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Abstract

The prediction of the onset of different complications of disease, in general, is challenging due to

the existence of unmeasured risk factors, imbalanced data, time-varying data due to dynamics,

and various interventions to the disease over time. Scholars share a common argument that

many Artificial Intelligence techniques that successfully model disease are often in the form of a

"black box" where the internal workings and complexities are extremely difficult to understand,

both from practitioners’ and patients’ perspective. There is a need for appropriate Artificial

Intelligence techniques to build predictive models that not only capture unmeasured effects to

improve prediction, but are also transparent in how they model data so that knowledge about

disease processes can be extracted and trust in the model can be maintained by clinicians.

The proposed strategy builds probabilistic graphical models for prediction with the inclusion

of informative hidden variables. These are added in a stepwise manner to improve predictive

performance whilst maintaining as simple a model as possible, which is regarded as crucial for

the interpretation of the prediction results. This thesis explores this key issue with a specific

focus on diabetes data. According to the literature on disease modelling, especially on major

diseases such as diabetes, a patient’s mortality often occurs due to the associated complications

caused by the disease over time and not the disease itself. This is often patient-specific and

will depend on what type of cohort a patient belongs to. Another main focus of this thesis is

patient personalisation via precision medicine by discovering meaningful subgroups of patients

which are characterised as phenotypes. These phenotypes are explained further using Bayesian

network analysis methods and temporal association rules. Promising results are documented

on a real-world dataset of diabetes sufferers from an Italian Hospital, illustrating that firstly,

hidden variable discovery within probabilistic graphical models can act as an ideal framework

to improve prediction of comorbidities by modelling complex disease progression; secondly,

that inference methods can aid the understanding of the influences of these hidden variables;

finally, that the obtained significant subgroups of patients can be explained and characterised

using a combination of latent variable analysis and temporal association rules so that clinicians

can be empowered to focus on early diagnosis and treatment in a personalised way.
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Chapter 1

Introduction

This thesis explores Artificial Intelligence (AI) techniques for modelling the progression of

disease whilst simultaneously stratifying patients and doing so in a transparent manner as

possible. It uses diabetes as a case study. Diabetes is a chronic disease with an onset that

is commonly associated with multiple life-threatening comorbidities (complications). Early

prediction of diabetic complications and the behaviour of associated risk factors can reduce

patients’ suffering time. Therefore, models of time-series diabetic data (which can often be

imbalanced, incomplete and involve many complex interactions) are needed to better manage

the disease. Unlike earlier work in modelling diabetes, here the focus is upon a combination of

both descriptive and predictive data mining methodologies to accurately predict complications

through explainable patient models. Firstly, the thesis describes how best to enhance the

prediction performance and reduce bias in the models inferred from complex time-series data;

secondly, it deals with imbalanced clinical data by using various re-balancing approaches, whilst

determining the precise influences of unknown risk factors (hidden/latent variables) within a

probabilistic network framework; finally, it considers how to group the patients into meaningful

subgroups by means of latent variables in order to discover how complications can interact

differently on some patients. This introductory chapter describes the motivation behind the

proposed methodologies and contributions of the research, sets out some initial background

and outlines a roadmap of the thesis.

1



Chapter 1: Introduction Leila Yousefi

1.1 Motivation

Clinicians attempt to help patients by using quality care for a range of life-threatening diseases,

while they monitor the associated comorbidities. Despite the recent improvement in general

practice, it has been reported that nearly half of patients still do not receive this expected care

[57]. Clinicians also predict disease and related complications based on their prior knowledge

and an individual patient’s clinical history. Many studies have attempted to find automated

ways of helping clinicians to predict disease progression. However, data that is required to

learn predictive models are often biased or limited, though better predictions could save the

National Health System (NHS) billions of pounds [92]. This thesis looks at Type 2 Diabetes

as a case study, which is often known as a “silent killer”. It is increasingly seen as a serious,

worldwide public health concern. The World Health Organisation (WHO) claims that diabetes

is a major cause of blindness, heart attacks, kidney failure, stroke, and foot damage. It also

reported that Type 2 Diabetes Mellitus (T2DM) accounts for at least 90% of all types of

diabetes. Based on another investigation carried out by the WHO, it revealed that in the next

ten years, there would be about 550 million people suffering from this disease, and it would

be the 7th leading cause of death. The first step in the development of T2DM appears to be a

condition where cells of the body develop insulin resistance. This is because the patient’s body

does not respond well to insulin—insulin should be informing cells to request blood sugar, but

in insulin resistance, cells tend to ignore this signal. Eventually, after a few years of insulin

resistance, the outcome is T2DM with high blood sugar levels (which can negatively affect the

nerves, blood vessels, and cause more complications to be developed) [31]. It has been observed

that patients with T2DM are also at increased risk of micro-vascular comorbidities, including

kidney damage (nephropathy), nerve damage (neuropathy) and eye disease (retinopathy) [102].

Patient mortality often occurs due to complications caused by the disease and not the

disease itself. Nevertheless, for a long time, these life-threatening complications have remained

un-diagnosed because of the hidden patterns of their associated risk factors [138].

Lack of prediction of the onset of associated diseases/complications can negatively affect

a patient’s health in many ways. They can be numerous and interact in complex non-linear
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ways throughout the disease process. Patients must switch to different medications as more

complications develop. T2DM is potentially reversible, treatable, and manageable if caught

early enough. Early diagnosis and management of the disease can reduce the risk of compli-

cation development [9]. As a result, clinical data needs to be considered as a time-series so

that the progression of the disease can be captured as early as possible. However, dealing with

time-series patient records is known to be a significant issue in the prognosis of complications

[9]. This is because predicting a target complication can be challenging without the consider-

ation of associated historical complications. Many of the state-of-the-art AI techniques used

in modelling disease are often in the form of a “black box”, such as deep learning approaches

where the internal workings and complexities are extremely difficult to understand, both from

practitioners’ and patients’ perspectives. Unlike simpler models such as logistic regression,

these approaches are complex and not easy to explain. For example, the complexity of count-

less hidden layers in a deep neural network and their interconnections makes it challenging to

determine precisely how predictions are being made.

1.2 Contributions

This thesis contributes in several ways to our understanding of AI models can be used to

generate accurate predictions, whilst remaining explainable. It demonstrates how a graphical

model approach with latent variables can provide a basis for better prediction of disease com-

plications while assessing whether the controlled explicit modelling of unmeasured effects is an

appropriate way for “Opening the black box” in disease prediction. These contributions can be

summarised as follows:

1. Utilising appropriate data mining (supervised and unsupervised learning)

approaches to modelling disease:

• Modelling disease by using probabilistic AI models: Probabilistic graphi-

cal models such as Dynamic Bayesian Networks (DBNs) are chosen because both

explanation and prediction are key. These models are more informative from the
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qualitative point of view, have demonstrated much promise in the modelling of dis-

ease progression and can naturally incorporate hidden variables. In this research,

a time-series predictive model was explored for the early prediction of the comor-

bidities from the diabetic patients’ follow-ups at the IRCCS Istituto clinic scientific

(ICS) Maugeri of Pavia, Italy.

2. Dealing with highly unbalanced clinical data: In traditional disease prognosis,

there are too many false positives / false negatives due to clinical data often being

highly imbalanced. Using a class balancing method along with the DBNs, would clearly

be beneficial. This thesis demonstrates how to extend DBN models to handle highly

unbalanced time-series clinical data:

• Time-Series Bootstrapping: A bootstrap technique was used that has been specif-

ically designed for longitudinal data where the occurrence of the positive class oc-

curs far less than the negative (typical in complications for patients diagnosed with

diabetes). The results of this study have illustrated that re-balancing data demon-

strated an improvement in prediction performance.

• Pair-sampling Strategy: Pair-sampling was exploited to effectively address unbal-

anced time-series medical data. This method divided the dataset into positive and

negative patient instances, from which the train and test data sets were generated.

• Classifying Disease Complications: This work investigated the problem of discover-

ing the relationships and interactions between binary T2DM complications whilst

addressing the unbalanced nature of the data when stratifying patients.

3. Modelling complex interactions among both observed disease risk factors/-

complication and unmeasured effects using a targeted hidden variable ap-

proach: This thesis explored the explicit modelling of relationships between latent vari-

ables and clinical features within a DBN framework. The discovered latent variables

help to reduce the uncertainty in the prediction process by identifying the relationship

between T2DM complications and risk factors.
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• Discovering a hidden variable and finding its precise location within the DBN struc-

ture.

• Obtaining an optimal number of hidden variables in a stepwise approach to avoid

creating overly complex models that risk overfitting and becoming “black box” in

nature: This study proposed a novel methodology for using multiple hidden variables

in a DBN structure so that unmeasured effects could be captured. A stepwise hidden

variable approach was developed. The extensive set of experiments showed that

the proposed method improves prediction accuracy, whilst identifying the correct

number of hidden variables, and targeting their precise location within the network

structure (therefore aiding explanation).

• Incorporating a Combination of the IC* algorithm and a Mutual Information based

scoring metric to identify the strength of relationships between the latent variables

and clinical risk factors: The hidden variable structure was learned by a constraint-

based method which calculated several conditional independence tests. A measure

of link strength was exploited to calculate the overall strength of the dependent

links. These combined methods helped to focus on the most powerful dependen-

cies between T2DM risk factors, enabled us to observe the specific impact of each

discovered edge in a DBN, and obtained a reliable structure.

• Exploiting appropriate data mining approaches to model complex interactions among

the complications: The temporal association rule mining was proposed to extract

the meaningful temporal patterns and sequence of time-series complications.

4. Personalising and handling the variability of progression in patients by iden-

tifying subgroups of patients that share similar behaviours (via a latent tem-

poral phenotype): Unsupervised learning was used to identify cohorts of patients with

similar sub-classes of disease trajectory and complications co-occurrence pattern. Sub-

groups of patients based upon a time-series clustering and hidden variable discovery

approach were found and aligned with the discovered clusters from the association rules

into knowledge. This research was a first attempt to combine hidden variable discov-
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ery with temporal association rules for investigating the relationships among the T2DM

complications. The following methodologies were utilised:

• The characterisation of temporal phenotypes from discovered hidden variables.

• Using a combination of time-series clustering with dynamic time warping and the

Jaccard index to group patients.

• The discovery of temporal phenotypes was combined with Temporal Association

Rule Mining to find similar subgroups of patients that aids explanation.

5. Focusing on explainable AI approaches to help “Open the Black Box”: Through-

out the thesis, a focus was kept on transparent models in the form of a probabilistic graph-

ical framework, a controlled approach to discovering hidden variables and a method for

the interpretation of their influences and semantics within a clinical perspective.

• This thesis attempted to interpret hidden variables. By exploiting methods to

explicitly model unmeasured risk factors within a graphical structure, not only could

disease progression modelling accuracy be improved, but it also allowed clinicians

to better understand their meaning.

• Discovering temporal phenotypes by identifying underlying sequences of temporally

associated complications for specific patient subgroups.

The promising experimental results demonstrate that patient personalisation using the

proposed methodology could provide better prediction accuracy and interpretability.

1.3 Thesis Outline

In Figure 1.1, the thesis methodology is outlined and organised as follows: Chapter 2 provides

a comprehensive literature review of the various machine learning approaches in the disease

prediction process. It then describes the T2DM dataset and some preliminaries (with nota-

tion) for the thesis content. An explanation of the time-series methodologies on diseases is

presented, followed by an introduction of the patient modelling approaches. Chapter 3 shows
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Figure 1.1: Methodology Process Diagram.

7



Chapter 1: Introduction Leila Yousefi

the key contribution of this work to model the time-series of clinical data with a graphical

probabilistic model. It mainly focuses on the state-of-the-art in the use of the DBNs and how

they can model Diabetic patients. It also includes the evaluation of the most common temporal

pattern discovery methods with respect to understanding and uncovering the hidden variables.

Part of the main findings in this chapter has been published in [140]. Chapter 4 presents a key

contribution of the thesis based on the identification of hidden variables in a DBN framework

to both improve the predictive accuracy and understand the relationship between hidden vari-

ables and the observed risk factors. It discusses how to obtain multiple hidden variables in a

stepwise approach while monitoring improvement in the prediction performance. It contributes

to how the discovered hidden variables explain the DBNs-based patient model. Most part of

this chapter has been published in [141, 144]. Chapter 5 presents another key contribution

based on patient stratification and modelling. It extends the work in the previous chapter by

utilising a time-series bootstrapping approach to balance data. It learned an optimal number

of the hidden variables in an enhanced version of the stepwise approach proposed in the pre-

vious chapter and contributed a journal paper currently under the peer review [139]. Chapter

6 employs both predictive and descriptive model and further characterisation of different pat-

terns in diabetes progression. It discusses the novelty of mining Temporal Associated Rules

for stratifying patients into meaningful sub-groups. The patients’ clusters found from the tem-

poral phenotype (obtained in chapter 5) are validated by using the clusters obtained based

on temporal association rules. Part of this work has been published in [141, 142, 143]. The

validation also aims to ensure a more meaningful characterisation of the subgroups of patients

can be identified (explaining the behaviour of the latent phenotype). Part of this work has

been published in Computational Intelligence journal [142]. Finally, chapter 7 concludes and

provides directions for future research.

1.4 Publications

• Predicting comorbidities using resampling and dynamic bayesian networks with latent

variables. In 2017 IEEE 30th International Symposium on Computer-Based Medical

8



Chapter 1: Introduction Leila Yousefi

Systems (CBMS) (pp. 205-206). IEEE.

• Predicting complications in Type 2 Diabetes Mellitus Using Dynamic Bayesian Networks.

IDA Springer, The 17 International Symposium on Intelligent Data Analysis.

• Predicting disease complications using a stepwise hidden variable approach for learning

dynamic bayesian networks. In 2018 IEEE 31st International Symposium on Computer-

Based Medical Systems (CBMS) (pp. 106-111). IEEE. “The best paper and presentation

award.”

• Predicting complications in Type 2 Diabetes Mellitus Using Dynamic Bayesian Networks,

2018 IEEE on Computer-Based Medical Systems (CBMS) Sweden PhD Consortium.

• Opening the Black Box: Discovering and Explaining Hidden Variables in Type 2 Dia-

betic Patient Modelling. In 2018 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM) (pp. 1040-1044).

• Opening the Black Box: Exploring Temporal Pattern of Type 2 Diabetes Complications

in Patient Clustering Using Association Rules and Hidden Variable Discovery. In 2019

IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS) (pp.

198-203), won "Vice-Chancellor’s Travel Prize”.

• Computer Science Brunel PhD Symposium (CSBPS 2019) and Poster Presentations,

"Opening the Black Box in Disease Prediction".

• Opening the Black Box: Patient Personalisation Using Hidden Variables in Type 2 Di-

abetes Prediction. Journal of Computational Intelligence (Special Issue of Biomedical

(Big) Data Science).

• Predicting Type 2 Diabetes Complications and Personalising Patient Using Artificial

Intelligence Methodology. A chapter of Type 2 Diabetes book (2020), publisher Inte-

chOpen.
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• Identifying Latent Variables in Dynamic Bayesian Networks with Bootstrapping Applied

to Type 2 Diabetes Complication Prediction. Journal of Intelligent Data Analysis (IDA).

Unpublished journal paper (2022).
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Chapter 2

Intelligent Data Analysis in Disease

Progression Modelling

2.1 Introduction

This chapter reviews the current literature on some of the most common AI methodologies,

including probabilistic modelling, association rule mining, and latent variable discovery. In-

telligent Data Analysis (IDA) is a subcategory of AI that is focused on data analysis and

modelling. These methods are known to be highly successful in combining advantages of mod-

ern data analytics, classical statistics and the expertise of scientists and experts [14, 16, 56].

IDA techniques have already proved successful in clinical modelling [10]. A large and growing

body of literature has investigated IDA approaches that have shown excellent results mod-

elling cross-sectional clinical data for classification. There has also been substantial modelling

on longitudinal data using IDA techniques. However, there is still an urgent need to improve

these models to take account of the variability of disease progression from person to person,

and explicitly model the time-varying nature of the disease. Many studies have attempted to

find automated ways of helping clinicians predict disease progression [108].

For many clinical problems, the underlying structure of unmeasured variables may play

an essential role in the progress of the disease. However, it is still a relatively unexplored

11



Chapter 2: Intelligent Data Analysis in Disease Progression Modelling Leila Yousefi

area. Identifying these unmeasured variables as hidden or latent variables is key. What is

more, understanding the semantics behind these unmeasured risk factors can improve the

understanding of the disease mechanisms and thus better improve clinical decision making.

Interpreting these latent variables is complicated; however, as they may represent different

many types of unmeasured information such as social deprivation, missing clinical data, en-

vironmental factors, time-based information or some combination of these. To gain trust in

any AI model, it is mandatory to understand/explain influencing factors of disease that guide

predictions or decisions. This is because clinicians expect to understand AI diagnoses to be

able to make decisions. There is a great deal of debate over the importance of explanation

in AI models inferred from health data. In particular, there is a balance that needs to be

made between the accuracy of complex “deep” models such as convolutional neural networks

(in predictive strategy) and the transparency of models (in descriptive strategy) that aims to

model data in a more “human” way such as expert systems.

A combination of explainable and “deep” strategies rather than either one of them alone

would have a better prognostic value. Furthermore, in order to obtain a more accurate and

explainable prediction of progression, the predictive models need to be personalised based on

how an individual patient matches historical data by identifying patient subgroups.

2.2 Probabilistic Model for Time-Series Analysis

Understanding the pattern of complications associated with the disease has been used signif-

icantly in the clinical domain [132]. It provides an insight into the prediction and relative

prevention of the associated complications which are expected to occur in a patient follow-up

[48]. It generally can lead to less suffering time for patients while saving time and cost to

healthcare. However, that is highly dependent on the stage of disease along with the prior

occurring complications, which is associated with time-series analysis. In time-series analysis,

every disease risk factor and complication is determined by various features in previous patient

visits (time interval). At every medical visit, all diabetic patients have a unique profile of

symptoms and complications that change over time, regardless of the phase of the disease.
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Figure 2.1: The organs/muscles affected by the common complications associated with Type 2 Diabetes

This non-stationary characteristic of clinical data collected as part of the monitoring of T2DM

creates a difficult context for effective forecasting [131]. Clinical data needs to be considered

as time-series data in order to provide a description of the progression of a disease over time.

Nevertheless, dealing with time-series patient records is known to be a major issue in the

prognosis of comorbidities [130], particularly when time-series data is imbalanced and contains

few examples of patients without comorbidities that are common to all patients. In Type 2

Diabetes, for example, once patients are diagnosed with T2DM, half of them show signs of

complications [128]. Unfortunately, these life-threatening complications remain undiagnosed

for a long time because of the hidden patterns of their associated risk factors [138]. If T2DM

is not appropriately managed, the development of serious complications, such as neuropathy,

retinopathy, and hypertension lead to disability, premature mortality and financial cost [41].

The prediction process is complex due to the interactions between these complications and

other features, as well as between complications themselves. More importantly, each patient

has a unique profile of complication occurrence and the status of T2DM risk factors during

a patient’s time-series is subject to change, as their levels may rise and fall over time. Early

diagnosis and prevention techniques are needed to reduce the associated mortality and morbid-
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ity caused by T2DM complications [79]. Although there are various methodologies for T2DM

prediction, for example, risk-prediction equation and Markov models [87], studies that en-

able early predictions of diabetes using predictive models are limited [61]. The risk-prediction

equations suffer from uncertainty as well as performing only one-step-ahead predictions, while

Markov models are limited to a small number of discrete risk factors.

There are various methodologies for T2DM prediction, e.g, risk-prediction equations and

Markov models [87]. In addition, various studies on longitudinal data mining literature sug-

gest an association between T2DM comorbidities and risk factors, e.g., [1]. Research on T2DM

prediction has often been restricted to modelling a limited number of visits. The most existing

literature on investigating the prognosis of T2DM complications, e.g., [36, 37] focuses partic-

ularly on logistic regression and Naïve Bayes. For example, for investigating the prognosis of

T2DM complications, [37] focuses on logistic regression and Naïve Bayes methods. In Naïve

Bayes, there is an assumption of independence among the risk factors whereas all features

are independent of one another. Dagliati et al. [36] presented a Hierarchical Bayesian Lo-

gistic Regression model to anticipate patients changes when the individual model parameters

are estimated. The major limitation of the previous work in T2DM literature derives from

time discretisation in temporal time slices per year. For example, they were limited to the

external and internal heterogeneity to model T2DM patients for predicting comorbidities in

cross-sectional data with just three horizons of time. They presented a parameter estimation

Markov Chain Monte Carlo (MCMC) approach, which might not be suitable for large datasets

and time-series modelling was not employed in the individual measurements. Moreover, logis-

tic regression does not perform well when there are multiple or non-linear decision limitations.

Therefore, this study considers all T2DM patient’s follow-up visits regardless of year basis

while precisely monitoring the location of change within the unequal number of visits.

The mentioned research differs from the work presented in this thesis in terms of modelling

strategies, handling of unbalanced data, and the combinations of predictors. Nevertheless,

extensive research has been carried out on the prediction of diabetic progression, no single

study exists which has attempted to interpret the impact of hidden variables on the predictive

model of diabetic disorders. Overall, such studies seemed to be unsatisfactory for modelling the

14



Chapter 2: Intelligent Data Analysis in Disease Progression Modelling Leila Yousefi

complex T2DM complications/risk factors. Therefore, this thesis suggests that AI in Medicine

can provide useful techniques to analyse patient data to be able to find cure for the disease or

reduce patient’s suffering time (see Figure 2.1).

2.2.1 Dynamic Bayesian Networks

In the field of medical informatics, probabilistic IDA techniques are exploited to obtain different

clinical solutions. To improve patient quality of life, there is an urgent need to extend and

explore probabilistic IDA methods to answer to investigate the disease complications from a

clinical point of view. Bayesian Network models appear to be well suited T2DM progression

modelling, because of their flexibility in modelling spatial and temporal relationships as well as

their ease of interpretation [97]. Thus, a Bayesian Network (BN) decision model was exploited

in [107] for supporting the diagnosis of dementia and Alzheimer disease and mild cognitive

impairment. It has been reported that Dynamic Bayesian Networks (DBNs) are simple BNs

for modelling time-series data and popular for modelling uncertain noisy time-series clinical

data [89]. More importantly, DBNs are probabilistic graphical models that can handle missing

data and hidden variables.

Previous work on learning DBNs have inferred both network structures and parameters

from (sometimes incomplete) clinical datasets [89]. For example, a recent study presented a

DBN method but to analyse fisheries data [125]. Authors in [54] proposed a Bayes Network to

predict diabetes on the Pima Indian Diabetes dataset. However, the study failed to consider

the time-series analysis. Similarly, authors in another study [81] simulated the health state

and complications of type 1 diabetes patients by using partially and entirely learned Bayesian

models. Apart from using a different type of Diabetes, this thesis is utilising a different

approach from the above studies for the representation of the relationship between T2DM risk

factors. Many diseases involved structural changes based upon key stages in the progression,

but many models did not appear to take this into account. There has been some work in

extending DBNs to model underlying processes that are non-stationary [126]. In [126], clinical

features were modelled using a second-order time-series model while time-invariant temporal

dependencies were assumed. Among this, some studies, for example, Marini and co-authors
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conducted research [81] that variables were connected within two-time-series and within the

same time slice assumed that the temporal dependencies were time-invariant. In addition,

in Marini’s paper for learning the network structures, a Tabu search was used based on the

Hill climbing algorithm for Bayesian Networks but with no use of latent variables. However,

the approach was useful for stratifying patients according to the probability of developing

complications, the major limitation of the Marini’s work derived from time discretisation in

time slices of one year.

Another work in [53] retained the stationary nature of the structure in favour of parameter

flexibility, arguing that structure changes lead almost certainly to over-flexibility of the model

in short time-series. Alternatively, a paper [104] formalised non-stationary DBN models and

suggested MCMC sampling algorithm for learning the structure of the model from time-series

biological data. Similarly, authors in [118] estimated the variance in the data structure param-

eter with an MCMC approach, but the search space was limited to a fixed number of segments

and indirect edges only, which is not suitable for T2DM data. Such studies remained narrow

and limited by constraints on one or more degrees of freedom: the segmentation points of the

time-series, the parameters of the variables, the dependencies between the variables and the

number of segments and the ignorance of the incomplete data and latent variable.

2.2.2 Dealing with Time-Series Imbalanced Data

Another common problem with classifying complications in longitudinal data is that there

may be many more cases where the complication does not manifest compared to those where

it does. Early prediction of T2DM complications while discovering the behaviour of associated

aggressive risk factors can help to improve a patients quality of life [77]. This study suggests

that while there is an association between the latent variable and joint complications in the

prognosis of T2DM patients, this relationship is complex. In T2DM data analysis, another

challenge can be to classify/group patients in imbalanced clinical data with several binary

complications. Models of the time-series data are needed to manage diabetic complications

and deal with their imbalanced and complex interactions. In particular, mining time-series

is one of the challenging problems in the prognosis of disease. In addition, it has received
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considerable critical attention in data mining especially when there are rare positive results

[137]. It has been reported that a class imbalance in the training data caused by one class (here

positive cases) massively outnumbers the examples in another class (negative class) [72]. This

situation may occur where the number of positive clinical test results for a complication is not

equal or even close to the number of negatives. That can be solved by applying an appropriate

balancing strategy in a multi-class classification problem. Different learning techniques deal

with imbalanced data, such as oversampling, undersampling, boosting, bagging, bootstrapping,

and repeated random sub-sampling [62]. This thesis in order to prepare T2DM data for the

prediction has utilised these strategies and customised them based on dataset nature (time-

series patients records with the unequal number of visits). As a result, various balancing

strategies such as pair-sampling, bootstrapping undersampling and over-sampling have been

proposed in [140, 144]

The bootstrap approach can be used to identify the significant statistics from classifiers

learnt from such data. For example, in a study [71], Li and co-authors provide an extension

to the temporal bootstrap approach while applied on cross-sectional data. Similarly, a study

conducted in [125], the bootstrap strategy is extended to longitudinal data by sampling pairs of

time points, thus enabling the (first-order) temporal nature of the data to be inferred. However,

these solutions only can be applicable when the imbalance ratio for all binary complications

is similar. Otherwise, it can be more difficult if we need to over-sample one class value and

under-sample others in order to reduce bias from data.

Overall, the observed balancing strategies from the prior studies have not been sufficient

for analysing more than one complication at a time, whereas it was almost impossible to obtain

a satisfactory prediction performance enhancement for all complications. As well as modelling

unmeasured factors, hidden variables can also be used to model non-stationary processes.

This thesis attempts to address this issue by using hidden variables discovery approaches

based upon T2DM risk factors/complications dependencies. Before explaining these strategies,

it is necessary to understand unmeasured variables and analyse their dependencies that are

generated by causal structures.
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2.2.3 Causal Structure Learning and Latent Variable Discovery

Moreover, various studies on longitudinal data sets have suggested an association between

complications and risk factors of the disease. To discover probabilistic dependencies given

clinical data, it is necessary to search the space of belief networks or casual models, which is

called casual discovery of BNs [146]. These patterns of dependency with no model based solely

upon the observed variables can be explained by using a latent variable. The casual discovery

indicates dependencies that are generated by casual structures with unmeasured factors, i.e.,

hidden variables. Hidden variable modelling, introduced in [113], has a long tradition in casual

discovery. One of the research gap in the previous literature of disease prediction is the existence

of the unmeasured or latent variables. This is because clinicians cannot measure all risk factors

and carry out all kinds of tests, so there are some unmeasured factors that clinicians fail to

measure, which need to be discovered at the early stage of diabetes.

Furthermore, Factor Learning (FL) was introduced in [82],which has been known as one

method for learning a probabilistic model from data. It can also be helpful to understand latent

variables and measure their hypothetical impacts. FL contrasts with most other BN learning

methods in that it learns a factor structure. As Martin and co-authors in [82] stated that FL

for hidden variables could identify the most probable structures of factors have given the data

and suitable priors. However, with a large number of variables, FL methods might be pro-

hibitively expensive. Again in the same research these authors provided a factor structure for

learning methods that efficiently utilised hidden variables. Factor structure indicates the joint

probability distribution among discrete observed variables. It also contributes an explanation

across a small number of variables. Although factor structures are suitable for polynomial time

inference, they can cause a reduction in the prediction accuracy and precision; they contribute

an explanation across a small number of variables. Nevertheless, these techniques failed to

consider prior belief in the factor structure, and therefore, it could be hard to rely on the final

structure.

Factor structure indicates the joint probability distribution among discrete observed vari-

ables. Interestingly, each factor in a factor structure corresponds to a completely connected

dependency graph. Although they are suitable for polynomial time inference, caused reducing
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accuracy and precision. By contrast, they are not able to decide precisely whether or not latent

variables are present, and in consequence there has been some controversy about that status

of exploratory versus confirmatory factor analysis. In this regard, casual discovery methods in

AI have the advantages as they can discover the actual dependencies and independencies in

the data.

