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Abstract—Recently, there is an increased interest in the study
of modulo analog to digital converters (ADCs). These new
systems can reconstruct a signal whose amplitude is much higher
than the conventional ADC’s dynamic range. Modulo ADCs are
characterized by their modulo threshold and in the current
literature, all existing works are limited to real-valued moduli.
In this paper, we propose multi-channel modulo samplers with
complex-valued moduli to sample a band-limited complex signal.
Specifically, we discuss the construction of complex divisors
from Gaussian integers and propose their efficient implemen-
tations. A memory-efficient, closed-form recovery algorithm is
also proposed. Simulation results demonstrate that the proposed
systems can provide stable reconstruction of a high dynamic
range complex-valued signal at low sampling rates.

Index Terms—Analog-to-digital conversion (ADC), Complex
signal representations, Modulo samplers, Chinese reminder the-
orem (CRT), Gaussian integers

I. INTRODUCTION

Complex signal representations have found many applica-
tions in radar, control and communications. In this paper,
we consider the sampling of a continuous-time, finite-energy,
band-limited complex-valued signal g(t) = gI(t)+igQ(t) with
a maximum angular frequency of Ω, where gI(t) and gQ(t)
represent the real part (I-channel) and the imaginary part (Q-
channel) of g(t), respectively. We are interested in the scenario
when the amplitudes of gI(t) or gQ(t) are much higher
than the dynamic range of the analog-to-digital converter
(ADC). Recently, unlimited sampling framework with modulo
sampling hardware was developed in [1]–[4]. Specifically, for
a given x ∈ R and ∆ > 0, the modulo operation is defined as
[1], [5]

〈x〉∆ = x mod ∆ , x−∆
⌈ x

∆

⌋
, (1)

where dtc , argminb∈Z |t − b| is the “rounding” operation,
which returns the closest integer to t [1], [5].

According to Unlimited Sampling Theorem in [1], [3], g(t)
can be recovered from its modulo samples through higher
order differences (HOD) reconstruction if the sampling period
Tus satisfies Tus ≤ 1/(2eΩ). That is, for HOD, the required
sampling rate Fs is at least 2eπfNYQ ≈ 17.1fNYQ, in which
fNYQ is the Nyquist rate. For some wide-band applications, it
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TABLE I: Comparison of different modulo samplers for noise-
free reconstruction

Methods L Minimum Fs gmax Same |∆l|
[1], [3] 1 2πefNY Q <∞ Yes

[5] 1 > fNY Q
1 <∞ Yes

[13] 2 2fNY Q <τ0∆/2 No
This work 2 2fNY Q <|τ0|∆/2 Yes

1 Restriction: There exists a negative integer N so that
|g(n/Fs)| < ∆/2 when n < N [5].

may be difficult to achieve such a high sampling rate. In [5],
it was shown that if Fs > fNYQ, reconstruction is possible by
using a prediction filter constructed from Chebyshev polyno-
mials (ChP). However, this method requires the knowledge of
unfolded samples, i.e., there exists a negative integer N so that
|g(n/Fs)| < ∆/2 when n < N . For real-world applications,
this condition is often impractical. Additionally, this method is
sensitive to noises. For other works on single-channel modulo
ADCs, we refer the readers to [2], [6]–[12] and the references
therein.

In [13], multi-channel modulo samplers were developed
based on Chinese remainder theorem (CRT). In an L-channel
modulo ADC, each channel samples at fNYQ with different
dynamic ranges ∆0 < ∆1 < · · · < ∆L−1

∆l = ετl 0 ≤ l ≤ L− 1, (2)

where ε is a positive real number and τl (0 ≤ l ≤ L − 1)
are L jointly prime positive integers. In the noiseless case,
only 2-channels are required with a total sampling rate of
Fs = 2fNYQ. Besides, each signal sample can be recovered
independently [13]. However, once ∆l are fixed, the maximum
signal amplitude gmax for reconstruction is bounded by Pε/2,
in which P is the least common multiple (lcm) of τl. In
addition, as ∆l are different, the calibrations of ADC dynamic
ranges may be complicated.

