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Abstract

This study focuses on sound attenuation in a two-dimensional waveguide with arbitrary
admittance boundary conditions on both sides of the guide. The emphasis is on under-
standing the formation and potential applications of the exceptional points (EPs) which
arise when two (EP2) or three (EP3) modes degenerate into a single mode. A perturba-
tion approach is used to obtain asymptotic expressions for the trajectories of the axial
wavenumbers in the complex plane as they coalesce to form an EP. The numerical results
presented herein suggest that the first triple root (EP3) assures maximum modal attenu-
ation along the waveguide. Further, it is demonstrated that the classical Green’s function
is degenerate at an EP. Modified Green’s functions which are valid at EP2 and EP3 are
presented.

Keywords: Duct acoustics, guided waves, exceptional point, Puiseux series, Green’s

function, Non-Hermitian physics

1. Introduction

In his seminal article [1], Tester considered sound attenuation in a duct with one rigid
wall and one lined. He built upon the work of Cremer [2] who showed that the optimum
attenuation within such a duct occurs when a mode pair degenerates into a single mode
(an exceptional point). Tester derived the Green’s function for this situation and showed
that computed results for the attenuation compared favourably with experimental data.
In the same decade, Zorumski [3] extended Tester’s analysis to the cases of circular ducts

with locally reacting liners and Koch [4] used a generalised Wiener-Hopf approach to
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study attenuation in a duct with different sections of lining (on both walls). Surprisingly,
it took many years before the concept of ‘optimal impedance’ became a subject of intensive
research. Recently, however, interest in the topic has burgeoned and a number of papers
have appeared in the literature. Most of these research works deal with circular and
annular ducts with flow and have potential application to noise suppression within ducts
in aero-engines, gas turbines, blowers and various mufflers [5, 6, 7, 8, 9, 10]. Additionally,
[12, 14] consider mode-matching for finite lined region, [13] examines the relationship
between the the nature of the source and the transmitted power whilst [11] discusses the
form of the additional wavefunctions required at an exceptional point. More recently,
the present authors have proposed a numerical algorithm which enables them to explore
the trajectories of the eigenvalues in the vicinity of an exceptional point in a systematic
way [15]. Despite the recent progress a rigorous description of the mode coalescence, the
associated wavefunctions and the modified the Green’s functions is still missing from the
literature. With the view both to extending the work of Tester and filling this gap, the
present study focuses on sound attenuation in a two-dimensional waveguide with arbitrary
admittance boundary conditions on both sides of the guide.

In section 2 the boundary value problem is stated and the wave functions associated
with mode coalescence are introduced. The analysis starts with the classical solution
method which involves expanding the solution in terms of normal modes of separable
form: Y (s, p, y)el**~ ! where s is the axial wavenumber and w = ck in which ¢ is the fluid
sound speed and k the wavenumber. For convenience and to aid future manipulations, the
lower wall admittance p is included as a variable in the transverse wavefunction. As usual
the precise form of Y (s, i1, y) is obtained by solving a non-Hermitian eigenvalue problem
[16] in which the dispersion relation is even in the transverse wavenumber o = (k% —s2)1/2.
It is well known, however, that there are values of the duct wall admittance(s) for which
this approach breaks down due to the existence of non-separable solutions associated
with multiple-roots of the dispersion equation [1, 3, 11, 14]. These roots correspond to
the coalescence of two (EP2) or three (EP3) acoustic modes and special care must be
taken to derive the corresponding waveform. It is shown that the location of EPs in
the complex-plane can be described as a function of the product of the two admittances,
and the notation & is used to denote the transverse wavenumber in this situation. The
asymptotic forms (first presented by Tester [1] and Koch [4]) for the value of & in the case
of one lined and one rigid wall are stated and compared with precise numerical values. A

mapping of the complex a plane is presented for the fully lined situation.



44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Section three presents an analysis of the behaviour of the roots coaelescing in the
vicinity of an optimal point (ie. when wave attenuation is maximized). The lower wall
admittance (1) is kept fixed whilst the wavenumber s and the upper wall admittance are
perturbed from their EP values. A double Taylor series is used to expand the dispersion
relation and this is then inverted using a Puiseux series. This approach enables the
trajectories of the coalescing roots to be plotted in the complex plane for both EP2 and
EP3. The link with Cremer’s optimum impedance [2] based on the axial attenuation
rate is established. It is also shown that there are situations where the acoustic field
can exhibit a linear amplification along the waveguide axis with no dissipation at all,
that is with purely real axial wavenumber. Further, the numerical results presented
herein suggest that the first EP3 (resulting from the coalescence of the first three modes)
provides maximum attenuation along the waveguide.

