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Pan-cancer analysis of transcripts encoding novel open-reading
frames (nORFs) and their potential biological functions
Chaitanya Erady1,7, Adam Boxall 1,7, Shraddha Puntambekar2,7, N. Suhas Jagannathan 3,7, Ruchi Chauhan1,7, David Chong1,
Narendra Meena1, Apurv Kulkarni2, Bhagyashri Kasabe2, Kethaki Prathivadi Bhayankaram1, Yagnesh Umrania4, Adam Andreani1,
Jean Nel1, Matthew T. Wayland 5, Cristina Pina6, Kathryn S. Lilley 4 and Sudhakaran Prabakaran 1✉

Uncharacterized and unannotated open-reading frames, which we refer to as novel open reading frames (nORFs), may sometimes
encode peptides that remain unexplored for novel therapeutic opportunities. To our knowledge, no systematic identification and
characterization of transcripts encoding nORFs or their translation products in cancer, or in any other physiological process has
been performed. We use our curated nORFs database (nORFs.org), together with RNA-Seq data from The Cancer Genome Atlas
(TCGA) and Genotype-Expression (GTEx) consortiums, to identify transcripts containing nORFs that are expressed frequently in
cancer or matched normal tissue across 22 cancer types. We show nORFs are subject to extensive dysregulation at the transcript
level in cancer tissue and that a small subset of nORFs are associated with overall patient survival, suggesting that nORFs may have
prognostic value. We also show that nORF products can form protein-like structures with post-translational modifications. Finally,
we perform in silico screening for inhibitors against nORF-encoded proteins that are disrupted in stomach and esophageal cancer,
showing that they can potentially be targeted by inhibitors. We hope this work will guide and motivate future studies that perform
in-depth characterization of nORF functions in cancer and other diseases.

npj Genomic Medicine             (2021) 6:4 ; https://doi.org/10.1038/s41525-020-00167-4

INTRODUCTION
Profiling molecular changes between normal and tumor tissues, at
the genomic, transcript and protein level, underpins much of our
understanding of tumorigenesis and tumor progression. Substan-
tial progress has been made thus far considering known or
canonical genes and protein coding regions and, in recent years,
much of this research has been driven by large publicly available
genomic datasets. Recently, consideration of transcript-level
changes within protein coding genes has enabled comprehensive
characterization of isoform switching across multiple cancers1, and
extensive evidence now suggests noncoding transcripts2 and
driver mutations within noncoding regions3 have important and
functional roles in cancer by diverse mechanisms4. Indeed, the
apparent complexity of genomic organization and the diversity of
genomic elements with functional relevance in cancer motivates
the study of further poorly characterized genomic elements, in the
hope of identifying novel therapeutic targets or diagnostic
markers.
Distinguishing protein-coding and noncoding regions of the

genome is challenging, and other uncharacterized or unannotated
open-reading frames, which we call novel open-reading frames
(nORFs) that includes small open-reading frames (sORFs), are not
widely recognized in genomic analysis, largely because conven-
tional algorithms used to identify ORFs impose an arbitrary
threshold on ORF length5–7. With the advent of deep sequencing
strategies in both genomics and proteomics, we are now
discovering nORFs that have remained undiscovered or ‘hid-
den’8,9. These nORFs are pervasive throughout the genome, and
are observed in both protein-coding and noncoding regions8,10

(Fig. 1a). They are variously classified as sORFs6,11, which are 1–100
amino acids in length, altORFs12, which are proteins in alternate
frames to known proteins, Denovogenes13 or Orphan genes14, and
Pseudogenes15. nORFs and many ncRNAs have previously been
shown to have coding potential16–20. These new discoveries
challenge traditionally held conservative definitions of an ORF as
used until the recent past21. Now, better detection methods and
broader criteria are helping uncover these increasing repertoire of
nORFs by the thousands in every species22.
More importantly, a limited number of nORFs have, thus far,

been functionally associated with the hallmarks of cancer
proposed by Hanahan and Weinberg23,24. Notably, the lncRNA
HOXB-AS3 has been shown to encode an endogenously
translated, small 55 aa peptide, which suppresses tumorigenesis
in colon cancer cells25. HOXB-AS3 is down-regulated at both the
transcript and protein level in colorectal cancer tissue and cell
lines, and low protein levels are associated with poor prognosis in
colon cancer patients. Likewise, PINT87aa is a circRNA-encoded
small peptide, which partially controls cell proliferation and
tumorigenesis in cancer cells, is expressed at a reduced level in
glioblastoma tissue, and is correlated with tumor grade. Cells over-
expressing PINT87aa exhibit decreased tumorigenic potential in
animal models26. Recent discoveries therefore suggest nORFs may
present novel prognostic and diagnostic markers, and those
resembling tumor suppressors present particularly exciting
therapeutic potential.
To our knowledge, no comprehensive pan-cancer identification

and analysis of nORF transcript expression has been performed.
This motivated us to identify and determine the expression of
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transcripts containing nORFs, referred to in this manuscript as
nORF transcripts, across multiple cancer tissues from the TCGA
and to compare this to expression in normal adjacent tissue (NAT)
and normal tissue from the Genotype-Expression (GTEx) project
(Supplementary Fig. 1). The UCSC Toil Recompute Compendium27

provides processed transcript-level RNA-Seq data from TCGA and
GTEx quantified using a unified computational pipeline to remove
computational batch effects, and we use this data to perform
comparative analysis across samples from both projects. We
identify widespread expression of nORF transcripts across multiple
cancer types, and show many nORF transcripts are frequently

expressed in cancer or corresponding normal tissues. Moreover,
we identify nORF transcripts as differentially expressed in cancer
tissues, and some nORF transcripts with potential
prognostic value.
Having demonstrated that nORFs may be transcriptionally

disrupted in cancer, we investigated whether nORF-encoded
peptides, despite an increased propensity for structural disorder,
can form known protein-like structures with PTMs. We then
performed experimental proteogenomic analysis to identify nORFs
in B and T cells, and investigated whether these nORFs could be
disrupted in cancer. We then in silico screened immune-oncology,
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targeted oncology, and signal pathway inhibitors against the
nORFs that were identified to be expressed only in tumor tissues
of stomach adenocarcinoma and esophageal carcinoma and show
that these nORF encoded peptides can be targeted for disruption.
Our results suggest that nORFs transcripts could be dysregulated
in complex diseases, such as cancer and also suggest that their
encoded peptides, although they may contain just one domain,
could undergo sequence, structural, or regulatory changes.

RESULTS
nORFs are pervasively translated
nORFs are typically smaller than canonical ORFs, the peptides or
micro-proteins they encode are particularly attractive as putative
allosteric cellular regulators, due to their size and the potential
specificity of peptide interactions. Therefore, because the
accepted nomenclature itself is inconsistent, we previously
classified and cataloged all human nORFs from various sources,
prioritizing those with strong evidence for translation and
distinguishing between nORFs that are in frame and out of frame
with overlapping canonical ORFs and released it as an open
source database—https://norfs.org/home.
Our curated list of nORFs and other nORF predictions from

RPFdb v2.028 illustrate that they are translated from all chromo-
somes (Fig. 1b). While this indicates that the cellular proteome is
much more complex than our current understanding, there is a
huge knowledge gap on the putative functions of these nORFs.
There have been two lines of speculations about them: on one
side, some have dismissed the novel proteins as mere biological
noise, while on the other side, some have proposed that such
novel proteins confer evolutionary advantage to an organism29–31.
There is some credence to the hypothesis that they could be
biological noise and irrelevant, because functional importance of
genes has been shown to anti-correlate with their expression
noise in isogenic cells32, and our analysis of ribo-seq data from 11
cell lines (Fig. 1c) reveal that many novel proteins are translated
with high expression noise (increased standard deviation versus
mean) compared to canonical ORFs. However, a small minority of
nORFs do have expression noise less than the median expression
noise of canonical ORFs, suggesting that at least a small minority
of detected nORFs might have important functions (Fig. 1c). In
addition, analysis of all the GWAS-associated variants and
mutations in the Catalog of Somatic Mutations in Cancer (COSMIC)
and Human Gene Mutation Database (HGMD) databases revealed
that a significant proportion of variants and mutations map to
apparent noncoding regions of the human genome (Fig. 1d). To
investigate whether nORF regions could harbor these disease-
associated mutations, we mapped COSMIC and HGMD mutations
to them. Supplementary Fig. 2a–d shows the top ~20 examples of

COSMIC or HGMD mutations mapped to sORFs, Denovogenes, and
Pseudogenes, demonstrating that these regions do indeed harbor
mutations. To verify whether these mutations are indeed
pathogenic we plotted the CADD scores33 of all variants that
map to sORFs alone34,35. Figure 1e left panel, shows the
distribution of CADD scores for variants that map to (a) known
proteins encoded by known canonical ORFs, (b) sORFs that
overlap known ORFs, known as exonic sORFs, and (c) sORFs that
are present in noncoding regions. Figure 1e right panel
demonstrates that the distribution of mean CADD scores of sORF
variants in the noncoding regions are significantly higher than the
mean CADD scores of variants that map to exonic sORFs and
known proteins. This indicates that the deleterious effects of
variants that map to non-exonic sORFs in the noncoding regions
are greater than the deleterious effects of variants on known
proteins and therefore, nORFs warrant further study.