In this paper, we propose multi-channel modulo samplers
with complex-valued moduli ∆l. Specifically, the positive
integers τl in (2) are generalized to Gaussian integers of the
form τl = pl+iql, in which pl and ql are non-negative integers.
Our main contributions include: i) Selection of moduli:
We propose to use pairwise co-prime Gaussian integers τl
in (2), which allows for recovery of a signal with larger
dynamic range than that of real-valued moduli (Section II).
We prove that perfect recovery can be achieved at a total
sampling rate of 2fNYQ (Proposition 1). ii) Implementation:
We develop implementation diagram of complex modulo op-
erations by applying analog phase-shifts before modulo ADCs
(Section III-A). In the special case when L = 2, all modulo
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Fig. 1: Region of complex remainder sets S(3 + 4i).

ADCs have the same dynamic range in our proposed systems,
which is impossible for multi-channel systems developed in
[13]. iii) Reconstruction: For two co-prime Gaussian integers
x0 = p + iq and x1 = p − iq, we prove that x−1

0 mod x1

is a rational integer (Proposition 2). Based on robust CRT of
[14], a 2-stage memory-efficient reconstruction algorithm can
be obtained. Simulation results in Section IV demonstrate the
effectiveness of the proposed systems. As a quick summary,
Table I lists the required total sampling rate Fs and maxi-
mum achievable signal amplitude gmax for different modulo
samplers in noiseless measurements.

Notations: Throughout this paper, i =
√
−1 and e =

exp (1). The set of rational integers is denoted as Z. For a
real number x, dxe and dxc correspond to the ceiling and
rounding operations, respectively. For a complex number x,
Re(x) and Im(x) are its real and imaginary parts, respectively.
The rounding operation is given by dxc = dRe(x)c+idIm(x)c.
For a non-zero complex modulus ∆, 〈x〉∆ represents the
modulo operation in (1). The fundamental domain of ∆ is
denoted as S(∆), which represents its remainder set [15]:

S(∆) =

{
∆(α+ iβ), −1

2
< α, β ≤ 1

2

}
. (3)

Geometrically, S(∆) is a rotated square with 4 vertices at
∆
2 (1 + i), ∆

2 (1 − i), ∆
2 (−1 − i) and ∆

2 (−1 + i). As an
example, Fig. 1 shows S(3 + 4i). For a complex signal
g(t) = gI(t) + igQ(t), gmax is given by

gmax = max
(
‖gI(t)‖∞ , ‖gQ(t)‖∞

)
, (4)

where the subscript ∞ denotes the infinity norm.

II. SELECTION OF COMPLEX MODULI

In this section, we first introduce basics of Gaussian integers
and then present muli-channel modulo samplers constructed
from complex moduli. A Gaussian integer x can be written as
x = p+ iq with p, q ∈ Z. Its norm N (x) is given by [16]

N (x) = xx = |x|2 = p2 + q2, (5)

where x is the complex conjugate of x. For two Gaussian
integers x0 and x1, they are relatively prime (or co-prime) if
and only if there exist two Gaussian integers α and β so that
the Bézout’s identity holds, i.e., x0α+x1β = 1. Alternatively,

TABLE II: Comparisons of gmax for real- and complex-valued
moduli for |∆l| ≤ 5 and ε = 1

L Moduli ∆l gmax

2 Real [13] 5, 4 < 10
Complex 3 + 4i, 3− 4i < 12.5

3 Real [13] 5, 4, 3 < 30
Complex 3 + 4i, 3− 4i, 4 < 50

4 Real [13] 5, 4, 3, 1 < 30
Complex 3 + 4i, 3− 4i, 1 + 4i, 1− 4i < 212.5

x0 = p0 + iq0 and x1 = p1 + iq1 are co-prime if and only if
their greatest common divisor (gcd) satisfy [17]

gcd (N(x0),N(x1), p0p1 + q0q1) = 1. (6)

In the special case when x0 = p+ iq and x1 = p− iq, (6) can
be simplified as [18]

gcd(p, q) = 1 and |p− q| mod 2 = 1. (7)

That is, p, q are co-prime with different parities, i.e., one odd
and one even.