The causal discovery of BNs is a critical research territory, which depends on looking

through the space of causal models for those which can best clarify a pattern of probabilistic

conditions appeared in the data [146]. As a result, [19] showed the integration of structure-

search algorithm with a latent variable in a DBNs model. However, the method did not consider

the discovery of the long-range dependencies with an equal number of time slices. Similarly,

in [34], Bayesian belief networks was used to find the most probable structure, using the K2

algorithm, while adding a hidden variable. Nevertheless, Cooper in [34] applied the K2 method

that needs an ordering on the nodes. Witting focused on using hidden variables in a known

structure [136]. Cooper in [34] used Bayesian techniques to find the most probable structure

and can use this technique to add hidden variables. In principle, exact Bayesian methods

for hidden variables could identify the most probable structures of factors given the data and

suitable priors. However, with a large number of variables, exact methods are prohibitively

expensive. Furthermore, in [110] Silva highlighted the weakness of DAG (Directed Acyclic

Graph) models in the marginalisation of Hidden factors and representing the independencies

over a subset of features in a DAG with more links. They suggested that Directed mixed

graphs (DMGs) are a solution to this drawback. Therefore, they represented how to perform

Bayesian inference on two DMGs, such as Gaussian and Probit, which is not the focus of this

thesis.

Nevertheless, such studies remained narrow and limited by constraints on one or more

degrees of freedom: the segmentation points of the time-series, the parameters of the vari-

ables, the dependencies between the variables and the number of hidden factors. As a result,

Chicharro in [26] analysed causal influences to find the relationship among different brain re-

gions in several disorders. Similar to this thesis, Chicharro’s research made use of Inductive

Causation (IC*) algorithm in the latent process to analyse Granger causality and Dynamic
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Causal Modelling. However, Chicharro’s study did not consider DBNs to understand causal

influences.

Difficulties arise, however, when an attempt is made to implement a Bayesian Network

structure as authors in [8] have argued that the number of potential DAGs over the disease

risk factors is super-exponential. Additionally, the real cause-effect relationship DAG is not

distinguishable while from equivalent structures when learning only using from observational

data. This issue will be worse, especially when each expert has a unique probability of correctly

labelling the inclusion or exclusion of edges in the disease structure. As noted by Amirkhani

[8], some scoring functions are provided with that score each suitable graph based on the data

and experts’ knowledge. Another research in [105] shows that networks with the fixed structure

containing hidden variables can be learned automatically from data using a gradient-descent

mechanism similar to that used in neural networks.

A few algorithms have been created to understand the structure for Bayesian Networks

from both fully observed models and those with hidden variables. Structure Expectation-

Maximization (SEM) has been produced for learning Probabilistic system structure from in-

formation with latent factors and missing data. A structure learning algorithm has been

created for non-stationary dynamic probabilistic models. For example, REVEAL (REVerse

Engineering ALgorithm) has been utilised as a structure learning algorithm, that learns the

optimal set of parents for each node of a network independently, based on the information-

theoretic concepts of mutual information analysis. However, the two-stage temporal Bayes

network (2TBN) cannot be well recovered by the application of REVEAL. A normally utilised

structure learning algorithm depends on REVEAL which takes in the ideal arrangement of

guardians for every hub of a system autonomously, in light of the theoretical data ideas of

common data examination. Be that as it may, the two-arrange fleeting Bayes organise as the

2TBN which cannot be all around recuperated by use of REVEAL. Rijmen in [103] exploited

an HMM to study the temporal pattern of symptoms burden in brain tumour patients. He

showed that the discovery of symptom experience over time is necessary for treatment and

follow-up of patients with symptom-specific intervention.

In general, Bayesian learning methods could determine network structure and how the net-
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work’s variables should be represented along with the causal links among them. Moreover, it

addressed the difficulty of qualifying causal relationships in terms of Conditional Probability

Tables (CPTs). Witting focused on using hidden variables in a known structure [136] as the

knowledge of the latent variable in predictive modelling is important for an understanding of

the complex AI models. Discovering latent variables can potentially capture unmeasured effects

from clinical data, simplifying complex networks of interactions and giving us a better under-

standing of disease processes. In addition, it can improve classification accuracy and boost

user confidence in the classification models [49]. Elidan and co-authors in [46] emphasised the

importance of the presence of hidden variables. In addition, they determined a hidden variable

that interacted with observed variables and located them within the Bayesian Network struc-

ture. They also showed that networks without hidden variables are clearly less useful because

of the increased number of edges needed to model all interactions, which caused overfitting.

Despite the productivity of exploring trees of hidden variables to render all observable vari-

ables independently [95], these hidden variables were non-optimal with independencies among

observable variables.

Overall, previous works on learning DBNs have presented both network structures and

parameters from clinical data sets and learning parameters for a fixed network of incomplete

data, in the presence of missing data and latent variables [89]. Much of the current literature

on disease prediction have argued that a complex AI model, with many unexplainable hidden

variables, also has several serious drawbacks. Therefore, this thesis has chosen AI DBNs model

to learn parameters and latent variables to predict complications. The next section intends

to emphasise the explainability of the proposed methodology in order to uncover the meaning

behind the latent AI model.

2.3 Black Box Models and AI in Medicine

Investigating unmeasured risk factors can improve the modelling of disease progression and thus

enable clinicians to focus on early diagnosis and treatment of unexpected conditions. However,

the overuse of hidden variables and lack of explainability can lead to complex models, which are
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not well understood (being black box in nature). Models need to be understood by clinicians

to facilitate transparency and trust.

Neural Networks (NNs) are a robust methodology to approximate complex functions in

IDA literature and are known as the black box models. Black box AI models in decision

making are mostly based on deep learning techniques with many latent variables. Black box

AI models in decision making are mostly based on deep learning techniques with many latent

variables. Deep learning approaches attempt to model complex interactions in data by using

a considerable number of hidden variables. For example, NNs is a representation of function

with some parameters and latent variables which are weights of Neuron.

In the 1980s there was a huge wave of excitement in NNs. Then Boltzmann machines were

published in 1985, the back-propagation paper that appeared in nature came out in the 1986

and Parallel Distributed Processing (PDP) appeared in 1987. Neal’s article in [91] explicitly

linked feed forward NNs, which were called Connectionist NNs and graphical models in belief

networks. In particular, in sigmoid belief networks feed forward NNs was used with sigmoid

activation functions instead of considering those units as deterministic and considering them

as binary random variables.

Despite their ability to provide an accurate predictive model, NNs often fail to provide

any insights on the network structure in regard to explain the approximation function and

the latent layers. In 1987 Danker, in a NN was conducted to choose probability distribution

over the weight and to map the weight space on two function spaces represented by a NN.

This was a more intuitive factor to consider than the distribution of weights, which was an

arbitrary nuisance parameter. Danker contribution attempted to algorithmically figure out

how to compute the posterior over the parameters. In addition, the parameters were optimised

and computed the second derivative of the likelihood with respect to the parameters which

was Hessian to estimate the posterior with a diagonal version of Laplace approximation.

In 1989, Tishby [123] applied Bayes rule on NNs as an interesting application to demonstrate

the utility of the average prediction error for determining a sufficient size of the training set as

well as selecting the optimal architecture of the network. Additionally, Tishby’s study was used

Bayesian inference to figure out the optimal architecture of NNs. Further, in 1991, Buntime
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[21] clearly expressed Bayesian inference on NNs.

In 2006 Hinton [59] showed the importance of using “complementary priors” to reduce

inference complexity in belief networks with many hidden layers. He derived a greedy algorithm

from learning deep and directed belief networks one layer at time. Neal in [90] attempted to

find a single “optimal” weight vector in conventional network training that led to over-fitting

and weak generalisation.

2.3.1 Explainability in Deep Learning

This stage outlines and discusses the limitations of Deep Learning approaches that have been

proposed, so far, to gain deeper insights into the understanding of black box AI models. AI

medical machine such as Deep Learning has become ubiquitous to provide a high-performance

prediction.

Nevertheless, understanding their mechanisms has become a significant concern worldwide

whereby the goal is to gain clinicians and patients trust. The reason behind this is due to

several obstacles that arise to interpret the findings, such as the scale of big data, complex

interactions, and high-dimensional internal state.

Google’s Novel Approach Most medical algorithms proposed by [27], such as “AI Doctor”

designed to reproduce current problem-solving methods (e.g., the detection of cancers). In

addition, the concept assignment can help people to strengthen their skills and talents for a

computer system that showcased superhuman effectiveness and efficiency.

Google’s AI Doctor can be demonstrated how they could be used to provide an explanation

further into predictions generated by local classifiers, first from conventional image classification

networks to a focused clinical application.

The concept attribution approach in AI Doctor offers several promising avenues for future

work. In addition to this, the concept assignment can help people to strengthen their skills

and talents for a computer system that showcases superhuman effectiveness and efficiency.

The concepts of explanatory power are outlined by Google under three principle assump-

tions/limitations: firstly, comprehension for whatever hidden layer and artificial neurons would
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offer. This is based on most of the information in a deep neural network consists of hidden

layers. Secondly, it recommends that acknowledging the numerous hidden layers and under-

standing their design on a meta-level would lead to more in-depth modelling. Finally, to

comprise how nodes become active, it considers groups of interconnected neurons that trigger

at the same time and space. These principles are defined instead of explaining the structural

nature of each neuron in each network. This is because the stratification of a network for the

categories of interconnected neurons would enable its configurations even more abstractable.

This is the main weakness of the black box models.

One of the most highlighted ones is Google’s approach to resolve the explainability issues

while enabling human-like description of the internal state of a deep network by employing

Concept Activation Vectors (CAVs). While medical systems are mostly designed to reproduce

current decision-making methods such as the classifier used in the detection of cancers, Google

has claimed that its novel strategy can interpret existing clinical data.

Although Google has made a claim that the CAVs can directly relate to one’s anticipated

theories, to draw conclusions about the decision-making process, it needs to consider the human

needs of a higher level of understandability. Evidently, Google suggests that these aspects may

not require to be understood at the early project stages, and can, therefore, be swiftly verified

through a set of instances throughout the longitudinal study. To achieve this, Google proposed

the CAVs Testing (TCAV) approach that demonstrates whether CAVs are used to measure the

extent whereby the given definition needs to be applied. This technique is employed in TCAV

can be a move towards establishing a humanistic understanding of the internal state of a Deep

Learning model.

In the detection of various functionalities for the deep neural networks, TCAV may only

have a few implications of causal inference. As a result, Google AI model revealed that by

monitoring individuals’ eyes, it might be possible to estimate the risk of developing the car-

diovascular disease for individuals. Google AI algorithm classified these patients 30 percent

of the time compared to a traditional predictor (SCORE) that had less classification error by

28 percent. For Google, the research is much more than just a modern cardiovascular risk

assessment tool. This is because the methodology of Google seems reliable, as the retina has
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a long history of cardiovascular risk prediction.

Nevertheless, cardiac specialists have been critical of the conclusions derived by Google in

the clinical domain. With the proper information, AI is optimistic that innovative, unique

healthcare insights might be created without human intervention. Unfortunately, this new

approach is only established based on extensive and adequate datasets. This is presumably part

of the explanation of why Google has established projects as its benchmark research proposal

is capturing detailed patients’ history of 100000 population across four years. However, the

investigation conducted out by Google did not necessarily indicate that the suggestion was

entirely distant. Such as image classifiers that could be applied to low-level structures.

The central concept and assumption are to consider a neural network as additional assis-

tance that can cause issues related to the internal representation. As a result, the clinicians

commented on the deep explanatory networks. They questioned the hypotheses, by stating

that although the AI algorithms and Deep Learning could improve current prediction methods

of clinical domain, the research would not be trustworthy unless it had been assessed with cau-

tion while a broader range of disease had been explored. Difficulties arose, when an attempt

was made in order to implement the principles and these assumptions. It seemed to be evident

that their approach was overconfident and yet to be trusted.

Prototyping Examples In Artificial Neural Networks In order to introduce a different

perspective on Deep Learning models’ interpretability, Zintgra and co-authors [66] conducted

a study to simplify the black box structure of Artificial Neural Networks (ANNs). They made

use of “prototypic examples” method that indicate tools in order to diagnose trained ANNs.

In general, ANNs analyse discrete decision-making processes and obtain high-performance

prediction results.

The prototype examples may be computationally intractable, including a pre-determined

normal distribution to prevent the proliferation of unreasonable prototype cases. They provided

an explanation of tools to train ANNs based on two datasets. Moreover, it can often be like

such a losing battle to describe precisely how ANNs operate mathematically. Therefore, a much

more comprehensive pre-processing methodology could also be used in a related development

25



Chapter 2: Intelligent Data Analysis in Disease Progression Modelling Leila Yousefi

(e.g., generative adversarial network proposed by Goodfellow et al. in [27]). Furthermore,

experimental results and hypotheses in ANNs were portrayed and tested only on two datasets.

Alternatively, a more detailed analysis is required to rely on the empirical results, which might

be achieved by including rich data containing imbalance issue, different types of features.

Selection bias was another potential concern because it could involve possible measurement

errors. It could be extended through more set of data with various features.

Finally, conclusions and interpretations of data were drawn from an inevitably subjective

mechanism on the investigator’s basis. This was because to examine whether the produced case

studies should satisfy the investigator’s standards about the phenomena of been modelled (e.g.,

decisions could be only made by the time it came). This was established based on approaches

or standards for collecting and analysing concepts that might be more unbiased. As a result,

this could also enable investigators/analysers to understand the implications and weaknesses of

the use of ANNs for the discrete decision-making process, which might enhance the strictness

of the approach. However, many healthcare methods are required to reconstruct conventional

prediction methods (e.g., the identification of cancers), but so far, different ideas to interpret

previous clinical records have been discovered.

Visualisation in Deep Learning: For the time being, the possibility of an AI physician

planning to roll new prognosis without direct human intervention is a significant distance in

which the more presumably in decades rather than a few years later. Recent developments in

several technologies in the Deep Learning area have been powered by the steadily declining

expense of computing and storage. That being said, realistic apps, including certain integrated

smartphone and electronic devices, have intensified explainability issues for Deep Learning in

the black box resource-limited environments.

Liu et al. in [75] introduced the leading solution to address these issues where a deteriorated

image of Binary Convolutionary Networks caused by binarising Filtres. They offered a range of

Circulant Filtres (CiFs) and a Circulant Binary Convolution (CBConv) to strengthen efficiency

and to tackle those limitations for Binary Convolutionary functionalities through their proposed

Circulant Backpropagation (CBP). Then, CiFs effortlessly was integrated into the current deep
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neural networks (DCNNs). Enormous research has indicated that perhaps the output difference

amongst one-bit and total-precision DCNNs could be reduced by extending the variety and

distributing the filtres. Zintgraf et al. in [148] identified numerous tools to test the model and

understand how DCNNs could provide a reliable outcome by using the visualisation method.

Overall, the existing explanatory Deep Learning approaches would need to be adapted for

further sophisticated longitudinal modelling strategy (rather than with a multivariate distri-

bution). This would result in better outcomes, for example, in pixel values which could be

estimated reliably by everyone’s environment while it skewed down much more. By providing

the black box models with sufficient data, machine learning seemed to be overconfident that

completely different health knowledge could then be generated without user intervention. The

black box models of Deep Learning can be simplified in several aspects. For example, if an

object is detected, an image detection machine can breakdown back and towards specific at-

tributes including shape, colour and texture of the image, and then reduce the predictions to

a mathematical method by checking the classification error and then background diffusion to

improve the practises.

In particular, in the world that it is possible to fully allocate decision making to computer

systems, confidence in AI systems will be hard to achieve. In the future work, one approach that

can be applied to the small-sized T2DM dataset can be the use of Bayesian Neural Networks,

which will deal with uncertainties in data and model structure by exploiting the advantages of

both Neural Networks and Bayesian modelling. To conclude, AI can improve current methods

of medical diagnosis in terms of interpretability but cautioned that the technology would need

to be more evaluated to be trusted by both patients and practitioners.

In black box models, it can be challenging to determine what is coordinating the visible

patterns. Such models are problematic not only for lack of transparency but also for possible

biases inherited by the algorithms from clinician’s mistakes [98]. This issue is caused based on

the human errors and biased sampling of training data as well as the underestimation of the

impact of the risk factors underlying behaviour/pattern.

In general, as observed from prior studies, it is difficult to obtain performance enhancement

while simultaneously trying to explain hidden factors. Lakkaraju in [69] suggested that there
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is a trade-off between patient personalisation (in a descriptive analysis) and prediction perfor-

mance (in predictive analysis). Generally speaking, an improvement in explainability is often

possible through a less accurate model or at a higher cost of the predictive accuracy (in a Black

box model) [132]. There are quite few research studies on predicting T2DM complications and

T2DM black box models. However, studies on explaining an unknown risk factor/latent phe-

notype by using a hybrid data mining methodology (including descriptive and predictive) are

rare to find in literature. Therefore, this study attempts to open the AI, black box model by

using both predictive and descriptive strategies.

2.4 Patient Personalisation and Explanation

Most of the previously published studies in diabetes prediction have tended to focus on all

patients as one integrated database rather than separating patients [36]. It can be challenging

to stratify patients based on their longitudinal data in order to determine what is triggering

the visible patterns that may be specific to one cohort of patients. There is some research,

such as [24] that assesses the disease prediction performance based upon different IDA tech-

niques. For example, the onset of the disease is modelled in [78] while other studies focus on

patient modelling [99]. The approach described in this thesis aims to personalise patients by

using unsupervised methodologies to group time-series patient data. The proposed descriptive

strategy in this thesis has been regarded as a useful tool known as association rules to detect

interesting relationships among T2DM complications.

2.4.1 Time-series Clustering

Time-series clustering is often problematic [2], especially when we need to analyse risk factors

from matching patterns across time. The literature on time-series clustering and pattern

discovery has highlighted several studies [7]. There have been some qualitative measures for

clustering time-series data, which captured similar risk factor patterns in dynamic temporal

data, regardless of whether the correlation between them was linear or not [29]. However, they

did not seem to be very suitable for a long and an unequal number of time-series data (e.g.,
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T2DM data). For instance, authors in [7] proposed an algorithm to cluster patients based on

clinical data whilst utilising the clustering information for identifying distinct patterns.

Altiparmak in [7] provided a slope-wise comparison method (SWC) to find the correlation

between local distance vectors of patient’s visits, and group clinical test results into different

sub-groups, based upon the related risk factors, by using feature selection. In their method

each cluster of patients was considered as a transaction data that included a pattern indicating

which cluster belonged to each patient. Authors in [40] used a similar method [7] in clustering,

but they clustered fixed length time-series. Ceccon and coauthors [25] exploited a variation of

the naive Bayes classifier with a hidden variable for segmenting patients into disease sub-types.

Ceccon’s study intended to enhance the classification performance of Glaucoma patients based

upon visual field data. Nevertheless, they only focused on standard/static BNs (instead of

DBNs) to infer the parameter in a cross-sectional dataset. Moreover, they failed to analyse

the influences of multiple hidden variables on the prediction results.

2.4.2 Pattern Discovery and Association Rules Mining

It has previously been observed that patients with T2DM are also at an increased risk of

microvascular comorbidities, including nephropathy, neuropathy, and retinopathy [102]. The

underlying pattern of T2DM complications and how their co-occurrence is followed/caused/re-

lated by other complications associated with the disease, known as the major source of mor-

tality and morbidity in T2DM [88]. That is because predicting a target complication can be

challenging without the consideration of the effects of its associated complications. Similar to

Diabetic type 1 patients, although genetic factors impact on developing T2DM, it is believed

ignorance of developing complications harms patients’ life. What is more, T2DM patients de-

velop a different profile of complications and features, which changes over time per follow-up

visit. One of the most important factors in the high number of dependencies among T2DM fea-

tures and complications is the appearance of unmeasured risk factors. Surprisingly, the effect

of understanding unmeasured variables, which play an important role in disease prediction,

does not seems that closely examined.

Understanding these associated patterns has a remarkable actual value and can significantly
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being used in the clinical domain [132]. It provides an insight into the prediction and relative

prevention of the associated complications which are expected to occur in patient followups [48].

It also leads to less suffering time for patients while saves time and cost to healthcare. However,

that is highly dependent on the stage of disease along with the prior occurring complications,

which is associated with time-series analysis. In time-series analysis, every disease risk factor

and complication is determined by various features in previous patient visits (time interval).

To better understand the complications of the disease and their effects, this thesis clusters

patient the associated rules among the complications. It attempts to address this issue and

present an informative rules/ordering pattern of patient behaviour, with an aim to capture

the complexities of the associated complications’ over time. The proposed descriptive strategy

has been regarded as a useful tool known as association rules (ARs) to detect interesting

relationships among T2DM complications.

Association Rules (ARs) originated from learning patterns from supermarket transaction

data, and they were introduced by Agrawal in [3]. Temporal Abstraction (TA) was employed

in [86] for the segmentation and aggregation of a time-series into a symbolic representation.

TA has appeared to be a suitable solution for decision making and data mining. With a slightly

similar objective to this thesis, Moskovitch and co-authors [86] conducted a study in which

time-interval mining method obtained informative temporal patterns for finding relationships

in the transitivity inherent of time-series diabetic patients. They also exploited TA to mine and

aggregate time-series into a symbolic representation. Although Moskovitch’s paper coincides

our study by using supervised learning in time-series Diabetes data, it differs from this work in

finding meaningful time-series patterns only based on gender not complex temporal patterns

from a longitudinal clinical dataset with the appearance of latent risk factors.

Temporal Association Rules (TARs) [133] is an extension to association rules [3] to analyse

basket data that includes a temporal dimension to order related items. Many algorithms with

temporal rules work by dividing the temporal transitions database into different partitions

based on the time granularity obliged. For example, different mining algorithms were refor-

mulated and presented to reflect the new general temporal association rules. These include

Progressive Partition Minder (PPM), Segmented Progressive Filter (SPF), and TAR algorithm
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[3, 70, 133].

Various algorithms have been proposed for the incremental mining of temporal association

rules, especially for numerical attributes [50]. Allen’s rules [6] generalised abstracted time-

series data into a relation (PRECEDES) to find TARs in [106]. Various ways were proposed to

explore the problem of temporal association rules discovery [4]. Nevertheless, previous studies

performed discovering association rules on a given subset specified by the time [63], whilst not

considering the specific exhibition period of the elements.

Association Rule Mining (ARM) finds frequent patterns by mining ARs with the use of

two basic parameters of support and confidence [147]. The majority of the previous ARM

algorithms worked by dividing the temporal transitions database into different partitions based

on the time granularity obliged. Then mining temporal association rules are employed by

locating frequent temporal item subsets within these partitions. Whereas the incremental

mining of temporal association rules for numerical attributes cannot be easily adapted to a

transaction database. Despite all efforts, no method exists today that can find meaningful

subgroups of patients based on the underlying pattern of complications in the existence of the

latent risk factors.

Difficulties arise with TARs when there are some rare rules of particular interest [83]. Many

studies have employed the most common filtering metrics rather than support and confidence

in order to detect interesting rules [119]. There is a controversy to this, as a study in the liter-

ature argued that a conservative ARM methodology only based on a fixed and rigid threshold

for the filtering metrics could be problematic. A few studies attempted to mine frequent

underlying patterns of diabetic complications [44]. The frequent pattern mining research sig-

nificantly affects data mining techniques in longitudinal data. A post-processing approach in

[33] attempted to extract interesting subsets of temporal rules within T2DM data. However, it

only considered characteristic patterns of administrative data without the appearance of latent

variables. Other researchers have undertaken association rule mining of clinical data [43, 93].

Lee et al. attempted to address the issue in [70] and have led to the proposal of the concept

of general TARs, where the items were allowed to have varying exhibition periods, and their

support was made based on that accordingly.
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Another research conducted by Plasse et al. in [100] looked at finding homogeneous groups

of variables. They suggested that a variable clustering method could be applied to the data in

order to achieve a better result in pattern discovering methodology. However, their strategy

to mine ARs differed from this thesis in which the number of rules was reduced only based

on hierarchical clustering applied to items, not to multiple identical binary attributes. Among

these, some methods uncovered temporal patterns and relationships among clinical variables,

including causal information [80], numeric time-series analysis [112]. Nevertheless, considering

all of this evidence, none of the above studies has clustered uneven time-series clinical data

based on a hidden variable for extracting temporal phenotype and behaviours of patients.

2.5 Summary

This chapter has described the research gap in the modelling and explaining of complex disease

processes and thus given the motivation behind this work. The previously discussed methods

suffer from some limitations in addressing imbalance issues, complex and temporal relation-

ships between (sometimes unmeasured) factors, and the identification of different underlying

characteristics of disease for different subgroups of the population. There is considerable re-

search on predicting T2DM complications. Among these, studies on explaining unknown risk

factors and identifying temporal phenotypes by using hybrid methods (including descriptive

and predictive) are rare to find in literature. This thesis attempts to address these issues. In

the next chapter, after describing the case study data as a starting point, DBNs are explored

as a framework for modelling real time-series clinical data. In the following chapters, the iden-

tification of informative hidden factors is investigated followed by methods to cluster patients

into meaningful subgroups along with the identification of a latent temporal phenotype and

the characterisation of these groups using temporal association rules.
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Chapter 3

Preliminaries, Datasets and Methods

3.1 Introduction

This chapter describes some existing key methods that can be updated or combined to model

multiple diabetes complications in the presence of unmeasured factors. It focuses on rule-based

methods for an explanation of patient subgroups and a probabilistic framework for modelling

data explicitly. Intelligent systems, whether biological or artificial, require the ability to make

decisions under uncertainty using the available evidence. Several computational models ex-

hibit some of the required functionality to handle uncertainty. These computational models in

AI and Machine Learning are judged by two main criteria: ease of creation and effectiveness

in decision making. For example, NNs which represent complex input/output relations using

combinations of simple nonlinear processing elements, are a familiar tool in AI and computa-

tional neuroscience. Alternatively, probabilistic networks (also called Bayesian Networks) are

a more explicit representation of a domain through modelling the joint probability distribu-

tion (the probability of all possible outcomes in a domain). This is achieved by providing a

topological description of the conditional independence relationships among variables. This

chapter firstly describes the dataset that will be the main focus of the thesis. It then goes on

to explain the definitions and algorithms that are key to the work. Temporal association rules

are described in detail followed by an introduction to Bayesian Networks and a full formal

definition of the Dynamic Bayesian Network. Re-balancing techniques are also explained in
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the context of the T2DM data. Finally, some initial results are demonstrated on the diabetes

dataset where class imbalance poses a problem due to the rare occurrence of different individual

complications. This is dealt with using a DBN with fixed single hidden node combined with

a bootstrap technique that has been specifically designed for the longitudinal data to identify

targeted complications.

3.2 Type 2 Diabetes as a Case Study (Data Selection)

The World Health Organisation (WHO) reported that Type 2 Diabetes Mellitus (T2DM)

accounts for at least 90% of all diabetes types. Another study in WHO revealed that T2DM

patients are at increased risk of long-term vascular comorbidities, which is known as “underlying

cause of death” and severe phenotype of the disease [52]. It has previously been observed that

patients with T2DM are also at an increased risk of microvascular comorbidities, including

nephropathy, neuropathy, and retinopathy [52]. As T2DM is a rising public health concern

worldwide. It is a chronic disease with an onset that is commonly associated with multiple

complications, such as retinopathy and nephropathy. Models of the time series data (which

are often imbalanced and involve complex interactions) are needed to better manage diabetic

comorbidities. Although extensive research has been carried out on the prediction of diabetic

progression [12, 13, 36, 37, 81], no single study exists which has attempted to interpret the

impact of latent variables in the presence of diabetic disorders.

T2DM data was chosen as a case study for this work as it suits the characteristic of complex

and small-sized dataset with uneven number of visits per patient, after performing the centre

profiling and a detailed analysis of the literature reported in [11]. In T2DM dataset with each

visit, a patient has a unique profile of symptoms and complications, regardless of the phase of

the disease.

3.2.1 Data Collection

This work presents an evaluation of the analysis on T2DM datasets collected in the Pavia

data warehouses funded by the 7th Framework Programme (FP7-ICT 600914) and information
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regarding the data is retrieved from MOdels and Simulation techniques for discovering diabetes

Influence faCtors (MOSAIC) project website [22]. The Data is belonged to the MOSAIC

European Union project reported most of the information presented in this section retrieved

from MOSAIC website [22]. The data collection accumulated in the Italian Pavia region

in the MOSAIC project contains data including 1000 patient populations and extracted from

external ways such as: the Hospital Fondazione Salvatore Maugeri (FSM), that mostly captures

epidemiological records relevant to normal healthcare sector, and by the Local Healthcare

Agency (Agenzia Sanitaria Locale, ASL), that accumulates measurements for institutional

and technical transparency.