Identifying and characterizing transcripts encoding nORFs
To identify transcripts encoding nORFs (nORF transcripts), we
extracted genomic coordinates of transcripts quantified in the
UCSC Toil pipeline from the GENCODE v23 reference genome
annotation, and compared these genomic coordinates with those
of nORFs present in the nORFs.org database, using a custom
pipeline as described in the “Methods” section (Supplementary
Fig. 3). All nORFs present in the database had strong experimental
evidence for translation from mass spectrometry or ribosome
sequencing. We used GffCompare36 to identify transcripts and
nORFs with compatible intron chains, and compared genomic
coordinates to retain only transcript-nORF mappings where a
nORF is completely contained within the transcript genomic start
and end position. Transcript expression for nORFs mapping to
multiple transcripts would be difficult to interpret, so these nORFs
were excluded from this study. We considered only nORFs
encoded by noncoding transcripts, as polycistronic transcripts
encoding both novel and canonical ORFs would have introduced
further complexity in the interpretation of transcript expression.
This resulted in the identification of 1488 nORF transcripts.
To determine if nORF transcripts are expressed in any tissue

included in the study, we defined an expression threshold of 0.5
counts per million (CPM) across at least 10% of a single tissue. This
allowed us to prioritize transcripts that are more likely to be
accurately quantified and expressed at a biologically meaningful
level. Using this threshold, we identified 926 expressed nORF
transcripts for inclusion in this study.
We characterized the genomic properties of all nORF transcripts

(Supplementary Fig. 4a) and the 926 nORF transcripts included in
this study (Supplementary Fig. 4b), by genomic location and
biotype annotation37. nORF transcripts are mostly annotated as
processed pseudogenes (118, 13%), long intergenic noncoding

Fig. 1 nORFs are important to investigate. a Schematic representation of nORFs and their genomic locations. nORFs (yellow boxes) include
short ORFs (sORFs) which are ORFs <100 aa, alternative ORFs (altORFs) present in alternative frames of canonical ORFs within protein-coding
genes and undefined ORFs which have as of yet not been identified by other studies. These nORFs can be found both within protein-coding
(including 5’UTR, 3’UTR, CDS or overlapping CDS and the UTRs) and noncoding regions. They can also be present antisense to genes. ORFs
identified within Pseudogenes and Denovogenes are also included under the categorization of nORFs. Reg. regulatory regions. b nORFs (from
sORFs.org and OpenProt) have been identified throughout the genome on all chromosomes. The gray peaks represent location and density of
nORFs on different chromosomes plotted using the R package circlize. Frequently expressed nORFs in the TCGA or GTEx are shown as black
peaks, and those identified as differentially expressed are shown in red. c Mean Ribo-Seq expression and Ribo-Seq expression standard
deviation (SD) have been plotted for human lymphoblastoid cells from RPFdbV2. Canonical ORFs are depicted as blue dots and novel ORFs
are depicted by orange dots. The black line shows the median expression SD of canonical ORFs. Not all nORFs have noisy expression values,
many have similar SD vs. mean expression values as that of canonical ORFs (cORFs). d Proportion of coding (blue) vs. noncoding (red) disease-
associated variants within GWAS, HGMD, and COSMIC datasets are shown. Around 90% of disease-associated variants from GWAS, 80% from
COSMIC and 40% from HGMD map to noncoding regions. To gain a better understanding of these uncharacterized variants we evaluate those
within nORFs. e Left panel shows the CADD score distribution and their mean values mapped to known proteins, sORFs in the exonic regions,
and sORFs in the non-exonic regions. Right panel is the estimation size plot of the CADD scores showing the mean difference with 95%
confidence interval of all variants mapped to exonic sORFs (range 0.80–0.83) and non-exonic sORFs (range 2.35–2.38) with respect to known
proteins.
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RNAs (263, 28%), or antisense transcripts (329, 36%), with 216
nORF transcripts falling into other biotype classifications.
We considered genomic distribution and strand bias (Supple-

mentary Fig. 4c and d) to ensure there was no substantial bias in
genomic location for the nORF transcripts considered in this study.
Across autosomal chromosomes nORF transcripts were consis-
tently distributed, with a small number of nORFs sharing the same
start site. However, no transcripts encoding nORFs were identified
on the Y chromosome—this is consistent with the lower
abundance of genes present on this chromosome. Whilst some
chromosomes did exhibit strong strand bias in the number of
nORF transcripts identified, namely chromosome 19, overall
transcripts were identified consistently in both genomic strands.
Comparing the length of novel and canonical ORFs (Supplemen-
tary Fig. 4e) revealed a degree of overlap in length, but as
expected median nORF length was substantially below that of
canonical ORFs, with the majority of nORFs encoding proteins
<100 amino acids in length.
Following identification of nORF transcripts, we evaluated

transcript mean expression across all GTEx normal tissues included
in this study. We showed mean nORF transcript expression
compared with canonical protein-coding transcripts and also
compared against canonical antisense and lincRNA expression—
as these are the two main transcript classifications within which
nORF transcripts are identified (Supplementary Figs. 5 and 6). As
expected, the median expression of nORF transcripts was below
that of canonical protein-coding transcripts, but above that of
both noncoding RNA classes. We considered that many nORF
transcripts have mean expression comparable with that observed
in protein-coding transcripts, which provides confidence that
transcripts encoding nORFs may be expressed at an adequate
level for translation to occur.
Many nORF transcripts were poorly expressed, with mean CPM

values below 0.5. We identified and prioritized nORF transcripts
frequently expressed in cancer tissues or the corresponding NAT
or GTEx normal tissue. Both cancer and reference normal tissues
were considered when identifying frequently expressed nORF
transcripts, as we aimed to capture nORF transcripts both up-
regulated and down-regulated between cancer and normal
tissues. Frequently expressed nORF transcripts were defined as
having CPM >0.5 across at least 70% of samples in either cancer or
corresponding reference tissue. A representative distribution of
expression across samples in cancer tissue and corresponding NAT
(Supplementary Fig. 7a) and GTEx normal tissue (Supplementary
Fig. 7b) is shown to illustrate this threshold for frequent
expression. Two observations provided confidence that a suitable
expression threshold had been selected: (i) expression was largely
binary, with most nORF transcripts expressed in either every
sample or no samples in a tissue and (ii) the number of samples in
cancer and normal tissue expressing a given nORF transcript were
highly correlated.
When comparing cancer with NAT, we determined 359 out of

926 nORF transcripts were frequently expressed in at least one
cancer type; when comparing with GTEx normal tissue, 464 out of
926 nORF transcripts were frequently expressed in at least one
cancer type. The number of frequently expressed nORF transcripts
identified was fairly consistent across cancer types (Supplemen-
tary Fig. 7c, d).
A large proportion of nORF transcripts were frequently

expressed across all cancer types—109 nORF transcripts for
cancer and NAT; 115 nORF transcripts for cancer and GTEx normal
tissue. On the other hand, comparatively few nORF transcripts
were frequently expressed in any particular subset of cancer types
—for example, just 14 nORF transcripts were only frequently
expressed in thyroid carcinoma or thyroid NAT. This likely reflects
consistent expression of nORF transcripts across tissues. A
disproportionate number of nORF transcripts (79) are frequently
expressed only in testicular germ cell tumor tissue or GTEx testis

tissue, which is consistent with mean transcript expression
patterns in testis tissue (Supplementary Fig. 5)—noncoding
transcript expression in the testis appears unusually distinct
compared with other tissues.

Identifying differentially expressed nORF transcripts
To identify nORF transcripts dysregulated in cancer, we performed
differential expression (DE) analysis for cancer compared with
either NAT or GTEx normal tissue. We normalized RNA-Seq
expected counts from the UCSC Toil dataset using the trimmed
mean of M-values (TMM) method38 and performed DE analysis
using the general linear model (GLM) framework provided by
edgeR39, as described in the “Methods” section. A fold change
threshold of 2 and an adjusted p-value threshold of 0.01 were
used to identify differentially expressed nORF transcripts. Only
frequently expressed nORF transcripts were considered. Corre-
sponding analysis using a fold change threshold of 1.5 is provided
in Supplementary Fig. 8.
This analysis revealed 152 nORF transcripts as dysregulated in at

least a single cancer type when comparing cancer with NAT
(Fig. 2a), and 386 as dysregulated when compared with GTEx
normal tissue (Fig. 2b). This represented a large proportion of the
total number of frequently expressed nORF transcripts. Whilst the
number of frequently expressed nORF transcripts was consistent
across cancer types, the number of nORF transcripts differentially
expressed in each cancer type was diverse. Some cancer types
exhibited far more extensive dysregulation of nORF transcription,
namely kidney clear cell carcinoma and lung squamous cell
carcinoma.
We observed a limited number of nORF transcripts with cancer-

type-specific dysregulation. In lung squamous cell carcinoma 13
nORF transcripts were uniquely upregulated, and 10 uniquely
down-regulated, when compared against NAT. Kidney clear cell
carcinoma, kidney chromophobe, and testicular germ cell tumors
also exhibited a large degree of cancer-type-specific dysregulation
(Fig. 2c and d). This is consistent with results suggesting that a
large number of nORF transcripts were frequently expressed in
testis tissue—in testicular germ cell cancer it appears many of
these nORF transcripts were down-regulated. Overall, these results
demonstrated widespread dysregulation of nORF transcripts
across cancers.
To assess the reproducibility of DE results when comparing

against NAT or GTEx normal tissue, we investigated differentially
expressed nORF transcripts identified in eight cancer types with
both types of reference normal tissue. DE relative to GTEx normal
tissue consistently revealed a larger number of dysregulated nORF
transcripts. Most cancer types showed highly reproducible DE
results between the two reference normal tissues (Fig. 2e).
Controlling for confounding factors such as age, sex, and ethnicity
may help improve the reliability and reproducibility of this DE
analysis. A degree of discrepancy was expected, as (i) NAT is
affected by the tumor microenvironment and (ii) GTEx normal
tissues are more highly represented with larger sample sizes.
However, in all but one disease at least 75% of nORF transcripts
identified as differentially expressed when using NAT as reference
tissue are also identified when using GTEx normal tissue.

Differentially expressed transcripts and patient overall
survival (OS)
We have shown that nORF transcripts are frequently expressed
across multiple cancer types and reference normal tissues, and that
many of these nORF transcripts are transcriptionally dysregulated
in cancers. To determine whether any differentially expressed
nORF transcripts can be used as prognostic marker, we investi-
gated the relationship between nORF transcript expression and
overall patient survival, for nORF transcripts differentially expressed
between cancers and NAT. We used survival data for TCGA cohorts
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provided by the UCSC Toil Recompute Compendium, and divided
each cohort into high and low expression groups for each nORF
transcript, as detailed in the “Methods” section. We identified 43
nORF transcripts where expression was significantly associated

with patient OS in at least one of the 12 cancer types included in
this survival analysis, with an adjusted p-value threshold of 0.05
(Fig. 3a). This suggested many nORF transcripts may have
prognostic value, particularly in kidney clear cell carcinoma.