Next, we propose a multi-channel modulo sampler con-
structed from L complex divisors ∆l (0 ≤ l ≤ L− 1), where
τl in (2) are pairwise co-prime Gaussian integers. Besides, in
the first 2L1 divisors, τ2l and τ2l+1 (0 ≤ l ≤ L1 − 1) are
complex conjugate pairs:

τ2l = pl + iql and τ2l+1 = pl − iql, (8)

where pl and ql are positive integers. For the remaining L −
2L1 divisors, τl′ (l′ = 2L1, · · · , L − 1) are positive integers.
According to the generalized CRT [14], a complex number
x can be perfectly recovered from L remainders 〈x〉∆l

(l =
0, · · · , L− 1) if x ∈ S(Pε), or equivalently,

|Re(x)| < Pε/2 and |Im(x)| < Pε/2, (9)

where P =
L1−1∏
l=0

(
p2l + q2l

)
·

L−1∏
l′=2L1

τl′ .

Hereafter, we will assume that |∆l| ≤ ∆max (l =
0, 1, · · · , L− 1), i.e., their magnitudes are bounded by ∆max.
The following example shows that our proposed system can
offer a larger signal dynamic range than that of the multi-
channel system with only real-valued moduli [13].

Example 1: In this example, we compare the upper bound
of gmax for complex and real moduli [13]. Suppose that ε = 1
and we restrict |∆l| ≤ 5. For L = 2, 3 and 4, Table II lists
the corresponding ∆l (l = 0, · · · , L − 1) that can achieve
maximum gmax. This table implies that by extending τl to
Gaussian integers, one can sample a signal with a much higher
dynamic range.

The next proposition proves that with a careful selection of
τl and ε, a band-limited signal g(t) with known gmax can be
recovered at Fs = 2fNYQ and |∆0| = |∆1| = ∆max.

Proposition 1: Suppose that g(t) is a finite-energy, band-
limited complex-valued signal with gmax defined as in (4).
Assume that the maximum dynamic range of modulo ADC is
∆max. Consider a 2-channel modulo sampler with ∆l = τlε
(l = 0, 1) and τ0 = p+ iq and τ1 = p− iq, in which

p =

⌈
2gmax

∆

⌉
, q =

{
1; p even
2; p odd , ε =

∆max√
p2 + q2

. (10)
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Fig. 2: Block diagram to generate r′2l,k =
〈
gke

−jθl
〉
ρl
+ δ′2l,k

and r′2l+1,k =
〈
gke

jθl
〉
ρl
+ δ′2l+1,k.

Then, g(t) can be completely recovered from noise-free mod-
ulo samples 〈gk〉∆l

(l = 0, 1) with gk = g(k/fNYQ) (k ∈ Z).
Proof: From (10), it is clear that gcd(p, q) = 1 and

p, q have different parities. Thus, τ0 and τ1 are co-prime.
Besides, it is straightforward |∆0| = |∆1| = ∆max. By
(9)-(10), the maximum achievable range is |τ0|∆max/2 =√

p2 + q2∆max/2 > p∆max/2 ≥ gmax. Thus, if each chan-
nel is sampled at the Nyquist rate fNYQ, gk = g(k/fNYQ)
can be reconstructed perfectly from 〈gk〉∆l

(l = 0, 1). That is,
the total sampling rate is Fs = 2fNYQ.

Remarks: i) The selection of p and q in (10) is not unique. ii)
Recall that the minimum Fs is also 2fNYQ for multi-channel
system with real-valued moduli [13]. However, the modulo
ADCs in [13] need to have different dynamic ranges, which
makes it difficult for ADC calibration.

III. IMPLEMENTATION AND RECONSTRUCTION

A. Implementation

The previous subsection shows that with complex divisors,
one can reconstruct a signal with higher dynamic range.
Note that the dynamic range of a modulo ADC is a positive
real number. One may wonder how to implement modulo
operations for complex divisors? To address this issue, we
first express ∆2l and ∆2l+1 (0 ≤ L1 − 1) in polar forms

∆2l = ρle
jθl , ∆2l+1 = ρle

−jθl , (11)

in which ρl = ε
√
p2l + q2l and θl = arctan(ql/pl). Denote

gk = g(k/fNYQ) and define y′2l,k and y′2l,k as follows

y′2l,k =
〈
gke

−jθl
〉
ρl
, y′2l+1,k =

〈
gke

jθl
〉
ρl
. (12)

From (11) and (12), one can easily prove

y′2l,ke
jθl = 〈gk〉∆2l

, y′2l+1,ke
−jθl = 〈gk〉∆2l+1

. (13)

Note that y′2l,k and y′2l+1,k in (12) can be acquired by
1) Applying phase shifts to g(t) to produce g2l(t) =

g(t)e−jθl and g2l+1(t) = g(t)ejθl ;
2) Sampling g2l(t) and g2l+1(t) using modulo ADCs with

dynamic range ρl.
Phase shifting of g(t) by −θl and θl are equivalent to multi-
plying

[
gI(t) gQ(t)

]T
with Rl and R̂l, respectively

Rl =

[
cos(θl) sin(θl)
− sin(θl) cos(θl)

]
, R̂l =

[
cos(θl) − sin(θl)
sin(θl) cos(θl)

]
.