The combination of different sets of data gives a full summary of the medical knowledge of

people with diabetes participated in the research. Different factors included within the study

involve demographic information (age, sex, period of diabetes), medical information from both

the comprehensive FSM, and the ASL data (haemoglobin glycated, systolic blood pressure,

lipid profile, smoking habit, and body mass index) and administrative data gathered via ASL

(drug consumption). The periods of participant follow-ups used throughout the data can be

seen in Figure 3.1 and scale between 1-year and 18-year duration, by a mode of 5-year period.

Throughout the MOSAIC project, designers originally investigated the prediction issue of

choosing appropriate probability calculators for complications to be included in the patient

population. A cardiovascular risk score, the validated “ProgettoCuore score16”, was accessible

[22]. A such scoring was tailored to the Italian community, based from the “Framingham

study17”. FSM, though, identifies individuals with dysfunction in metabolic processes and

heart failure cases. For Indications, which is why, in the FSM Clinical data, microvascular

complications are more likely to occur after the first visit than macrovascular complications.

In addition, patients typically tend to be treated with FSM (and their data collected) only

after onset of the disease. Because of the existence of the evidence gathered in Pavia, no

microvascular risk model might be found which could have been implemented without a robust

scaling drift [12, 13].

Mining clinical data is a challenging task given the mixture of clinical test results (such as

blood pressure or cholesterol level), complication types (categorical, numerical, ordinal data
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Figure 3.1: Follow Up Duration [36]

types), unequal length of patients visits, highly correlated risk factors, unmeasured factors,

heterogeneity, biased data, and more. It aims to build upon this thesis by conducting dynami-

cal analyses on time-series clinical data to improve classification accuracy. With a probabilistic

graphical model, it is easy to interpret and provide information regarding the qualitative struc-

ture of the clinical domain. For instance, it helps to find out whether risk factors are direct

causes or influencing factors of a disease or complication. Moreover, it seems extremely impor-

tant to learn a model from the clinical data with a small amount of training data with many

parameters and few patients (samples). More importantly, in clinical domain each parameter

is supported by little evidence and estimation of the parameters is not robust.

3.2.2 Data Description

The data for this study consists of pre-diagnosed T2DM patients aged 25 to 65 years (in-

clusive) that were recruited from clinical followups at the “IRCCS Instituti Clinic Scientifici”

(ICS) Maugeri of Pavia, Italy. The MOSAIC project funds the data under the 7th Framework
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Program of the European Commission, Theme ICT–2011.5.2 Virtual Physiological Human

(600914) from 2009 to 2013. The dataset consists of physical examinations such as cholesterol

and blood pressure and laboratory data, including HbA1c measurements and lipid profile. For

this study, certain complications and risk factors (predictors) were selected based on existing lit-

erature on diabetes [5, 30, 44, 124, 129] and using recommendations from the clinicians at ICS.

The selected T2DM complications are Retinopathy (RET), Hypertension (HYP), Nephropa-

thy (NEP), Neuropathy (NEU) and Liver Disease (LIV). Here, the predictors are identified

and selected from the dataset: Body Mass Index (BMI), Systolic Blood Pressure (SBP), High-

Density Lipoprotein (HDL), Glycated haemoglobin -HbA1c- (HBA), Diastolic Blood Pressure

(DBP), Cholesterol (COL), Smoking habit (SMK) and Creatinine (CRT). It is necessary here

to clarify exactly what is meant by Control Value and Discretised Value.

In T2DM data, the worsening level of the micro-vascular diseases and HYP is known as a

significant cause of death [35]. Even though micro-vascular complications such as RET, NEP,

NEU are less frequent comparing to HYP, an inadequate estimation of them causes long-term

suffering and life-threatening comorbidities [88]. Fowler and co-authors in [48] researched type

2 Diabetic American patients. This research utilised T2DM key risk factors such as HbA1c,

SBP, and DBP to investigate relationships among complications such as HYP, NEP, RET,

and NEU. In addition, LIV is a severe phenotype of diabetes and associated with T2DM

complications, especially NEU [122]. Litwak analysed Russian diabetic patients in [74] which

referred to the influence of macro-vascular and micro-vascular disease on one anther. For

example, important features in T2DM dataset such as blood pressure, HDL, lipid, BMI, and

HbA1c influence diabetic patient’s complications. They also revealed that HDL has a negative

effect on HYP, NEP, NEU, and RET, whereas HbA1c negatively associated with HYP. Again,

a study conducted by Ramachandran [101] referred to the high prevalence of NEU and RET in

Type 2 diabetes in India. Similarly, research in [44] suggested that most of the diabetic patients

have objective evidence for some variety of NEU, but only a few of them have identified by

symptoms. This research also showed that there is a strong association among NEP, NEU,

and RET.

Tables 3.1-3.2 illustrate Control Values for T2DM complications and risk factors, respec-
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tively. In Table 3.1 shows the binariased complications with two clinical level of High and

Low. This study only concentrates on five binary complications as the predictive target classes

in a binary classification problem (with two categories of classes: “high” or “low” risk). Fur-

thermore, a complication class value of low risk (zero) represents a patient visit in which the

complication is not present; otherwise, it is at high risk (one). For instance, a complication

class value of zero represents a patient visit in which the complication is not present; otherwise,

it is one.

Alternatively, in Table 3.2, T2DM risk factors associated with a patient (symptoms/clinical

tests) are abstracted in the multi-class classification problems with more than two targets risk

patient, according to a diabetes expert’s definitions [12, 13]. Clinical risk factors are consists of

three clinical level of risk, namely low (0), medium (1) and high (2). Node ID column is used

as the risk factor identifier. For instance, in order to help distinguishing the clinical features

of smoking habit where Node ID equals to 13, discretised into three categories (0,1,2), namely

non-smoker, ex-smoker and smoker. The term ‘HDL’ is used here to refer to High-Density

Lipoprotein as well as Lipid Mechanism (which was analysed in this Chapter’s experimental

analysis).

Table 3.1: The description of T2DM Target Complication, Clinical Node Control Values, and Discretised
States.

Node ID Target Complication Diagnosis Outcome Clinical Risk Class
2 Retinopathy (RET) {Negative,Positive} {low,high}
3 Neuropathy (NEU) {Negative,Positive} {low,high}
4 Nephropathy (NEP) {Negative,Positive} {low,high}
5 Liver Disease (LIV) {Negative,Positive} {low,high}
6 Hypertension (HYP) {Negative,Positive} {low,high}

3.2.3 Value of the observed and Unmeasured Data

In this case study, the association of non-binary risk factors have not been considered directly

in order to extract rules among T2DM complications. Alternatively, non-binary features are

involved indirectly. The reason behind this is that the overall behaviour of these T2DM risk

factors is captured by utilising a latent variable discovered by using the constraint based
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Table 3.2: The description of the T2DM Clinical Features, Risk Factors, Control Values, and the Discretised
States.

Node ID T2DM Risk Factors Control Value (Mean±SD) Discretised Value
1 HbA1c (HBA) 6.6 ± 1.2 (%) {low,medium,high}
7 Body Mass Index (BMI) 26.4 ± 2.4 (kg/m2) {low,medium,high}
8 Creatinine (CRT) 0.9 ± 0.2 (mg/dL) {low,medium,high}
9 Cholesterol (COL) 0.9 ± 0.2 (mg/dL) {low,medium,high}
10 High-Density Lipoprotein (HDL) 1.1 ± 0.3 (mmol/l) {low,medium,high}
11 Diastolic Blood Pressure (DBP) 91 ± 12 (mmHg) {low,medium,high}
12 Systolic Blood Pressure (SBP) 148 ± 19(mmHg) {low,medium,high}
13 Smoking Habit (SMK) {0,1,2} {low,medium,high}

algorithm in a DBN framework (which is called “temporal phenotype” and will be explain in

Chapter 5).

These non-stationary device dynamics is modelled with hidden variables. They reflect

a transition in the relationships between the environmental factors experienced across time.

In this case, the significance for the latent factor is set to refine the model fit to the data

while the model is parameterised by data (such as the log likelihood). If in the time series,

e.g., the slope of an association between two components increases, the value of the hidden

variables correlated with these components will differ as the trends for the observed ecosystem

components change. One, some or all of the observed environment components within the

model may be connected to a latent variable. The discovered latent variables may represent

a different type of predictions, such as life expectancy, quality of life, or the spread of specific

disease or comorbidities. The latent variable value then depends on all the process elements of

which it has been related, and a shift in trends means that process relationships have shifted.

This is incredibly beneficial in T2DM dataset in which non-stationary risk factor dynamics are

widespread and complicated.

3.2.4 Temporal Pattern of Complications and Data Notations

It has previously been observed that patients with type 2 diabetes mellitus are at increased risk

of microvascular comorbidities including retinopathy, neuropathy, and nephropathy. Predicting

the comorbidities has long been a question of great interest in a wide range of medical fields.
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This study have tried to predict the future state of a patient per visit by utilising a set of

observed test based on the complication patterns.

Tables 3.1-3.2 represent the selected T2DM complications (comorbidities), risk factors and

their clinical control values. T2DM dataset is discretised into qualitative states (binary com-

plications and non-binary features) of ordinal clinical risk by using statistical parameters such

as mean, median, and Standard Deviation (SD).

As mentioned earlier, the main objective of this work is to predict future T2DM compli-

cations model architecture. Having provided the health state of the patient on the first visit,

there is a need to foresee whether nephropathy, neuropathy or retinopathy will continue to

progress in the long term. For each patient, the posterior probability in predicting a target

complication is predicted at time t with the observed evidence (prior knowledge) from t− 1 to

estimate the risk of developing complication for the corresponding patient patient. Therefore,

considering how the state of patient during each visit changes can be an important challenge

for physicians preparing for future visits. The main goal of this thesis is to understand the

underlying patterns of associated binary complications.

To study diabetes, a random sample of patients with different comorbidities was recruited

from Pavia clinical data in Italy. However, due to visit constraints, this research cannot provide

a comprehensive review of these comorbidities which were diagnosed before diabetes onset.

This study is unable to encompass the entire comorbidities dataset. Therefore, this method

is particularly stated on studying the microvascular complications (retinopathy, neuropathy,

and nephropathy). The purpose of this study is to show how to improve the quality of life

by anticipating the future stages of the diabetes complications for different patients at their

various visits.

From diabetes health status records, the T2DM dataset is accumulated (which is denoted

here as DS) from pre-diagnosed diabetic patients. For each patient in T2DM dataset defined

the following notations:

Let π demonstrates a distinct patient where i identifies the patient in which i ≤ p, and

p = 356 denotes the maximum number of patients in DS. In addition, time-series between the

first visit and the j th visit of i th patient (πi) is represented by Vij . For each of the patients
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in DS, over which a linear order of in [Viv Viz] is defined to represent all visits between Viv

and Viz for πi where v ≤ z and Viv occurs before or is earlier than Viz (Viz) =
∑
Viv, ..., Viz).

The number of visits is not necessarily equivalent to each patient πi and varies between two

and 300 (2 ≤ Ti ≤ 300). Hence, there is a total of T = 3959 visits/instances/time-series in

DS, which contains the temporal observations of the occurring complications for all T2DM

patients. Let πi =
∑Ti

j=1 Vij and Vij = (Vi1, Vi1, Vi2, ..., ViTi) be a set of visits for i th patient

with Ti time-series. In order to clarify the dataset, Equations 3.1-3.2 are defined to illustrate

dataset based upon individual patient or patient’s time-series (visits) and the corresponding

complications pattern, respectively.

DS=
p∑

i=1

πi=(π1, π2, ..., πi, ..., πp), 1 ≤ p ≤ 356 (3.1)

DS=
p∑

i=1

Max(Ti)∑
j=1

Vij=([V1T1 ], [V2T2 ], ..., [ViTi ], ..., [VpTp ]), 1 ≤ T ≤ 3959 (3.2)
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π =



π1 =



Visits Complications Pattern

V11 {}

V12 {HY P}

V13 {HY P}

V14 {HY P,LIV }

V15 {HY P,LIV,NEU}

V16 {HY P,LIV,NEU,NEP}

V17 {HY P,LIV,NEU,NEP}

V18 {HY P,LIV,NEU,NEP}



,

π2=



V21 {}

V22 {RET}

V23 {RET,HY P}

V24 {RET,HY P,NEU}

V25 {RET,HY P,NEU,LIV }

V26 {RET,HY P,NEU,LIV }

.

.

.



,

πi=



Vi1

Vi2

.

.

.

ViTi


,

πp=


Vp1

Vp2

VpTp





(3.3)
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3.3 Descriptive Data Analysis

This section, firstly describes the clinical data and descriptive analyses used throughout this

thesis. It then explains the solutions, which are explored in this study to deal with missing

data and class unbalance problems, as well as our model design options.

One amongst MOSAIC’s major objectives is to use knowledge discovery methods to help

explain the processes driving the complications of diabetes via the study of particular testimo-

nials, time events as well as behavioural influences.

Due to the initiatives carried out by its experts in past initiatives and research, several

medical resources on an Eu commission have been provided to the MOSAIC committee. MO-

SAIC data have been used to build predictive model that combine knowledge associated with

environmental and biomedical influences, including physiological, biological, epigenetic modi-

fication and behavioural inputs. The aims of such modelling techniques are to identify specific

therapeutic processes in medical history and to stratify the patient at risk of suffering T2DM

as well as its associated complications. The goal is to incorporate these into existing predictive

analytics frameworks to improve decision-making in patient practice.

The Knowledge Discovery in Databases (KDD) process is exploited, in this study, to identify

co-occurrence of the complications at different levels of abstraction from the T2DM dataset.

It started the first stage of KDD with T2DM raw data and ended with extracted knowledge

captured as a result of the following stages as seen in [47]:

1. Data selection and determining subset of patients with unequal number of visits.

2. Pre-processing for cleansing and removing all uninteresting and uninformative informa-

tion about patients such as dates of their visits.

3. A transformation phase for transforming common complications of T2DM patients to

the associated rules with respect to the temporal patterns and sequence of occurrences.

4. Data mining in extracting the meaningful relationship among the associated complication

rules.
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5. Interpretation and evaluation for understanding the temporal phenotype, the discovered

H, and co-occurrence of the complications pattern into knowledge.

Having considered this thesis objectives, this part mainly focuses on description of four

goals listed below:

1. Knowledge Discovery and the design of computational efficient algorithms capable of

strengthening existing diagnostic methods and guidelines for T2DM, IGT and IFG.

2. strengthening the diagnosis of patient populations with these metabolic diseases.

3. helping to determine the likelihood of having T2DM as well as its serious comorbidities.

4. the final objective of the study is to deploy resources that will lead to the advancement of

disease management, along with the reduction of complications, by identifying efficient

medical and behavioural strategies.

3.3.1 Pre-processing and Relational Models

In order to represent data, before modelling the clinical data, different pre-processing tech-

niques are used. First, Relational Models in DBMS were used to to design a database and

ensure that the data is understandable. DBMS was defined to create and maintain a database

by using Data Definition Language (DDL). Then, Relational Algebra in the DBMS was em-

ployed to build one single table from integration of primary tables (five table were intuitively

collected based on each complications individually) in the database. Furthermore, Relational

Calculus (Structured Query Language (SQL) query) was used to formulate the definition of the

joint table in terms of relationship among the primary tables. For example, it also employed

Microsoft Access and SQL Server to store the collected data at Pavia. This was utilised to

interact with the database, retrieve, manipulate and extract the useful information gathered

from all preliminary tables by employing the Data Manipulation Language (DML). The un-

informative and bias records (e.g., a patient with only one visit) were truncated to filter out

unnecessary data.
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Table 3.3: Percentage of Missing Values for T2DM variables at the first visit compared to all visits.[22]

Missing Values
Variable missing values in visit 1 missing values in all visits

Time to diagnosis (t) 2.4% 0.5%
Body Mass Index (BMI) 0.1% 1.1%

Glycated Hemoglobin (HbA1c) 16.9% 7.4%
Total cholesterol (Chol) 34.1% 44.9%
HDL cholesterol (HDL) 40.3% 48.1%
LDL cholesterol (LDL) 74.5% 77.9%
Triglycerides (TRG) 36.2% 12%

Smoking Habit (SMK) 0% 0%

3.3.2 Missing Values and Data Imputation

As explained previously, the missing data is a serious concern. This section clarify the strate-

gies was employed to cope with missing details, issues with class imbalances and our model

development decisions. In choosing the predictor variables to be used in these models, this

study mainly focuses on the analysis of the literature mentioned earlier and found the variables

which were usually related and accessible in the data with a significant risk of microvascular

complications. Having obtained this, as can be seen in Table 3.3, there were several details

missing from most of the measurements. For example, lipid-related data are indeed very likely

to involves missing values (which is shown in Table 3.3). There are two options to deal with

this issue: first, whether data are imputed or not and then, whether lipid based data is included

or not.

In data imputation, the MOSAIC study tested two direct analytical techniques (i.e. the

mean and median of each attribute) and one Random Forest technique to the data imputation

strategy. This last idea is built on Stekhoven and Buehlmann’s Random Forest imputation

algorithm [115] and established as missForest.

To assess the efficiency of the imputation technique, only cases lacking missing data were

taken into account. The entire set of statistics was then changed by deleting value records

randomly. The rate of missing values in the initial collected data was in particular determined

with each variable, and the same percentage was omitted arbitrarily again from collected data,
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Figure 3.2: Time between follow-up, in months. [36]

thereby generating fictitious missing values to evaluate the ability of imputation

Median, mean and missForest imputed the deleted values. The criteria picked for missForest

were 100 trees and a limit of 100 iterations. Then the efficiency of the imputation contrasted

by calculating the average root squared error (RMSE) and the normalised average RMSEN

error by the synthetic missing data. In order to measure RMSE, only numerical variables and

risk factors with missing values was used. As seen in Table 3.4, MissForest outperformed the

mean or medium imputation and was consequently preferred as the main tool in providing the

imputation technique.

Missing values for smoking status were imputed assuming that patients do not change their

smoking habit during their follow up period, otherwise by the most frequent value observed in

the dataset (for patients for which the smoking status was missing at any visit). The initial

formulation of HbA1c was presented in mmol/mol and it was converted into percentage, while

the subsequent formulation translated as HbA1c % = (0.0915xHbA1cmmol/mol) + 2.15.

Missing values for continuous variables (triglycerides, systolic blood pressure, body mass
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Table 3.4: RMSE of mean, median and missForest on numerical features.[22]

RMSE
BMI Hba1c COL HDL LDL Triglycerides

missForest 0.57 3.56 22.2 9.77 23.09 48.04
Mean 3.23 11.51 35.36 14.25 31.12 72.45
Median 3.23 11.81 35.36 14.37 31.14 74.47

RMSEN
BMI Hba1c COL HDL LDL Triglycerides

missForest 0.01 0.03 0.07 0.04 0.08 0.05
Mean 0.09 0.11 0.12 0.06 0.11 0.08
Median 0.09 0.12 0.12 0.06 0.11 0.08

index, and total cholesterol) is imputed using the k-Nearest Neighbour, where the function was

implemented in “DMwR” within the R package. Lack of smoking status values was apportioned

considering during a follow-up visit in which the person may not switch their addiction, followed

by its most frequently reported statistic (for those patients in T2DM population that the

smoking status was missing at any of their visits). Continuous variables also were categorised in

the discretisation algorithm into three stages as obtained in three percentiles of numerical series

and considered as random effects. Similarly, smoking status was observed using representative

variables with "never-smoker" becoming a low-risk group, whereas "ex-smoker" and "current-

smoker" also were moderate and high-risk, respectively.

Another data imputation is when fewer than two visits appointments were reported, suf-

ferers were omitted. Unless accompanied by at least 1 return during a 12-month period, single

follow-up were exempt. Figure 3.2 illustrates the time period variability in the patient group

among visits. In addition to this, Centre Profiling is aimed at assessing the hospital character-

istics in terms of population (number of patients with complications, time to diagnosis of the

complications) and of patterns of care (e.g. centres that are used to deal with more complex

cases, centres that perform an initial intensive diagnostic program to discover complication

early after the first visit).

Furthermore, in definitions of an increase risk over a 12-month period of each follow-up

was used to conclude that HbA1c percentage was greater or equal to 0.6 as the dependent risk
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factor. Whereas, it was classified and encoded to make of the existence of either two, one or

zero. The behavioural characteristics such as time gap between follow-ups and Smoking habit,

as well as clinical measures (e.g., BMI, Triglycerides and HbA1) were regarded as independent

variables to be used in a T2DM evaluation and disease progression analyses. Equations 3.1-3.2

illustrate the time series representation of the analysis schema.

3.4 Classification and Imbalanced Data

To predict a target complication, patients are classified into two categories (cases): positive

and negative cases. The outcome of the prediction or classification (Y ) can be considered as

a vector of disease risk factors represents by Y = (X,Ci), where X is the vector of symptoms,

and Ci shows a target complication class selected from C = {HY P,NEU,NEP,LIV,RET}.

In this study, Ci only takes on binary values (Ci = {0 | 1}) as the main focus is to predict

only one complication at time. For example, if a patient is diagnosed negatively (not having

the complication), the class value becomes zero (Ci = 0) otherwise it sets to one (Ci = 1) in

which it shows that a patient is diagnosed positively (having a target complication).

Considering a specific (target) complication at each time point, by detecting any “one” in

the class over all patient visits is directed to join to the positive case otherwise the patient

becomes a member of the negative case. This explains the “Patient-based” analysis. Once a

patient has been identified as a positive case (Ci = 1), the patient stays in the corresponding

case throughout their time-series. As a result, those patients who are already at a high risk

of developing complications, it is assumed that they do not switch from positive case to the

negative case. Alternatively, in “Visit-based” each time point (as a single visit for a patient) is

scored individually as “zero” or “one” for each patient.

3.4.1 Re-balancing Strategy for the Time Series Complex Data

T2DM dataset is highly imbalanced based on common complications. Different learning tech-

niques deal with imbalanced data, such as oversampling, undersampling, boosting, bagging,

bootstrapping, and repeated random sub-sampling [62]. To be able appropriately re-balance
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longitudinal design, this study suggest time series bootstrapping and pair-sampling methods

considering cell arrays of patient follow-ups.

There are several aspects that might influence the performance achieved by Bayesian net-

work learning. It has been reported that one of these aspects is related to a class imbalance

in which examples in the training data belonging to one class (here negative cases) heavily

outnumber the examples in the other class. In this situation, which is found in clinical data

describing an infrequent but important event, the learning system may have difficulties in

learning the concept related to the minority class (number of positive cases). In fact, the

problem seems to be related to learning with too few minority class examples in the presence

of other complicating factors, such as class overlapping.

In practice, T2DM data includes repeated measurements (in follow-up visits) multiple

times for single patient. The biggest focus is to reflect the way in which the behaviour evolves

over time as well as the risk factors. The key structures for longitudinal data processing are

considered as marginal, combined and transition [32], which are challenging to be re-balanced.

Imbalance class variable distribution is defined as the associated binary classification issues.

One choice to deal with this issue is to disregard class imbalances and actually go through

stages of studying and evaluation.

Another solution is to re-sample the instances or repeated measurements. To deal with

unbalanced data, bootstrapping approaches are exploited to regenerate our observed time series

visits per each patient. This method is utilised for inference by re-sampling and concatenating

different pairs of visits. To provide this, the algorithm was conditioned on a newly structured

dataset which is re-balanced by oversampling the minority class.

Therefore, this thesis employed “cell arrays” structure in MATLAB (as was seen in equa-

tion 3.1) which will help to address the above research gaps. In the proposed structure in

pre-processing approach, each patient represented by a cell array of the visits. This was used

to avoid any changes in the ordering of visits in time series analysis. In addition to this and

to be able to keep the ordering of uneven number of visits for each patient, an appropriate

structure of data was created. Thus, it constructs T2DM data as a cell arrays of patients,

where a cell array represent all patients data. A patient cell array also includes a cell array of
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Table 3.5: List of all complications of T2DM considered in the dataset.[22]

Complication Type Number of cases
Nephropathy (NEP) Microvascular 121
Neuropathy (NEU) Microvascular 126
Retinopathy (RET) Microvascular 119

Fatty Liver Disease (LIV) Not Vascular 227

the corresponding visits (a set of relevant patient visit across a time series). Thus, the final

cell array of cell arrays (which was called T2DM dataset (DS)) is re-balanced by utilising two

re-balancing techniques: the time series bootstrapping approach and pair sampling.

Table 3.5 represents the unequal range of complex patient populations while considering

a complication was present. This table also illustrates the complications type and number of

cases in the original Diabetes dataset. The vector of the binary class in the models refers to

if the complexities are equivalent to the predefined threshold in a few years’ time following

the first visit. In particular, the previous probabilities of the class for BN are calculated on

the initial imbalance collected data, whereas the marginal probabilities are determined in the

training samples balanced with oversampling. In this approach, the latter probabilities of the

experiment are modified to the current class distribution and can be used to readjust the model

for the new patients.

The unbalancing ratio was defined here based on the raw natural unbalance rate of T2DM

dataset. An unbalanced ratio was calculated as the ratio of negative to positive cases for a

specific complication to ensure a balance. The unbalanced ratio of 3.2, 3.2 and 2.2 are used,

in this study, for oversampling the positive cases that developed retinopathy, liver disease and

hypertension, respectively.

3.4.2 Time Series Bootstrapping Approach

In this study, bootstrap approach is adapted to identify the significant statistics from classifiers

learnt from such data where the occurrence of the positive class is far less than the negative.

This is because Bootstrap re-balancing methods generally have been found to produce more

accurate and reliable statistics [111].
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Bootstrapping facilitates the acquisition by drawing the subsets from the measured data

and calculating the statistics for each component of the subsets, of an unspecified feature of

an uncertain distribution. Bootstrap also helps to achieve an estimated representation of the

beliefs.

Having considered the temporal and complex nature of T2DM data, the bootstrap ap-

proach in the longitudinal dataset is extended by re-sampling consecutive time points, thus

enabling the (first-order) to be inferred. The proposed oversampling Time Series Bootstrap-

ping methodology is called “TS Bootstrapping” which employs a variant on the re-sampling

approaches introduced in [85, 125, 130].

It re-samples the rare complication class with a replacement with respect to the dynamics

of progression. The bootstrap pairs of time points are selected with replacement to ensure

more states where the complication is present (Ci = 1) than in the original data. Thus, the

re-sampling approach of the data involves a bootstrap process to re-sample observed time-

series/visits of a patient with the replacement whereby the original training data is sampled

in pairs of consecutive time points, t-1 and t. It also assumes that patient status at time t

depends on the corresponding hidden variable at a previous time t − 1 (Markov properties).

As a result, the bootstrapped data contains an equal number of positive and negative cases

for the target complication at time t. TS Bootstrapping approach was chosen as it seemed

appropriate for T2DM dataset in the prediction of disease non-stationary models of data was

difficult. Moreover, predicting rare cases in clinical data with an unbalanced distribution of

a target complication was challenging, where common statistical methods such as standard

regression is not appropriate. This is because it only models average score over the different

structures throughout the time series. Another method is re-sampling, which can be applied

on the learning data and trigger its distribution based on the bias in the data [85]. In the next

section, the time series re-balanced data is analysed by DBNs learning models.

The final model is evaluated on a test set which preserves the original class quantity. The

key drawbacks of this methodology are focused on the development of the final model for

therapeutic use: a basic oversampling phase of the initial data should be preceded by the

training of this model.
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3.4.3 Evaluation Strategies for Re-balanced Data

This study is designed to provide a model of the prognosis for the major comorbidities of

patients diagnosed with diabetes. Here the aim is to analyse the care received by patients with

T2DM and specific comorbidities in the Pavia hospital, Italy. In addition to this, another aim

is to build upon this thesis is conducting dynamical analyses on time series clinical data to

improve classification accuracy. To obtain valuable results considering sensitive clinical data,

this study suggests appropriate evaluation techniques to define various analysis strategies that

rely on an initial assessment of the centre. Such assessment is aimed at understanding the

hospital characteristics in terms of population (number of patients with complications, time to

diagnosis of the complications) and of patterns of care (e.g. centres that are used to deal with

more complex cases, centres that perform an initial intensive diagnostic program to discover

complication early after the first visit). The purposed profiling centre is to estimate hospital

features concerning patient behaviours (e.g. centres that interact with more complicated cases

and carry out an initial intensive diagnostic process to find a complication in the event of the

first visit. The proportion of patients with the complication, diagnostic periods of complications

are used to analyse the overall data.

The data is separated to include the equal number of train cases and separate pairs of mea-

sures. To provide the train set indices, re-sampling approach with replacement was obtained

and to obtain test set indices, the acquisition of those values which have not been re-sampled.