Although interest in exceptional points (EPs) has recently arisen in a variety of phys-
ical situations [17, 18, 19, 20], the Green’s function for a lined duct at an EP has not,
as far as the authors are aware, appeared in the literature except for the case of one
hard wall investigated by Tester. This deficiency is addressed in section four where an
analysis of the Green’s function is presented for EP2 and EP3 using the same methods as
in section three. It is demonstrated that the results of Tester are retrieved for the hard
wall case. The main results of this article are summarised in section five, together with
a brief discussion of their implications for noise control and some suggestions for further

work.

2. Analysis of the dispersion equation

Using the usual two-dimensional Cartesian frame of reference, we consider a two-

dimensional duct of unit width and local boundary conditions:

Oytp = —pwp, at y =0 and Oyp =vyp, aty =1, (1)

where pu, v are the wall admittances. Note that harmonic time dependence e~ is as-
sumed and thus ¥(z,y) is the reduced fluid velocity potential. Solutions of the Helmholtz
equation

(02, + 05, + k)Y =0, (2)

isx

have the general separable form ¢ = Y (s, 1, y) €'** where

Y (s, 1, y) = cos(ay) — gsin(ay) with a=+Vk?%— s2. (3)
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On using the second condition of Eq. (1), it is clear that
(v — Oyth)y=1 = Keiszv (4)
where function K is interpreted as a function of s, 4 and v and is defined by
K(s,p,v)=(v+p) cosa+ (a— %) sin a. (5)
Thus, ¢ is a solution provided « is a root of the dispersion equation
K(s,p,v) =0. (6)

Note that, whilst o depends on both p and v, it is not directly dependent on frequency.
Also, it should be observed that functions K and Y are both holomorphic with respect to
all their arguments. Because these are even functions of «, they are also holomorphic in s
and, when necessary, we can apply the chain rule 95 = —s/a 0,. Now, by differentiation,

we can define a new wave function

W =0 = (Y +izY)el™ (7)
with
Y =0,y = sy sin(ay) n SHY cozs(ay) _SK SIHB(OW) (8)
« «@ e
and it is easy to see that
Os(V) — Oyrp)y=1 = (v — y"/’/)yzl = (K'+ ixK)eisw- 9)

Thus ¢’ (which is not of separable form) is also solution if the double root problem K =0
and K’ = 0, K = 0 is satisfied. In this case, after some manipulation, we arrive at the set
of equations

2a + sin(2a)
2a — sin(2a)

p:;w:aQ( ) and q:u+u:—tana(a—5). (10)

Wall parameters which are associated with an exceptional point of order 2 (EP2) are

Ny N ST
(—VE-4p o VP

2 BT (11)

Note that (j1,7) as defined by Eqs (11) form a continuous set since & can be regarded as

recovered via

n=

an arbitrary complex-valued parameter. From Eq. (10), we recognize the two limit cases
corresponding to one hard wall condition p = 0 (where the reader is reminded that p is

not the pressure) and one pressure release condition |p| — oo, given by the relations

2a + sin(2a) = 0. (12)
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Approximate solutions have been given independently by Tester and Koch [1, 4] and these

are presented here for completeness:

2 3
2 A m; 7 —iln((2m+3)7) m=0,1,2,..., (13)
where m even corresponds to the hard wall condition 1 = 0 giving ¥ = —atana and

m odd to the pressure release condition giving 7 = & cot @. Approximate and exact (by
this we mean that results were computed with sufficient accuracy) values of the roots

Qm, m=0,1,2,... are presented in Tables 1 and 2.

Approx.

Exact

V= —atana

m
0
2
4
6

2.3561 - 1.12161
5.4977 - 1.5453i
8.6393 - 1.7713i
11.780 - 1.9263i

2.1061 - 1.1253i
5.3562 - 1.55151
8.5366 - 1.77551
11.699 - 1.9294i

1.6506 + 2.0599i
2.0578 + 5.334Ti
2.2784 + 8.5226i
2.4311 + 11.688i

Table 1: First 4 double roots (EP2) for the hard wall condition (lower wall).

Approx.

Exact

V=acota

m
1
3
)
7

3.9269 - 1.3770i
7.0685 - 1.6709i
10.210 - 1.8548i
13.351 - 1.98891

3.7488 - 1.3843i
6.9499 - 1.6761i
10.119 - 1.8583i
13.277 - 1.9915i1

1.8952 + 3.7194i
2.1802 + 6.9329i
2.3605 + 10.107i
2.4929 + 13.268i

Table 2: First 4 double roots (EP2) for the pressure release condition (lower wall).