Fig. 2 Differentially expressed nORF transcripts in cancer. a Total number of differentially expressed nORF transcripts by cancer type
compared with NAT. b Total number of differentially expressed nORF transcripts by cancer type compared with GTEx. c nORF transcripts
uniquely up-regulated or down-regulated in a single cancer type compared with NAT. d nORF transcripts uniquely up-regulated or down-
regulated in a single cancer type compared with GTEx normal tissue. e Reproducibility of differential expression results using normal adjacent
tissue and GTEx normal tissue. nORF transcripts identified as differentially expressed when comparing cancer tissue with normal adjacent
tissue, showing the proportion of nORF transcripts also differentially expressed when comparing cancer tissue with GTEx tissue (left: up-
regulated nORF transcripts, right: down-regulated nORF transcripts).

C. Erady et al.

5

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2021)     4 



Fig. 3 Survival analysis of nORF transcripts. a Association of nORF transcript expression with overall patient survival. Number of differentially
expressed nORF transcripts significantly associated with survival at different adjusted p-value thresholds, by cancer type. b Kaplan–Meier
curves showing overall patient survival in high and low expression groups for reproducibly differentially expressed nORF transcripts. Showing
Kaplan–Meier curves, nORF transcript ID and further transcript details for the four nORF transcripts most significantly associated with
prognosis, in Kidney Clear Cell Carcinoma. The cohort was divided into high and low nORF transcript expression groups using the maximally
selected rank statistic, and Kaplan–Meier survival curves were generated with a 95% confidence interval. Survival probabilities were compared
using the log-rank test and p-values adjusted for multiple testing. Overall survival times were fitted to a Cox proportional hazards regression
model and hazard ratio calculated from the fitted coefficients.
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We investigated further nORF transcripts reproducibly differen-
tially expressed both compared with NAT and GTEx normal tissue
(where the GTEx tissue was available for comparison). For a subset
of 33 nORF transcripts: (i) the transcript is reproducibly
differentially expressed in cancer compared with NAT and GTEx
normal tissue, (ii) transcript expression is associated with
prognosis (adjusted p-value < 0.05) and (iii) transcripts up-
regulated in cancer are associated with poor prognosis, and vice
versa. Kaplan–Meier survival curves are shown for the nORF
transcripts most significantly associated with prognosis, in Kidney
Clear Cell Carcinoma (Fig. 3b). We then embarked on a systematic
investigation to predict the structure and biological regulation of
nORFs and infer their functions.

nORF-encoded peptides are smaller and have increased
disorder
To systematically determine potential functional consequences of
mutations in nORF-encoded peptides, we first curated a list of all
nORFs that have been identified with evidence of translation from
sORF database (http://sorfs.org/database)11, altORFs from Open-
prot5, and Pseudogenes with evidence of translation from
Xu et al. 15. For Denovogenes, we manually curated a list of 42
protein sequences through literature search. Noncoding RNA
sequences were downloaded from RNACentral database (http://
rnacentral.org)40 and putative translated ORFs were obtained. We
compared the lengths of translational products from canonical
ORFs (NeXtProt) with nORF peptides from sORFs, altORFs,
RNACentral, Denovogenes and pseudogenes (Fig. 4a) and found
that the nORF peptides are shorter in length than known proteins.
As smaller proteins have been known to form elementary
structures, we investigated the propensity of these nORF peptides
to form structures41. We employed two disorder prediction
algorithms, PONDR (Fig. 4b) and IUPred (Supplementary Fig. 9a,
b), to assess whether these novel proteins are predominantly
ordered or disordered, which would directly correlate with their
ability to form structures. For both PONDR and IUPred the results
consisted of an average disorder score (in the range 0–1) for a
protein sequence, and the percentage of disorder for each
sequence (Supplementary Fig. 9c). Sequences that had an average
disorder score >0.5 were considered “disordered sequences”. The
computed bootstrap confidence intervals of mean (and median)
average disorder scores showed that the nORF peptides (sORFs,
altORFs, RNACentral, Pseudogenes, and Denovogenes) had higher
mean (and median) values of disorder than known proteins in
NeXtProt (Fig. 4b). Statistical tests (Fisher’s exact test and Chi
square test) showed that each of the nORF datasets (except
Denovogenes) was enriched for disordered sequences in compar-
ison to proteins in NeXtProt (Supplementary Fig. 10a, b).
Supplementary Fig. 11 shows the final number of amino
sequences in each novel protein category used in the above
analysis.
Some disordered regions have been known to undergo

disorder-to-order transitions upon binding to substrates. We used
the Anchor program42 to investigate whether the novel proteins
show increased propensity to form structures. The results of this
analysis indicate that novel proteins, except for Denovogenes,
show increased anchor scores compared to NeXtProt proteins
(Supplementary Fig. 12a). However, we also found a strong
positive correlation between average anchor score and average
disorder score for most datasets, which is not surprising, since the
prediction of binding sites uses biophysical parameters similar to
those involved in disorder prediction (Supplementary Fig. 12b).

nORF peptides could be biologically regulated
Previous evidence suggested that nORF peptides expressed in
mouse neurons are indeed biologically regulated8 and that they
may be enriched for regulatory sites for post-translational

modifications (PTMs), such as phosphorylation. Hence we
predicted PTM sites in the amino acid sequences from all our
curated novel proteins using the ModPred software43. For each
sequence, we predicted amino acid sites for nine PTMs—
phosphorylation, acetylation, methylation, sulfation, SUMOylation,
ubiquitination, C-linked, O-linked, and N-linked glycosylation (Fig.
4c). For each dataset (NeXTProt, sORF, altORF, and pseudogenes)
we created individual control datasets composed of randomly
generated AA sequences with the same average amino acid
composition and length distribution as the original dataset.
Methylation, glycosylation, and phosphorylation were found to
be significantly enriched in some novel protein datasets and
NeXtProt proteins, compared to their individual random controls
(Fig. 4c). We used the single-tailed Wilcoxon rank sum test to
check if the datasets were more enriched for PTMs than their
respective random controls. p-Values were corrected for multiple
hypothesis testing using the Benjamini–Hochberg method.
Asterisks in the figure refer to corrected p-values < 0.005 Wilcoxon
rank sum test. For most PTM types the densities of predicted PTMs
was comparable or higher than in the novel proteins versus the
NeXtProt database (Fig. 4c). This indicates that the nORF peptides
could be subjected to any biochemical regulation just as much as
all known proteins. We did not find any correlation between low
pathogenicity and higher disorder scores, which indicates that
mutation in novel proteins can affect their potential functions (Fig.
4d, Supplementary Fig. 13).

Experimental identification of nORFs in mouse B and T cells
Because our nORF transcript identification from the TCGA and
GTEx datasets relied on computational mapping of nORF regions
using a precompiled nORF dataset, we wanted to investigate
whether nORFs that we identify in biological cells could be
associated with cancer as a proof of principle. To do this we
employed a proteogenomics approach combining total RNA
sequencing data of naive mouse B and T cells (GSE94671) from
the Blueprint consortium with in-house generated proteomics
data from a similar experimental design. We generated and
analyzed this particular dataset because to identify nORF-encoded
peptides we needed to obtain high-quality transcriptomic and
proteomic data from the samples.
Briefly, total RNA was extracted from naive B and T cells isolated

from the spleen of six male and six female C57BL/6J mice and
sequenced (Supplementary Table 1). Similarly, proteins were
extracted from naive B and T cells isolated from spleen of a
different set of six male and six female BL6 mice and analyzed
using mass spectrometry (Supplementary Fig. 14). Using a
proteogenomics workflow, illustrated in Supplementary Fig. 15,
the following nORFs regions were systematically investigated: (a)
sORFs, (b) altORFs, and (c) all other as-yet undefined nORFs. Briefly,
all mass spectra obtained from the naive B and T cell proteome
were mapped to the following three databases independently and
in a sequential order. MS of proteins isolated from the samples
were first searched against the mouse UniProt database. To verify
the presence of already known nORFs, the spectra unmapped to
known proteins, ~60%, were then mapped to a nORF amino acid
database generated using the amino acid sequence of these
nORFs obtained from sorfs.org and OpenProt. Finally, the
remaining unmatched spectra were matched to the custom
proteogenomic database created using the sample-specific
assembled transcriptome (Supplementary Fig. 15). We used
Mascot search engine for searching the spectra against the
Uniprot proteins, the nORF amino acid database and the custom
transcriptomic database in six frames, performed “on the fly”.
Using this analysis pipeline, we identified 2030 known proteins,

and 1658 novel proteins—from 1649 sORFs and 9 altORFs to be
translated in B and T cells (Supplementary Fig. 16). Mass spectra
that did not match to any of the three databases were further
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Fig. 4 Novel proteins are smaller in length and show increased structural disorder but still have regulatory regions. a Amino acid length
distribution of known human proteins from NeXtProt, and potential novel proteins encoded by nORFs: sORFs, altORFs, Pseudogenes,
Denovogenes, and all possible translated amino acid sequences from RNAcentral. b Average disorder scores of proteins in NeXtProt compared
to average disorder scores of proteins encoded by nORFs, predicted by PONDR. c PTM sites in protein sequences were predicted using the
ModPred tool. The predicted densities of nine PTM modifications for each dataset (NeXtProt, sORFs, altORFs, or pseudogenes) were compared
against the predicted PTM densities in individual control datasets (random AA sequences generated to have the same average amino acid
composition and length distribution as the original dataset). d Disorder scores were computed at either amino-acid resolution, or for a 7-AA
window around the mutated residue. The analysis did not reveal any correlations between CADD scores and predicted disorder scores.
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queried by mapping them to the B and T cell-specific
proteogenomic nucleotide databases in six frames. Transcriptomic
and proteomic database construction and novel protein abun-
dance distribution are illustrated in Supplementary Figs. 17–20.
From this analysis 259 noncanonical transcript regions (176 in B
cells and 86 in T cells) were identified to be translated with at least
two peptides matching per noncanonical transcript (construction
of this database is explained in the “Methods” section). A total of
766 peptides were used to identify 259 noncanonical transcript
regions as translated. Genomic annotations for 990 out of
1649 sORFs (Supplementary Fig. 21a), 7 out of 9 altORFs
(Supplementary Fig. 21b) and 259 undefined nORF regions from
1373 out of 1405 genomic regions (Supplementary Fig. 21c) reveal
that most nORFs map to intronic or lncRNA regions.