The bootstrapping technique, first, splits the data into training data (to be fed into model of

learning Bayesian network by using the model parameterization EM algorithm) and testing set

(to be considered in the model validation). This procedure was performed 250 times, so that

statistical validation (prediction performance calculation) was found in the model predictions.

For each model the model output was evaluated as regards the amount of the squared error

(SSE).

Non-parametric bootstrap (re-sampling by training set replacement, [49]) was then per-

formed 250 times per modelling method to achieve significant statistical test results in the

forecasts for each complication (number of iterations was found to be optimum through exper-

imentation).
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In order to assess the predictive model, appropriate validation analyses are conducted to

predict the onset of T2DM complications (e.g., accuracy, sensitivity, specificity and precision by

using 95 percent confidence interval). “Visit-based validation strategy” assesses the proposed

predictive models based on the re-balanced time series train and test data. In Chapter 3 and

Chapter 5, these models are created considering an unequal number of time series visits based

on their regular follow-up. In the visit-based, an appropriate re-balancing strategy is adapted

whereby the original training data is extended by adding bootstrapped pairs of time points.

As a result, the bootstrapped data contains an equal number of positive and negative cases

for the target complication at time t. Alternatively, “patient-based validation strategy” tests

the model based on the re-balanced train data on different patient data as test set, which is

randomly retrieved from the original T2DM dataset (mainly in Chapter 4 and Chapter 6).

3.5 Bayesian Networks

Various studies on longitudinal clinical data suggest an association between complications and

risk factors of disease. In addition, there are still uncertainties around understanding the

relationship between observed clinical data, complications, and unmeasured variables. Uncer-

tainty is inherent in modelling data: there is uncertainty in the sampling of the data, in the

parameters and structure of the models, and in the number of hidden variables. There is also

uncertainty in the labels in supervised learning. It is possible for some physicians to believe

that a certain diagnosis is accurate with a 100 percent certainty while another physician sug-

gests those beliefs are valid with a zero percent certainty based upon the individual prior. A

reasonable approach to tackle all of these issues is to take a Bayesian approach where a prior

belief in a model is updated with data. Bayes theorem was invented by Thomas Bayes in 1763

and stated in Equation 3.4.

P (θ|X) = P (θ)
P (X|θ)
P (X)

(3.4)

where the Probability of success, network nodes (the observed data and prior) and pa-

rameters (the updated prior) are shown by X and θ, respectively. Knowledge or the state of
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knowledge about hypotheses needs to be expressed through a probability distribution before

data is observed and analysed. The hypotheses are evaluated by scoring the probability given

data under the Bayes rule based likelihood. This rule comes from the basic rules of proba-

bility theory, which shows the way to combine the prior and the likelihood with multiplying

them and re-normalising over the space of plausible hypotheses. For learning from the data,

Bayes theorem tells us how to update the beliefs about the certain disease in the arrival of

new evidence, but it cannot tell us how to set the prior beliefs (as shown in Equation 3.4). If

one assumes that θ as the prior success, in the case study a posterior distribution represents

the probability of a patient is diagnosed correctly by a disease/complication, which is shown

in Equation 3.5.

Posterior distribution: P (θ|X) =
θL(θ|X)∫

P (θ)L(θ|X)dθ
, (3.5)

Where P (θ) is known as the prior distribution in the prior model of P (X|θ) with a likelihood

function of L(θ|X) ∼ P (X|θ).

In this study, uniform distribution estimates an uninformative prior. In the data cleaning

process, the clinical test results are normalised and then discretised to prepare T2DM data for

the Bayesian analysis.

A Bayesian Network consists of two components. The first is a Directed Acyclic Graph

(DAG) with arcs (also referred to as links or edges) between nodes representing random vari-

ables in the domain. In particular, if there is an arc from node X to node Y in the BN, X be-

comes a parent of Y where Y is a child or descendant of X. Informally, a directed link between

nodes X → Y indicates the existence of a direct influence from X on Y . The strength of this

influence indicates whether the conditional probabilities quantify the directed link. The second

component is a set of Conditional Probability Distributions (CPDs) associated with each node.

The CPDs can be modelled by either a continuous distribution or with Conditional Probability

Tables (CPTs) of discrete-valued variables. Bayesian approaches suggest a promising model

to help clinicians to predict disease while there are still uncertainties around understanding

the relationship between observed clinical data, complications, and unmeasured variables. In
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biomedical science and clinical decision support, BNs have become a popular representation

for dealing with uncertainty domain knowledge [39]. In particular, BNs can represent proba-

bilistic relationships between complications and symptoms using Bayes theorem. They can be

used to combine existing knowledge with data and interpreted for non-statisticians. They are

probabilistic graphical networks that model longitudinal data considering noise, missing data

and uncertainty in the data collection process.

3.6 Time-Series Probabilistic Models in Clinical Domain

Mining clinical data is a challenging task given the mixture of clinical test results (such as

blood pressure, cholesterol level, etc), complication types (categorical, numerical, ordinal data

types), unequal length of patients visits, highly correlated risk factors, unmeasured factors,

heterogeneity, biased data, and more. With a probabilistic graphical model, it is easy to

interpret and provide information regarding the qualitative structure of the clinical domain.

For instance, it helps to find out whether risk factors are influencing factors of a disease

or complication or if they are independent. Probabilistic models can be invaluable where

we do not want too much reliance on the training data which risks overfitting with poor

generalisation capabilities. Therefore, this thesis now describes some probabilistic graphical

methods including the Hidden Markov Model and the Dynamic Bayesian Network (DBN),

which ideally suits the problem of modelling complex clinical data from both qualitative and

quantitative clinicians’ point of view while handling uncertainty.

3.6.1 Hidden Markov and State Space Models

Hidden Markov Model (HMM) is a ubiquitous tool for modelling time-series data. The HMM

obtains its name from several assumptions. Firstly, it assumes that the observation at time

t is generated by several processes where a state (St) is hidden from the observer. Secondly,

it assumes that the state of the hidden process satisfies the Markov property that given the

previous state (value of St−1). It also declares that the current state of St is independent

of all other states prior to t − 1. In other words, the state at a certain time encapsulates
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Figure 3.3: Space State Model illustrates the interactions among a hidden factor as a H and the observed
nodes (Xi) in two time-series. The max number of patients is shown by N (p = N)

Figure 3.4: The Space State Model with dynamic interactions among time-series nodes.
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all we need to know about the history of the process in order to predict the future of the

process. Thirdly, HMM is generalised by representing the state using a collection of discrete

state variables, illustrated in Figures 3.3,3.4 and stated in Equation 3.6, each of which St can

take on K(m) =M values donated by the integers 1, ..., k [127].

St = S
(1)
t , ..., S

(m)
t , ..., S

(M)
t (3.6)

Finally, to define a probability distribution over sequences of observations all that is left to

specify is a probability distribution over the initial state of P (S1), and K ×K state transition

matrices and output models which are not considered to be dependent on t as the model is

time-invariant (except for the initial state). If the observable variables are discrete symbols

taking on one of H values, the output model can be fully specified by a K×H observation (or

emission) matrix.

Nevertheless, several inference problems are associated with hidden Markov models. For

example, the probability of observing a sequence of unequal patients’ visits is an inference

problem that is associated with HMMs as each patient has an unequal number of visits. To

calculate this probability, all possible state sequences are aggregated given the parameters of

the model. Assigning a time index t to each variable, one of the simplest causal models for a

sequence of the patient visit Y1, ..., YT represents the first-order Markov model, in which each

variable is directly influenced only by the previous variables as represented in Equation 3.7.

P (Y1:T ) = P (Y1), P (Y2 | Y1), ..., P (YT | YT−1). (3.7)

Where it satisfies a Markov property and St, Yt are independent of the states and obser-

vation at all other time indexes. Taken together, these Markov properties mean that the joint

distribution of a sequence of states and observations can be factored in the following way (see

Equation 3.8).

(S1:T , Y1:T ) =
P (S1)P (Y1 | S1)∏T

t=2 P (St | St−1)P (Yt | St)
(3.8)

Having observed Y1, ..., YT , the first order Markov model will only make use of Yt to predict
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X(t-1)

Y(t-1)

X(t)

Y(t)

X(t+1)

Y(t+1)

----- -----

Figure 3.5: The dependency graph of HMM.

Yt+1. One simple way of extending Markov models is to allow higher order interactions between

variables, for example, nth order Markov model allows arcs from Yt−n, ..., Yt−1 to Yt. Another

way to extend Markov models is to posit that the observations are dependent on a hidden

variable which is known as a state among the sequence of the states in a Markov process.

This state of a Markov process is not directly observable, and it is often hidden, or partially

observable. In state-space models shown in Figures 3.3-3.4, a sequence of K-dimensional

real-valued observation vectors X1, ..., XT is modelled by assuming that each time step (Yt) is

generated from a K-dimensional real-valued hidden state variable Ht. Additionally, a sequence

of X(H1:T = H1, ...,HT ) defines the first-order Markov process calculating the likelihood of H

in Equation 3.9:

P (H1:T , Y1:T ) = P (H1)P (Y1 | H1)

T∏
t=2

P (Ht | Ht−1)P (Yt | Ht). (3.9)

For real-valued observation vectors, P (Yt | St) can be modelled in many different forms,

such as a Gaussian, mixture of Gaussian, or a neural network [89]. For high-dimensional real-

valued observations, a beneficial output model is obtained by replacing the Gaussian by a factor

analyser. Factor Analysis (FA) is a method for modelling correlations in high-dimensional data

and is closely related to principal components analysis (PCA). The factorisation of the joint

probability means that BN for a State-Space Model is identical to the HMMs except that
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the hidden variable S is replaced by X. This factorisation of the joint probability can be

drawn graphically in the form shown in Figure 3.5. This graph is also known as a BN, belief

network, probabilistic graphical model, or probabilistic independence network. It represents

the dependencies among variables in the model. A node in the graph represents each variable,

whereas each node receives directed arcs from another node. Therefore, these nodes within

the network are conditionally dependent on the factorisation of the joint distribution of the

related nodes.

Boyan in [20] stated, HMMs suffer from important limitations when it comes to modelling

real-world time-series data. If the state transition matrix is unconstrained, any arbitrary

nonlinear dynamics can also be modelled. It is assumed that an HMM captures the underlying

state space by using M different K-dimensional variables. Thus, the HMM requires K(M)

distinct states to model the system. This representation is not only inefficient but difficult

to interpret. More seriously, an unconstrained HMM with K(M) states has of order K(2M)

parameters in the transition matrix. Unless the dataset captures all these possible transitions

or a prior knowledge is used to constrain the parameters, severe overfitting may result. Taking

into account Yt−1 while predicting Yt as well as Ht aims to relax HMM assumptions and results

in an auto-regressive HMM (AR-HMM) with a higher likelihood (see Figure 3.5).

3.6.2 Dynamic Bayesian Networks

To consider different aspects of medical domain knowledge, which are of a causal, complex,

incomplete and temporal nature, an extension of the standard BN, known as the Dynamic

Bayesian Network (DBN), is required to model temporal processes [89]. DBNs are belief net-

works that represent the stochastic process of a set of random variables. Instead of answering

the question of importance by using either qualitative or quantitative methodologies, DBNs

use a mixture of both. As a result, building a DBN requires two different parts: a quantita-

tive specification for learning local and cross-correlations (in terms of conditional probability

distributions) and a qualitative specification for the structure definition. The DBN extends

BNs to model a set of temporal random variables by using probability and joint distributions

with explicit time-stamps. See Figure 3.7 for an example of a DBN structure for diabetes
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data. Notice that links can exist from any of time points to the next time points (where the

conditional distribution is defined by P (Zt|Zt−1)) in the Equation 3.10 or within the same time

point defined by P (Zt|Zi
t).

P (Zt|Zt−1) =
N∏
i=1

P (Zi
t |Pa(Zt)

i) for all t > 1, (3.10)

where Zi
t could be ith observed, hidden or outcome node with a parent of Pa(Zt)

i. In a

DAG of a first order Markov model (the case study), a parent can either be in the same time

slice or in the previous time slice.

P (Z1:T ) =
T∏
t=1

N∏
i=1

P (Zi
t |Pa(Zi

t)) (3.11)

In Figure 3.5, the variables within the DBN has been classified into different categories:

Hidden variables (H), Complication variables (C) and observed variables (O), which are known

also as disease risk factors.

Unlike HMMs, DBNs provide a more powerful approximation of inference as well as a

reduction in the number of parameters [20]. Another very well-known model in this class is

the linear-Gaussian state state-space model, also known as the Kalman Filter Model (KFM),

which can be thought of as the continuous-state version of HMMs. Murphy in [89] claimed

that HMMs and KFMs can be considered as the least complex DBNs. Murphy also argued

that, although HMMs and KFMs are simple and flexible, they are restricted in their “expressive

power” [89]. Therefore, DBNs are introduced as an extended and generalised form of HMMs

and KFMs that allow arbitrary probability distributions.

In time-series modelling, the assumption that an event can cause another event in the

future, but not vice-versa, simplifies the design of the DBNs in which directed arcs should flow

forward in time (as shown in Figure 3.5). Learning DBN structures provides a principled

mechanism to detect conditional dependencies in time-series data. However, to analyse the

likelihood of one occurring complication, relationships between variables can change over time

(in non-stationary processes). In order to deal with these, a new class of graphical model

called a non-stationary DBN is used [23] in which the conditional dependence structure of the
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underlying prediction process is permitted to change over time (see Figure 3.6).

3.7 Hidden Variables and Causal Structure Discovery of Bayesian

Networks

Predicting a disease is non-trivial since clinical data is incomplete and often contains unmea-

sured factors. Clinicians cannot measure all risk factors and carry out all kinds of tests, so

there are some unmeasured factors that clinicians fail to measure, which need to be discovered

at the early stage of the disease. In machine learning literature, there has been attention in

developing the network structure in the appearance of latent/hidden variables in probabilistic

models such as DBNs. Elidan and co-authors in [46] noted that networks without considering

the impact of hidden variables are clearly less useful because of the increased number of edges

needed to model all interactions among risk factors.

More importantly, the marginalised network without a hidden variable needs more param-

eters that cause substantial data fragmentation as well as non-reliable parameter estimations.

A Hidden variable can capture the variability of parameters by selecting a set of parameters

and considering them as random variables in the state distribution. Alternatively, it treats the

parameter variability as a random variable in discrete state-space models. An H in a DBN is

shown by the state distribution of a set of random variables, H1
t , ..., H

Nh
t . By contrast, the

H in an HMM is shown as a random variable in the state space model. The Hidden variable

discovery method provides one solution for learning data in which it can be an exceptionally

distinctive approach to scan for “structural signatures” of the hidden factor substructures. This

enhances the comprehension of the disease progression and as a preliminary remark helps to

learn an explainable AI model towards the promising needs.

To discover probabilistic dependencies, including latent variables, we need to search the

space of belief networks and possible hidden variables. It may not be possible to decide pre-

cisely where and whether latent variables are present. For example, the FCI and IC* algorithm

[96, 114] are used to identify where potential latent variables exist based on conditional inde-

pendence tests. These are explained in more detail in Chapter 4.
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The causal structure of a BN consists of two components. The first is a Directed Acyclic

Graph (DAG) with arcs (also referred to as links or edges) between nodes representing random

variables in the domain. In particular, if there is an arc from node X to node Y in the BN,

X becomes a parent of Y where Y is a child or descendant of X. Informally, a directed

link between nodes X → Y indicates the existence of a direct influence from X on Y . The

strength of this influence indicates whether the directed link is quantified by the conditional

probabilities. The second component is a set of Conditional Probability Distributions (CPDs)

associated with each node. The CPDs can be modelled by either a continuous distribution or

with Conditional Probability Tables (CPTs) of discrete-valued variables.

3.8 Standard DBNs Model in Predicting T2DM Complications:

A Case Study

Here, to infer a DBN structure, a predefined latent variable is fixed, and other links are

learned over the T2DM complications based upon the K2 and REVerse Engineering AL-

gorithm (REVEAL) [73]. The structure is illustrated in Figure 3.7. The DBN captures

the disease process over time. A choice of two potential observations are evaluated in the

model: either a patient having the disease/complication or not. We want to predict the

P (Complication| Risk Factors). An application of Bayes theorem to predict T2DM complica-

tions is defined in Equation 3.12 which represents the likelihood of having a target complication

given T2DM risk factors as prior.

P (Complication | Risk Factors) ≈ P (Risk Factors | Complication) P (Complication)
P (Risk Factors)

(3.12)

For these experiments this thesis wishes to capture the trajectories of the T2DM patients

with two assumptions: firstly the Markov assumption that the future is independent of the

past given the present (so there are only two time slices within the DBNs); secondly that the
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Figure 3.6: Two time-series structures using the K2 approach to identify the links from hidden nodes to other
features and fully Auto-Regressive dynamic links. The H, C, and O illustrate Hidden, Complication, and

Observed nodes, respectively.

processes involved are non-stationary (therefore P (Yt | Xt−1) can possibly vary for some t− 1.

The learned DAG for T2DM data in Figure 3.5 demonstrates dynamic conditional indepen-

dence as well as the joint distribution of the domain representing probabilistic relationships

among the risk factors (shown by arrows in green) and complications (shown by arrows in red).
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Figure 3.7: Two time-series structures using the K2 approach and dynamic links, which are learned from the
REVEAL algorithm. The H, C, and O illustrate Hidden, Complication, and Observed nodes, respectively.

The hidden variable is pointing to all complications and observed nodes.

For learning the parameters, the gradient ascent is suitable in the situation in which network

structure is known. Otherwise, EM is appropriate while some variables are not observed (is

hidden) [17]. Here, EM is performed to learn the DBNs parameters, including the hidden

variable that is fixed to be connected to all data points. It is envisaged that this latent process
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Table 3.6: ROC Statistics for the sensitivity analysis carried out on DBNs inferred on the original imbalanced
data (IB) and on the balanced bootstrapped data (BBS).

Result Lipid Metabolism Liver Disease
IB AUC 0.5227 +− 0.04 0.6518 +− 0.05
BBS AUC 0.5809 +− 0.04 0.7141 +− 0.04
IB Sensitivity 0.775 0.996
BBS Sensitivity 0.855 0.891
IB Specificity 0.394 0.0

BBS Specificity 0.178 0.373
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Figure 3.8: AUC Comparison of Liver Disease for the sensitivity analysis carried out on DBNs inferred on the
original imbalanced data (IB) and on the balanced bootstrapped data (BBS).

will capture some of the complex dynamics of the comorbidities and how they interact with

the clinical variables. The conditional distribution over the state in the model is shown at time

t given the variables at time t− 1 (as illustrated in Figure 3.5).

The DBNs were trained and tested using the TS Bootstrapping approach described earlier

in this chapter. The test set was used to test the models’ ability to predict each complica-

tion at the following time-point before the latent variables were explored for improving these

statistics. The dataset for this experiment covers approximately 1000 patients and focuses on

two comorbidities: disorders of lipid metabolism and non-alcoholic chronic liver disease. These
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Figure 3.9: AUC Comparison of Lipid Metabolism for the sensitivity analysis carried out on DBNs inferred on
the original imbalanced data (IB) and on the balanced bootstrapped data (BBS).

were selected as they seem to occur most commonly within the data.

As a results for assessing the prediction performance of (Liver disease and Lipid metabolism),

the re-balanced data using Time series Bootstrapping (BBS) was compared to Imbalance data

(IB) in Figures 3.8-3.9. In these figures, Receiver Operating Characteristics (ROCs) was used

to measure the sensitivity and specificity of the prediction of these two complications and were

illustrated at the subsequent visit. These were based on DBN models that applied on the

original imbalanced data and DBNs that were trained on the bootstrapped time-series data.

As can be seen in Figures 3.8-3.9, the resulting ROCs varied dramatically for detecting the

false positive - whilst both methods are very similar for the smaller number of true and false

positives (bottom left of the ROCs), the DBN results trained on the original data are much

closer to random (on the diagonal) for more significant numbers of false positives, whereas this

issue did not occur in the bootstrapped data. similarly, Table 3.6 compared the Area Under

the ROC Curve (AUC) for the prediction performance of re-balanced data using Time series

Bootstrapping (BBS) versus Imbalance data (IB), the sensitivity and specificity all reflected

this issue. "IB" curve in both Figures 3.8-3.9.
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Figure 3.10: Latent variable examples for a randomly chosen patient based upon the DBN inferred from the
bootstrapped data to overcome the class imbalance.

Looking at how the latent variable has behaved in the modelling illustrates a form of

refactoring of the complication data has occurred. The latent variable appears in many cases

to have captured a combination of clinical factors and complications where an increase in

the probability of latent state one coincides with the increased likelihood of complications

(particularly Lipid Metabolism and Liver Disease complications). To a lesser degree, it is

associated with a change in BMI. Figures 3.10-3.11 show in two sample patients how the

probability of latent state one is correlated with these factors but with a time shift one visit

earlier, highlighting how it can enhance prediction.

Overall, the approach of re-balancing patients’ visit data allows us to explore the temporal

nature of how various complications progress while the data is unbalanced. The proposed

visit-based temporal bootstrap approach identifies intermediate stages in T2DM process, and

associated complications are exhibiting a variety of risk factor profiles subtly.
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Figure 3.11: Latent variable examples for a randomly chosen patient based upon the DBN inferred from the
bootstrapped data to overcome the class imbalance.

3.9 Summary

This chapter explored the key T2DM dataset and some key methods for modelling complex

time-series. In particular, it has explored the use of DBNs with a single latent variable for

prediction and the early detection of T2DM complications. The model was used to compute

the probabilities of the presence of time-series comorbidities, given a set of risk factors. This

chapter has also explored the combination of re-sampling to remove the bias of imbalanced

data in time-series with a latent variable DBNs model and predict the onset of complications

associated with a disease. The proposed Bootstrapping method was applied to the observed

visits per patient in the pairs of consecutive time points to balance positive and negative patient

cases. Additionally, it discussed how the explicit consideration of Bayesian models contributes

to improved modelling of T2DM features. Results indicate that the re-sampling procedure

could assist in the predictions, and the latent variables could also factorise the data into an
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underlying hidden state that improves the prediction accuracy. The following chapters will

involve exploring the extension of these models with more latent variables to capture a greater

variety of factors that characterise key changes in the clinical and complication data. In the

next chapter, multiple hidden variables are used to help identify different cohorts of patients

who have different dynamics.
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Chapter 4

Learning Multiple Hidden Variables

4.1 Introduction

The previous chapter attempted to understand the effect of one single unmeasured variable on

the prediction of T2DM complications using the standard DBNs framework. As discussed in

Chapters 2-3, it is becoming challenging to ignore the existence of numerous hidden variables.

This chapter seeks to capture more hidden variables and classify patients by the complications,

thus extending the framework. Discovering multiple hidden variables plays an important role

in implementing better predictive models while differentiating patient subgroups. Unlike deep

learning approaches that attempt to model complex interactions in data by using sometimes

huge numbers of hidden variables, this chapter develops a novel algorithm that iteratively adds

hidden variables to a DBN structure. In doing so it identifies the correct number of hidden

variables, and targets their precise location within the network structure. This chapter is

organised as follows: Section 2 provides an algorithmic framework for dependency discovery

with latent variables in a predictive model of T2DM comorbidities. Section 3 introduces

a method for addressing imbalanced binary complications. Section 4 introduces the stepwise

methodology in which hidden variables are added iteratively. Section 5 evaluates and compares

state-of-the-art methods for inducing meaningful structures in each iteration of the process.

Section 5 discusses the experimental findings and their significance. Section 6 concludes and

provides a direction to the next chapter where the discovered hidden variables and groups of
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patients are evaluated.

4.2 Discovering Multiple Hidden Variables

There are likely to be many unmeasured effects that impact the disease progression of different

patients. Unlike deep learning approaches that attempt to model complex interactions in

data by using very large number of hidden variables in layers, this research adopts a different

approach. As discussed in the previous chapter, probabilistic graphical models such as DBNs

have demonstrated much promise in the transparent modelling of disease progression, and they

can naturally incorporate hidden variables using the EM algorithm. In this section, the previous

DBNs model is extended to incorporate a stepwise hidden variable structure learning process

that incrementally adds hidden variables based on the IC* algorithm. This section discusses

the pre-processing and re-balancing techniques and then looks at causality and dependency

constraints among the disease risk factors.

4.3 Learning from Imbalanced Data using Pair-sampling

The prediction strategy is based on analysis of clinical test results to identify groups of patients

who have been diagnosed with T2DM and are also at risk of developing complications associated

with diabetes. As it was discussed in Chapter 3, since the clinical data is highly imbalanced,

trust in the outcomes of the predictive model can not be maintained. Thus, to find hidden

variables from the imbalanced clinical data, it is first necessary to re-balance the data. The

previous chapter showed how it could carry out the experimental demonstration of the latent

factors within time-series re-balanced clinical data. The re-balancing technique was based on

the bootstrap approach. However, in this section a pair-sampling strategy is introduced to

effectively address imbalanced data before learning hidden variables.

The pair-sampling method divides the dataset of T2DM patients can be divided into two

types of cases, positive and negative. A positive case (Ci = 1) consists of the patients who

have been reported positive in complication Ci at the subsequent visit. In contrast, a negative

case (Ci = 0) is characterised by the binary diagnostic of the complication associated with
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Figure 4.1: Diagram of Pair-sampling and the Stepwise IC* approach.
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patients at lower risks in the second visit (Vi2). This is because there can not be a cure for ith

patient in their first visit (Vi1) at high risk of developing complications as it has been reported

that a patient with T2DM complications does not recover once diagnosed. Once a T2DM

complication is diagnosed, it is recorded for the rest of the patients time-series. Therefore, the

patient follow-ups are neutral, where the class value is consistent. This patient is known as a

pre-diagnosed patient and needs to be removed before the prediction process, that has been

already tested positive at the first visit. They are considered uninformative or biased samples.

An unbalanced ratio is calculated as the ratio of negative to positive cases for a specific

complication to ensure a balance. Since the patient samples were highly imbalanced (N � P ),

the number of the positive cases (rare) was increased to the number of negative cases subtracted

by the positive cases (N - P ).

From the re-balanced dataset, train and test sets are generated. Half of the positive and

negative cases are allocated to the test set while the remainder is assigned to a train set. Now

data is partitioned into two halves of patient samples within each partition containing an equal

number of samples for the target complication. Then, for each patient a pair-visit of [Vi1 , Vi2]

is defined, in which Vij indicates that targeted complication which has not been diagnosed

(Ci = 0). At the same time, Vi2 represents the subsequent visit, which can represent either

Ci = 0 or Ci = 1. For each of the un-diagnosed patients with a particular complication, there

are two consecutive random visits which are illustrated by a pair-visit [Vij , Vij+1] to represent

a switch from zero to one (pair-visit = [0, 1]). This method helps to be able to conduct early

diagnosis, which can lead to appropriate management of these potentially serious complications.

4.4 Bayesian Networks and Latent Structures of Stepwise IC*

Algorithm

Bayesian Networks represent the joint probability distribution over a set of variables (e.g., risk

factors). These variables are represented as nodes within the Bayesian graphical structure and

directed connections between these nodes capture independencies among them. This study

assumes that positive diagnosis (the likelihood of developing a complication) must be greater
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than a threshold of 0.1. The IC* algorithm provides a procedure to determine which causal

connections among nodes in a network can be inferred from empirical observations, even in

the presence of latent variables. IC* is a constraint-based method which applies conditional

independence analyses to infer causal structures and learns a partially-oriented DAG with

latent variables [114]. This algorithm can be used to analyse effective connectivity among

T2DM risk factors. Here, a new methodology is proposed, which combines the basic principles

of the IC* algorithm to obtain a DAG in addition to a dynamic process that is inferred using

the REVEAL algorithm. A stepwise approach is used to incrementally add latent variables.

Based on Pearl’s Causality, a latent structure is a pair ` = < D,O > where D is a causal

structure over V and where O is a set of observed variables. In general, the constraints that a

latent structure imposes upon the distribution cannot be entirely characterised by any set of

conditional independence statements. In the absence of hidden variables, tests for equivalence

can be reduced to tests of induced conditional dependencies. More importantly, for every

latent structure `, there is often a dependency equivalent latent structure, the projection of `

on O, in which every unobserved node can be a root node with exactly two observed children.

Each independence equivalence class is graphically represented by a pattern (PDAG), in which

directed edges represent arrows that are common to every member in the equivalence class.

