0095
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0095
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0105
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0105
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0105
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0105
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0115
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0115
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0115
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0115
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0140
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0140
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0140
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0140
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0145
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0145
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0145
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0145
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0150
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0150
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0150
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0150
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0160
http://refhub.elsevier.com/S0925-2312(21)01254-6/h0160

	No routing needed between capsules
	1 Introduction and related work
	1.1 Our contribution

	2 Proposed network design
	3 Experimental setup
	3.1 Merge strategies
	3.2 Data augmentation
	3.3 Training

	4 Experimental results
	4.1 Individual models
	4.2 Ensembles
	4.3 Branch weights
	4.4 Troublesome digits
	4.5 MNIST state of the art
	4.6 Interpreting capsules’ dimensions
	4.7 Ablation experiments
	4.8 Additional datasets

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A 
	A.1 Digits disagreed upon

	References