Ounly roots associated with absorbing boundary conditions (i.e. the imaginary part
of v or equivalently the real part of the wall impedance must be positive) are shown.
Other solutions associated with ‘active’ boundary conditions exist and are obtained from
a by taking the complex conjugate. To illustrate this in a more systematic way, it is
convenient to study the values of the wall admittances on both sides in the complex-
plane as a function of @ = (Re @, Im &) as shown in Figure 1. This can be regarded as a
representation of the EP2 complex a-plane since associated values of the wall parameters
satisfy the double root condition and to each value of & corresponds an unique pair of
complex-valued wall-parameters (7, i) through Eqs (11). Three regions can be clearly
identified: (i) a lower region with absorbing walls on both sides, (ii) an upper region with

active walls on both sides and (iii) an intermediate region with both active and absorbing
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walls. Particular roots corresponding to hard wall and pressure release conditions belong
to a continuous curve that delimitates these regions. Dissipative scenarios of region (i)
are usually discussed in the scientific literature as they can lead to practical realisations.
Note that a similar description can be found in Kelsten’s MSc Thesis (see Fig. 3.3 p. 18
in [14]).

There is a further set of interesting solutions satisfying the triple root condition:
K=K =K"=0. (14)

Following the previous derivation given by Eqgs (7)-(9), it is easy to see that this condition

leads to the existence of another wavefunction:
Y = 0% = (V" + 2izY’ — 22Y)e'*”. (15)

The additional constraint leads to the following equation for & where the double overbar

is used to indicate that this is an EP3:

sin &

4cosa — = (2a +sin(2a)) = 0. (16)

It should be noted that whilst & is a continuum, & comprises a discrete set of values.

Koch gives an approximation for these roots [4]:
20, ~ (2m +3)7 —i[ln2 +2In((2m + 3)7)] m=0,1,2,... (17)

There exit also purely real solutions which are not mentioned in Koch’s paper, probably
because they do not correspond to absorbing walls. These roots admit the following
approximation:

2

2m ~ (2m+3)r— ———— m=0,1,2,... 18
Q& (2m + 3)7 Gmian " (18)

Approximate and exact values of the triple roots are presented in Tables 3 and 4 and
also in Fig. 1. Wavefunctions associated with with purely real EP3 possess the particular
property that, above cut-off, they propagate without any gain or attenuation with an
amplification rate which is linear or quadratic since [¢'| ~ |zY| and || ~ |22Y| for large
x. We note in passing that this situation corresponds to the existence of real eigenvalues
for non-Hermitian operators and this is typical of PT-symmetric systems which have
attracted intensive research interest in recent years (although the discussion is outside
the scope of the present paper, we can cite for instance [21]).

Before we end this section we should note that numerical solutions of the dispersion

equation, Eq. (6), as well as double and triple roots solutions of Eqs (12) and (16) are



Figure 1: Representation of the EP2 complex @-plane. Isovalue of magnitude of the product of the two
wall admittances in logarithmic scale (log;q |p|) is shown. Zeros and poles of p correspond to hard wall
(see Tab. 1) and pressure release conditions (see Tab. 2) at one wall. The dash-dot lines correspond

to Imig = 0 or Imv = 0. Star symbols correspond to EP3 points associated with the existence of

Im &
o KN o - N w

'
w

6
Re a

wavefunctions satisfying the triple root condition (14) (see Tab. 3 and 4).

3.5

Approx.

Exact

v

i

A ow o o= o3

4.7123 - 2.5899i
7.8539 - 3.1007i
10.995 - 3.4372i
14.137 - 3.6885i
17.278 - 3.8891i

4.1969 - 2.60861
7.4869 - 3.1202i
10.7044 - 3.4525i1
13.893 - 3.7006i
17.068 - 3.8989i

3.1781+ 4.6751i
3.6598 + 7.9684i
3.9800 + 11.189i
4.2215 + 14.380i
4.4158 + 17.556i

3.0875 + 3.6234i
3.6015 + 6.9459i
3.9371 + 10.176i
4.1876 + 13.372i
4.3877 + 16.550i

Table 3: First 5 triple roots (EP3) associated with absorbing conditions.
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m  Approx. Exact v(+), 1(—)

4.6062  4.6015 1.0119 + 4.6029i
7.7903  7.7893 1.0041 £ 7.7896i
10.950  10.949 1.0020 £ 10.949i
14.101 14.101 1.0012 £ 14.101i
17.249  17.249 1.0008 £ 17.249i

= W N = O

Table 4: First 5 triple roots (EP3) associated with active and absorbing conditions on the real axis. Large

order values can be estimated simply via Uy, = 1 4 iqm.

computed with the method proposed in [22] and implemented for a dissipative silencer
by the present authors in [23]. The approach which is based on Cauchy’s theorem allows
the zeros of analytic functions to be located within a closed path in the complex plane.
The quality of the solution can be checked by substituting the roots into the dispersion
equation and a refinement strategy is also possible around each root in order to increase

the accuracy.