The edges that are lacking direction represent ambiguous relationships: they are directed one

way in some equivalent structures and another way in others. The IC* algorithm returns a

marked pattern in a partial DAG in the form of a matrix that represents four types of edges

over the variables:

1. a marked arrow O1
*−→ O2, signifying a directed path from two observed nodes (O1 and

O2) in the underlying latent structure (and there is no latent common cause for these

two nodes);

2. a bi-directed edge O1 ←− ` −→ O2, signifying a latent common cause of two observed

nodes (O1 and O2) in the underlying latent structure, or an inducing path between two

variables; thus there is no directed path between them;

3. an unmarked arrow O1 −→ O2, signifying either a directed path from O1 to O2 or a
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bi-directed edge; and

4. an in-directed edge O1 −− O2, standing for either O1 −→ O2 or O1 ←− O2 or O1 ←−−→ O2.

For example, a “-2” in the IC* matrix represents a marked (*) arrow from node a to node b in

the underlying latent structure and at the same time shows there is no latent common cause

for those two nodes. There could be a marked link between liver and smoking habit, and there

is no latent variable between these two nodes. Similarly, if it represents either of “-1” or “2”, it

can be inferred that there is a latent variable between these two nodes. A bidirectional edge

is signifying a latent common cause in the underlying latent structure without a directed edge

between two nodes.

4.4.1 Stepwise IC* Algorithm

An incremental strategy is employed in order to enhance the stepwise IC* algorithm, which

is called stepwise IC*. A diagram showing the process of the pair-sampling and the stepwise

procedure is presented in Figure 4.1. In this method, IC* is applied to a dataset. The

probability of a high state of any learned latent variables at the current step is then inferred

using the EM algorithm. The inferred probabilities of the hidden variable are treated as

observations which means that it can be then treated as an observed variable in the subsequent

step. In this next step, IC* is applied again to see if the new observed variable uncovers any

new hidden variables. This is repeated until no other hidden variables are discovered. For

example, a re-balanced dataset based on class values of retinopathy is provided using the Pair-

sampling. The model is then trained using the structure obtained from the balanced dataset

at the first step, to find a hidden variable. At the next step, there are 14 observed variables,

including 13 different T2DM features plus one additional hidden variable probability that was

inferred in the previous step. Then the structure is learned from this new 14 variable dataset,

and a new hidden variable is discovered. Next, the prediction probability of the hidden variable

is retrieved to generate another observed feature in the third version of the dataset. Later this

obtained dataset is used to train and test the next step. Furthermore, the new hidden variable

is pointing to neuropathy, HbA1c, liver disease, smoking, and BMI (see Figure 4.2). This
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process is continued until the IC* algorithm is not able to find a new hidden variable, or there

may not be any significant improvement in the prediction performance. In the next section, the

use of the stepwise IC* approach to learning multiple latent variables was assessed concerning

improvements in disease prediction.

4.5 Experimental Results

In order to evaluate the proposed approach, three T2DM complications with high prevalence

in elderly patients are monitored. Then, a set of experiments was performed to compare the

different stage of the stepwise IC* approach considering which step could predict complications

with better prediction accuracy for the complications. It also was compared to the model with

no latent variable. Furthermore, the experimental result indicates how by limiting the number

of latent variables enabled a clearer understanding of their effects.

4.5.1 Understanding Hidden Variables

The causal discovery of BNs is a critical research area, which depends on looking through the

space of models for those which can best clarify a pattern of probabilistic conditions in the

data [146]. The causal discovery indicates dependencies that are generated by structures with

unmeasured factors, i.e., latent variables. Hidden variable discovery in causal structures has

been introduced in [113]. Latent variable models have a long tradition in causal discovery.

Factor analysis and related methods can be used to position latent variables and measure

their hypothetical effects. However, many do not provide clear means of deciding whether or

not latent variables are present in the first place. As was discussed in Chapters 2-3, causal

discovery methods in AI have many advantages [113]. One advantage of a latent variable is

that they can better encode the actual dependencies and independencies in the data. For

example, Figure 4.2 demonstrates a latent variable of 13 observed variables and one latent

variable in T2DM data.
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Figure 4.2: Graph of static relationships among T2DM risk factors by applying the third step of the stepwise
IC* approach.
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Figure 4.3: Changes in target complication (retinopathy) in response to different values of evidence (latent
variable at the third step of the Stepwise approach.

4.5.2 Miss-classification Assessment

In assessing the miss-classification rate, the links between features in an adjacent

matrix of IC* are described below:

• True Positive (TP), if there is a bi-directional link between two nodes.

• False Negative (FN), if the learned model lacks a bi-directional arc between two nodes.

• True Negative (TN), if the learned model has no bi-directional arcs.

• False Positive (FP), if there are one or more bi-directional links.

In order to assess the predictive model, appropriate validation analyses are

conducted to predict the onset of T2DM complications (e.g., accuracy, sensitivity,

specificity and precision by using 95 percent confidence interval). Thus, “patient-

based validation strategy” tests the model based on the re-balanced train data on

different patients data in test set, which is not consisting of the patients belonged

to the training set, randomly retrieved from the original T2DM dataset (mainly

in Chapter 4 and Chapter 6).
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Table 4.1: Comparative performance analysis of the different steps of the Stepwise approach for three
complications Comparative performance of retinopathy, liver disease and hypertension.

Accuracy Sensitivity Specificity Precision
Retinopathy/no Hidden 0.47 0.56 0.48 0.49
Retinopathy/step1 0.63 0.49 0.93 0.84
Retinopathy/step2 0.88 0.99 0.67 0.77
Retinopathy/step3 0.87 0.99 0.65 0.77
Liver disease/no Hidden 0.68 0.99 0.29 0.6
Liver disease/step1 0.83 0.99 0.79 0.83
Liver disease/step2 0.84 0.99 0.67 0.79
Liver disease/step3 0.88 0.99 0.77 0.87
Hypertension/no Hidden 0.52 0.95 0.18 0.58
Hypertension/step1 0.63 0.74 0.66 0.66
Hypertension/step2 0.58 0.75 0.39 0.54
Hypertension/step3 0.58 0.74 0.46 0.53

The FCI and PCA both rely on statistical significance tests to decide whether an arc exists

between two variables and on its orientation. In addition, a default error rate (α = 0.05) was

used to find the correlation of T2DM risk factors using IC* algorithm.

As can be seen in Figure 4.2, the discovered relations among DBN nodes were shown

to build the predictive retinopathy model at the three steps of the stepwise approach. As

Friedman points out, a latent variable as a leaf/child or as root with only one child would be

marginalised without affecting the distribution over the remaining variables. So there would

be a latent variable that mediates only one parent and one child. It can be seen how the

addition of the first hidden node influences the hidden node discovered at the second step (by

the explaining away effect via NEU). The third hidden node was then added based upon being

linked in part to hidden variable 2. Each of the components of T2DM exposure (HBA, H at

the first step, and at the second step) were significantly associated with the risk of retinopathy

progression. Similar results involving varying interacting hidden variables were observed when

they were applied to other complications. The influence of a newly learned latent variable in

each step of the enhanced stepwise algorithm was demonstrated by a bar chart in Figure 4.3.
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Figure 4.4: Impacts of understanding Hidden variable patterns at each step of Stepwise method on
retinopathy prediction performance.
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In Figure 4.3, the effects of the targeted latent variable were analysed by changing the

prior as evidence of the observed latent variable in different states (0 and 1). Bayesian network

inference was used to query target complication to capture the probability distribution. As can

be seen in Figure 4.3, the prediction probability of retinopathy was dropped while evidence

(latent variable in the first time slot) was switched to one. The hidden variable at the third step

of the prediction (hidden 3) has been generally seen as a factor strongly related to retinopathy.

In contrast, the probability of retinopathy being diagnosed was dropped from 0.5 to 0.3 by

setting evidence from 0 to 1. Thus, it discussed whether discovering multiple hidden variables in

the higher step of the enhanced stepwise approach could be a significant contributory factor to

the development of retinopathy. Furthermore, it was also understood that the hidden variable

at the second step of learning plays an important role in the diagnosis of retinopathy.

Figure 4.2 emphasised the power of the stepwise approach with a generally improving

accuracy as several hidden variables were added. The accuracy plots indicated that the perfor-

mance of the predictor for retinopathy from the no-hidden step to the first step of the approach

was less significant than precision (compared to Figure 4.3-a-b). The sensitivity of retinopathy

prediction was increased sharply from 0.47 to 0.99. However, sensitivity for prediction of liver

disease and hypertension was remained constant after the first step of the approach. Despite

the sharp rise in performance measures by adding a hidden variable at the first step of the

procedure, for the rest of trend (learning more hidden variable), there was a slight increase

from the first step (step1) to higher stages. Additionally, Figure 4.3-a-c illustrated that there

was a sharp rise in prediction results (accuracy, precision and specificity) by exploiting a latent

variable in the first step of the stepwise IC* method. Eventually, from Figure 4.3-a, it was

evident that prediction accuracy has been improved from the first step (step1) to the third

step (step3), especially for retinopathy and liver disease. The precision measure seemed easier

to be interpreted, e.g, in Figure 4.3-b-a precision of 0.77 in the third step (step3) of learning

hidden variable could immediately be understood as it was correctly diagnosed the positive oc-

currence of liver disease. Figure 4.4 explained how the changes in the hidden variable in three

steps of the learning method reflect fluctuation in the observed variables at different points per

patient visits. As can be seen in Figure 4.4, the latent variable which has been learned at the
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third step of stepwise approach is on its peak and higher than the other steps and at the same

time earlier than observed variables (SBP and DBP) rise points. Altogether, these outcomes

emphasised the importance of hidden variable discovery in an early time disease prediction.

Having discussed the structure of the links considering the influence of the hidden variables

could also be analysed by focusing on their Markov blanket. There seemed to be a strong

relationship among T2DM key risk factors (BMI, liver disease, SBP, and DBP) in the market

blanket, which was shown in Figure 4.2- Step4. The Links in Figure 4.2- Step4 showed that

H2A1c was associated with an increased incidence of nephropathy, while H2A1c emerged as

an independent risk factor for developing retinopathy, which could be validated by clinical

evidence provided in [121]). Additionally, nephropathy and liver disease were independently

associated with an increased incidence of hypertension in T2DM patients (clinical evidence was

reported in [120]). These results suggested that the presence of macrovascular complications

is positively correlated with the occurrence of microvascular complications such as neuropathy

and nephropathy.

4.6 Summary

Predicting disease complications at the early stage of a longitudinal study has been known

as a critical issue which has high practical benefits in clinical applications. For many clinical

problems in patients, the underlying structure of risk factors (hidden factors) plays an impor-

tant role in medical interventions. This chapter has made a start by developing an intuitive

stepwise method to learn these latent effects based upon the IC* algorithm. More specifi-

cally, the proposed approach effectively integrated Bayesian methods with latent variables by

adapting the prior probability of the event occurrence for future time points. To achieve this,

in the data cleaning and pre-processing stage a new pair re-sampling strategy was employed,

which helped to show how the hidden variables influence the T2DM risk factors. These results

revealed that the proposed method is more accurate than using one of hidden variable step or

no hidden variables at all. One limitation of the proposed approach could be the stopping rule

to the stepwise approach, and in some cases, it seemed that accuracy starts to drop after the
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final hidden variable is added. This might represent overfitting in the model. Classification

accuracy could be monitored and used as a stopping condition (i.e., if it drops significantly).

Although the IC* algorithm only learns static structure (another process is used to learn tem-

poral links), there is potential to update the IC* algorithm to learn temporal associations.

The Relationship of T2DM risk factors affects the risk of development and progression of com-

plications in follow-up visits. A systematic understanding of how latent variables contribute

to T2DM complications is still lacking. A new approach explained in the next chapter will

use mutual information metrics to filter some of the hidden variable relationships where IC*

results in uncertainty in choosing either a latent variable or a direct link between two nodes.

In Chapter 5 the experimental findings and their significance will be tested statistically and

by using the confidence interval. Eventually, it intends to explain the hidden variables which

may enhance the stratification of patients and aids in understanding interactions between risk

factors and unmeasured variables.
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Chapter 5

Enhanced Latent Model and Patient

Stratification Using Temporal

Phenotype

5.1 Introduction

The primary goal of this chapter is to enhance the stepwise approach in previous chapter to fine

tune the latent variables whilst determining the impact of latent variables within probabilis-

tic networks generated from the observations. In the previous chapter, an intuitive stepwise

method, based upon the IC* algorithm, was developed to learn the effects of multiple hidden

variables on the prediction performance. However, the discovery of the optimum number of

the hidden variables was not easy and sometime accuracy dropped as more were added due

to overfitting. Thus, this chapter attempts to address these issues by proposing an enhanced

variation on the stepwise IC* method (which is called IC*LS approach) for incrementally

identifying hidden variables. It involves techniques for analysing the strength of relationships

between clinical and hidden variables to better understand the meaning of the hidden variables

within the complex disease model and explore their effect. Despite the importance of the latent

variable discovery, there remains a paucity of evidence on understanding of how the discovered
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latent variable contributes to explaining the complex patients model. Therefore, the main

motivation behind this chapter is to stratify patient groups by means of latent variables to

discover how complications in diabetes interact. This chapter explores how to cluster patients

into different subgroups based on their latent variables (which is called “temporal phenotype”).

Dynamic Time Warping Distance is used for time-series clustering to group patients based

upon these hidden variables to uncover their effects on the complications. This distance metric

is chosen because it can perform effectively to measure the patient dissimilarities based on

their behaviour even with unequal lengths of time-series. This chapter is organised as fol-

lows: In Section 2, the process required to stratify patients is divided into two halves. The

first half aims to increase the reliability of measures to produce the correct number of the

latent variables by using the enhanced stepwise approach. It also contributes a re-balancing

approach (which is called TS Bootstrapping). The second half explains how time-series clus-

tering is utilised to group patients based on the temporal phenotype. Section 3 compares the

enhanced methodology to the previous methods based on quantitative validation strategies,

such as visit-based, patient-based, sensitive analysis, confidence interval. Section 4 interprets

the quantitative results based on clinician point of view and medical articles before visualising

the identified clusters in Section 5. Section 6 summarises and discusses how a greater focus on

clustering patients in the next chapter will be maintained to produce interesting subgroups of

patients that account more for understanding the latent variable.

5.2 The Enhanced Stepwise Approach

To rule out the possibility of whether a latent variable can be used to group patients, the most

informative latent variables are discovered by adapting the stepwise approach. In Chapters 3-4

for learning the structure of the model, the K2 and stepwise IC* algorithms were used to create

non-temporal (Intra) link, respectively. The main weakness of those algorithms was the failure

to address how to learn a structure with the correct number of latent variables. Therefore, in

this section, a combination of the IC* algorithm and the Link Strength methods are combined

with learning the structure of DBNs. More explanation of the Link Strength measure, the
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T2DM data
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Figure 5.1: IC*LS Diagram: The overall strategy of the proposed predictive model.

Latent Structures and the key stages of implementing the enhance stepwise methodology are

shown in Figure 5.1 and are explained as follows:

• Pre-processing Stage: to Address the Imbalance Issue:a time-series Bootstrap-

ping approach is employed (which is introduced as TS Bootstrapping). This method is a

variant on the re-sampling approach in Chapter 3 is utilised. It re-samples observed time-

series visits per patient with the replacement, and the original training data is re-sampled

in pairs of consecutive time points, t− 1 and t.

• Model Generation: the discrete-time DBNs with two-time slots (t and t-1) are rep-

resented under the Markov properties assumption. These networks with temporal as-

sociations between the risk factors are inferred from the re-balanced T2DM historical

patients. In the DBNs framework (as seen previously in Chapter 3, Figures 3.6-3.7),

nodes represent variables at distinct time slots. A link represents the associations among

nodes over time, so it can be used to forecast into the future. The bootstrapped data are

trained and tested on their power to predict a complication at the next time point before

the latent variables are explored. For instance, Figure 3.7 showed the first complication
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Step 1:

Step 2:

Step 4:

.
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.

Figure 5.2: DAG of static relationships among T2DM risk factors by applying Step 1, 2 and 4 of the enhanced
stepwise IC*LS approach.
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at time t− 1 affects the clinical states of other comorbidities and risk factors at t.

• Link Strength Metric: Link Strength (LS) [45] is a metric to calculate the overall

strength of the dependent links. It focuses on the most powerful dependencies between

T2DM risk factors and enables model to observe the specific impact of each discovered

edge in a DBN. The percentage points of uncertainty reduction in a variable are utilised

by knowing the state of another variable if the states of all other parent variables are

known. True Average Link Strength (LSTA) calculates LS based on the average over

the parent states using their actual joint probability. If there was a link in the IC*

adjacent matrix with LSTA greater or equal to some threshold (here 20 percent), then

a link in the final structure was retained; otherwise, it was deleted. This threshold was

chosen to avoid providing overly connected networks and loops in the final DAG as well

as to decrease the risk of edge overfitting. More explanations of LS and its measures are

included in Appendix A.1.

• Stepwise IC*LS Approach and Latent Structure: an extended IC* stepwise ap-

proach attempts to identify the correlation among the latent variable and T2DM risk

factors, which is called Induction Causation Link Strength (IC*LS) methodology (which

also is introduced as "Enhanced latent model"). The probability of a high clinical level

of the nodes and the learned hidden variables are then inferred using the BN inference.

The CPTs and the EM algorithm are used to estimate the network parameters. The

resultant CPTs indicate the probability of being in one state has given the states of all

associated risk factors from the relationship graphs. In order to discover the correct num-

ber of hidden variables, extra checks are conducted on the learnt DAG on the stepwise

IC* algorithm (which has been introduced in Chapter 4). As a result, the LS metric is

applied to the stepwise IC* to provide a higher chance for DAG to learn optimal numbers

of hidden variables; hence, a better stopping point can be obtained.

The next section aims to define similarity among patients by investigating the distance over

either hidden variables in an unsupervised methodology.
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5.3 Time Series Clustering

Having discovered the hidden variables and built a DBN predictive model, this section attempts

to group patients to capture the status of the patient’s risk factors during their time-series and

investigate the relationship among them. For identifying patient groups (clusters) in the clinical

time-series dataset, the latent variable probabilities for each patient are mapped to a vector

of time-series. This vector should be considered as comparing pairs of patients. The concept

of similarity in one cluster of patients is based on distances between two patients across their

unequal follow-ups. However, calculating the right distance function to compare the pairs of

patients would be a challenge. Capturing these local and dynamic correlations across a similar

pattern among risk factors in the calculation of an average for each patient time-series would

be another challenge. Nevertheless, the discovery of such clusters of patients is essential in

revealing substantial correlations in T2DM risk factors in response to the disease over time.

Thus, here an appropriate method is suggested. Dynamic Time Warping (DTW) [15] is used as

a distance metric to find dissimilarities among patients. DTW distance is a suitable measure to

evaluate the similarities and dissimilarities of time series concerning their shape. This metric

can measure the discovered hidden variables probabilities to group patients into clusters. In

this work, uni-variate DTW provides a warping function that compares a hidden variable

vector of a patient time series to a hidden variable vector of another patient series, where

these two vectors do not necessarily need to be equal. To achieve this, DTW keeps one patient

hidden variable vector constant while stretching and shrinking the hidden variable vector to fit.

This is then fed into hierarchical clustering (complete) to build sub-groups of patients based

upon their hidden variables. This is also known as complete linkage cluster analysis since

a cluster is formed when all the dissimilarities between pairs of patient visits in the cluster

are less than a particular level. Thus, these sub-groups are distinguished by comparing the

hidden variable patterns of patients. These pattern of patient behaviour can be thought of as a

“temporal phenotype” for the cluster of patients. Based on the clustering model, two patients

are similar if they exhibit similarity in the most common/frequent temporal phenotype. In

order to characterise the profile of each discovered group, Medoid analysis [28] is applied
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to the DTW distance matrices to extract a patient (pattern) with the smallest inter-patient

distance among different sub-groups. This facilitates the overall risk factors behaviour across

all patients in a subgroup. Mediod is calculated based on the Partitioning Around Medoids

(PAM) algorithm to find a patient behaviour (as a temporal phenotype) in the centre of the

cluster. The Mediod is chosen, in this study, because it can better handle noise and outliers.

In addition to this, PAM estimates the most reasonable distance among items and eliminates

a sum of pairwise dissimilarities among patients by using the Mediod instead of a sum of

squared Euclidean distances which is used in the k-mean algorithm. This informative pattern

determines a representative of a cluster, which is noted here as a “deep temporal phenotype”.

The next chapter, therefore, moves on to discuss the discovered clusters in more details while

attempts to validate the clustering approach by comparing them to a different type of groups.

Turning now to the experimental evidence on a set of models learnt from the data to evaluate

the impact of adding latent variables and re-balancing the data via bootstrapping.

5.4 Experimental Results and Quantitative Validation Strate-

gies

This section assessed the effectiveness of the bootstrap re-balancing method and the latent

variable discovery approach in T2DM dataset. In Figure 5.2, a DAG for each step of the

stepwise IC*LS approach is learned 1. Conditional dependency for the hidden variable observed

in the first, second and fourth steps are plotted in green, blue and cyan colours, respectively.

The selected T2DM nodes (features and predictors) are labelled and ordered from 1 to 13

which are corresponded to complications and risk factors including: HBA, RET, NEU, NEP,

LIV, HYP, BMI, CRT, COL, HDL, DBP, SBP and SMK, respectively (as shown previously

in Tables 3.1-3.2). The initial hidden variable (H1) is closely linked to a small number of

clinical factors, notably 1,3,4,5,7 and 8. However, as subsequent hidden variables are added,

this structure changes. The second hidden variable (H2) is linked to more risk factors including

H1 (see Figure 5.2).
1Another example for IC*LS DAGs is provided in Figure 5.9.

90



Chapter 5: Enhanced Latent Model and Patient Stratification Leila Yousefi

The proposed structure has been evaluated by performing the sensitivity analysis on the

cohort based on two different perspectives: a “Visit-based” and a “Patient-based” validation

test. The results were documented for the following comparative structures:

• “UNB-K2-REVEAL”: the original data (unbalanced) was trained in the K2 algorithm for

Intra links and the REVEAL algorithm for Inter links with the unbalanced data (which

is not reliable due to the imbalance issue explained in Chapter 3).

• “B-K2-REVEAL”: a latent variable and a fully learned structure from the K2 algorithm

for Intra links and the REVEAL algorithm for Inter links with the balanced data using

the TS Bootstrapping approach (shown in Figure 3.7).

• “NO-latent”: the network is fully learned from the re-balanced data by using PC algo-

rithm with no latent variable for Intra links shown in Figure 3.5. The dynamic structure

for Inter links is Fully Auto-Regressive; each node is connected to the corresponding node

in the next time slice shown in Figure 3.6.

• “IC*”: the structure is obtained by using the IC* algorithm from the balanced data for

Intra links seen in Figure 4.2 and Fully Auto-Regressive structure for the Inter links

shown in Figure 3.6.

• “IC*LS”: a combination of the IC* and LS filtering method is used to discover the struc-

ture for Intra links shown in Figure 5.2-Step4 and Fully Auto-Regressive shown in

Figure 3.6.

In Table 5.2, the enhanced stepwise approach was compared to the previous stepwise ap-

proach in Chapter 4. It seemed evident that the enhanced stepwise method has achieved a

better performance measurement in predicting retinopathy.

Figures 5.3-5.4-5.5 illustrated a case study to investigate how the latent variables have

been interacted with other risk factors for predicting a complication in an individual patient.

The early time prediction probabilities were represented in X-axis. In contrast, the targeted

patient’s visits were shown in the Y-axis. The predicted likelihood of liver disease was es-

tablished in Figure 5.3-d seemed to be to very similar to its observed probability shown in
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Table 5.1: Visit-based performance assessment percentages on the prediction results for three complications.

Performance Measure UNB-K2-REVEAL B-K2-REVEAL NO-latent IC* IC*LS
AUC of Retinopathy 0.35 0.50 0.92 0.87 0.97
AUC of Liver Disease 0.38 0.51 0.68 0.90 0.97
AUC of Hypertension 0.60 0.51 0.63 0.81 0.97

Table 5.2: Comparison of enhanced stepwise IC* approach with its previous version in Chapter 4 and without
latent variable in Chapter 3

Percentage: Accuracy Sensitivity Specificity Precision
No Hidden variable in Chapter 3 0.48 0.53 0.48 0.53
stepwise IC* (Step1) in Chapter 4 0.60 0.40 0.80 0.70
enhanced stepwise (Step1) 0.80 0.51 0.98 0.97
stepwise IC* (Step2) in Chapter 4 0.78 0.98 0.58 0.68
enhanced stepwise(Step2) 0.95 0.80 0.96 0.86
stepwise IC* (Step3) in Chapter 4 0.78 0.98 0.58 0.68
enhanced stepwise (Step3) 0.95 0.81 0.96 0.82
enhanced stepwise(Step4) 0.96 0.81 0.97 0.92
enhanced stepwise(Step5) 0.95 0.82 0.97 0.85

Figure 5.3-a, which indicated the complication occurrence slightly earlier than the prediction.

The IC*LS latent approach, in Figure 5.3-c for liver disease, revealed a trigger around the

clinician observation time, whereas the latent K2 process in Figure 5.3-b remained steady.

A less significant predicted probability was also captured in Figure 5.4-d. This illustrated a

fluctuation just before retinopathy has been monitored in Figure 5.4-a. Similarly, a trigger

happened in two latent approaches in Figure 5.4-b-c. It revealed that the latent models had

been appeared to be predicting the switches in most patient cases. However, with the small

sample size, caution must be applied, as the findings might not be applicable and there have

been a few cases where the model could not predict a complication earlier than the clinicians.

As a result, the expected findings for predicting hypertension might differ from the conclusions

presented here, as it was compared in Figures 5.5-d to Figures 5.5-a. It could be argued

that the prediction results might be caused because of differences between complications. For

example, hypertension has been reported as an easily detected macrovascular disease. In con-
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trast, retinopathy as a chronic microvascular has been known very challenging to be caught at

the earlier stage of the disease progression.
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Figure 5.3: The latent Variable Behaviour for predicting the onset of Liver disease: A latent prediction
pattern of liver disease over time (a patient follow-ups). The red dotted line represents marks the actual time

of the disease occurrence.

5.4.1 Confidence Interval Results

To manage the uncertainty in the prediction, this study confined itself to Confidence Interval

(CF) results derived from a randomly selected subset of T2DM patients. Here, the uncertainty

in the structure and the predictive model was typically outlined by a confidence interval that

has been declared to incorporate the true parameter value with a pre-defined likelihood. This

was achieved by using the enhanced approach was compared to the previous results obtained

in Chapter 3-4. In particular, T2DM patients data were randomly over-sampled for 250 times

in predicting a target complication of T2DM (e.g., retinopathy). Clustered column charts in

Figure 5.6 demonstrated the fluctuations of the average classification accuracy percentages

of the randomly over-sampled cases, for five steps of the enhanced stepwise method. These

results in Figure 5.6 revealed that the prediction accuracy of retinopathy in step one had been

increased sharply by adding hidden variables at step two to four and then dropped slightly at
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Figure 5.4: The latent Variable Behaviour for predicting the onset of retinopathy: Latent variable prediction
pattern of retinopathy over time (a patient follow-ups).
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Figure 5.5: The latent Variable Behaviour for predicting the onset of hypertension: Latent variable prediction
pattern of hypertension over time (a patient follow-ups).
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Figure 5.7: Bootstrap Confidence Interval: accuracy, sensitivity, specificity, and precision of liver disease
prediction (Visit-based).
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step five. Additionally, error bars on the top of the bar charts were illustrated. For example, the

error bar in step one was more significant than the subsequent steps. The error bar in step two

is quite large due to a more considerable confidence interval of the successive steps. Overall, it

seemed that more significant than 95 percent that accuracy in retinopathy prediction using the

stepwise IC*LS structure with more than one hidden variable appeared to be more accurate

than a learning model with only one hidden variable. The influence of the latent variables on

predicting liver disease was assessed in Figure 5.7. In this Figure, a very high percentage of

95% confidence interval was achieved by employing the IC*LS methodology, compared to the

K2 and REVEAL algorithm and no latent variable approaches.