Regulation by phosphorylation and potential biological
functions of novel proteins from B and T cells
Mass spectrometry analysis of the B and T cell dataset revealed six
phosphorylations on sORFs and 297 phosphorylations on the 259
undefined nORF regions (Supplementary Fig. 22). This provides
experimental verification that sORFs and nORF-encoded peptides
in general can undergo PTMs. To predict putative biological
functions of these nORFs from their sequences we used
Interproscan. The resulting GO terms gave us a clue to their
potential functions (Fig. 5a). GO terms of the 2030 identified
known proteins were also analyzed to validate the Interpro-
predicted GO terms for nORFs. Expected values based on the GO
terms from known proteins with cutoffs of q < 0.01 and p < 0.01
were used to determine significantly enriched or depleted GO
terms for sORFs (Supplementary Fig. 23). We then used GOSim to
cluster GO terms based on functional similarities between gene
products and the associated GO terms (Supplementary Figs 24
and 25). The results indicate that sORFs are more involved in
cytoskeletal or structural cellular functions of the cells than in
signaling or protein-binding functions. Although these results
indicate functional enrichment, we were not able to identify
specific functional roles for the novel proteins. Therefore, we
looked for indirect evidence for functions of the novel ORFs. To do
this, we identified their corresponding conserved novel ORF
regions in the human genome and then mapped mutations from
COSMIC and HGMD datasets to identify whether the novel ORFs
(human orthologs of mouse ORFs) are disrupted in diseases.
Figure 5b and c (left panel and right panel) show the number of
unique COSMIC and HGMD mutations along with the disease
origin of these mutations for sORFs (left panel) and undefined
ORFs (right panel) that are conserved in the human genome. List
of genes, associated disease phenotype and number of HGMD
mutations corresponding to the phenotype are given in Supple-
mentary Table 2.
We predicted structures for 24 sORFs (Supplementary Table 3)

and 9 altORFs translated in mouse B and T cells (Supplementary
Table 4) using the EVFold pipeline44. Figure 5d shows (a) predicted
structure of a translated product from the undefined novel ORF in
an intergenic region in chr 14, (b) predicted structure of an
undefined novel ORF insertion in Rps3a1 ribosomal protein (cyan)
with the inserted fragment (red), and (c) predicted structure of an
undefined novel ORF product antisense to Raet1. All of the above
novel ORFs are marked and represented in Integrative Genome
Viewer (IGV) in Supplementary Figs. 26–29.

Dysregulation of nORFs in cancer and screen for inhibitors
To show that novel proteins are dysregulated in cancer we
identified 14 novel ORFs that are identified to be translated with
‘low-noise’ in 11 human cell lines from the ribo-ORF datasets28.
The expression of these 14 transcripts in cancer was then analyzed
using the UCSC Toil RNA-seq Recompute and found to be
differentially expressed in 19 of the 33 cancer types, in spite of

using a very stringent criteria for this analysis (Fig. 6a). This
indicates that they might be dysregulated and have some role in
cancer.
Interestingly, ENST00000484282.1 is expressed only in tumor

samples and not in their matched healthy tissues across almost
70% of the TCGA cancer types (Fig. 6a). Encoded by the DOP1A
gene (DOP1 leucine zipper like protein A; ENSG00000083097),
ENST00000484282.1 is annotated as a processed transcript, and
therefore, by definition does not contain an ORF. Analysis with the
RPFdbv2.0 datasets showed that this transcript translates a ‘low
noise’ ORF with an ATG start codon in all the 11 human cell lines
analyzed (many of which are cancer cell lines). Thus, this transcript,
which is expressed only in tumor samples may potentially express
a sORF with some specific function in tumors.
Additionally, to investigate whether novel proteins dysregu-

lated in cancer can be used as therapeutic targets, we predicted
structure of the human ortholog of a sORF, mPLsORF0000447155,
identified in our B and T cell study, translated from
ENST00000427352.1, and identified to be expressed only in the
tumor samples of stomach adenocarcinoma and esophageal
carcinoma and with two noncoding mutations mapped to them
(COSN19210254; COSN8491742) of which; COSN8491742 is
identified in only lung samples (Fig. 6b, Supplementary Table 5).
We then screened for highest scoring ligands from the asinex
library against Immune-oncology (8462 compounds), targeted-
oncology (1491 compounds), and signaling pathway inhibitors
(1355 compounds). Figure 6b lower panels indicate the top
scoring ligands for the above categories. These results reveal that
novel proteins are not only dysregulated in cancer but can also be
used for diagnostic and for therapeutic purposes.

DISCUSSION
Through comprehensive analysis of RNA-Seq data from 22 cancer
types, we have identified transcripts containing nORFs and
demonstrated that many nORF transcripts are frequently
expressed in multiple cancers. Additionally, we have shown that
many of these nORF transcripts are differentially expressed
between cancer and normal tissues, and some of these nORF
transcripts are uniquely differentially expressed in specific cancer
types. Furthermore, we have shown that expression of some
differentially expressed nORF transcripts may have prognostic
value. This subset of nORF transcripts indicated that nORFs should
be further characterized.
Therefore, we systematically characterized all those nORF

peptides that were previously identified and those that we
identified in B and T cells, and demonstrate that although they
are small and have increased disorder, the proportion of increase is
not substantial to affect their structure-forming capabilities. More
importantly, we show that nORF peptide expressions are not
necessarily noisy, they can be biochemically regulated by PTMs,
and more importantly can harbor deleterious mutations that can
potentially be targeted with inhibitors. Although based on GO
analysis, enrichment of sORFs in cytoskeletal or structural functions
were found, it must be noted that this analysis is limited to sORFs
and known proteins currently annotated with GO terms. With
improved annotation, especially for the unannotated sORFs, the
results may indicate different functional category enrichment.
We present convincing evidence that transcripts with the

potential to encode nORFs are both frequently and differentially
expressed across cancer and normal tissues. However, without
evidence for nORF translation in cancer tissues from mass
spectrometry or ribosome sequencing, it is not possible to
attribute any difference in transcript expression to nORF transla-
tion. This is especially limiting given that, for known protein-
coding transcripts, the relationship between transcript and protein
abundance is complex and influenced by many factors45. Indeed,
the diverse function of noncoding RNAs at the transcript level is
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well established in both normal and cancer tissues, and it is
currently unclear whether noncoding transcripts containing nORFs
may be bi-functional4. Limited availability of genome-wide
proteomic or ribosome-sequencing data is a key challenge in
the identification of nORFs translated in specific cell types or
tissues, especially given such work is both expensive and
technically challenging. Many large-scale proteomic studies utilize
cost effective reverse phase protein arrays, but this approach is
generally limited to quantifying expression for a small panel of
canonical proteins. Moving forward, translation of nORFs must be
systematically confirmed in multiple cancer types—the recently
completed proteomic profiling of 375 cancer cell lines46 combined
with genomic data from the Cancer Cell Line Encyclopedia47

present an excellent resource for validation of nORF translation.
Peptides translated from nORFs must be validated experimentally
and distinct function must be attributed to the peptide and the
transcript, as is the case for a limited number of previously
characterized nORFs4,25,26.
We do recognize that the weakness of our work is that it is built

on weak correlations and observing these nORF peptides does not
show that they are biologically important. The disruption of nORF
expression in disease states such as cancer does not demonstrate
that the nORF has anything to do with the cause or mechanism of

that disease and the “disease associated” mutations occurring in
nORFs is likely incidental. But nonetheless there is already
evidence of biochemical functions for some novel proteins, for
example, the smallest ORF for which any known function is
attributed is just six amino acids long and is in a 5′UTR. It regulates
the expression of S-adenosylmethionine decarboxylase in
response to polyamine levels48. Muscle regeneration49,50, phago-
cytosis51, DNA replication52,53, cancer25, and metabolism19,54 are
other examples. Despite these examples, the vast majority of
nORF-encoded peptides have not been investigated rigorously.
Our systematic investigation suggests that nORF peptides are very
important to understand, diagnose, and cure complex diseases.
Hence, we believe that the unexplored world of nORF peptides
represents an untapped opportunity for discovery of new
fundamental and translational areas of research. We hope this
work will guide and motivate future detailed characterization of
novel peptides in cancer and other diseases.

METHODS
Noise expression analysis of nORFs
To investigate whether the expression of nORFs is noisy, the expression of
canonical ORFs was compared to the novel ORFs using 53 studies,

Fig. 5 Potential structures, biological functions and mutations mapped to nORFs translated in naive B and T cells. a List of significantly
enriched or depleted GO terms in sORFs after removal of redundant sORFs as compared to GO terms from known proteins. b Results of
mapping COSMIC mutations to sORFs (left) and undefined ORFs (right) that are conserved in the human genome identified using tblastn and
LiftOver. The total number of mutations identified are represented above the bars and the number of unique mutations is mentioned below
the graph. c Results of mapping HGMD mutations to sORFs and undefined ORFs that are conserved in the human genome identified using
tblastn and LiftOver. The total number of mutations identified are represented above the bars and the number of unique mutations is
mentioned below the graph. Disease phenotypes and the number of mapped mutations associated with the genes in the legend are
expanded in Supplementary Table 2. d (left) Predicted structure of intergenic mouse nORF in chr 14, (right) the predicted structure of the
original Rps3a1 protein (cyan) with intron insertion fragment (red), (bottom) predicted structure of antisense mouse nORF, antisense to Raet1.
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353 samples downloaded from RPFdbv2.028 across 11 human cell lines.
Actively translated ORFs, having a footprints with clear sub-codon phasing
or triplet periodicity, in each study included in this database, is detected
systematically using the RibORF tool53,55. Further each ORF entry is
annotated with its genomic position, strand, annotated ORF category
(canonical, truncated, extended, uORF, overlapping uORF, internal,
external, polycistronic, readthrough, non-coding transcripts), length of
encoded amino acid, ribosome profiling abundance (RPKMs, raw read
counts) and the transcript to which the ORF maps (probable transcript
from which ORF is translated). Abundance of each ORF estimated in raw
read counts was converted to TPMs for further analysis. The 353 samples
were divided into 11 groups based on cell types. Mean and SD of ribo-seq
expression TPMs for all samples in each group were calculated; and
compared between the canonical and the rest (‘non’-canonical) ORFs. In
order to compare SDs of nORFs to cORFs with similar means, the entire
range of means was divided into exactly 4000 quantiles based on the
means. Every quantile had the same number of ORFs. Within each quantile,
the SDs were compared between nORFs and cORFs. ORFs with SDs less
than the median SD of cORFs were termed low noise ORFs. A total of
272,229 unique, low-noise ORFs were identified from 11 cell types of which
225,273 were nORFs and rest 46,956 were cORFs.