3. Perturbation analysis and optimality

In the dissipative scenario where both walls are absorbing, it is advocated in many
papers, that double root solutions are optimal in the sense that coalescence of the first
two modes coalesce yields optimal treatment in the sense that this should provide the best
attenuation, i.e. the associated axial wave number has the strongest imaginary part. The
reason for this can be found by looking at the behaviour of the solution in the vicinity
of the optimal point. To do this, we introduce parameters § = v — v and € = s — 5 and
try to identify the relationship between these two quantities. The starting point for the
analysis is to consider a Taylor expansion of K around (8, 1) while the admittance of the
lower wall f is kept fixed. Thus,

K(s,[i,v) ZZ —81631( (5, 11, D). (19)
i=0 j=0

Note that, this series simplifies significantly since 907 K (5, ji, v) = 0 for j > 2 and
Y(s,pu,1) = 0, K(s, u,v). (20)

Further, we can make the analysis tractable by adopting the following notations:

OLK (5, 1,7) and Vi — 010, K (5, i, ) _ Y (5, ji, 1)

K; = - - -
! 7! 7! 7!

(21)
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and this gives

K(s,ji,v) = Ko+eK+Ky+ K3+ 'Ky +EKs+ ...

+ Yo+ V1 + Yo+ Y3+ Y+ ) (22)

By construction K (s, fi,v) is zero everywhere. Thus, the double root condition, Ky =

K, =0, leads to the equation
EKy+ERs+ Ky 4+ EKs + (Yo + V1 + Yo + Y3 + €'Yy + ... = 0. (23)

This Taylor series can be inverted, at least locally by assuming small perturbations, using
a Puiseux series expansion. To do this, we shall assume for the moment that K5 # 0 so

that we can formally write

e=aVi+bi+... (24)

which, after substitution, gives the explicit form for the expansion coefficients

Y. 1/ K
2 0 2 : 1 3
= =B with B=—-|(—+—-—-F]. 2
a s and b a it 2<Y0 K2) (25)

Eqgs (23) - (24) indicate that v is a branch point in the complex v-plane so the variation in
s is infinitely sensitive as (v — 1) tends to zero. That this should provide an optimal value,
at least locally, can be understood from a graphical point of view as the two eigenvalues,

call them s; and s, coalesce in opposite directions and in fact
en =5, —5=(—1)"aVo+Ba*s+..., n=12. (26)

The result is a generalization of Tester’s formula corresponding to the specific case of one
rigid wall, i.e. ©=0.
When the triple root condition is satisfied, Ko = 0 and the Puiseux series Eq. (24)

breaks down. To remedy this, one needs to seek an alternative expansion of the form
e=ad'3 4 06%3 4 c5 4 ... (27)

which, after substitution, gives the explicit form for the expansion coefficients

a?’:—ﬁ7 b= Ba* and c¢=Cd® (28)

K3
where

1 /Y7 K,

B = _[(t_24 29
3(Y0 Ks) (29)
1 K4 2 Y2 Y1K4 K5

C = |(Z2) +2-L2A o =5 30
3[([(3) Y T Yo Ks  Ks (30)
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Figure 2: Computed roots of the dispersion equation Eq. (6) showing the coalescence of 3 classical modes

in the vicinity of an EP3. The real part of « is given in (a) and the imaginary part in (b).

In the close vicinity of the triple root, the three eigenvalues coalesce as follows
en=5n—5=2"a0?+2"Ba®6**+Ca®6+..., n=1,2,3 (31)

where 23 = 1 is the cube root of unity. In order to illustrate this, it is convenient to
consider the variation of the transverse wavenumber «. It is found that, to leading order

aVK(§7 ﬁ’ 5)