5.4.2 Qualitative Approach to Interpret the Predictive Model

The previous results showed how the targeted use of latent variables improves prediction accu-

racy, specificity, and sensitivity over standard approaches as well as aiding the understanding

of relationships between these latent variables and disease complications/risk factors. Looking

at how the different structures were performed within a DBN for predicting the appearance

of complications, Figure 5.8 revealed that there could be a general trend to improvement in

accuracy as more hidden variables have been added. Surprisingly, this improvement levelled

out after adding the fifth hidden variable. To report more precise results, confidence intervals

to manage the uncertainty in the prediction results derived from a randomly selected subset

of T2DM patients. It was important to bear in mind the possible bias in the findings could

not be extrapolated to all patients in the small-sized dataset. Although there was a direct

link (correlation) between the latent variable and liver disease in Figure 4.2- Step4, these

results should be interpreted with caution, as this did not necessarily mean that the latent

variable caused liver disease. 5.8 showed how the probabilities of retinopathy, liver disease

and hypertension, are influenced by the discovered latent variables. Surprisingly, in 5.8-b,

a slight change was found in liver disease values, whilst the latent variable has the highest

value. There was a significant negative correlation between the latent variable and hyperten-

sion, which was shown in 5.8-c. As a result of including this latent variable, there was a steep

rise in the prediction accuracy of hypertension from 63% to 97% (in the IC*LS approach in
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Figure 5.8: Prediction probabilities: The obtained posteriors for retinopathy, liver disease, and hypertension
using a latent variable as the evidence.
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Table 5.1 compared to NO-latent). Similarly, a positive correlation was found between the

latent variable and retinopathy in Figure 5.8-a. It was apparent from Table 5.1 that retinopa-

thy prediction was enhanced considerably from 92% (NO-latent) to 97% (IC*LS) by adding

the latent variable. Together these findings have provided important insights into the latent

variable effects, which helped to reduce the uncertainty in the prediction process by identifying

the relationship between T2DM complications and risk factors. The AUC results obtained in

Table 5.1-UNB-K2-REVEAL predicted hypertension accurately 60% of times comparing to

35% for retinopathy while data was imbalanced. This revealed the degree of improvement in

the prediction performance from 35% to 51% for retinopathy and 38% to 51% for liver disease,

whilst 60% to 51% for hypertension. The reason behind this could be argued that hypertension

has been known as a macrovascular complication while retinopathy reported as a typical mi-

crovascular complication. Furthermore, hypertension appeared to be the easiest complication

to be detected by clinicians due to the routine measurement of blood pressure. Alternatively,

retinopathy and liver disease required either ophthalmology consultation or ultrasonography

of liver.

The overall approach in this thesis is abstracted in Figure 5.10. In top of the Figure,

first the patient’s history (including the disease risk factors and complications) was learned

and trained in a DBN model (in the middle). The obtained DAG was learned at each step

of the stepwise IC*LS approach representing the links from a latent variable to other clinical

risk factors. Then the inferred latent variable probabilities were employed to predict a target

complication earlier than the actual occurrence time (bottom of the figure). This figure also

revealed that the first latent variable (at visit t − 1) was closely linked to a small number of

clinical factors, while the second latent variable (at visit t) was connected to a larger number

of risk factors.

5.4.3 Cluster Analysis

Here, the meaning of the hidden variables was explored beyond the DBNs structure within

the DBNs using time series clustering and DTW distance. The discovered hidden variables

were utilised to identify groups of patients based upon their temporal phenotype, which was
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Figure 5.9: Hidden variables influence on clinical risk factors.
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Figure 5.10: A DBN Latent Model: from the top, in the middle, and bottom demonstrate the patients
history, the inferred latent variable probabilities, the prediction, respectively.

100



Chapter 5: Enhanced Latent Model and Patient Stratification Leila Yousefi

Medoid-Cluster 4

Medoid-Cluster 1

Medoid-Cluster 3

Medoid-Cluster 2

Medoid-Cluster 5

Medoid-Cluster 2

Medoid-Cluster 1

Medoid-Cluster 3

Medoid-Cluster 4

Medoid-Cluster 5Step 1:

Step 2:

Figure 5.11: Temporal phenotypes (The First Hidden Clusters "Profiles") in hierarchical clustering.
Deprograms of Hierarchical clustering (complete) for the first and second hidden variable with the DTW
distance metric. The x-axis represents is a measure of closeness of either individual data points or clusters,

while y-axis is representing patient IDs as data points.
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noted as cluster "Profiles". Dendograms of hierarchical clustering in Figure 5.11 were shown

for each sub-group of the patients. This Figure demonstrated the Medoid-clusters at the first

and second learned hidden variables.
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Figure 5.12: Cluster Profile on mean values of patient risk factors and complications. Patients clustered using
the fourth hidden variable obtained from the fourth step of the enhanced stepwise IC*LS algorithm (C4).

In Figure 5.11, these profiles captured quite different behaviours: one was fluctuating

between the higher state and lower state of the first hidden variable (Cluster 3 in step 1),

involved a switch-like behaviour, one involved a general decreasing trend (cluster4 in all two

steps), and another was flat-lining (Cluster 3 in step 2). Considering the associated mean

values of the clinical variables for each cluster, it seemed that the data had generated clearly

separated cohorts of patients. Figure 5.12-C4 revealed impressive results for each T2DM risk

factor in terms of the type of patients in a cluster. For example, patients with high BMI,

low HDL, and low SBP are represented in yellow (Cluster 1), whilst patients in Cluster 3

(with the flat-lining hidden cluster profile) generally had low BMI and high HDL. Cluster 4,

with the decreasing hidden cluster profile, also reported much higher BMI values amongst the

patients and very low HDL and DBP. As a result, for each patient in Cluster 4, the Mediod-
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cluster represented an informative pattern shown in Figure 5.11, Step 1, Mediod-Cluster 4,

which was identified based on the hidden variable and phenotypic discovery approach using

DBNs and IC*LS algorithm in the enhanced stepwise algorithm. This also represented the

overall patients’ patterns of risk factors over time (for Cluster4 profile showing yellow line in

Figure 5.12).

5.5 Summary

This chapter proposed the IC*LS approach as an enhanced version of the stepwise IC* ap-

proach with more robust stopping points to reduce uninformative hidden variables. It also

revealed how these hidden variables could improve prediction performance with a study using

confidence intervals. Furthermore, it clustered patients based upon the discovered hidden vari-

ables and used the Medoid hidden variable profile of each cluster to characterise the temporal

phenotype of that set of patients. The proposed methodology in this chapter can be combined

using pattern mining approaches to validate the target hidden variables and enhance the un-

derstanding of the sub-types of the disease based upon the developing disease complications.

This is the subject of next chapter, which explores how the discovered latent variables interact

amongst themselves and with clinical variables by using inference techniques on different com-

plications. It also discusses how significant subgroups of patients can improve the prediction

performance for a sequence of complications.
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Chapter 6

Personalised Patients in Precision

Medicine Using Explainable Latent

Model

6.1 Introduction

The results of the descriptive experiments discussed in Chapter 5 showed the possibility of

identifying different subgroups of patients based on the temporal phenotype. Nevertheless, the

techniques used in these investigations were not validated for interpreting each subgroup to

enhance the prediction of the associated complications. Moreover, in type 2 diabetes literature

no attempt has been made to quantify the association between complications in the prediction

performance, while they can be numerous and interact in complex non-linear ways throughout

the disease process. This chapter proposes a hybrid approach that includes Temporal Asso-

ciation Rules to identify frequent co-occurrences of complications over time, and Temporal

Pattern Clustering to build meaningful subgroups. These methods can also be combined for

a better understanding of an informative temporal phenotype (which will be referred to as

the “temporal phenotype” for the remained of this chapter) as well as underlying patterns of

complications associated with the patients. The obtained clusters of the rules are compared to

104



Chapter 6: Personalised Patients in Precision Medicine Leila Yousefi

groups of the latent phenotypes extracted as reported in Chapter 5 (using the DTW distance).

Finally, several validation strategies involving the Jaccard Index and Bayesian analysis are

employed where inference is more transparent.

Overall, this chapter provides two types of strategies in data mining as follows: Section 2

discusses descriptive strategies where Temporal Association Rules, time-series clustering and

Association Rule Mining were combined to build the hybrid approach. Section 3 documents the

result obtained from Section 4 to evaluate the subgroups by using the clustering comparison

methodology approach. Section 5 turns to predictive strategies where the prediction accuracy

of the associated complications was tested on the DBNs framework before concluding in Section

6.

6.2 Data Mining Techniques: Personalising Patients in Preci-

sion Medicine

So far, the previous chapters have either focused on predictive strategies in order to improve

accuracy or descriptive analysis to ease explainability in understanding the underlying models

(and latent variables). Now, to achieve both goals, this section suggests various data mining

techniques based upon an integration of descriptive and predictive analysis. In Figure 6.1,

a multiple-stage process has been taken to find explainable subgroups of the patients and to

interpret the latent variable using the proposed methodology personalising diabetic patients in

precision medicine. The overall methodology is labelled in Figure 6.1 and explained as follows:

1. Data pre-processing and data discretisation approaches are employed to generate the

original T2DM dataset (DS).

2. For each patient an informative pattern (as temporal phenotype) is identified based on

the latent variable discovery approach using DBNs and IC*LS algorithm in the enhanced

stepwise algorithm (which was explained in chapter 5).

3. The DTW method is used to calculate dissimilarities between the discovered temporal

phenotypes. It captures the complexities/homogeneity of the risk factors of the disease
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T2DM Dataset
(DS)

Meaningful Subgroup (DS1)

1: Pre-processing:
Discretisation
Bias Detection

Pattern Extraction

2: 2: Latent Variable 
Discovery: DBNs IC*LS 

Stepwise Approach

5: TARs

3: DTW Distance 
Applied to Deep Temporal 

Phenotype

9: Ward’s Method
Dissimilarities

 between objects
4: Time Series Clustering

12: Sensitivity Analysis

10: Clustering Comparison-
Evaluation:

Jaccard Index, NBH Statistics, 
Quality Metrics

11: Prediction Performance:
Bayesian Analysis 
MAP Algorithm 

6: Jaccard Distance 
Hierarchical clustering

8:Mapping Itemsets 
(objects) to TARs.

3: Temporal 
Phenotype

Patients with a similar latent phenotype (within the meaningful subgroup DS1):
 Often diagnosed with a sequence of complications of neuropathy, liver disease, and hypertension. However, they are 
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Figure 6.1: The proposed hybrid methodology to find explainable subgroups of patients by personalising
diabetic patients in precision medicine.
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as well as the associated complications over time.

4. Time-series clustering based on DTW distance is applied on the data to stratify patients

into four clusters considering their temporal phenotypes (which is known as “H cluster”

demonstrated in Figure 6.4).

5. The multiple binary complications, as items from the pre-processed dataset DS, are

extracted and mined to retrieve the temporal patterns of items. TARs are applied on

the obtained patterns from DS and generate database R in Table 6.1.

6. The Jaccard index is applied to the rules in R to measure the distance between the

itemsets. Hierarchical Agglomerative Clustering groups sub-rules and generates rules in

R.

7. A post-processing ARM approach, which is called Minimum Coverage Itemsets (MCI),

is utilised for pruning the rules and investigating the most reasonable distances to obtain

meaningful clustering outcomes. Thus, the proposed Algorithm 1 MCI generates least

itemsets (which is known as “objects”) in dataset D covering the most important/in-

teresting/significant rules from R, in Table D, unique objects identify each of resulted

itemsets of the applied MCI.

8. All rules in R are mapped to the relevant objects/itemsets in D based on the implications

of the antecedents and consequents. The pattern mining and sequence discovery are per-

formed to explain and highlight the potential usefulness of identifying patterns of T2DM

complications which are called “complications-rules”. These patterns of complications-

rules are considered as itemsets (a basket of complications) in TARs.

9. By using Hierarchical clustering andWard’s Method, objects are grouped into five groups.

Subgroups of patients with a common pattern of the complications-rules are identified

(which is called “TAR clusters”).

10. Comparison and validation strategies such as Jaccard Index and Normal Approximation

for the Binomial Approximation of the Hypergeometric distribution (NBH) are employed
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to explain the most significant subgroup through the integration of TARs with time-series

clustering.

11. The most meaningful subgroup of patients is found from the intersection of H and TAR

clusters. Prediction performance of the discovered meaningful subgroup (DS1) as a subset

is compared to DS.

12. Sensitivity analysis is applied to DS1 and assessed its prediction performance comparing

to DS. Bayesian statistics is used to test the explainability of the meaningful subgroup.

13. The outcome of the latest model for predicting and stratifying T2DM patients, with a

focus on DS1, is explained with the corresponding pattern of complications-rules and tem-

poral phenotypes. The associated complications-rules are mined to assess the occurrence

likelihood of binary complications concerning the rest of the complications associated

with the patients. For example, to find out whether the increasing prevalence of HYP

has been accompanied by an increase in NEU or NEP by LIV. To understand how the

temporal phenotypes help to group patients, a combination of the TARs mining and time

series clustering is performed in the next section.

To understand how the latent phenotype helps to group patients, a combination of the TARs

mining and time series clustering is performed in the next section. An outline of the MCI

algorithm is provided in in Algorithm 1 MCI.

6.3 Descriptive Strategies: Personalising Patients using a Hy-

brid Type Methodology

To understand how the latent phenotype helps to group patients, the next stage has further

extended the patient models discussed in the previous chapter by using hybrid methods con-

sisting of Temporal Association Rules (TARs), Association Rule Mining (ARM) and Pattern

Clustering. The first stage describes TARs to extract the underlying relationships among the

complications, which have been utilised according to the needs of patient personalisation.
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6.3.1 Temporal Associations Rules and Sequence Discovery of Complica-

tion Patterns

Temporal Association Rules are employed to explain and highlight the potential usefulness of

identifying patterns of T2DM complications in identifying patients groups. For retrieving the

conditional rules (conditional statement representing an ordering pattern) among the compli-

cations using TARs, which can be thought of as a basket in the shopping problem introduced

in Chapter 3. This stage extends these previous concepts in more detail as it will be used in

Algorithm 1 MCI. Based on the nature of the clinical records in the T2DM case study, criteria

for selecting the items were as follows: there is some assumption described below. Itemsets of

= is a transaction that represents a pattern of all associated complications over a patient time

series (from the first recorded visit to the last visit). In particular, = in TARs is shown by

{antecedent =⇒ consequent} referring to a sequence of complications co-occurrence or visits

({antecedent , consequent}) which is a representation of {consequent} occurrence captured

in a patient visits/time series followed by the corresponding {antecedent}. The consequent

itemsets may consist of more than one item for each rule. In the process of pruning the rules to

pick the most interesting one, the main priority in a predictive model for the decision making

is based on consequents.

In terms of explaining temporal notation, every two itemsets with a similar ordering pattern

of the complications (co-occurrences) are treated equivalent, and any redundant complication

in their intersection is being ignored. An empty antecedent ({}) and two empty antecedents

({}{}) are equivalent. These notations represent a patient/transaction with no complication

during the first two visits. Thus, time gaps among the two complications are being ignored. A

symbol of “,” represents a logical “AND” between two itemsets of =i of {HY P,RET} and

=j of {HY P,RET} indicate a complications-rules for those patients who have developed

HYP before RET during their visits =i ≡ =j . However, according to temporal abstraction

rules, the ordering pattern/ sequence of the complications co-occurrence are important where

{HY P,RET} and {RET,HY P} did not resemble each other. A symbol of “|” (represent-

ing a logical “OR” gate) between to items in particular itemsets indicates any of two items

(RET and NEU) or their combination or none of them ({}) could occur. In addition, item-
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sets of = by having a “|” among their items can be a subset of another itemsets by having a

“,”, e.g., ({NEU |RET} ⊆ {NEU,RET}. For example, two itemsets of {NEU,RET,RET}

and {NEU,RET} are assumed to be equivalent, whereas {NEU |RET} can be different from

{NEU,RET} (indicating NEU must be developed before RET). Thus, similar to the first as-

sumption, the repetition of the complications is ignored, but without consideration of ordering

rules. Based on these assumptions and in order to find the most frequent complications-rules in

DS, in the next section, a mixed methodology based on TARs and ARM is utilised to enhance

the methodological approach taken in Chapter 5.

Table 6.1: Database R of the associated rules with the complications generated using TARs.

Rule Antecedent Consequent Object ID (=) Support Confidence Lift

1 { } =⇒ {HYP,RET} 3,14,23,27,28,33,38,41 ≥ 0.001 ≥ 0.001 1.00

2 { } =⇒ {RET,HYP} 3,14,23,27,28,33,38,41 0.01 0.01 1.00

3 { } =⇒ {NEU,HYP} 5,13,21,26,28,31,38,41 0.01 0.01 1.00

4 { } =⇒ {LIV,HYP} 6,24,30,31,33,35,36,37,39,400.02 0.02 1.00

5 { } =⇒ {NEP,HYP} 2,13,14,20,26,27,30,38,41 0.03 0.03 1.00

6 { } =⇒ { }{ } 9 0.02 0.02 1.00

7 { } =⇒ {NEP} 2,11,35-38,41 0.11 0.11 1.00

8 { } =⇒ {NEU} 5,7,37-41 0.16 0.16 1.00

9 { } =⇒ {RET} 3,4,32-34,38,41 0.15 0.15 1.00

10 { } =⇒ {LIV}
6,12,18,19,22,24,29,30-

37,39,40
0.15 0.15 1.00

11 { } =⇒ {HYP} 2-6,10,30-33,38,41 0.86 0.86 1.00

12 {NEU,HYP} =⇒ {NEU} 13,26,38,41 0.01 0.27 1.71

13 {NEU} =⇒ {NEP,HYP} 13,26,38,41 0.01 0.05 1.71

14 {NEP,HYP} =⇒ {RET} 14,27,38,41 0.01 0.27 1.79

15 {RET} =⇒ {NEP,HYP} 14,27,38,41 0.01 0.05 1.79

16 { }{ } =⇒ {RET} 3,4 0.01 0.22 1.46

17 {RET} =⇒ { }{ } 3,4 0.01 0.03 1.46
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Table 6.1: Database R of the associated rules with the complications generated using TARs.

Rule Antecedent Consequent Object ID (=) Support Confidence Lift

18 { }{ } =⇒ {HYP} 2-6,33,38,41 0.02 0.78 0.90

19 {HYP} =⇒ { }{ } 2-6 0.02 0.02 0.90

20 {NEP} =⇒ {NEU} 13,16,25,26,29,38,41 0.02 0.19 1.17

21 {NEU} =⇒ {NEU} 13,16,25,26,29,38,41 0.02 0.13 1.17

22 {NEP} =⇒ {RET} 14,17,25,27,32,38,41 0.02 0.14 0.92

23 {RET} =⇒ {NEP} 14,17,25,27,32,38,41 0.02 0.10 0.92

24 {NEP} =⇒ {LIV} 18,29,30,32,36,37 0.04 0.37 2.49

25 {LIV} =⇒ {NEP} 18,29,30,32,36,37 0.04 0.27 2.49

26 {NEP} =⇒ {HYP} 2,13,14,20,26,27,30,38,41 0.10 0.93 1.08

27 {HYP} =⇒ {NEP} 2,13,14,20,26,27,30,38,41 0.10 0.12 1.08

28 {NEU} =⇒ {RET} 15,25,28,34,38,39,40,41 0.04 0.25 1.64

29 {RET} =⇒ {NEU} 15,25,28,34,38,39,40,41 0.04 0.26 1.64

30 {NEU} =⇒ {LIV} 19,29,31,34,35,37,39,40 0.02 0.11 0.73

31 {LIV} =⇒ {NEU} 19,29,31,34,35,37,39,40 0.02 0.12 0.73

32 {NEU} =⇒ {HYP} 5,13,21,26,28,31,35,37-41 0.12 0.78 0.91

33 {HYP} =⇒ {NEU} 5,13,21,26,28,31,35,37-41 0.12 0.14 0.91

34 {RET} =⇒ {LIV} 22,32,34,36,39,40 0.03 0.20 1.31

35 {LIV} =⇒ {RET} 22,32,34,36,39,40 0.03 0.20 1.31

36 {RET} =⇒ {HYP} 3,14,23,27,28,33,36,38,41 0.12 0.79 0.91

37 {HYP} =⇒ {RET} 3,14,23,27,28,33,36,38,41 0.12 0.14 0.91

38 {LIV} =⇒ {HYP} 6,24,30,31,33,35,36,37,39,400.14 0.92 1.06

39 {HYP} =⇒ {LIV} 6,24,30,31,33,35,36,37,39,400.14 0.16 1.06

40
{{NEP,HYP},NEU} =⇒

{RET}
28,38,41 0.01 1.00 6.57
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Table 6.1: Database R of the associated rules with the complications generated using TARs.

Rule Antecedent Consequent Object ID (=) Support Confidence Lift

41
{{NEP,HYP},RET} =⇒

{NEU}
28,38,41 0.01 1.00 6.27

42 {NEU,RET} =⇒ {NEP,HYP} 28,38,41 0.01 0.19 6.84

43 {NEP,NEU} =⇒ {RET} 25,38,41 0.01 0.25 1.64

44 {NEP,RET} =⇒ {NEU} 25,38,41 0.01 0.33 2.09

45 {NEU,RET} =⇒ {NEP} 25,38,41 0.01 0.13 1.17

46 {NEP,NEU} =⇒ {LIV} 29,35,37 0.01 0.25 1.67

47 {LIV,NEP} =⇒ {NEU} 29,35,37 0.01 0.13 0.78

48 {LIV,NEU} =⇒ {NEP} 29,35,37 0.01 0.29 2.66

49 {NEP,NEU} =⇒ {HYP} 26,35,37,38,41 0.02 0.88 1.01

50 {HYP,NEP} =⇒ {NEU} 26,35,37,38,41 0.02 0.18 1.10

51 {HYP,NEU} =⇒ {NEP} 26,35,37,38,41 0.02 0.14 1.31

52 {NEP,RET} =⇒ {LIV} 32,36 ≥ 0.001 0.17 1.11

53 {LIV,NEP} =⇒ {RET} 32,36 ≥ 0.001 0.06 0.41

54 {LIV,RET} =⇒ {NEP} 32,36 ≥ 0.001 0.08 0.78

55 {NEP,RET} =⇒ {HYP} 27,36,38,41 0.01 0.67 0.77

56 {HYP,NEP} =⇒ {RET} 27,36,38,41 0.01 0.10 0.66

57 {HYP,RET} =⇒ {NEP} 27,36,38,41 0.01 0.08 0.78

58 {LIV,NEP} =⇒ {HYP} 30,35,36,37 0.04 0.94 1.09

59 {HYP,NEP} =⇒ {LIV} 30,35,36,37 0.04 0.38 2.51

60 {HYP,LIV} =⇒ {NEP} 30,35,36,37 0.04 0.27 2.54

61 {NEU,RET} =⇒ {LIV} 34,39,40 0.01 0.13 0.84

62 {LIV,NEU} =⇒ {RET} 34,39,40 0.01 0.29 1.88

63 {LIV,RET} =⇒ {NEU} 34,39,40 0.01 0.17 1.04

64 {NEU,RET} =⇒ {HYP} 28,38,39,40,41 0.03 0.75 0.87

65 {HYP,NEU} =⇒ {RET} 28,38,39,40,41 0.03 0.24 1.58
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Table 6.1: Database R of the associated rules with the complications generated using TARs.

Rule Antecedent Consequent Object ID (=) Support Confidence Lift

66 {HYP,RET} =⇒ {NEU} 28,38,39,40,41 0.03 0.25 1.57

67 {LIV,NEU} =⇒ {HYP} 31,35,37,39,40 0.02 0.86 0.99

68 {HYP,NEU} =⇒ {LIV} 31,35,37,39,40 0.02 0.12 0.80

69 {HYP,LIV} =⇒ {NEU} 31,35,37,39,40 0.02 0.11 0.68

70 {LIV,RET} =⇒ {HYP} 33,36,39,40 0.03 1.00 1.16

71 {HYP,RET} =⇒ {LIV} 33,36,39,40 0.03 0.25 1.67

72 {HYP,LIV} =⇒ {RET} 33,36,39,40 0.03 0.22 1.43

73 {NEP,NEU,RET} =⇒ {HYP} 38,41 ≥ 0.001 0.50 0.58

74 {HYP,NEP,NEU} =⇒ {RET} 38,41 ≥ 0.001 0.14 0.94

75 {HYP,NEP,RET} =⇒ {NEU} 38,41 ≥ 0.001 0.25 1.57

76 {HYP,NEU,RET} =⇒ {NEP} 38,41 ≥ 0.001 0.08 0.78

77 {LIV,NEP,NEU} =⇒ {HYP} 37 0.01 1.00 1.16

78 {HYP,NEP,NEU} =⇒ {LIV} 37 0.01 0.29 1.91

79 {HYP,LIV,NEP} =⇒ {NEU} 37 0.01 0.13 0.84

80 {HYP,LIV,NEU} =⇒ {NEP} 37 0.01 0.33 3.11

81 {LIV,NEP,RET} =⇒ {HYP} 36 ≥ 0.001 1.00 1.16

82 {HYP,NEP,RET} =⇒ {LIV} 36 ≥ 0.001 0.25 1.67

83 {HYP,LIV,NEP} =⇒ {RET} 36 ≥ 0.001 0.07 0.44

84 {HYP,LIV,RET} =⇒ {NEP} 36 ≥ 0.001 0.08 0.78

85 {LIV,NEU,RET} =⇒ {HYP} 39 0.01 1.00 1.16

86 {HYP,NEU,RET} =⇒ {LIV} 39 0.01 0.17 1.11

87 {HYP,LIV,NEU} =⇒ {RET} 39 0.01 0.33 2.19
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6.3.2 Association Rule Mining and Quality Metrics

Association Rule Mining (ARM), TARs and pattern clustering approaches are combined in

the hybrid methodology during the process of pruning/analysing the rules to pick the most

interesting complications-rules. ARM involves the generation of itemsets in TARs applied to

the sets of T2DM complications to discover all combinations/sequences/sets of items (which

are known as itemsets). As a result, in Table 6.1, the frequent complications-rules included in

at least a significant number of patients are known as the frequent/interesting itemsets. ARM

and the quality metrics are applied to the transactions of sub-rules to cluster the interesting

itemsets.

In the T2DM dataset, support as a metric is regarded as an explicit constraint to identify

the outliers. It is assumed to be a set of patients (representing transactions or baskets of

items) containing the itemsets. These constraints can be based on the frequency of itemsets

(which is referred to support) and whether their appearance is more significant than a pre-

defined minimum threshold (which for the sake of simplicity is assumed to be 0.001). The

minimum constraints must be assigned at a low level as the complications-rules with pre-

defined constraints vary from patient to patient.

In addition, confidence calculates the probability of occurrence of {consequent} given

{antecedent} is present. Based on the nature of clinical data, a confidence constraint of

25% is chosen to generate interesting rules. This is because, in the small-sized dataset with

the appearance of bias, it is essential to ascertain that the frequent items have not been af-

fecting the associations of other items rather than HYP. Therefore, only the effect of four out

of five complications are being considered, and at least one-fourth of the complications should

be measured for confidence. For example, the confidence of a rule shown in Equation 6.1 is

identified by the proportion of transactions with the most interesting/important relationships.

support = (C(π)i ∪ C(π)j) > σ, confidence = (C(π)i ⇒ C(π)j) > δ (6.1)

In the above equation, parameters such as σ and δ are the minimum support (σ <=

0.001) and confidence (δ <= 25%), respectively. The support metric for itemsets of C(π)i ∗
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(support(C(π)i) is defined as the proportion of transactions in the dataset containingRHS(C(π)i).

In particular, an association of ∂(C(π)i)⇒ ∂(C(π)j) has a support of P (C(π)iC(π)j). Confi-

dence measures the strength of the association rules in which patients that had a complication

in C(π)i also might develop another complications in C(π)j .

For example, in T2DM case study if confidence is given for HY P,LIV implying RET ,

it can represent the likelihood of developing HY P,LIV and also RET over the likelihood

of developing only HY P and LIV . A rule of {RET,HY P,NEU,RET} implying LIV ,

which is calculated based on confidence, reveals how likely a patient develops both itemsets of

{RET,HY P}, NEU,RET and LIV .

In order to find the most interesting itemsets, support ensures that all sub-rules of the

frequent itemsets are also frequent; hence no superset of infrequent itemsets can be considered

as frequent. Confidence is very sensitive to the frequency of the consequent. It has been

reported that consequents with higher support produced higher confidence even though there

was no association among the antecedent and consequent. Nevertheless, the already mentioned

metrics are not able to filter complications-rules based on the different dependencies among the

rules, while another metric like lift can measure the independence between C(π)i and C(π)j , as

is shown in Equation 8. Lift is the ratio of confidence to a baseline probability of {consequent}

occurring. It assesses the probability of developing both HY P and LIV that is associated with

the likelihood of developing RET . Lift is the deviation of the whole rule’s support from the

expected support under independence given both sides of the rule’s support. Higher lift values

indicate strong associations. For example, lift of 1 represents C(π)i and C(π)j are independent,

as shown in Equation 6.3.

lift =
P (C(π)i ∩ C(π)j)
P (C(π)i)× P (C(π)j)

(6.2)

lift(C(π)i =⇒ C(π)j) = support(C(π)i ∪ C(π)j) = support(C(π)i)× support(C(π)j) (6.3)

As a result, two rules of {{NEP,HY P}, NEU} =⇒ {RET} and {{NEP,HY P}, RET} =⇒
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{NEU} are considered as the most interesting rules based on the evidence showing

that they had the highest confidence and lift among all itemsets.