TCGA and GTEx transcriptome processing
TCGA and GTEx RNA-Seq and survival data was downloaded from the
‘TCGA TARGET GTEx’ cohort of the UCSC Toil Recompute Compendium27.
Transcriptome alignment had been performed using STAR (GRCh38) and
transcript expression quantified using RSEM, using transcripts present in
the GENCODE v23 genome annotation. Transcript-level RSEM expected
counts, TCGA survival data and phenotype data were obtained. The
GENCODE v23 and corresponding Ensembl v81 genome annotations were
downloaded, and transcript and coding sequence properties were
extracted from the annotation files using a custom script. RSEM expected
counts provided by the UCSC Toil Recompute Compendium were log2

(expected_count+ 1) transformed, and this transformation was removed
to produce raw expected counts for use in this analysis. All data processing
was performed using R, R Studio, the R package Tidyverse, and unix
command line tools. The Ensembl genome annotation was processed in R
using ensembl db56, and genomic coordinates were processed using
GenomicRanges. Set diagrams were produced using UpSetR.

TCGA and GTEx normal sample selection
Mappings of TCGA cancer tissue samples to NAT and GTEx normal tissue
were extracted from the phenotype data provided by the UCSC Toil
Recompute Compendium. We included solid tumor TCGA cancer tissues
with at least 50 samples, with matched NAT or GTEx normal tissue with at
least 10 or 50 samples, respectively—a less stringent threshold for
inclusion was used for NAT because these samples were less abundant.
RSEM expected count data was filtered to retain only selected samples and
expressed transcripts prior to normalization and DE analysis. A single
sample containing missing expected count values was excluded from this
analysis.

Identifying TCGA and GTEx expressed transcripts
Prior to library size normalization and DE analysis, transcripts with poor
expression were excluded from analysis. Applying a CPM threshold to
identify expressed transcripts prior to TMM normalization and DE analysis
has been shown to improve false discovery rate57 and is recommended
practice for edgeR. Expected counts were transformed to CPM and
transcripts are classified as expressed if they had expected count >0.5 CPM
in at least 10% of the samples of a single cancer or normal tissue.
Expressed transcripts are retained. Best practices for setting thresholds for
transcript-level expression are poorly established, and the thresholds used
in this study were, whilst informed by the literature, largely arbitrary.

Fig. 6 nORFs dysregulated in cancer. a Analysis of Xena’s TCGA-TARGET-GTEx dataset to study the expression of the 14 probable ‘cancer
markers’ which are expressed differentially in 19 cancers. These 14 markers are non-protein-coding transcripts that translate low-noise nORFs
in 11 cell lines as observed from analyzing the ribo-ORF datasets from RPFdb (black—transcripts that are not expressed in both the tumor and
matched normal samples; red—transcripts that are not expressed only in tumor samples; green—transcripts that are expressed only in tumor
samples; light blue—no differential expression of transcript between the tumor and normal samples; dark blue—differential expression of
transcript between the tumor and normal samples) (a transcript is defined to be expressed if it has non-zero expression in at least 25% of the
samples). b Predicted structure of mPLsORF0000447155, which is a peptide translated from ENST00000427352.1, using EV-Fold, of human
ortholog displayed with pymol. Red regions on the structure indicate amino acids which are affected by COSMIC mutations. Supplementary
Table 6 shows the mutations associated with this sORF. Below are the structures of the highest scoring ligands of compound 8462, compound
1491, and compound 1355 (right), and that of the complex it makes with the sORF (left) predicted, respectively, from the libraries: Immune-
oncology, Targeted Oncology, and Signal pathway inhibitor.
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Selecting matched cancer and normal tissue samples
To characterize the expression of transcripts encoding nORFs across
multiple cancer types and corresponding normal tissues, we obtained
transcript-level RNA-Seq expression data from the UCSC Toil Recompute
Compendium27. This dataset includes 11,194 cancer and NAT samples
from TCGA and 8003 normal tissue samples from GTEx. We used metadata
provided by the UCSC Toil Recompute Compendium to match cancer, NAT,
and GTEx normal tissues and determine the number of samples available
for each tissue. To ensure consistent and reliable results, we included solid
tumor TCGA cancer tissues with at least 50 samples, with matched NAT or
GTEx normal tissue containing at least 10 or 50 samples, respectively—a
less stringent threshold for inclusion was used for NAT because these
samples are less abundant. This resulted in a total of 7885 samples across
22 cancer types from TCGA, together with 677 NAT samples and 4010 GTEx
normal samples. The cancer and matching NAT or GTEx normal tissues
included in this study are summarized in Supplementary Fig. 30.
NAT and GTEx normal tissues provide non-redundant reference tissues.

NAT samples closely resemble cancer samples both as a result of reduced
variation in patient differences and sample processing. However, NAT is
affected by changes in the tumor microenvironment and samples are less
abundant than GTEx normal tissue samples. Seven cancer tissues included
in this study are matched to both NAT and GTEx normal tissue which
allowed us to determine whether DE results are reproducible across
different reference tissues.

Identifying transcripts containing nORFs
Genomic coordinates of nORFs with experimental evidence for translation
were obtained from the nORFs.org database (https://norfs.org/home).
Transcript genomic coordinates were obtained from the GENCODE v23
reference annotation. GffCompare was used to identify open-reading
frames and transcripts with completely matching intron chains. GffCom-
pare performs stringent filtering to detect and remove redundant input
transcripts, and this deduplication is described in detail in the
documentation. Specifically, to achieve stringent deduplication of nORFs,
GffCompare was run with nORF coordinates as the ‘reference set’ and
transcript coordinates as the ‘query set’, with default parameters. The
resultant ‘.refmap’ file containing information on overlaps between nORF
and transcript coordinates was processed in R and annotated. nORF-
transcript mappings identified by GffCompare were filtered to retain only
those with a complete intron chain match, and for which the genomic
coordinates of the nORF were completely contained within the transcript.
nORFs present in multiple transcripts were excluded. Transcript biotypes
were extracted from the GENCODE annotation file and open-reading
frames contained in protein-coding transcripts (transcripts with biotype:
“protein_coding”, “IG_C_gene”, “IG_D_gene”, “IG_J_gene”, “IG_V_gene”,
“TR_C_gene”, “TR_D_gene”, “TR_J_gene”, “TR_V_gene”) and rRNA tran-
scripts were excluded. Novel and canonical ORF lengths were determined
using ensembldb.

RNA sequencing normalization
Normalization and DE were performed separately for comparison of cancer
tissue with NAT and with GTEx normal tissue. RNA-Seq expected counts
were normalized across samples using the TMM38 method to normalize for
read depth and composition. As comparisons in DE were not made across
transcripts, no normalization was introduced for effective transcript length.

Identifying frequently expressed transcripts
To identify frequently expressed transcripts, CPM values were calculated
across all expressed transcripts following TMM normalization using edgeR.
Transcripts were classed as frequently expressed if they had CPM >0.5 in at
least 70% of the samples in the normal or cancer tissue of interest.

Transcript DE
Transcript DE was performed using all expressed transcripts to provide
correct significance testing and improve reliability of dispersion estimation.
The R package edgeR39 was used to perform DE analysis using a GLM
framework—this package was chosen as it is (i) highly cited, (ii) suitable for
transcript-level analysis, (iii) compatible with non-integer expected counts
from RSEM, and (iv) exhibits fast performance on large datasets. A simple
additive model with no intercept was constructed, with normal reference
tissues and cancer tissues each represented by a single coefficient. No
covariates, such as ethnicity, sex, age, or tumor grade, were controlled for

in this DE analysis, but the GLM framework in edgeR was chosen because it
would allow for control of covariates in follow-up analysis. The process
used for DE analysis is detailed in the edgeR manual. Briefly, transcript-wise
dispersions were estimated under the GLM framework using the Cox–Reid
profile-adjusted likelihood method, which takes into account multiple
factors by fitting the described model. A negative binomial model was
fitted for each transcript, and thresholded hypotheses were tested to
provide meaningful p-values and reliable control of false discovery rate. A
fold-change threshold of 1.5 or 2 was used to identify differentially
expressed transcripts, with an adjusted p value threshold of 0.001.
Coefficients representing cancer tissues and their corresponding normal
reference tissues were compared under this framework. The Benjamini and
Hochberg method was used to adjust p-values for multiple testing and
control false discovery rate.

Patient OS analysis
OS analysis was performed using the R packages survival58 and
survminer59. nORF transcripts are included in survival analysis if they were
differentially expressed in the cancer type of interest compared with NAT,
and were expressed at >0.5 CPM in at least 70% of the samples in the
cancer tissue cohort. For each cancer type and for the nORF transcript
considered, the cohort was split into high and low expression groups.
Groups were selected which were best segregated based on OS, using the
Maximally Selected Rank Statistic, with at least 30% of patients assigned to
each expression group to avoid forming groups with a small number of
patients. Kaplan–Meier curves were generated and curves were compared
using a log-rank test. The Benjamini and Hochberg method was used to
adjust p-values for multiple testing and control false discovery rate. A Cox
proportional hazards regression model was fitted to OS data and hazard
ratios were derived from the model coefficients. Both the Kaplan–Meier
and Cox proportional hazards regression models assume proportional
hazards, where the hazard ratio between the high and low expression
groups remains constant over time.