1/3
v 7 0(5%/3 =1,2,3. 32
8§K(§,ﬁ,9>> TOET), n=12, 32)

ay, =a+ 2" 53 <3!
Take the first triple root ag = 4.1969 — 2.6086i given in Table 3 for instance, we find that
o  ap + 2" (v — 1) 1/3(0.6886 — 0.7678i), (33)

with g = 3.1781 + 4.6751i. In Fig. 2, computed roots of the dispersion equation Eq.
(6) showing the coalescence of 3 classical modes in the vicinity of the triple root aq are
shown. The real part of a;, which gives the attenuation of waves at low frequency, reaches
a maximum value at the EP3 which means that the latter corresponds to an optimal
treatment. Another way to observe the crossing of modes is shown in Fig. 3 where
trajectories of the roots in the complex plane are illustrated (left) by solving Eq. (6)
(recall that v = § + 1) by gradually varying & on the real axis from -0.1 (indicated by
the "+") to 0.1 (indicated by the "o"). The right hand figure shows the trajectories using
the leading order expression Eq. (33) which gives a reasonable approximation. Values,
represented as black squares, are calculated using the same incremental step for both

figures and this shows how sensitive modal solutions are near EP3.

10
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Figure 3: Trajectories of the roots on the complex plane in the vicinity of an EP3. Values are either
computed from the dispersion equation (left) or given by the leading order approximation Eq. (33)
(right).

The question now arises as to whether the exceptional points EP3 give best attenuation
in all cases. To investigate this, we consider the following linear trajectory for the tranverse

wavenumber in the EP2 & complex plane as defined earlier:

where parameter 7 is a positive real number and &g corresponds to the first solution of the
hard wall case (v = 0) (see Table 1). Thus, when 7 = 0 we are at the red star in Figure
5 a). As 7 is incrementally increased the corresponding values of the wall admittances
i and 7, which must be regarded as functions of @, are calculated via Eq. (11); their
trajectories are represented in Figure 4 and show a cusp at the triple root (EP3). For
each pair (@1, ), the first four roots of the dispersion relation

(v +p) cosa+ (a—V:> sina = 0, (35)

(where it is understood that ¥ = v(a@) and i = u(@)) are calculated and their trajectories
are plotted in Figure 5 (a).

One recognizes the linear path given by Eq. (34) and other trajectories correspond to
classical modes (i.e. single roots). The coalescence of one of these modes with the double
root occurs at ag as expected. Note the coalescence is somehow atypical as is does not
correspond to the merging of three classical modes and the description made earlier in Eq.
(32) does not hold in this case. Corresponding axial wavenumbers are shown in Figures
5 (b)(c) and (d) for three frequencies k& = /10, = and 37. At low frequency, § ~ ia

which corresponds to a rotation of 7/2 as shown in Figure 5 (b) and the gain, in terms

11
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Figure 4: Trajectories of the wall admittances associated with Eq. (34). The red stars indicate the n =0
points and the black stars indicate the EP3 as given in first line of Tab. 3.
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Figure 5: Trajectories of the first transverse (a) and first axial wavenumbers for three frequencies (b)-(d).
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Figure 6: Attenuation of the least attenuated mode showing that the triple root ap = 4.1969 — 2.6086i

provides the optimum condition. The colorbar indicates the imaginary of the axial wavenumber.

of attenuation, is quite substantial when compared to the first Tester’s optimal value ag
for the hard wall case, i.e. the imaginary part of the axial wavenumber is nearly twice as
large at EP3. At higher frequency, the attenuation decreases but in every case considered,
EP3 leads to best attenuation. In order to see this in more systematic way, let us consider
again the EP2 & complex plane (we shall limit the analysis to the dissipative region (i)
here). For each value of &, discrete solutions of Eq. (35) are computed and the imaginary
part of the axial wavenumber s corresponding to the least attenuated mode is reported
in Fig. 6. Results clearly suggest that the EP3 for the first triple root &g provide the
optimal pair of admittances (7, fig) given in Table 3. As already discussed earlier (and
also in Tester’s original paper [1] for the hard wall case u = 0), this optimum condition
is offset by an amplification rate which varies linearly and/or quadratically with distance
and in fact [¢| ~ [z¢| and [¢"| ~ |z%)| where || = |Y]exp [~z Im (k? —a3)'/?]. To
the authors’ knowledge this result has never been presented in the scientific literature.
The attenuation rate of the mean square modal amplitude (the amplification being now
ignored) is proportional to the imaginary part of the axial wavenumber, and in the usual
units the attenuation is 8.69 Im s dB per duct width. For the sake of illustration, numerical
values are reported in Fig. 7 for three cases of special interest (note kK = 7 corresponds

to the first cut-off frequency in a duct with rigid walls).