The corresponding implementation diagram is shown in Fig. 2.
Here, the outputs r′2l,k and r′2l+1,k are given by

r′2l,k = y′2l,k + δ′2l,k, r′2l+1,k = y′2l+1,k + δ′2l+1,k (14)

in which δ′2l,k and δ′2l+1,k are errors introduced by modulo
ADCs. Eq. (13) suggests we can use r′2l,ke

jθ and r′2l,ke
−jθ

to approximate modulo samples 〈gk〉∆2l
and 〈gk〉∆2l+1

for
reconstruction.

Note that in the special case with L = 2, Fig. 2 indicates that
4 modulo ADCs with the same dynamic range ρ0 are required.
If τ0 and τ1 are positive integers as proposed in [13], 4 modulo
ADCs with 2 different dynamic ranges are needed. Thus, the
proposed systems offer simpler ADC calibrations. The extra
cost here is the analog phase rotations.

B. Reconstruction

We now consider the reconstruction of gk from noisy mod-
ulo samples. Since CRT is applicable to Gaussian integers, one
can use any existing recovery algorithms by replacing positive
integers with Gaussian ones [14], [19]–[28]. We consider
robust CRT (RCRT) [14] as it has a closed-form solution with
fast implementation. Just as classical CRT, RCRT requires pre-
calculated modular multiplicative inverses. Simply speaking,
for two co-prime Gaussian integers a and b, a Gaussian integer
c ≡ a−1 mod b is a’s modular multiplicative inverse modulo
b if ca mod b = 1. For general Gaussian integers a and b, c
is complex-valued. But for co-prime pairs x0 = p + iq and
x1 = p − iq, Proposition 2 shows that x−1

0 mod x1 is an
integer in Z.

Proposition 2: Suppose that x0 = p + iq and x1 = p − iq
are co-prime with p, q ∈ Z+. Then, the modular multiplicative
inverse c ≡ x−1

0 mod x1 is a rational integer.
Proof: By (7), the co-prime condition of x0 and x1

implies gcd(p, q) = 1 and p, q have different parities. Without
loss of generality, we assume that p is odd and q is even.
Under such an assumption, it is clear that p2 + q2 is an odd
number, i.e., gcd(p2 + q2, 2) = 1. Besides, as gcd(p, q) = 1,
gcd(p2 + q2, p) = 1. Therefore, gcd(p2 + q2, 2p) = 1. By
Bézout’s identity, there exist two integers c, d ∈ Z so that

c · 2p+ d · (p2 + q2) = 1 (15)

As 2p = x0 + x1 and p2 + q2 = x0x1, we have

cx0 + cx1 + dx0x1 = 1,

which implies that cx0 mod x1 = 1, i.e., c is the multiplicative
inverse of x0 modulo x1. When q is odd and p is even, the
proof can be done in a similar way.

Based on the above proposition, we propose a 2-stage
reconstruction algorithm as in [21]. In the first stage, RCRT
[14] is applied to erroneous remainders of ∆2l and ∆2l+1 for
l = 0, 1, · · · , L1 − 1 to solve x̂l,k

〈x̂l,k〉∆2l
≈ r′2l,ke

jθl , (16)

〈x̂l,k〉∆2l+1
≈ r′2l+1,ke

−jθl . (17)

By Proposition 2, the modular multiplicative inverses
τ−1
2l mod τ2l+1 are integers in Z. In the second stage, we aim
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to get reconstructed signal sample ĝk through RCRT [14]

〈ĝk〉Nlε
≈ x̂l,k, l = 0, · · · , L1 − 1 (18)