Protein domain prediction
Nucleotide sequence was extracted from nORF genomic coordinates and
the reference genome (GRCh38) using BEDTools getfasta60 and translated
into amino acid sequence using EMBOSS Transeq61. Protein domains were
predicted from amino acid sequence using InterProScan62.

Data set collection
We first curated a list of all nORFs that have been identified with evidence
of translation. We obtained sequences for known and verified human
proteins from NeXtProt (https://www.nextprot.org/)63, sequences for sORFs
from the sORF database (http://sorfs.org/database)11, sequences for
altORFs from Roucou’s lab12 (http://haltorf.roucoulab.com/ but updated
as http://haltorf.roucoulab.com to the new URL https://www.openprot.org),
and sequences of Pseudogenes with evidence of translation from
Xu et al. 15. For Denovogenes, we manually curated a list of 42 protein
sequences through literature search.
For conservative measurements of disorder scores, we discarded protein

sequences <30 amino acids in length from all the above datasets, since
these were likely to be enriched for disorder. Noncoding RNA sequences
were downloaded from RNACentral database (http://rnacentral.org)64.
While all the other datasets contained protein sequences whose
translation has been experimentally verified in literature, the downloaded
RNAcentral dataset contained 9,386,637 nucleotide transcript sequences.
We identified potential ORFs from these transcripts, using the following
workflow. Each sequence was subjected to three-frame translation using
the EMBOSS transeq program provided as a standalone utility by EMBL-EBI.
From the output protein sequences, putative translated ORFs were
obtained by identifying all possible subsequences (>30 residues in length)
beginning with a methionine and ending at a STOP codon (EMBOSS
checktrans program and Matlab scripts to parse the output text files). After
removing redundant sequences from the extracted list, we obtained a
unique set of 5,185,186 protein sequences, which we used as putative
transcripts from the RNAcentral database for disorder prediction. Since the
size of the RNACentral dataset far exceeded that of the four other novel
datasets, we decided to keep the datasets segregated for future analysis.
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Disorder prediction
To predict protein disorder from sequence, we employed two disorder
prediction algorithms, PONDR (http://www.pondr.com) and IUPred
(https://iupred2a.elte.hu/). For PONDR, we used the VSL2 algorithm that
was originally optimized and trained using both short and long protein
sequences. Among the three IUPred-based algorithms, we performed
separate predictions with IUPred ‘long disorder’ and IUPred ‘short
disorder’. To predict possible structural elements from sequence, we used
the Anchor program (http://anchor.enzim.hu)42. Matlab scripts were
written to automate and batch process protein sequences for disorder
and Anchor prediction, parse the output, and to perform statistical tests of
enrichment (Fisher’s exact test, Chi-square test). All statistical tests were
corrected for multiple hypothesis testing, using FDR values computed by
the Benjamini–Hochberg method.

Analysis for enrichment of post translational modifications on
nORF peptides
To predict PTM sites from sequence, we used the ModPred stand-alone
software43. For each sequence, we predicted amino acid sites for nine
PTMs—phosphorylation, acetylation, methylation, sulfation, SUMOylation,
ubiquitination, C-linked, O-linked, and N-linked glycosylation. To test if
each of the datasets (NextProt, sORF, altORF, pseudogenes) have higher or
lower predicted PTM site densities than expected at random, we generated
an individual control dataset specific to that dataset as follows. We first
obtained the average amino acid composition and length distribution for
each dataset. We then fit a lognormal distribution to the sequence lengths.
Individual control AA sequences were then generated with lengths drawn
from the lognormal distribution, and probability of each amino acid
chosen from the average amino acid compositions for the dataset. We
generated such control sequences until the control dataset had twice the
number of sequences as the original dataset. ModPred was then used to
predict PTM sites in these control datasets for the same list of nine
modifications. The number of predicted PTM sites in all datasets (test or
control) were normalized to account for variable sequence length (per 100
residues).

Mapping disease-associated mutations to nORFs
To investigate whether the novel protein regions could harbor disease-
associated mutations, we mapped mutations from the COSMIC and HGMD
databases to nORF peptides. Supplementary Fig. 2 shows examples of
COSMIC or HGMD mutations mapped to all human sORFs, Denovogenes,
and Pseudogenes demonstrating that these regions do indeed harbor
mutations. We investigated whether the pathogenicity scores of these
mutations, assessed as combined annotation-dependent depletion
(CADD)33 and functional analysis through hidden Markov models
(FATHMM)65 scores, had any correlation with disorder scores at the
mutated region of the novel proteins (both amino-acid-specific disorder
score, and average disorder score for a 7-aa window around the mutated
residue). This analysis (Fig. 4d and Supplementary Fig. 12) did not reveal
any correlation between low pathogenicity and higher disorder scores.

B and T cells total RNA sequencing data acquisition
B and T cells extracted from the spleen of six male and six female C57BL/6J
mice were FACS sorted to isolate resting B and naive CD4+ T cells. Total
RNA was extracted from each of the 12 samples (three B-male, three B-
female, three T-male, and three T-female) and sequenced using Illumina
HiSeq 2500. This work was done in Ferguson-Smith lab at the Department
of Genetics, University of Cambridge. Data can be accessed at NCBI GEO
database, accession GSE94671.
Mice spleen tissues were obtained through a collaboration with Prof.

Anne Ferguson-Smith’s lab at the Department of Genetics, University of
Cambridge and the work was carried out in accordance with UK
government Home Office licensing procedures (HO project license
number: PC9886123) and approved by the University of Cambridge.

Naive B and T cells separation for proteomics analysis
All steps were carried out fast, and the cells were maintained in ice- and
ice-cold buffers. Spleen from six male and six female C57BL/6J mice, age
12 weeks (Supplementary Fig. 14), were collected in the cold 1× PBS (-Ca,
-Mg) and gently crushed on a 40 µM Nylon cell strainer (Fisherbrand,
22363547) using Iscove’s modified Dulbecco’s medium (IMDM, Sigma
I3390), 10% heat-inactivated FBS (Sigma F9665), 1% antibiotic+

antimicotic (Sigma A5955) media, 1% L-glutamine (Sigma G7513)) to
isolate splenocytes. Samples were centrifuged for 5 min at 400×g and the
pellet was gently resuspended in 1x MojoSort buffer (Biolegend 480017).
Cells were incubated with 2 ml of RBC lysis buffer (Biolegend, 420301) for
3 min, and afterwards with 8ml IMDM-10. Cells were centrifuged for 5 min
at 400 × g, resuspended in 1× MojoSort buffer to a final density 400 μl of
buffer per 108 total cells. We obtained on average 1.8 × 10e8 splenocytes
per spleen.
To cells, 360 μl of antibody cocktail of biotin-conjugated monoclonal

anti-mouse antibodies against CD8a, CD11b, CD11c, CD19, CD25, CD45R,
CD49b, CD105, Ter-119, MHC class II, and TCRγ/δ from T cells isolation kit
(Miltenyi,130-106-643) and cocktail of biotin-conjugated anti-mouse
antibodies against CD43-Ly48, CD4-L3T4, and Ter-119 from B cells isolation
kit (Miltenyi, 130-090-862) was added at a final concentration of 100 μl
biotin antibody per 10e8 cells and were incubated for 5 min in the
refrigerator. Cells bound with biotin-antibody, 1.08ml of cold 1× MojoSort
buffer and 720 μl of α-biotin microbeads were added (final 300 μl buffer
and 200 μl microbeads per 10e8 cells) and incubated for an additional
10min in the refrigerator. Cells were then diluted with 15ml 1× mojo
buffer and centrifuged for 5 min at 400×g. Pellets were resuspended in
1.44ml 1× MojoSort buffer. Biotin-bound cells were depleted by passing
through LD columns (Milteny, 130-042-901) in the magnetic field and flow-
through was collected. Columns were washed twice with extra 1 ml of
buffer. Pooled unlabeled cells (total volume ~3.44ml per tube) represent
the enriched T cells and B cells for subsequent FACS sorting.
Cells were counted as T Cells 2 × 10e6 cells per spleen, and B cells= 3 ×

10e7 cells per spleen from 1.8 × 10e8 splenocytes. For sorting 100,000 cells
per 100 μl were prepared to establish the % population of naive T and B
cells obtained from antibody-mediated sorts. To cells, 1 μl antibody each of
CD4-FITC, CD25-PE-Vio770 (PE-Cy7), CD44-APC, CD62L-PE was added for
individual flow channels. Controls were prepared using 1 μl of Streptavidin-
V450, and a negative control with no antibody in cells. A sample was
prepared with all above five antibodies. For B cells, Streptavidin-V450 and
CD45R (B220)-PE antibodies were used in similar manner. Antibodies and
cells were incubated on ice for 20min, and then 850 μl 1× Mojosort buffer
was added. Cells were centrifuged at 2000 rpm, for 5 min and resuspended
in 500 μl buffer. Cells were processed through flow cytometer and
following outputs were measured. We obtained 95% CD4+ cells that were
live, single cells and streptavidin negative. CD25 channel filter removed
0.3% cells further, resulting in about 94% cells. A CD62+ and CD44+ gates
resulted in 73–80% (CD4+CD25−CD62+CD44−) cells. For B cells, >99% of
population processed through FACS sorter were selected for naive B cells
(CD45R (B220)+). Samples were sorted with above settings using 1 μl
antibody per 1 × 10e6 cells, and the cells were pelleted for proteomics
workflow.