4. Green’s function

4.1. Classical case

It is well known that the Green’s function, which satisfies
(aix + 85@/ + k2)G(213, Cl?o) = 6(1; - xo)é(y - yO) (36)

13
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Figure 7: Comparison of attenuation rate (in dB per duct width) for three scenarios: (i) optimal condition
(with &o, see Table 3) (solid line); (ii) optimal condition with one rigid wall (with &g, see Table 1) (dash-
dot); (iii) optimal condition with pressure release condition (dashed) at one wall (with &, see Table

2).

where * = (z,y) and o = (z0,yo) are the evaluation and the source point, can be
constructed elegantly using a Fourier-transform and subsequent application of the residue
theorem in the complex plane [26]. Simple poles are associated with classical duct modes
and the occurrence of a higher order pole signifies that these modes are of a different
nature. The procedure used in the present work, however, follows Tester’s derivation [1].

The starting point is to express the Green’s function as an infinite series of the form

_ > \Ij(snvamo)
G(z, ) = ; 5.5, (37)
where
U(s, @, @0) = Y (s, 1, y)Y (s, p, yo)e* ¥l (38)

with the requirement that Ims > 0 in the dissipative case. In Eq. (37), the a,,’s are
the discrete roots of the dispersion equation (6) and the ordering in the summation is
by increasing imaginary part of axial wavenumber, s,,. Thus, s; is the least attenuated
mode. The associated eigenfunctions, i.e. the duct acoustic mode are given explicitly by

Eq. (3). The quantity P, is calculated from the integral

1
P, = / Y2(s0, 1,y) dy. (39)
0
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Note that following Lawrie’s work [24, 25], it can be shown! that

. Y (s, 1, 1) K’

P =
" 255,

(S, 1), (40)

where the reader is reminded that the prime indications differentiation with respect to
s. This result represents one of the main ingredients of the procedure as it establishes
the deep connection between P, and the dispersion equation of the waveguide eigenvalue
problem. Thus, the series, which can take the alternate form

iV(sy,x,xo)
Snwu’? 1) K/(Snmuv V)7

G(x,z0) = Z i (41)

is only valid if K’ # 0 for all modes involved in the series. The fact that P, can be zero
whenever we are facing the existence of an exceptional point, stems from the fact that

Eq. (39) does not define a norm and in this case EP modes are said to be self-orthogonal.

4.2. Case of an EP2

In this scenario, the wall parameters (fi,7) correspond to the existence of an EP2
which means that one of the integrals in Eq. (39) is zero. To make progress, we must
identify the pair of classical modes which lie close to the exceptional point. Without loss
of generality, we might label these two modes with indices n = 1 and n = 2 and consider
a slight deviation of the optimal admittance v = v + § while i is fixed. In the spirit of
the previous section, we can use the regularity of function K’ and expand it as a Taylor

series around § and v (recall that e = s — 3):

K'(s,fi,v) = 2eKy+3Ks+ 4K, +5¢* K5 + ...

+ 0(Y1 + 26V + 36 Y3 +43Y, + .. ), (42)
and similarly with g = [
Y (s, ji,1) = Yo + V1 + Yo + Vs + Yy + ... (43)

For the moment we may assume that K5 # 0 so we can use the Puiseux series expansion
Eq. (26). Application of Taylor’s expansion with respect to (g, ), yields the asymptotic
form

Y (89, iy 1) K' (8, 1, v) = (=1)"Ay V8 + Aod + . .. (44)

IThe specific case corresponding to the pressure release condition Y (sp, i, 1) = 0 is not included in

the present analysis.
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where
A2 Y1 K3
Ay =2aYoK, and 2 =g ,
1 aYofio al Al a(YO K2

Function ¥ can also be regarded as regular function with respect to s and it can be

(45)

expanded around s as

V(s @,m0) = W(E2,30) + €V (5,@,@0) + ...

U(3, z, z0) [1 (=) "BraVe+ ... (46)

where, to ease the notation we put ¥/(s, x, xo) = ®1 ¥(5, z, o) with

_ Yl(§7 ﬂ, y) Y/(§3ﬂ7y0)
Y(gapﬂy) Y(§7 /-7‘7 yO)

(I>1 +1|1‘7$0| (47)

We can now calculate the limit for the first two terms of the series as follows

i\II(STn Z, 2130)

G# = 1.
ip2 (T o) 51_I>r(l)n;2 Y (s, iy 1) O K (s, fi, v)

Y 14+ (=1)"®;aV0 + ...
(=1)"A; V3 + Ad + ...