Having considered support, confidence and lift, it might be not be ideal and useful to

effectively filter out unimportant complications-rules as they are performing with the existence

of bias in DS with a small number of patients. Although the minimal constraints have been

applied to these quality metrics, the outcome of TARs contained too many redundant sub-

rules, in both of antecedents and consequents. This is because the total number of associated

extracted sub-rules from DS is 174, without taking into account an empty set for consequent

and antecedent. Moreover, the combination of these sub-rules increased the database size

exponentially based on the number of items.

Therefore, a clustering approach based on the Jaccard distance has been discussed in the

next stage to filter out the infrequent itemsets and measure distances between itemsets. Ac-

cordingly, Agglomerative hierarchical clustering is employed to cluster antecedents and then

map them to appropriate antecedents.

6.3.3 Agglomerative hierarchical clustering and Jaccard distance

Previously, TARs have been used on the temporal co-occurrence pattern of complications to

obtain their associated patterns and relatively the sub-rules/itemsets. Here, the itemsets are

grouped by using the Agglomerative hierarchical clustering approach. Thus, Jaccard distance

was utilised, where di,j shows the difference between two itemsets =i and =j calculated the

number of similar sub-rules between them over all their unique sub-rules. For comparing two

different sequences of the complications (i and j) in the hierarchical clustering of the itemsets

of =i and =j , Jaccard distance (di,j) is calculated based on Jaccard Index (Jaccard(=i,=j)),

as seen in Equation 6.4.

di,j = 1− Jaccard(=i,=j),where Jaccard(=i,=j) =
|=i ∩ =j |
|=i ∪ =j |

(6.4)

Thus far, metrics such as support, confidence and lift were used to identify the most

interesting rules. Altogether, the discovered rules were generated to database R (which were
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represented in Table 6.1) consisting of 174 sub-rules (87 antecedents and 87 consequents).

However, as shown in the previous phase, there may still be many uninteresting/uninformative

rules remaining, which can be challenging to be interpreted due to the complex nature of

the associated complications. In the next stage, a minimum number of aggregated sub-rules

in R are retrieved to produce the most interesting rules. Then, the identified sequence of

complications is mined to extract the useful rules and detect the most common ordering pattern

of the complications by using MCI. The outcome rules and the overall process in the hybrid

type methods are represented in Figure 6.2.

6.3.4 Interesting Itemsets in Complications-Rules Using Minimal Coverage

Itemsets Algorithm

In order to eliminate a number of infrequent rules, the Minimum Coverage of Itemsets (MCI)

algorithm Algorithm 1 MCI was proposed to discover the minimum coverage of rules, which

was a variation of the methodology conducted by Liu and co-authors to enhance k-means

clustering in [76].

The proposed MCI procedure to discover the most interesting itemsets (which were called

objects/clustering data points) was illustrated below:

MCI procedure starts from step 1, by initialising the variables, parameters (from step 2 to

10) to obtain the most interesting itemsets (step 31) temporal pattern of complications. Then,

in step 11 till step 22 it identifies the meaningful sub-rules by filtering out the minimal quality

metrics and using TARs mining. The outcome of this generated database R. In steps 22 to 25,

Hierarchical Clustering is outlined as follows:

• The distance between these points should be measured. Save the findings in a matrix of

distance.

• Check via the distance matrix to locate the two clusters/objects that are the most close.
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Algorithm 1 Algorithm 6.1 MCI
1: procedure MCI(R)

. Initialisation:
2: σ ← 0.001
3: δ ← 0.25
4: DS ← original T2DM dataset
5: m← number of sub-rules ← 87 (antecedent and consequent)
6: χ←{RET,NEU,NEP,LIV,HYP}=

∑5
i=1 χi

Require: χi ⊆ PowerSet χ . Set of all combinations of binary complications
7: MCI(χi)← ∅
8: R← Apriori(DS, σ, δ)
9: OverlapRate← ∅

10: = ← ∅ . End of Initialisation . Generating Database R:
11: for i← 1,m do . antecedent of R
12: for j ← 1,m do . consequent of R
13: Ri,j ← {χi =⇒ χj} . R of the form ({χi}, {χj}).
14: R← Ri,j ∪R . R←

∑m=87
i=1,j=1Ri,j

15: end for
16: end for . Pruning R using Quality Metrics in TARs:
17: k ←

∑174
i=1,j=1 antecedent and consequents of Ri,j

18: for k ← 1, 174 do
19: if support(Rk) ≥ σ AND confidence(Rk) ≥ δ then
20: =(Rk)← {LHS(Rk)} ∩ {RHS(Rk)}
21: D ← D ∪ =(Rk)
Require: lift(Rk) ≥ MAX(lift(R))
22: end if

. Clustering antecedents and consequents in R using Jaccard dissimilarities
Require: Jaccard(=i,=j)← |=i∩=j |

|=i∪=j |
23: di,j ← 1− Jaccard(=i,=j)
24: return Filtered sub-rules

. Creating Dataset D of interesting objects
25: l←

∑174
i=1,j=1Ri,j . antecedent and consequents of the filtered sub-rules

26: OverlapRate←Count {LHS(Rl)} ∩ {RHS(Rl)}
27: if OverlapRate ≤MIN({LHS(Rl) =⇒ RHS(Rl)} ∩R) then
28: MCI(R)←MCI(R) ∪ {LHS(Rl) =⇒ RHS(Rl)}
29: end if
30: end for
31: return MCI(R)
Require: CTARs ←MCI(R)
32: end procedure
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Table 6.2: The frequent itemsets are generated in dataset D based on the rules in generated using TARs.

Objects ID Objects(interesting itemsets)

1 { }
2 {NEP,HYP}
3 {HYP,RET}
4 {RET,HYP}
5 {NEU,HYP}
6 {LIV,HYP}
7 {NEU}
8 {RET}
9 { }{ }
10 {HYP}
11 {NEP}
12 {LIV}
13 {{NEP,HYP}|NEU}
14 {{NEP,HYP}|RET}
15 {NEU|RET}
16 {NEU}
17 {NEP|RET}
18 {LIV|NEP}
19 {LIV|NEU}
20 {HYP|NEP}
21 {HYP|NEU}
22 {RET}
23 {HYP|RET}
24 {HYP|LIV}
25 {NEP|NEU|RET}
26 {HYP|NEP|NEU}
27 {HYP|NEP|RET}
28 {HYP|NEU|RET}
29 {LIV|NEP|NEU}
30 {HYP|LIV|NEP}
31 {HYP|LIV|NEU}
32 {LIV|NEP|RET}
33 {HYP|LIV|RET}
34 {LIV|NEU|RET}
35 {LIV|HYP|NEU}
36 {HYP|LIV|RET|NEP}
37 {HYP|LIV|NEU|NEP}
38 {NEU|RET|NEP|HYP}
39 {NEU|HYP|RET|LIV}
40 {LIV|HYP|NEU|RET}
41 {NEP,HYP}RET,NEU}
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• Join the two groups to create a cluster of at least 2 items.

• The matrix can be modified by measuring the distances between such a group and other

such groups.

• Repeat phase 2 until any case is in a group.

Furthermore, from step 25 to 31 it provides the actual MCI steps needed to take to remove

uninteresting rule. Therefore it returns the most interesting itemsets as objects of Wards’

methods to be grouped into meaningful subgroup of patients.

As can be seen in Figure 6.2 in the left-hand side, temporal patterns of the complications

co-occurrences were retrieved from DS. The database was mined to include the temporal re-

lationships in the complications and their associated sub-rules by using TARs and ARM. The

clustering method allocated an itemsets/sub-rules to a cluster in such a way that the itemsets

in the same subgroup coincided with each of the other subgroups, based upon the Jaccard

Distance. Then, MCI mapped these clusters of the sub-rules in database R to find the re-

lated objects of the relevant associated rules. Once all of the objects are identified, they were

matched to the rules in Table 6.1. The minimal coverage itemsets generated the related objects

in D of the relevant associated rules in R based on their uniqueness and lower overlap rate

among one another while covering the most frequent/interesting rules. By choosing these spe-

cific objects instead of the 87 rules, a minimum overlap among the data points was produced,

which could not be achieved using only lift. Thus, the distances among the objects represented

higher quality data points in the clustering with less repetition of unimportant rules.

More explanations and examples have been provided in Appendix B A.1. In the next stage,

the patients are grouped based on the dissimilarities among objects.

6.3.5 Combined Methodology of TARs, ARM and Pattern Clustering

This stage introduces the unsupervised techniques used to find clusters of associated complications-

rules in the forms of objects by employing a hybrid type methodology. This methodology, which

consisted of TARs, MCI, ARM and pattern clustering methods, is further utilised to validate

the H clusters. Therefore, patients that have been diagnosed with a similar occurring pattern
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of complications over time (corresponding frequent itemsets) are gathered in one cluster. In the

next stage, the distance among the objects is calculated where the pattern clustering approach

discussed, and the patients grouped based on the dissimilarities among objects.

6.3.6 Pattern Clustering to Obtain an Optimum Number of TAR Clusters

In this stage of the combined methodology, Ward’s Minimum Variance Clustering Method

[117] is performed to obtain fewer clusters (which was called “TAR cluster”). Although MCI

helped to achieve the most frequent itemsets as objects, using these objects in cluster analysis

has been subjected to considerable criticism. T2DM data due to the issue of the variety of

ordering patterns of complications-rules in the sparse dataset, the scarce number of patients

and the temporal complications-rules could have a different degree of relevance at each cluster

of patients. Among a set of m itemsets/objects, there might be overall of m(m−1)
2 distances

that could be used to cluster the objects. It seemed to be still some clustering errors with

having too many objects and relative distances to cluster the small-sized dataset with only 368

patients whilst needed to be grouped by 41 objects and relatively up to 820 distances.

Agglomerative clustering initialised the sum of squares by a zero, it then merged two similar

clusters [18] and repeats this process until only one cluster remained and the sum squares have

been increased. Despite this in this stage, Ward’s method is used in order to minimise the

clustering error before stratifying patients to the corresponding cluster’s object. The dissim-

ilarity metric in Ward’s method (1 − |correlation|) is calculated based on unrelated patients

based on their objects in each cluster. It also helps to generate every possible combination

of clusters at each step of clustering by minimising the sum of squares based on the total

inter-cluster (within-cluster) variance. As a result, a pair of clusters has led to less growth in

total inter-cluster variance after merging. In Ward’s hierarchical cluster analysis, 41 data point

(clusters of objects) are combined to produce a new cluster containing all objects based on the

assumption that the sum of squares for the objects should be as small as possible. The patients

are allocated to the relevant TAR clusters (CTAR), where each cluster shared a similar compli-

cations sequence (co-occurrence patterns of complications). In Table 6.4, the elements of TAR
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Figure 6.2: The proposed complication pattern mining methodology by using ARM and MCI to obtain the
interesting itemsets as clustering objects.

Table 6.3: Clusters of the frequent itemsets identified by groups of Objects in the associated interesting
itemsets from Table 6.1-6.2.

TAR clusters Elements of cluster (Interesting itemsets/Objects)

C1
TAR 10,13,2,20,21,24,26,30,31,5,6,38

C2
TAR 11,12,16,18,19,29,7,9

C3
TAR 14,23,27,28,3,33,38,4,41

C4
TAR 15,17,22,25,32,34,8

C5
TAR 35,36,37,39,40
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clusters are represented as the most interesting/common itemsets amongst the corresponded

patients, which in the next section are used to give meaning to the H clusters.

6.4 Clustering Comparison and Validation Strategies

In this section, an attempt has been made to ascertain the usefulness/trustworthiness of the

TAR cluster in understanding the underlying disease as well as being a reliable source to

validate the temporal phenotype subgroups. In order to achieve these goals, two validation

strategies were employed and defined as follows:

Internal Validation Strategy In internal validation, the groups of objects and their dis-

tances were assessed, then their uninformative and rare objects in D mined to be compared to

four H clusters effectively. This was achieved by pruning objects in which both high lift and

confidence score were selected, and the least frequent itemsets were also ignored. The internal

validation strategy tested the validity of the TAR clusters through the use of the knowledge

contained within the given database of complications-rules.

External Validation Strategy In the external validation technique, H clusters were as-

sessed based upon another data source (TAR clusters). Jaccard Index was also applied to

calculate the proportion of the overlapped patients for each pair of the temporal phenotype

and TAR clusters. Although the Jaccard Index seemed to be useful to measure the overlap

between H and TAR clusters, the resulting value might not able to indicate the likelihood

of the observed overlap. Therefore, the probable score of the random overlap was modelled

using a binomial distribution in Normal Approximation for the Binomial Approximation of the

Hypergeometric distribution (NBH) metric, which was introduced by Swift et al. [116] and

calculated from Equations 6.5. In Equations 6.5, n was assumed to be the number of patients

in the union of Ci and Cj . If both n and npq were large, the binomial distribution could be

approximated by a normal distribution.

P (observing x from group j) =
(
kj
x

)
px qkj , x = Jaccard(Cj

H , Ci
TAR) (6.5)
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,where n = |CH ∪ CTAR| , si = |Ci
TAR| , kj = |Cj

H | , pi=
si
n
and q=1 - p.

The NBH was utilised to evaluate the probability of observing an overlap between each

pair of clusters from CH and CTAR. Thus, obtaining a very low NBH probability represented

a possibly considerable overlap between two clusters from different data sources. A low value

(probability) indicated that the chance of observing a given overlap was very low, especially

by a random chance. For example, Ci
TAR of size si, where i indicates the temporal phenotype

cluster’s number, compared to Cj
H of size kj , where j indicates the TAR cluster’s number.

6.5 Experimental Results in the Patient Personalisation

In this section, TAR clusters were validated and compared to the temporal phenotype clusters

to understand whether the temporal phenotype could reduce uncertainty, which was caused by

the complex relationships among the temporal complications. In Table 6.3, the most frequent

and interesting itemsets (ordering pattern of complications) were identified by corresponding

object in Table 6.2. In order to quantify a distance between two heterogeneous complications-

rules, one solution could be to use cluster rules based on their features (support, confidence and

lift). However, these measures could only capture the interactions of sub-rules on the dataset

only characterising one single rule. Agglomerative hierarchical clustering was employed in

order to build homogeneous groups of sub-rules. Then, MCI analysed sub-rules (antecedents

and consequents) as input and produced the minimum coverage itemsets (41 objects found)

as output in Table 6.2 The distances among the frequent itemsets were aggregated for two

patients within a cluster by using Jaccard Distance, which was applied to the group of the

object associated with the corresponding pattern. Furthermore, more in-depth analysis of the

correlation/causation between rules were proposed by using Ward’s method. This hierarchical

clustering analysis obtained TAR clusters based on the dissimilarities found among the itemsets

(1 - |correlation|). Association rules were grouped according to the descriptors (itemsets or

objects), as seen in Table 6.3. In the next stage, more metrics were employed to validate the

H clusters.
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Table 6.4: Proportion of patients with the complication co-occurrence pattern for CTAR and CH . On the
right-hand, there are comparison results of the complication rates occurring in each cluster.

TAR Cluster RET NEU NEP LIV HYP Interesting Itemsets

C1
TAR 0 15 10 16 100 {HYP}{LIV,NEU}

C2
TAR 0 80 10 40 0 {NEU,LIV}

C3
TAR 96 25 8 13 90 {RET,HYP},{NEU}{LIV}

C4
TAR 67 0 33 17 50 {RET,HYP,NEP,LIV}

C5
TAR 30 40 40 60 100 {HYP,LIV}{NEP,NEU,RET}

C1
H 7 11 8 13 61 {HYP,LIV,NEU}

C2
H 13 10 6 7 63 {HYP,RET,NEU}

C3
H 4 16 11 13 56 {HYP,NEU,LIV,NEP}

C4
H 12 13 6 11 57 {HYP,NEU,RET,LIV}

Figure 6.3: Hierarchical Clustering applied on the objects (interesting itemsets in Table 6.2). X-axis and
Y-axis illustrate Jaccard Distance among objects and objects id, respectively. The red lines split the objects

into five clusters.
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HBA   RET   NEU    NEP   LIV   HYP   BMI  CRT  COL HDL DBP SBP  SMK

Figure 6.4: The discovered Temporal Phenotype for CH , the corresponding risk factor profiles, and the most
frequent ordering pattern of the complications (labelled in red).

6.5.1 Discovered Clusters

So far T2DM patients were stratified based on two different clustering groups, including CTAR

and CH . The hybrid technique has obtained the initial clusters of the temporal association

rules. In Figure 6.3 showed a dendrogram of the TAR clusters based upon the objects. Five

TAR clusters (CTAR = { C1
TAR, C

2
TAR, C

3
TAR, C

4
TAR, C

5
TAR}) were obtained by using Ward’s

method, which established the adaptable number of CTAR to be compared to four latent

phenotype clusters. The optimal number of clusters was also validated by using the Elbow

Method [145]. The time series clustering method identified the H clusters (in Figure 6.4,

there were four T2DM patient clusters as the discovered hidden variable CH = {C1
H , C2

H ,

C3
H , C4

H}) based on the DTW distance. As it was discussed previously in Chapter 5, each

cluster had a unique profile of the latent variable and risk factors; thus, it could have various

ordering patterns of complications. A symbol of ">", in the right-hand column in Figure 6.4

indicated how the most frequent complications could be prioritised based on their number

of occurrences. For example, it demonstrated a complication in the left-hand side occurred

before the complication in the right-hand side with a higher occurrence rate. In the next stage,

comparisons between these two clusters were made by using unrelated rules on their associated

complications.
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Table 6.5: Probabilities of the Jaccard Similarity, Overlapped Rate (Ð), and NBH across CH and CTAR.

C1
TAR C2

TAR C3
TAR C4

TAR C5
TAR

NBH Ð NBH Ð NBH Ð NBH Ð NBH Ð

C1
H <0.001 90% 0.580 45% <0.001 4% 0.480 38% 0.490 40%

C2
H 0.064 66% 0.072 0% 0.290 16% 0.440 13% 0.092 0%

C3
H 0.032 60% 0.630 9% <0.001 28% 0.610 13% <0.00140%

C4
H <0.001 55% 0.045 45% <0.001 52% 0.170 38% 0.530 20%

Table 6.6: Prediction performance of T2DM complications for each dataset assessed by using causal inference.

Complication DS DS1 Low High Evidence (E) P(MAP|E) P(E) P(MAP,E)
NEU X X HYP,LIV 0.57 0.23 0.13
NEU X X HYP,LIV 0.83 0.29 0.24
NEU X X HYP,LIV,RET 0.57 0.23 0.13
NEU X X HYP,LIV,RET 0.85 0.03 0.02
RET X X HYP,LIV 0.71 0.23 0.16
RET X X HYP,LIV 0.87 0.29 0.27
NEP X X HYP,LIV 0.76 0.29 0.22
NEP X X HYP,LIV,RET,NEU 0.76 0.02 0.02
NEP X X HYP,LIV,RET,NEU 0.86 0.03 0.02
SMK X X NEP 0.33 0.49 0.16
SMK X X NEP 0.99 0.49 0.50

Table 6.7: Overall prediction accuracy of T2DM complications for patients in DS is compared to DS1.

Target Complication Accuracy in DS Accuracy DS1
NEP 0.81 0.93
LIV 0.77 0.88
HYP 0.91 0.99
NEU 0.76 0.81
RET 0.81 0.79

All Complications 0.81 0.88
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Figure 6.5: An influence diagram to represent Bayesian Structure applied to DS.
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Figure 6.6: An influence diagram to represent Bayesian Structure applied to the subgroup of patients in DS1.
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6.5.2 Clustering Comparison and Findings Validation

As the previous stage stated that the temporal phenotype clusters could be analysed by ap-

plying several validation strategies, while it has been compared to the TAR clusters. These

strategies ensured a more appropriate decision for discovering the most meaningful subgroup

of patients as well as explaining the behaviour of the temporal phenotype. The external vali-

dation strategy assessed the similarities among subgroups of patients within CH , whereas they

were clustered based upon different data sources (CTAR).

In Table 6.5, the Jaccard Dissimilarities were calculated to differentiate between two pa-

tients, one selected from CH and another patient from CTAR. In addition to this metric, the

overlap rate was calculated. An overlapping pair of patients could be detected if an occurring

pattern of complications in any of CH found in the right-hand column in Figure 6.3 resembled

interesting itemsets belonged to CTAR.

Alternatively, if two complications-rules have not been shared between two patients, it could

be assumed that these patients did not belong to both clusters. For example, the intersection of

C4
H and C3

TAR (in the right-hand column of Table 6.5) revealed a significant number of patients

(with an overlap of >50%) revealed a significant number of patients shared a similar complica-

tions co-occurrence pattern C4
H with the complications pattern of {HY P,NEU,RET,LIV }

and C3
TAR with the ordering pattern of {RET,HY P}, NEU,LIV have also coincided. The

intersection of C3
TAR and C4

H showed that they greatly resembled each other, and it revealed

an important link between the two clustering methods.

Overall, it is believed that there was a strong link between C1
H and C1

TAR where both

clusters were sharing a similar complications co-occurrence pattern of {HY P,LIV,NEU}.

Patients within C3
TAR were more likely to develop RET,HY P,NEU and LIV with the oc-

currence percentages of 96, 90, 25, and 13, respectively. Similarly, C4
H was more likely to

develop {RET,HY P}, NEU whilst LIV were not likely to be developed in patients within

the corresponding cluster (which was seen in Table 6.4), revealing a significant as well as a

meaningful relationship between those two clusters (C4
H and C3

TAR). Furthermore, a Ci
TAR

pattern, e.g., {RET,HY P}, {NEU}, {LIV } revealed that {RET,HY P} was more likely to

be seen than NEU , and NEU was more likely to be developed compared to LIV and the rest
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of complications were not likely to be developed in patients within the corresponding cluster

C3
TAR (as seen in Table 6.4).

Additionally, as shown in Table 6.5, C2
H ∩C4

TAR with the lowest NBH probability of <7.9E-

90 and second highest overlapped number of patients of 25 per cent revealed a significant

and meaningful relationship between those two clusters (C2
H and C4

TAR). In this chapter,

the dissimilarities (distances) between clusters are analysed as the interestingness to filter

discovered rules, which was optimised after filtering out uninteresting rules effectively. These

results will attract a domain expert to choose interesting patterns from the remaining small

set of rules. For instance, the itemsets consisting of similar items are uninteresting, despite

the fact that the frequent itemsets with different items are interesting. Figure 6.3 represents

a dendrogram of the TAR clusters based upon Table 6.5, C2
H ∩ C4

TAR with the lowest NBH

probability of <7.9E-90 but with the second-highest percentage for the overlapped patients

(25 percent) revealed a strong relationship between C2
H and C4

TAR.

In the next section, the prediction results are analysed to investigate the differentiation of

DS1 and DS in terms of how accurate the hybrid complications prediction is in the personalised

dataset compared to the raw dataset.

As can be seen in Table 6.4, for the patients within C4
TAR the chances of having RET ,

HY P and NEP were approximated by percentages of 67, 50 and 33, respectively. Similarly,

the chance of having a consequence of RET , HY P , and NEP for patients in C2
H was high

(see evidence in Table 6.4).

Association rules are grouped according to the descriptors (itemsets or objects), as seen

in Table 6.3. Whereas, they are not grouped according to their coverage, as explained in

Algorithm 1 MCI. Each of patients within DS that have been diagnosed with the a similar

occurring pattern of complications (the corresponding frequent itemsets) are gathered in one

cluster. The distances among the frequent itemsets are aggregated for two patients within a

cluster by using Jaccard distance, which are applied to the group of the object associated with

the corresponding pattern.
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6.5.3 The Meaningful Subgroup of the Personalised Patients

This section attempted to investigate how the similarities between the Ci
TAR and Cj

H could

be validated and give meaning to the temporal phenotype. Figure 6.4 represented patients

in C1
H , with a decreasing and an increasing pattern in their deep temporal phenotype, shared

similar trajectories over the observed risk factor profiles. Almost 90 per cent of patients within

C1
H was found in C1

TAR. More importantly, it was significantly validated from a statistical

point of view as the likelihood of randomly observing this overlap was very low with an NBH

probability of <0.001 as shown in Table 6.5. Thus, there was sufficient evidence to suggest that

nearly all patients belonged to a similar TAR cluster (C1
TAR). It also appeared that the most

frequent Ordering Pattern of Complications of HYP, LIV and NEU belonged to C1
H matched

{HY P,LIV,NEU} belonged to C1
TAR.

More importantly, having considered that patients within C1
H and (C1

TAR) were selected

from two different data sources, not only statistically validated the clusters but also revealed

the meaningfulness of the temporal phenotype. Therefore, patients in the intersection of Ci
TAR

and Cj
H (Ci

TAR∩C
j
H) with the highest similarities among other clusters might represent a link

between their latent phenotype and complications-rules. The most significant intersection of

the TARs and latent phenotype clusters (C1
TAR ∩C1

H) was considered as the most informative

(meaningful) subgroup and thought as DS1 (see Figure 6.1).

6.6 The predictive Strategy: Improving the Prediction Perfor-

mance of the Complications Sequence

In this section, the prediction performance of the underlying patterns of complications for

these patients within DS1 (which discovered using the descriptive strategy) was analysed and

compared to all patients belonged to DS. It also suggested that DS1 (by personalising patients)

could be considered as a dataset with less uncertainty than DS. In order to describe the

inference problem in this thesis, the causal relationships seemed to be a reliable option to

represent static and dynamic correlations between T2DM risk factors. The causal inference

has a greater focus on distinguishing causes from other associations than on uncovering detailed
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temporal relationships. Therefore, in this section, several predictive strategies in order to test

whether the descriptive approaches have contributed to improving the prediction performance

of the ordering patterns of complications. Therefore, in the following stages, several techniques

have been discussed, such as Bayesian analysis, Optimal Posterior Likelihood Algorithm and

Sensitivity analysis.

6.6.1 Bayesian Analysis and Optimal Posterior Likelihood Algorithm

Previously, it was suggested that an appropriate ordering pattern of complications could be

predicted for each patient visit based on prior knowledge as well as current risk factors and

complications. To better predict the ordering patterns of complications, here, an approach was

utilised to not only approximate the posterior likelihood of the complication co-occurrences

but to optimise the Bayesian parameters simultaneously. The dangers of these microvascu-

lar conditions can be significantly reduced by eliminating the chance of developing further

complications. For this purpose, the posterior likelihood of the developing complications is

approximated by using a “Maximum A posteriori Probability” (MAP) algorithm [58, 60] which

converged toward the set of parameters. In T2DM patients’ model, MAP employed an iterative

strategy to investigate the maximum probability for the parameters. In addition, an optimi-

sation procedure was required to produce optimal posterior results along with the evidence.

Therefore, the simulated annealing algorithm [51] was aggregated to the stochastic simulation

of the Hidden Markov Chain, which relied on data augmentation in the same way as the EM

algorithm. It could be concluded that the choice of clinical decision with the highest expected

gain seemed to be an optimal option which has been often chosen by clinicians. Therefore, the

following experimental results have provided a possible solution to reduce human mistake by

computing an expected utility as a likelihood of each decision alternative.

6.6.2 Experimental Findings and Overall Prediction Accuracy

Table 6.7 demonstrated a significant enhancement in the prediction accuracy of the hybrid

complications by comparing DS1 against DS. This comparison was based on an optimal pos-

terior likelihood of a High or Low clinical level. For example, the optimal posterior likelihoods
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Figure 6.7: An influence diagram to represent Bayesian Structure applied to DS.
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Figure 6.8: An influence diagram to represent Bayesian Structure applied to the subgroup of patients in DS1.
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of developing RET, NEU, LIV and SMK were compared between DS1 and DS, with a consid-

eration of prior complications (e.g., those patients who have already developed complications

such as HYP and LIV). Thus, the prediction accuracy of HYP, LIV and NEU in DS1 were

approximated as 0.99, 0.88 and 0.81, respectively. This suggested that the overall prediction

accuracy across all complications in DS1 was 0.88 compared to a lower overall accuracy of 0.81

in DS, which is shown in Table 6.7. Similarly, the prediction accuracy of HYP, LIV, and NEU

in DS were not significant compared to DS1 by 0.90, 0.77, and 0.76, respectively. Having shown

these extensive findings, the prediction accuracy of complications the meaningful subgroup of

patients in DS1 and relatively, their ordering patterns have been significantly improved while

compared to DS. It can be challenging to predict a target complication without considering

its associated complications and decide whether a diagnostic test result will be positive or

negative. Therefore, sensitivity analysis has been applied to the Bayesian structures of DS and

DS1, which was discussed below.