Extraction of B and T cells proteome
To extract total cellular proteome, cells were lysed in buffer (6 M urea, 2 M
thiourea, 4% CHAPS, 5 mM magnesium acetate, 30 mM Tris pH 8.0), and
15 μg protein in 5× Laemmli buffer with 5% b-mercaptoethanol was
loaded on Mini-PROTEAN® TGX™ Precast Gels (BioRad). Gel lanes were cut
into three sections for peptide extraction. Gel sections were cut into
1–2mm cubes, washed with 50% acetonitrile and 100mM ammonium
bicarbonate solution until blue stain is washed. Gel pieces were treated
with 100% acetonitrile, and then reduced with 10mM DTT in 100mM
ammonium bicarbonate for reduction at 56 °C for 1 h, and alkylated with
55mM iodoacetamide in 100mM ammonium bicarbonate in dark for
45min at room temperature. Gel pieces were washed with 100mM
ammonium bicarbonate, and then treated with 50% acetonitrile followed
by 100% acetonitrile. Subsequently, gel pieces were treated with diluted
trypsin (5 ng/µl) enzyme for overnight at 37 °C. Peptides were extracted,
dried, and dissolved in 3% acetonitrile with 0.1% formic acid.

Mass spectrometry analysis of the B and T cells proteome
All LC–MS/MS experiments were performed using a Dionex Ultimate 3000
RSLC nanoUPLC (Thermo Fisher Scientific Inc., Waltham, MA, USA) system
and a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Separation of peptides was performed by reverse-
phase chromatography at a flow rate of 300 nL/min and a Thermo
Scientific reverse-phase nano Easy-spray column (Thermo Scientific
PepMap C18, 2 μm particle size, 100 Å pore size, 75 μm i.d. × 50 cm length).
Peptides were loaded onto a pre-column (Thermo Scientific PepMap 100
C18, 5 μm particle size, 100 Å pore size, 300 μm i.d. × 5mm length) from
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the Ultimate 3000 autosampler with 0.1% formic acid for 3 min at a flow
rate of 10 μl/min. After this period, the column valve was switched to allow
elution of peptides from the pre-column onto the analytical column.
Solvent A was water+ 0.1% formic acid and solvent B was 80%
acetonitrile, 20% water+ 0.1% formic acid. The linear gradient employed
was 2–40% B in 30min.
The LC elutant was sprayed into the mass spectrometer by means of an

Easy-Spray source (Thermo Fisher Scientific Inc.). All m/z values of eluting
ions were measured in an Orbitrap mass analyzer, set at a resolution of
70,000 and was scanned between m/z 380 and 1500. Data-dependent
scans (Top 20) were employed to automatically isolate and generate
fragment ions by higher energy collisional dissociation (HCD, NCE:25%) in
the HCD collision cell and measurement of the resulting fragment ions was
performed in the Orbitrap analyzer, set at a resolution of 17,500. Singly
charged ions and ions with unassigned charge states were excluded from
being selected for MS/MS and a dynamic exclusion window of 20 s was
employed.

Assembly and analysis of B and T cells total RNA transcripts
Quality of sequenced reads was determined using FastQC (Supplemen-
tary Fig. 31). Primary assembly sequence and comprehensive gene
annotation files for C57BL/6J, GENCODE release version M12, were used
as the reference genome in our analysis. A genome index file to assist
with read alignment was created using HISAT2-build, which extracts the
exon and splice-site coordinates from the reference annotation. The
paired-end sequenced reads where then aligned to the genome using
HISAT2 run with default settings and the ‘–dta’ option to ensure that
strand information is retained after alignment. The output SAM files
were converted to BAM format and the aligned reads were sorted based
on genomic coordinates using Picard SortSam. Aligned reads in the
BAM files and the reference genome were used to assemble sample-
specific transcripts using StringTie run with default settings and the ‘–fr’
option which assumes that reads were generated from a stranded
library. The sensitivity and specificity of the StringTie output relative to
the full reference annotation and to a subset of protein-coding
transcripts extracted from the reference annotation (defined by the
“transcript_type “protein_coding”” tag) was assessed using GffCompare
run using default settings and –T option to suppress output of
mapping files.
The StringTie merge function was used to create a list of non-redundant

transcripts in B and T cells using the 12 sample-specific GTF files. This
merged transcript GTF file along with the 12 BAM files containing aligned
reads were used for a second StringTie run with parameters ‘-Be’ to
calculate transcript FPKM values for each sample. Furthermore, we merged
the information in the 12 CTAB files containing transcript FPKM values with
the merged transcript file to create the final master transcriptomic file with
~164,000 transcripts. The master transcriptomic file was further analyzed
as below.
We define unannotated transcripts in the master transcriptomic file as

those without an ENSEMBL ID, and annotated/known transcripts as those
which were assigned an ENSEMBL ID by StringTie. Transcripts identified in
unlocalised contigs in chromosome 1 and chromosome 4 with the names
‘GL4XXXX’ and ‘JH5XXXX’, respectively, were removed. Additionally, the
master transcript file was filtered to remove transcripts with ‘0’ FPKM
values for all the 12 samples. This filtering gave us 109,441 transcripts. The
remaining transcripts were categorized into four sub-groups: B-male, B-
female, T-male, or T-female, based on whether at least one out of three
samples corresponding to a sub-group had a non-zero FPKM value. Finally,
the transcripts were categorized into B or T cell-specific transcriptomic
datasets based on whether a transcript was present in at least one of the
two sub-groups corresponding to a particular cell type. This resulted in
101,767 B cell-specific transcriptomic dataset and 99,552 T cell-specific
transcriptomic dataset.

Creation of B and T cell-specific nucleotide proteogenomic
database
Transcript coordinates in the B and T cell-specific transcriptomic datasets were
used to extract the corresponding nucleotide sequence from the reference
genome using Bedtools Getfasta available in CGC. Bedtools Getfasta was run
with default settings and with the name parameter= “True”, which ensures
that the name column of the input BED file is used as the header for the
output FASTA file. Furthermore, transcripts with length >100,000 nt were split
into components of length <100,000 nt to facilitate downstream analysis using

Mascot. The output FASTA files generated are our B and T cell-specific
nucleotide proteogenomic database.

Creation of sORF and altORF amino acid databases
Prabakaran Lab mouse sORF (mPLsORF) database was created using
information curated from two sources: sORFs.org and SmProt. sORFs.org
contains 1,127,154 mouse sORFs, which have been either computationally
predicted or experimentally verified. We exported mouse sORFs from
sORFs.org with default filters except for FLOSS classification, which was set
to ‘GOOD’ and ‘EXTREME’. SmProt contains a list of computationally
predicted small peptides identified in several species including mouse. We
extracted 15,581 mouse sORFs from SmProt with filter parameters set to
‘ALL’. The downloaded information from SmProt did not provide
chromosome information for sORFs. A macros code was, therefore, run
on the SmProt website to specifically extract chromosome information
for sORFs.
Both databases had several duplicate entries which were removed by

filtering them based on their chromosome location and amino acid
sequence. We assigned unique sORF ids of the format
‘mPLsORFXXXXXXXXXX’, where X denotes a number, to each sORF entry
and created our sORF database with the following columns: Organism_-
name, Source_database, Chromosome_number, Start_coordinate, End_-
coordinate, Strand, and Amino_acid_sequence. There are still a few sORFs
in our database with the same chromosome coordinates, but these
duplicates were not removed because their corresponding amino acid
sequences were different. Our final in house curated sORF database
contains a total of 454,120 sORFs (Supplementary Fig. 18).
We downloaded mouse altORF coordinates from Roucou’s lab. Few

altORFs had multiple chromosome numbers assigned to it. These were
removed from our dataset to generate a final list of 2,15,320 altORFs
(Supplementary Fig. 19) for downstream analysis.

Proteogenomic workflow to investigate evidence of
translation from sORF, altORF, and undefined novel ORFs in
mouse B and T cells
Thermo mass spectrometry raw files were submitted to four databases
search as described in Supplementary Fig. 15, utilizing Proteome
Discoverer v2.1 and Mascot 2.6. Briefly, an average of 383,216 mass
spectra were obtained from each sample. All mass spectra were initially
searched independently against three amino acid databases—Uniprot
database, sORF database, and altORF database and against the cRAP
database of common contaminants. The spectra identification was
performed with the following parameters: MS/MS mass tolerance was set
to 0.8 Da, and the peptide mass tolerance set to 10 ppm. The enzyme
specificity was set to trypsin, and two missed cleavages were tolerated.
Carbamidomethylation of cysteine was set as a fixed modification, whilst
variable modifications consisted of: oxidation of methionine, phosphoryla-
tion of serine, threonine, and tyrosine, and deamidation of asparagine and
glutamine. High confidence peptide identifications were determined using
Percolator node, where false discovery rate estimation (FDR) < 0.01 was
used. A minimum of two high confidence peptides per protein was
required for identification.
Out of 383,216 mass spectra, 165,418 mass spectra was mapped to

Uniprot database; out of 383,216 mass spectra, 67,091 mass spectra was
mapped to sORF database; out of 383,216 mass spectra, 32,269 mass
spectra was mapped to altORF database. We then filtered the entries to
remove ‘cRAP’, which are contaminants introduced during the experiment.
Only those proteins with ‘Medium/High’ FDR values were retained. Finally,
entries with no abundance values for all the four sub-groups were
removed. After filtering for these parameters a total of 2030 known
proteins, 1649 sORFs, and 9 altORFs were identified to be translated
(Supplementary Fig. 16).
All unmatched mass spectra from each step were then exported,

combined into a single mgf and duplicates were removed. B-cell-specific
mgf file contained 111,227 spectra and T-cell-specific mgf contained
100,942 spectra. These files were then re-searched against B or T-cell-
specific nucleotide proteogenomic databases in six frames. 18,545 mapped
to B-cell-specific nucleotide proteogenomic database, 7384 spectra
mapped T-cell-specific nucleotide proteogenomic database. Spectral
matches were then filtered and validated by two independent approaches.
The first validation was done with Mascot Decoy analysis in Mascot and a
second independent validation was done with Percolator analysis in
Proteome Discoverer (Thermo Scientific). Transcripts that were only
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identified by both the validation methodologies and with at least two
peptides matching them were considered as translated. A total of 259
transcripts from both B and T cells nucleotide proteogenomic databases
were identified to be translated with evidence of at least two peptides out
of a total of 766 peptides mapping to them and these 259 regions were
further analyzed as discussed below.