= i\I/(é,a:,:co)%_>0

(48)

n=1,2

After some manipulation, this can be given in the more compact and tractable form:

\I/(E xr :130) Yi K3
elis ENILLUNE ST 49
fop2 (T, o) Yo Ky 1 Y, K, (49)
Thus, the Green’s function for this case can be expressed as
> \I/(Sn,m,w()) #
Grpz2(x, o) = ; T oibs. + Gipo (T, o). (50)

As far as the authors’ are aware, formula Eq. (50), which is one of the main results of
this paper, does not appear in the scientific literature except for the hard wall scenario
(2 = 0), investigated by Tester. Tester’s result can be retrieved from Egs (49)-(50), on
noting that that Yy = cosa@ and Y1 = —ysina (here we defined ¥ = —5/a). Further, it
can be shown that (see details in Appendix):

Ky 1+% 5

Ky =~%cosa and gtan Q. (51)

2 S
So, from the characteristic equation associated with the hard wall condition, see Eq. (12),

we obtain the following equalities:

—9 B 7 ~
C - af and P+-+1=0 with f=tana. (52)
(0%

(cos @)?

Thus, we can calculate

i Y1 K; a - (14+7% 4y i[5,
B el A I Tt — )= = ¢ t— . 53
Y0K2< Yo K2> '3 ( 5 3 AL (53)
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Now, from Eq. (8) (with x = 0), we have Y = cos(ay) and Y/ = —Fysin(ay). Thus,
&, = —yytan(ay) — Jyo tan(ayy) + i|lz — x|, (54)
and we find

Ggpz(m, xo) = cos(ay) cos(@yo)cig‘z_“‘ (55)

t i (352 _
{182 (syo tan(ayp) + sy tan(ay) + iajz — xol) + g% (SSF +at — §2> } ,

X

which is the exact form as reported (see Eq. (28) in [1]) 2.

4.3. Case of an EP3

In this scenario, Ko = 0 and expression Eq. (49) is no longer valid. We need to use
the fact that three eigenvalues, labelled n = 1,2, 3, coalesce at EP3 associated with the
pair of wall parameters (7, 1) and their trajectories are described by the Puiseux series

Eq. (31) with § = p — fi. Following the previous derivation, we find

Y ($p, 1 1) K/ (8, i v) = 227 A1 0273 + Ao 6 + 2" Ag 643 4., (56)
where
A1 = 3a2Yy K, % = —%“ (2;1) + 2) (57)
and Ay a? vi\? Y K, Ki\? Y,  Ks
2=l e (7)) *S(m%)} %)

Again, we shall use the fact that function ¥ is a regular function of s and we can

expand it around 5 as (we need to expand the function up to second order here):
_ _ 1 _
U(sp,x, o) = U(5,x, o) + €,V (5, @, xg) + 56721\11”(5, T, zo) +.... (59)

To ease the notation, we introduce function ®, defined such that ¥” = ®,¥ and

Y” ga :7 Y” §a :7
o, = (: L y) + (: L bo) _ (x — x0)?
Y(57N7 y) Y(Snuvy(])
(f,g,y) (f,g,yo) + %[ — o (
Y(s,,u7y) Y(5>/~47y0)

We finally find the following expansion of Puiseux type

+ 2

. iij
U(s,, @, x0) = U(5, @, x0) |1+ 2"Dy ad/? + 227 (B<I>1 + 22> a?8% 4 .. ] ,  (61)

2In Tester’s paper, the width of the waveguide is h and Eq. (28) is recovered by simply replacing
transverse and axial wavenumbers @ and 5 by kyn, h and kgn h. Note that the two formulae differ by a

factor 2 which is due to the form of the Green’s function series given in Eq. (20) in [1].
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2 where coefficient B is given explicitly in Eq. (29) and function ®; is defined in Eq. (47)
s (with 8, i replaced by 8, f1). We can now calculate the limit

L+2"®1 08" 4 22" [B) + 3] a?0%/% 4+

Gt = )i
EP3(1L',£E0) S x, o) 1m Z_: 220 Ay 02/3 4 Ao 6 + 247 A5 64/3 + ...
_ (s, z,x) |. —2/3 : —2n -1/3 : n Ao 4y
= A % [5 2T (@ -
A A2 A
E: a2 3, A2 5—6n 2 _3n

s After using the cubic root identity (j and p are arbitrary integers):

3

> =308, (63)

n=1
s (where z3 = 1 and §;,,,, is the usual Kronecker delta function), the singular terms disap-

2 pear and this finally leads to

30 (5, z, o) [A2 Az Ay o,
GE#PS(w’mO) = T A7§ - rl — CI)laAil + | B®, + > a?|. (64)
287 This can be recast in the final form
# _ WG ze) [y g (Y Ka) | D2
GEPB(mva) = Yo Ks 1 Yo + X + 5 | (65)