〈ĝk〉∆′
l

≈ rl′,k, l′ = 2L1, · · · , L− 1 (19)

in which Nl = p2l + q2l and rl′k = 〈gk〉∆l′
+ δl′,k with δl′,k

being the ADC error (l′ = 2L1, · · ·L − 1). As Nl and τ ′l
are positive integers, all the modular multiplicative inverses
are positive integers. Thus, the proposed algorithm is memory
efficient as we only need to store rational integers. In addition,
following a similar analysis as in [14], [21], one can show that
if the errors from modulo samplers satisfy

|δ′l,k| < ε/4, |δl′,k| < ε/4, (20)

stable reconstruction can be achieved with |ĝk − gk| < ε/4.
Remark: For L = 2, Eq. (10) implies that ε becomes small

when gmax gets large. To improve the system’s robustness to
ADC noises, over-sampling is required by increasing ε and L
under the constraint |∆l| ≤ ∆max.

IV. SIMULATIONS

We report simulation results for different modulo ADCs
to sample complex-valued, band-limited signals g(t) with
maximum angular frequency Ω = π rad/s (fNYQ = 1 Hz).
We restrict |∆l| ≤ 5 in all simulations. For multi-channel
systems, ε = 1 and each channel is sampled at 1 Hz. We
run simulations with L = 2 (Fs = 2 Hz) and L = 3 (Fs = 3
Hz) for both real-valued [13] and complex-valued moduli. The
corresponding values of ∆l and achievable gmax can be found
in Table II. For single-channel systems, we fix ∆ = 5 and
consider i) HOD reconstruction [1], [3] at Fs = 18 Hz and ii)
ChP-based reconstruction [5] for Fs = 2 Hz and Fs = 3 Hz,
respectively. Each test signal g(t) can be expressed as

g(t) =

10∑
k=−10

A · (ak + ibk)sinc(t− k), −40 ≤ t < 40 (21)

where sinc(t) = sin(πt)
πt is an ideal low-pass filter in [−π, π].

Coefficients ak and bk are uniformly distributed in [−1, 1] and
A is a constant to obtain different gmax. The input signal to
noise ratio (SNR) follows the same definition as that in [7] and
varies from 10 dB to 40 dB with a step size of 2 dB. For each
input SNR, we produce Q = 104 realizations of g(t). The root
relative square error (RRSE) is used to quantify reconstruction
error:

RRSE =

√∑
n |g(n/fs)− ĝ(n/fs)|2∑

n |g(n/fs)|
2 , (22)

where fs = Fs/L is the sampling frequency for each channel.
Fig. 3a and Fig. 3b show the results of average RRSE

for gmax = 9.5 and gmax = 48, respectively. In these
figures, κ denotes the order of finite difference in HOD-based
reconstruction [1], [3]. For ChP-based method [5], the filter
order is 2K, where K represents the order of Chebychev
polynomial calculated from Eq. (9) in [5]. One can observe
that for gmax = 9.5, HOD [1], [3] offers the best performance
at Fs = 18 Hz for input SNR from 12 to 20 dB. In fact,
HOD reconstruction can work at sampling rates lower than
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Fig. 3: Reconstruction results for different modulo samplers
(a) gmax = 9.5 (b) gmax = 48.

2eπfNYQ for high SNR [3]. However, HOD’s performance
degrades for gmax = 48 and low SNR. For ChP-based
reconstruction [5], it produces large reconstruction error at
Fs = 2 Hz or Fs = 3 Hz even at high SNR. For multi-channel
systems in [13], they work well for gmax = 9.5, but fail at
gmax = 48 as the signal’s amplitude exceeds the maximum
achievable dynamic range. Our proposed systems offer the best
performance at gmax = 48 and they are slightly worse than the
system in [13] for gmax = 9.5. Thus, they hold great potential
to sample a high dynamic range complex-valued signal at low
sampling rates.

V. CONCLUSIONS

This paper proposes multi-channel modulo sampling sys-
tems based on Gaussian integers. In particular, we discuss the
selection of complex divisors and propose implementations
through modulo ADC systems. Besides, a memory efficient,
closed-form reconstruction algorithm is presented for robust
recovery. Compared with multi-channel modulo samplers with
only real-valued divisors [13], the proposed systems can
recover a signal with higher dynamic range. Compared with
single-channel modulo samplers [3], [5], our system can offer
stable reconstruction with a provable error bound at much
lower sampling rates.
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