Further processing proteogenomic results
Of the 259 transcripts identified to be translated, 176 transcripts were
identified in B cells and 86 transcripts were identified in T cells. These
transcript regions varied in length, with the largest being 1.4 million bases,
and because two peptides were separated by vast distances in single
transcripts it was difficult to identify any undefined ORFs in this region. So,
we decided to investigate undefined ORFs based on individual peptides
within these transcripts. To do this, we aligned the peptide and searched
the genome up and downstream of the peptide until a stop or start codon
was encountered. Out of 766 peptides 689 peptides were unique and 632
peptides aligned mouse genome with e-value < 0.01. Of these 632
peptides we could annotate 617 peptides into 835 undefined novel ORF
regions. The genomic coordinates of these undefined ORFs (±500 bp up
and downstream) were subsequently classified using Ensembl API (GET
overlap/region) to identify neighboring genomic features (genes, tran-
script, exon, cds) in the mm10 genome. A small portion of these ORFs
could not be classified due to the genomic features from Ensembl
disagreeing at different levels.

DE analysis of B and T cell transcripts
The 12 CTAB outputs from the StringTie run with parameters ‘-Be’,
generated a list of sample-specific transcript FPKM values, which were
used as inputs for DE analysis. Ballgown’s ‘stattest’ function performs a log2
transformation on the library-normalized FPKM values, fits the normalized
values to a standard linear model and calculates p and q values for the
transcripts. Here, transcripts with q values < 0.01 were called differentially
expressed. Finally, the list of DE transcripts was filtered using
Benjamin–Hochberg corrected p-values at a cutoff of 0.05.

Structure prediction of sORFs, altORFs, and translated
products from undefined novel ORFs
EVFold pipeline was setup according to instructions on the GitHub
repository (https://github.com/debbiemarkslab/EVcouplings) on an
Ubuntu AWS instance. This included the installation of the following
software Hmmer suite 3.0, PLMC, CNS solve 1.2, HH-suite, Psipred,
Maxcluster64. The database used was the recommended Uniref90
downloaded from https://www.uniprot.org/downloads.

GO analysis of sORFs and altORFs against known proteins
Using interproscan-5.29-68 (downloaded from https://www.ebi.ac.uk/
interpro/download.html), we annotated sORFs and altORFs for which we
have translational evidence in at least one sample. In order to allow a fair
comparison, known proteins downloaded from uniprot with translational
evidence were also annotated with interproscan serving as a reference
point. Non-automated annotation was not used as this information is not
available for the majority of sORFs and altORFs. Proteins in the reference
genome were referenced using uniprot accession IDs and the genes
mapped to these IDs were obtained using the uniprot online mapping
service (https://www.uniprot.org/mapping/). Analysis was performed on
presence or absence of GO term annotation rather than the number of
times the gene or protein might have been annotated with the same
GO term.
Chi-squared tests were then performed with expected values based on

the known protein proportions. The Bioconductor qvalue package was
used to calculate q-values to be used for FDR correction. Cutoffs of q < 0.01
and p < 0.01 were used to select significantly enriched or depleted GO
terms in sORFs. This analysis was not carried out for altORFs due to the low
number of annotated GO terms. The significant GO terms were then
clustered using the Bioconductor GOSim package using default settings of
getTermSim.

Mapping and visualization of disease-associated mutations in
sORFs and undefined ORFs from the mouse study
We developed computational strategies using bedtools intersect to
map mutations from the HGMD and COSMIC database on to protein
and protein-like products from the noncoding regions. For that we had
to first identify human homologous sequences. Briefly, LiftOver and
NCBI tblastn, with attributes -word_size 2, was used to map mouse
sORFs to the human genome, build hg38. tblasn results further filtered
using the following tblastn parameters constraints pident>80 &
ppos>80 & ((mismatch*100)/qend) <10 & ((qstart*100)/qend) <25 &
qcovs >80 & gaps ≤ 2 & gapopen ≤ 1).
LiftOver and tblastn mapped 4325 mouse sORFs to 1339 and 3429

regions for build hg38, respectively. Only 1339 regions for hg38 were
mapped commonly from both LiftOver and tblastn. GRCh38-mapped
coordinates of the translated nORFs were scanned against Cosmic and
HGMD variant databases using bedtools intersect without strand
specification. Mapped mutations from each region were then compared
to the coding sequence of each sORF to determine potential changes to
amino acid sequence using python script. For the sORFs with predicted
structures available, the mutations were mapped onto the PDB file and
visualized with Pymol as red colored residues.

DE analysis of nORF transcripts using Xena’s TCGA-TARGET-
GTEx dataset
The expression of transcripts translating low-noise nORFs (identified from
353 datasets corresponding to 11 cell types downloaded from RPFdb), was
investigated in 19 human cancers with the objective to identify probable
cancer markers. The 225,273 low-noise, unique nORFs mapped to 96,828
unique transcripts, of which 43,653 are not of the transcript_type as
‘protein_coding’ and status as ‘known’ according to gencode v23. This list
of 43,653 transcripts was further filtered to retain only the 110 non-
protein_coding transcripts which translates unique low-noise nORF in all
the 11 cell types.
To compare the expression of nORF transcript in a particular cancer to its

expression in the corresponding healthy tissue, isoform level (RSEM-TPM)
abundances, cataloged at UCSC Xena (cohort: TCGA TARGET GTEx, version
2016-09-02), was used27. These datasets are generated by uniform
processing of RNAseq raw reads from TCGA’s tumor and matched normal
samples and GTEx’s healthy tissue samples using a recently published TOIL
pipeline. The TCGA cancers and their corresponding healthy tissues from
GTEx, along with the number of samples in each case, analyzed in this
study is given in Supplementary Table 6.
Each transcript in the whole transcriptome was annotated as ‘expressed’

in that study (GTEx normal and TCGA tumor) if it had non-zero expression
in more than 25% of the samples. The expressed transcripts were further
analyzed for DE between GTEx vs. TCGA tumor, using Welch’s t-test with
BH correction.

Mouse sORFs structure prediction and mutation mapping
Human ortholog transcript of one mouse sORF that is translated in mouse
B and T cells was identified, its structure predicted and inhibitors were
screened against it. The details are as follows.
Human ortholog of mPLsORF0000447155 sORF was identified using

tblastn+liftover (e-value: 4.00E−19, length: 90, pident: 91.11, mismatch: 8),
and it maps to a genomic location of a human transcript
ENST00000427352.1: chr5:115553723–115553992:- (GRCh37). This tran-
script ‘ENST00000427352.1’, annotated is ‘processed_pseudogene’, is
expressed only in the tumor samples of stomach adenocarcinoma,
esophageal carcinoma, acute myeloid leukemia, and is expressed only in
the normal samples of testicular germ cell tumor. We call a transcript
expressed in particular condition if it has non-zero expression in more than
10% of the samples. We mapped two cosmic noncoding mutations to this
transcript. Structure of the human sORF was predicted using Evfold
pipeline with the following parameters: Bit score= 0.2, seqlen= 90, N_eff/
L= 3.85, number of effective sequences= 342, number of sequences in
alignment (num_seqs)= 1063, perc_cov= 0.944. Figure 6b shows the
structure along with the mutations mapped.

Inhibitor screens for the two sORFs identified to be disrupted
in cancers
Structure predicted from ENST00000427352.1 (human ortholog of
mPLsORF0000447155 sORF) was chosen for drug screening study. Briefly,
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structure-based virtual screening analysis was performed using Virtual
screening workflow of Schrödinger software suite (http://gohom.win/
ManualHom/Schrodinger/Schrodinger_2015–2_docs/vsw/vsw_user_manual.
pdf). First in the protein preparation step, the structure was minimized using
protein preparation wizard in maestro 12.1 (Schrodinger) applying force field
OPLS3 with default parameters. Next, the active sites were predicted using
SiteMap (Schrodinger) and CastP. The grid was generated at all the active site
residues of the topmost scoring pocket identified by the two tools.
mPLsORF0000447155: MPKRKAEGDAKGDKTKVKDEPQRRSARLSAKPAPP

KPEPKPKKAPAKKGEKVPKGKKGKADAGKDANNPAENGDAKTDQAQKAEGAGD
AK.
Peptide sequence of the product translated from ENST00000427352.1:

MPKRKAEGDAKGDKAKVKDEPQRRSARLSAKPASPKPEPRPKKAPAKKGEKVPKG
RKGKADAGKEGNNPAENGDVKTDQAQKAEGAGGAK.
The predicted active Site Residues used in docking are given in

Supplementary Table 6 and the accompanying associated figure is
Supplementary Fig. 32.
The virtual screening involved the following three stages: 1. high throughput

virtual screening (HTVS), 2. standard precision (SP), and 3. extra precision (XP)
docking. The small molecules of the following three libraries obtained from
Asinex library was used for docking: Immuno oncology (11,346) compounds
(http://asinex.com/wp-content/uploads/2017/01/2016–11-Asinex-Immuno-
Oncology-11346.zip), targeted oncology (6728) compounds (http://asinex.com/
wp-content/uploads/2016/11/2016–11-Asinex-Targeted-Oncology-6728.zip),
and signal pathway inhibitors (5923) (http://asinex.com/wp-content/uploads/
2017/01/2016–11-Asinex-Signal-Pathway-Inhibitors-5923.zip). The 2D SDF for-
mat of all the compounds structures in these libraries were converted into 3D
format using Schrodinger’s LigPrep module with OPLS3 Force Field. A three-
step docking methodology was used—Glide HTVS, SP, and XP. Listed below
are the details of the predicted best hit compounds searched from the three
asinex libraries.
Docking scores for the top Immuno-oncology library compounds,

targeted-oncology library compounds, signaling pathway inhibitors are
given in Supplementary Tables 7–9, respectively, and their associated
figures are Supplementary Figs. 33–35, respectively.
MM-GBSA-binding energies, which estimates relative binding affinities

for the few best hit immuno-oncology compounds, targeted-oncology
compounds, and signaling pathway inhibitors are given in Supplementary
Tables 10–12, respectively.

Reporting summary
Further information on research design is available in the Nature Research
Reporting βSummary linked to this article.
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