28 where

A= <Y1 K4> 3/1 K4 YZ K5

%K) YK Tv TR (66)

20 which has a similar structure to Eq. (49). Closed forms expressions for all variables
20 involved Y; and K; can be found in the Appendix. Finally, the Green’s function for the

21 EP3 scenario can be expressed as

[ee]
\I’(Sna Z, mO)
Geps(z, z9) = n; —5ps T Ghps(x, 20). (67)
22 5. Conclusions
203 A comprehensive analysis of the first two exceptional points (EP2 and EP3) has been

20 presented for a two-dimensional waveguide with arbitrary admittance boundary condi-
205 tions on both sides of the guide. It has been confirmed that a (the double root corre-
26 sponding to EP2) is a continuum, that is to each value of & there corresponds a unique
27 pair of complex-valued wall parameters (7, i), whilst & admits only discrete values. An

28 EP is formed by the coalescence of two (or three) nearby eigenvalues (axial wavenumbers)
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and this process has been studied using a perturbation method. The dispersion relation
was expressed as a double Taylor series which was then inverted using a Puiseux expan-
sion to obtain approximate expressions for the coalescing eigenvalues in terms of 5 and 5
for fixed 1 as v — U (see Eqgs (26) and (31)). The trajectories predicted by Eq. (31) have
been compared with those obtained by numerical solution of the dispersion relation and
good agreement has be shown (Figure 3). Further, Figures 5 and 6 suggest that optimum
attenuation is achieved at EP3, although there is scope for further analytic/numerical
work to verify this.

The Green’s function for the eigensystem has been considered. It has been demon-
strated that the classical expression for the Green’s function is degenerate at an EP. An
analogous process to that used to study the coalescence of the eigenvalues, has enabled the
authors to present modified Green’s functions which are valid at EP2 and EP3. These
contain additional terms which ensure the completeness of the eigenfunctions in these
cases. It is worth commenting that standard mode-matching methods do not satisfacto-
rily address the cases of EP2 and EP3 (such methods are, however, valid close to EP and
have been used to investigate problems in this context). It is anticipated that the addi-
tional terms seen in the Greens functions must be incorporated into, and thus modify, the
mode-matching procedure at EP. This is a topic of current investigation by the authors.

To conclude, the methods and results presented in this paper pave the way for com-
plementary studies, for example, of the eigensystem underpinning the boundary value
problem studied herein and/or of exceptional points in waveguides with wavebearing
boundaries. It is anticipated that the results will be of use in various applications where

noise control is desirable.
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Appendix A. Derivatives of the dispersion equation
We recall that (p=vp and g =v + p)
K =qcosa+ asina — g(a)p, (A1)

where g = sin(«)/a stands for the cardinal sine function. Following standard algebra, we
obtain

0o K =(1—v—p)sina+acosa— ¢ (a)p, (A.2)
and

02K = —K +2cosa + 2h(a)p, (A.3)

with h(a) = ¢'(a)/a, here symbol ' means differentiation with respect to a and this

notation is only adopted in this Appendix. Finally, straightforward calculations yield

BK = —0,K —2sina+ 20 (a)p, (A.4)
0iK = —02K —2cosa+2h"(a)p, (A.5)
BK = —03K+2sina+2n"(a)p. (A.6)

Function K can also be regarded as a regular function of the axial wavenumber s. By

applying the chain rule: 95 = v 9, where v = —s/« repeatedly, we can calculate
Ky = #°[h(@)p + cosal (A.7)
K 1+4% AW (a)p—sina
Ky _ 147 7M@p—sina (A.8)
K 5 3 h(@)p+ cosa

where it is reminded that the overbar symbol relates to EP2.
In the scenario of EP3 (identified with double overbar symbols), the calculations are

somewhat tedious but it can be shown that:

=3
K; = %[h'(a) p—sinal, (A.9)
B _ IM(@p-cosa | 3147 (A.10)
K3 4 W(a)p —sina 25
Ks _ ¥ h"(a)p+sina n ¥(1+52%) h"(@)p — cosa n (1445 + 3'74)/A 1)
Kz 20 h/(a)p—sina 25  W(a)p—sina 452 o
Finally,
Yo = cosa-—g(a)q, (A.12)
Vi = 5(g(@) + h(@)) (A.13)
for EP2 and
1 - == == = =\ =
Yy = [9(@) + h(@)i — a7 (g (@) + W (@))] (A14)

2
which is required for the EP3 Green’s function.
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