6.7 Summary

This chapter has explored various descriptive and predictive strategies that enable personalised

patient analysis. In the descriptive study, two different subgroups of patients were identified

from two clustering methods using two sources of data. Firstly, subgroups of patients were

obtained based on the temporal phenotypes, which was introduced as the deep temporal phe-

notype in the previous chapter. Secondly, another subgroup of patients was extracted by using

the hybrid methods applied to the temporal association rules of complications. The validation

and clustering comparison strategies were applied to these two types of clusters, and the un-

derlying patterns of complications were explored for specific patient clusters. The semantics of

the subgroups provided by a combination of the temporal phenotypes and the TARs revealed

interesting clinical characteristics. It seemed to be evident that not only the prediction perfor-

mance of the underlying complications-rules was significantly improved, but also it eased the

explainability of the latent variables. To conclude, the next chapter discusses the novelty of

the contributions of the work in the previous chapters, along with a discussion of their main
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limitations while providing recommendations and directions for future research.
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Chapter 7

Conclusion

This Chapter first lays out the objectives and re-states the contributions of this thesis by

providing solutions for disease prediction. Furthermore, it discusses the generalisability of the

models for the broader domain and anticipates potential criticisms of the research. It then

recommends some insight into important future practice to diagnose complex diseases such as

diabetes and explain so-called black box systems.

7.1 Objectives and Contributions

The analysis of complex patient models in the literature in Chapter 2 has revealed that mor-

tality often occurs due to complications caused by the disease and not the disease itself. This

is because the impact of associated long-term complications as well as unmeasured variables,

are underestimated. The main aim of this study was to predict these complications that are

associated with diabetes and interpret the computational outcomes using innovative, analyti-

cal, and methodological approaches motivated by the clinical need for transparent longitudinal

data modelling:
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7.1.1 Utilising appropriate data mining (supervised and unsupervised learn-

ing) approaches to modelling disease

Chapter 2 showed that appropriate data mining techniques could be employed to model com-

plex interactions among the complications and uncover the underlying pattern of hidden/ob-

served risk factors. In Chapter 3, probabilistic, statistical approaches and time series predictive

models were employed for the early prediction of the complications from the diabetic patients’

follow up visits at the IRCCS Istituto clinic scientific (ICS) Maugeri of Pavia, Italy. The pro-

posed approach effectively integrated Bayesian methods with latent variables identification.

7.1.2 Addressing data imbalance

In this study, DBN models were extended and adjusted to handle highly unbalanced time series

clinical data by proposing the following techniques:

• Time Series Bootstrapping: In Chapter 3, the imbalanced data was re-balanced by utilis-

ing Time-Series Bootstrapping (TS Bootstrapping), which was adapted to the standard

latent model to fit T2DM longitudinal data. The TS Bootstrapping technique then was

integrated with the enhanced stepwise approach in Chapter 5. The finding obtained in

Section 3.7 and Section 5.4.3 showed that the re-balancing approach for unequal time

series along with hidden variable discovery led to an improvement in the predictive per-

formance over standard probabilistic models, especially those with no hidden variables.

• Pair-sampling strategy: In Chapter 4, a pair-sampling strategy was employed to effec-

tively address imbalanced data before learning the structure of hidden variables in which

stratified T2DM patients into two types of cases, positive and negative. The obtained

re-balanced data not only revealed an enhancement in the prediction results but also it

reduced the bias and uncertainty to learn data.
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7.1.3 Modelling complex interactions among both observed disease risk fac-

tors/complication and unmeasured effects using a targeted hidden

variable approach:

• Discovering a hidden variable and finding its precise location within the DBN struc-

ture: The AI methodology in Chapter 3 expanded the current probabilistic AI models

to predict disease when addressing variability in complicated patient results. K2 and

REVEAL algorithms were used to learn the network structure in the standard latent

model. Bayesian modelling was chosen to discover a hidden variable effect on the de-

veloping patterns of complications. In Chapter 4 to have a better understanding of the

latent effects and to show how the complications could be predicted accurately, an intu-

itive stepwise method was proposed by the employment of Induction Causation (IC*),

and then with the addition of a discovered latent variable at each step (to be considered

as prior knowledge in the following step). This helped to discover and understand the

semantics of the hidden variables and target their precise location within the network

structure of risk factors.

• Obtaining an optimal number of hidden variables in a stepwise approach to avoid creating

overly complex models that risk overfitting and becoming "black box" in nature: As

shown in Chapter 4, multiple hidden variables were discovered to take a deeper look at

latent variables, and better understand the relationship among disease risk factors and

the latent factors. For example, a latent variable may represent a subcohort of patients

who are at higher risk of certain complications while other groups of patients are not.

• Incorporating a combination of the IC* algorithm and Mutual Information to understand

the impact of the latent variables: The enhanced method in Chapter 5 reduced the

number of uninformative hidden variables by measuring the mutual information of links

between disease risk factors and obtained a better predictive performance (to results in

Chapter 3 and 4).
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7.1.4 Personalising and handling the variability of progression in patients

(via a temporal phenotype)

This was performed throughout this thesis (with main focus in Chapter 5-6) to demonstrate

that a significant change in the prediction outcomes could be obtained by applying the latent

model to each patient subgroup on a stand-alone basis. The following methodologies were

utilised:

• The characterisation of temporal phenotypes from discovered hidden variables: In Chap-

ter 5, the most influential latent variable was discovered to derive the temporal pheno-

type, which extracted the most descriptive data point within the centre of discovered

subgroups of patients.

• Using a combination of time-series clustering with dynamic time warping and the Jaccard

index to group patients: Subgroups of patients were extracted based on two data sources:

In Chapter 5, one subgroup of patients was characterised based on temporal phenotypes

by using Dynamic Time Warping. In addition, time-series pattern clustering was also

used to organise patients on the basis of their corresponding rules associated with the

complications (illustrated in Section 6.5.1).

• The discovery of latent temporal phenotypes was combined with Temporal Association

Rule Mining to find similar subgroups of patients that aids explanation: In Chapter 6,

Temporal Associations Rules and pattern discovery were designed to assess the subgroups

of patients mentioned in Chapter 5 based on temporal phenotypes. This was shown by

the creation of phenotypes that differentiated distinct patient groups over the period of

disease progression by defining the most important subgroup of patients.

• This thesis rejected the claim raised in [65] for the proposed clustering approach with

respect to T2DM dataset. A research conducted in [65], STS (Subsequence Time Se-

ries) clusters are required to conform according to a certain phenotypically impossible

restriction in every data, and as such, the groups identified by any clustering method

are inherently meaningless. The promising results in this thesis contrasted this claim
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by testing the meaningful subgroup and showing its usefulness. As a result of these, it

questioned the clustering approaches by employing the comparison techniques to ensure

the worthiness of the discovered clusters found based on temporal phenotype, from both

qualitative and quantitative points of view. To this end it employed several evaluation

strategies categorised in Chapter 6 under Internal validation and External validation

sections. For example, it assessed the obtained clusters from different data sources by

calculating the proportion of the overlapped patients between any pairs of those clusters

based on Jaccard Index. More importantly, as Jaccard index could not indicate the like-

lihood of the observed overlap, it calculated NBH measure to statistically test whether

the outcomes are reasonable of random cluster centres. The obtained meaningful patient

groups in Table 6.5 the first cluster identified based on temporal phenotype as well as the

fist cluster discovered under TARs clustering approach, Jaccard index and NBH metric

were 90 percent and bellow 0.001, respectively. From these results, it seemed to be evi-

dent that high overlap rate is not random and hence these clusters were meaningful as

the clustering outcome was not independent of the patients data.

7.2 Evaluation

The generalisability of the results presented in this thesis is subject to certain limitations as

follows:

This research was conducted to explain and discover the unmeasured factors with a few

patients and relatively few features. Thus, this thesis focused on time-series complex clinical

dataset like T2DM, which was a small-sized dataset with an unequal number of patient’s follow

up visits (which is common in clinical data). This study was specific to T2DM concept and

Bayesian modelling; hence, one fundamental criticism could be the bias towards this dataset

and whether the method could be developed in other fields of clinical data in the future. This

was because the proposed methodologies were suitable for a specific type of longitudinal data

which potentially involved latent variables. Nevertheless, it is very likely that unmeasured

effects are common to many if not most clinical datasets.
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A limitation of the proposed stepwise approach (Chapter 4-5) could be the stopping rule

to the approach, and in some cases, an additional uncontrolled factor could be the possibility

of overfitting so that accuracy starts to drop. Classification accuracy could be monitored and

used as a stopping condition (i.e., if it drops significantly). There is also room for further

progress in determining the optimal number of latent variables using Partial Least Squares

(PLS). Due to the difficulties in explanation and constraints of the latent factors in the black

box model, there is a need to seek more advice from clinicians in interpreting latent variable

and their cause and effect relationship toward other T2DM risk factors and complications as

well as the disease prediction process.

7.3 Future Work

In order to help overcome the limitations discussed in the previous section, the following

recommendations are suggested:

7.3.1 Development and extension of the proposed explanatory model

The originality of the proposed thesis consisted in its innovative, analytical, and methodologi-

cal strategies to predict and explain complex clinical data to improve patients’ quality of life.

A natural progression of this work for a better generasability should involve extending the

latent DBNs model with more hidden variables to capture a greater variety of unmeasured

factors to characterise critical changes and produce interesting findings that account more for

better explainability and predictability. In addition, to address the limitation related to the

small-sized dataset, this work could be extended to further investigation and experimentation

into clinical impacts and environmental factors, such as family history, pollution, and glucose.

More research also might be conducted to monitor disease progression effectively and detect

the underlying patterns of complications, which could provide clinicians with a better under-

standing of the obtained findings. For example, a greater focus on phenotype discovery could

enable assessment of the long-term effects of the temporal phenotype on the patient, which

might be done by following qualitative approaches to support the obtained findings from the
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biomedical literature.

7.3.2 Development of alternative models to explain complex disease pro-

gression

Further research is also needed to develop other models which can explain the complex data.

For example, one alternative solution to better interpret clinical data can be decision trees or

schematic models where the reasoning becomes more straightforward and thus more explainable

in comparison to black box approaches. Nonetheless, with the utilisation of decision trees, it

may be difficult to distinguish complex and time-based clinical data on its own. This is because

in black box AI models it can be challenging to determine, from temporal clinical data alone,

what is triggering the visible patterns to separate the underlying causes into meaningful causes

that can help patient stratification, disease prediction and a deeper understanding of the disease

process.

One approach to deal with the above issues can be the use of AI techniques such as Deep

Learning, which has become ubiquitous to provide a high-performance prediction. Although

this approach often provides an early and accurate prediction of disease, understanding its

mechanisms has become a significant concern worldwide when the goal is to gain clinicians

and patients trust. The reason behind this is due to overuse of hidden variables and lack of

explainability, which can cause sources of complexity and uncertainty in the patient model.

Overall, as observed from prior studies and mentioned in Chapter 1, there has been a balance

that needs to be made between the accuracy of complex/deep models such as Deep Learning

and the interpretability of models (e.g., decision trees) that aims to model data in a more

human-like way such as AI expert systems. There have been a few attempts to make this

balance in disease progression. For example, Google’s AI Doctor was proposed, which is

designed to reproduce current problem-solving methods (e.g., the detection of cancers) [40, 68,

84, 134]. Furthermore, it demonstrated how an explanation of such methods could be used

to make further predictions, which are generated by local classifiers from conventional image

classification networks to a more focused clinical application.

Nevertheless, the concepts of Google’s explanatory power are subject to some limitations
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as follows:

1. there is still a lack of comprehension of what hidden layer and artificial neurons will offer

in determining the underlying causes of disease.

2. there have been many challenges to understanding and designing numerous hidden layers

on a meta-level, which are required for more in-depth modelling.

3. selection bias is another potential concern because Google’s method fails to consider the

different categories of these hidden layers to determine the underlying causes of disease.

4. to understand how nodes become active, a detailed analysis of these hidden layers is

needed; however, these methods not only overlooks the hidden layers but also ignores

pre-existing knowledge of these layers. For example, it often does not make any attempt

to quantify the association among these nodes.

5. it fails to draw a conclusion based on the structural nature of each neuron in each network.

Although these nodes also are triggering as groups of interconnected neurons, they are

limited at the same time and space.

These are the main weaknesses of the black box models as the stratification of a network for

the categories of interconnected neurons would make its configurations even more abstractable.

In spite of the fact that the black box models are provided with sufficient data, from a

clinician’s perspective, Deep Learning seems to be overconfident. In addition, in the world that

it is possible to fully allocate decision making to computer systems, confidence in AI systems

will be hard to achieve. The reason behind this is that it represents a completely different

health knowledge that can be generated without user intervention that needs to be understood

by clinicians and patients to facilitate transparency. It is also due to several obstacles that

arise in interpreting the findings, such as the scale of big data, complex interactions, and

high-dimensional internal state.

Thus, the existing explanatory Deep Learning approaches would need to be adapted for

further sophisticated longitudinal modelling strategy (rather than with a multivariate distri-

bution) and should be simplified in several aspects. For example, if an object is detected,
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an image detection machine can only focus on specific attributes including shape, colour and

texture of the image, and then reduce the predictions to a mathematical method by checking

the classification error and then background diffusion to improve the practices. In the future

work, one approach that can be applied to a small-sized dataset like T2DM can be the use of

Bayesian Neural Networks, which will deal with uncertainties in data and model structure by

exploiting the advantages of both Neural Networks and Bayesian modelling. To conclude, AI

can improve current methods of medical diagnosis in terms of interpretability while needing

further evaluation to be trusted by both patients and practitioners.

7.3.3 Outstanding works and other types of data

The generalisability of the findings obtained in this study might be tested on other data with

potentially non-stationary, complex, and incomplete data. For instance, the DBNs model and

bootstrapping approaches could be used in educational data to predict student drop out and to

extract knowledge to students’ development, progression, engagement, and learning. Further-

more, the pre-processing approaches and statistical analysis have been applied to COVID-19

data at London North West NHS Trust. A similar patient model to this thesis was mainly

employed, which primarily concentrated on helping NHS staff in their understanding of how

COVID-19 spread and how they could be better prepared. 1

7.4 Clinical and Computational Implications

This section summarises the clinical implications and shows how the obtained experimental

findings in the previous chapters and their significance have led to developing explanatory AI

models. This study offered several valuable insights into the prediction challenges in diabetes

and similar diseases and explained how they could be tackled.

The results for an early prediction of T2DM complications confirmed that the proposed

latent model can be employed as an indicator even outside of the FSM for problematic circum-

stances, as the data collection strategy and need for this research was discussed in MOSAIC
1Note that this is ongoing / very recent work and so not part of the thesis.
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project [22]. Given the attributes of the dataset, there is a potential for developing the model

for predicting the development of a disorder, while comparing its performance with that ob-

tained by applying the well-established and commonly used UKPDS risk engine.

Throughout this thesis, appropriate machine learning techniques were conducted to model

complex interactions among the complications, risk factors and unmeasured factors. For in-

stance, the use of probabilistic graphical models provided a significant improvement in the

accuracy of predictive models while reducing uncertainty in disease management. Having

adopted DBNs to learn hidden risk factors and effectively understand the AI black box model

was the key contribution of this research. The temporal phenotype was identified to represent

the overall patterns of disease risk factors for each patient based on the discovered hidden

variables over time. The descriptive analytics, in Section 5.4, provided valuable insights into

the hidden variable effects on stratifying patients into different sub-groups, whether or not

they developed the same complications. These findings also explained the influence of the

latent variable on the bootstrapped data (as illustrated in the discussion section in Chapter

5). In Chapter 6, phenotype discovery was utilised to categorise and investigate meaningful

subgroups of patients based on how an individual matches historical data. The hybrid type

methods in discovering meaningful subgroups and explaining temporal phenotype also led to

a better understanding of clinical data as well as aiding to interpret the unmeasured factors

while demonstrating their risks.

Furthermore, to construct meaningful explanations of patients’ subgroups in a precise pre-

diction, several computational approaches inspired the detailed observations of this study as

follows: The hidden variables were learned as a set of random variables in a DBNs structure

and a graphical model of the probability distribution over the disease complications and risk

factors. In Chapter 5, the parameters of the Bayesian model were legitimately influenced by

the interactions among the risk factors over time. The hidden variables were extracted incre-

mentally by utilising the enhanced stepwise IC*LS based on Induction Causation algorithm

and Link Strength. A precise estimate of the uncertainty related to parameter estimation

is essential to avoid misleading inference. This uncertainty is typically outlined by a confi-

dence interval, which is professed to incorporate the actual parameter value with a predefined
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likelihood.

To manage the uncertainty in the prediction, the experimental findings and their signifi-

cance should be tested statistically and confined to Confidence Interval results derived from a

randomly selected subset of T2DM patients. Thus, the effect of adding a hidden variable at

each step of the enhanced stepwise was assessed on the bootstrapped T2DM patients in pre-

dicting a common complication of T2DM (e.g., retinopathy and liver disease). Furthermore, by

looking at how these different structures perform within a DBN for predicting the appearance

of complications, prediction performance was assessed in Chapter 5. The obtained findings

illustrated that there was to be a general trend to improvement in accuracy as more hidden

variables were added, but this improvement levelled out after a few steps (at the fifth step in

the results were shown in Chapter 5). By effectively adding the discovered hidden variables

to evidence has proved contribution in determining the most realistic structure of disease risk

factors. The 95% confidence interval result demonstrated with high confidence that the IC*LS

methodology resulted in a highly significant improvement in the classification accuracy, sensi-

tivity and precision compared to the standard approaches in Bayesian modelling such as K2

and REVEAL algorithm as well as no latent variable approaches (as shown in Chapter 5).

The enhanced stepwise approach method along with phenotypic discovery uncovered the

impact of the hidden variables on other risk factors/complications, which characterised the tem-

poral phenotype to capture the most influential hidden variables (as demonstrated in Section

5.3 and 5.4). Furthermore, to construct meaningful explanations of patients’ subgroups in a

precise prediction, phenotypic discovery uncovered the impact of the hidden variables on other

risk factors/complications. The quantitative analyses, in Chapter 5, provided valuable insights

into the hidden variable effects on stratifying patients into different sub-groups, whether they

developed the same complications. The use of clinician interpretation from a clinical point of

view yielded insight into interpreting the latent states (looking at the associated distributions

of complications). This further illustrated how phenotypes, that distinguished various patient

populations, have been developed over the course of the disease experience (which was shown

in Section 6.3).

Chapter 6 suggested that the latent variable explanation could be strongly connected to the
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phenomenon of interpretability of the outcome considering correlation and causation among

the complex interactions of complications/risk factors. This was because a patient must switch

to another medication if more complications develop (which might be followed/caused by more

complications). In Chapter 6, other subgroups of patients were identified based on time series

clustering, Jaccard distance and then validated using a wide verity of comparison and statis-

tical approaches such as quality metrics in Association Rule Mining, Jaccard Index, Normal

Approximation for the Binomial Approximation of the Hypergeometric distribution (NBH)

metric, causal inference and Bayesian modelling (which was illustrated in Section 6.4).

7.4.1 Main Findings

Based on these clinical implications and computational outcomes, this study certainly added

to our understanding of the complex AI model in time-series analysis of clinical data. It

has demonstrated the potential for the progress of the complex disease by utilising Bayesian

modelling in an incomplete dataset, stratifying individuals to have personalised patients in

precision medicine.

One purpose of this study was to assess the extent to which the latent variable predicted

these comorbidities. The single most striking observation to emerge from the data comparison

was the improvement of accuracy and sensitivity by adding latent variables. A clear benefit of

anticipating latent variable in the prediction of comorbidities could be identified in this analysis.

Furthermore, this study predicted whether the specific comorbidities, will be developed at the

next visit or not. It also compared the result of applying imbalanced bootstrapped algorithms

and making re-balanced dataset with imbalance dataset. In comparison, it was obvious that

by using the algorithm, the accuracy would be increased significantly.

7.4.2 Clinical Recommendations

The key goal of this research was to model the variability of progression from person to person,

identify sub-categories of disease within a cohort, and explicitly model the time-varying nature

of disease by searching for parameters, structures and locations of change within the time-series,

simultaneously. Overall, this thesis created new models to predict the onset of microvascular
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complications, such as retinopathy and nephropathy. The experiments in which presented in

this work were interpreted after being applied a Bayesian modelling approach, different ways of

handling missing data (with or without imputation), different combinations of predictors (with

or without lipid-related variables), and different ways to manage the class unbalance problem.

7.4.2.1 Hidden Variables Influence on Clinical Risk factors:

According to the clinical evidence in Diabetes literature and the experimental results obtained

so far in Chapter 4 and Chapter 5, it is now possible to show how the targeted use of latent

variables improves prediction accuracy, specificity, and sensitivity over standard approaches.

This was achieved by using the cause and effect relationship among complications which de-

scribed the association of an eventful complication. By observing the structure of the links

with respect to the hidden variables on their Markov blanket, which can be seen in Figure

5.9. This showed that there was a strong relationship between Hidden Variable 2 at the third

step of the enhance IC*LS and T2DM key risk factors (e.g., HbA1c, BMI, liver disease, and

smoking). Additionally, in the first step of the stepwise IC*LS shown in the second left DAG of

Figure 5.9, the initial hidden variable (Hidden variable 1 ) is weakly linked to a small number of

clinical factors, notably HbA1c, Liver disease and creatinine. However, as subsequent hidden

variables are added at the second step, this structure changes. The second hidden variable

(Hidden variable 2 ) is linked stronger to HbA1c by 35.9 and also is connected to more risk

factors including Hidden variable 1 (seen as the third left DAG in Figure 5.9).

In the third step as seen as the second right DAG in Figure 5.9, Hidden variable 3 is closely

connected to HbA1c by 63.2, and there is a 0 scored link between Hidden Variable 3 and Hidden

Variable 2. This is while Hidden Variable 2 is strongly connected to Hidden Variable 1, which

is scored 44.4. Thus, Hidden Variable 3 (which is closely connected to HbA1c) seems to be

irrelevant and independent of Hidden Variable 2 (that is linked to nephropathy, liver disease

and hypertension). At this step, there is a strong relationship between Hidden Variable 2,

retinopathy, liver disease, DBP, SBP and smoking. Having considered these hidden variable

results obtained from Figure 5.9, Diabetes literature (see evidence in [121]), and advice of

clinician expert in diabetes, it was suggested that the presence of HbA1c was associated with
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an increased incidence of nephropathy, while HbA1c emerged as an independent risk factor

for developing retinopathy. Additionally, nephropathy and liver disease were independently

associated with an increased incidence of hypertension in T2DM patients (see evidence in

[120]).

7.4.3 Sensitivity Analysis and Cause and Effect Relationships

The proposed computational methodology and interpretation of the underlying patterns of

complications were based on correlation and causation (both positive and negative). It was

suggested that the joint implications of correlation and causality could provide more detailed

questions about disease progression, considering a better understanding of the predictability

of the complex models. This has been achieved by statistically testing multiple hypotheses

(considering each causal relationship as a hypothesis). For example, Chapter 6 demonstrated

why some symptoms of the illness were closely associated with other complications, and whether

some of these complications have been developed in particular groups of patients but not in

others.

To assess the obtained subgroup in terms of have achieved a higher performance he cause

and effect relationships between complications were investigated by using influence diagrams

demonstrated in Figures 6.7,6.8). It has been reported that the prevalence of microvascular and

macrovascular complications could be caused by the associated complications [135]. Nearly 95%

of T2DM patients who have developed a complication were also at increased risk of developing

other complications. It appeared to be a considerable number of patients who have been more

prone to develop complications once they were tested positive for another complication.

The prediction performance of a target complication was assessed when the clinical class as

evidence were set to either the highest risk or the lowest risk level. For example, in Table 6.6,

if HYP and LIV class values were set to their high clinical level, the probability of 0.83 for

NEU (P (NEU |{HY P,LIV }) was higher than RET of 0.96 (P (RET |{HY P,LIV }). It seemed

evident that if patients in DS1 have developed HYP and LIV, there were most likely to develop

NEU compared to a higher probability of RET. It seemed that once a patient in DS1 has been

tested positive for HYP and LIV, the likelihood of developing NEU was increased to 0.84.
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Alternatively, with a hypothesis tested the patients in DS with a low probability (0.57) for

developing NEU, if they have already developed HYP and LIV. Again, in Table 6.6, if the

posterior likelihood of LIV in DS1 has risen to above 0.88, the growth of damaged eye cells

(developing RET) dropped by 0.96. An observation can be ensured, the risk of developing

RET for patients in DS1 appeared to be affected negatively, while LIV was occurred, which

demonstrated by a thick red arrow in Figure 6.8. To emphasise consistency and reliability

of the meaningful subgroup, in Figure 6.7, a thicker red-coloured arrow pointing to RET

from LIV in DS1 compared to the no influence arrow in DS, as illustrated. In Figure 6.7, a

thick purple edge from NEP to SMK revealed the development of NEP were followed/caused

by SMK. Additionally, in Figure 6.8, positive causation was represented by a green edge

from NEP to SMK. Hence, it could conceivably be hypothesised that once a patient has been

diagnosed with NEP, the probability of being a smoker could have significantly been increased

from 0.33 to 0.99 by comparing P(SMK|NEP) values between DS and DS1 (see Table 6.6).

It was also suggested that if the patients in DS1 were at a low clinical level of NEP with the

optimal likelihood posterior of 0.86, a higher risk of developing HYP, LIV, RET and NEU

could be less likely. However, that posterior with the same evidence/prior knowledge but at

the high clinical level was equal to 0.76 (see Table 6.6). This contrast provided some support

for the conceptual premise that was often significant in at least one group of patients, which

was the most interesting subgroup.

Taken together, these results suggest that there is an association between latent variables

and mixtures of microvascular complications in the prognosis process of comorbidities.

7.4.4 Conclusion

One purpose of this study was to assess the extent to which the latent variable predicted these

comorbidities. A clear benefit of anticipating latent variable in the prediction of comorbidities

could be identified in this analysis. The single most striking observation to emerge from the

data comparison was the improvement of accuracy and sensitivity by adding latent variables.

Furthermore, this study predicted whether the specific comorbidities, will be developed

at the next visit or not. It also compared the result of applying imbalanced bootstrapped
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algorithms and making re-balanced dataset with imbalance dataset. In comparison, it was

obvious that by using the adapted algorithms in this study, the accuracy of the predictive

model would be increased significantly.

7.4.4.1 MOSAIC Tool

The Data is belonged to the MOSAIC European Union project retrieved from MOSAIC website

[22]. This work is mainly presented to provide the risk of complications, which will be included

in MOSAIC instrument. Adopting DBNs to learn hidden risk factors and understanding the AI

black box model effectively was the key contribution of this research. It aided to gain insight

into it by understanding the unmeasured factor and discuss their dangers. The mosaic tool

is exploited as an instrument to identify potentially critical behaviours that might need closer

control to be considered in the analysis of clinical data from the FSM hospital dataset (Body

Mass Index, glycated haemoglobin, lipid profile, smoking habit). The MOSAIC instrument,

and the outcomes of the proposed predictive model can be further extracted further to justify

the software’s effectiveness [38].

In terms of values for showing high risk of T2DM complications and risk factors (at a

higher clinical level) which characterises the training results, the probabilities determined by

the Bayesian Statistics is discretised and binariased for the risk factors and complications,

respectively. Assessment of performance is based on the sensitivity and specificity. In par-

ticular, the model is tested using the accuracy of prediction as a percentage of the correct

prognosis of the specific comorbidities. Whereas, prognostications were made of the true pos-

itive (TP), actual negative (TN), false positives (FP) and false negatives (FN), models were

assessed throughout this thesis.

Data accessibility: Due to the data protection policy data is not publicly available. The

final models presented can be embedded into the MOSAIC instrument, and the outcomes

extracted further justify the software’s effectiveness [22]. The findings extracted were encour-

aging and indicated that this model can be included in the MOSAIC instrument to provide

the risk of complication. The results showed that an early prediction of T2DM complications
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confirmed that the proposed latent model can be employed as an indicator even outside of the

FSM for problematic circumstances. Given the attributes of the dataset, there is a potential

for developing the model for predicting the development of a disorder, while comparing its

performance with that obtained by applying the well-established and commonly used UKPDS

risk engine.
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Appendix A

A.1 Extra Information

This Appendix is designed as a supplementary materials for this thesis. It first intends to

explain and clarify the concept of Link Strength measure, which was discussed previously in

Chapter 5, especially Section 5.2. Then, it discusses the Association Rule Mining, quality

metrics and pattern mining approaches used in Chapter 6 in more details.

Link Strength methodology

To find optimum number of hidden variable, the enhanced stepwise IC*LS (explained previ-

ously in Section 5.2 employed local and global sensitivity analysis [67] that consisted of Mutual

Information (MI) and Link Strength (LS). The Link Strength methodology finds a structure

for locating latent variables within a Bayesian structure. We exploited the following measures

to handle the uncertainty in the discovered model:

• Entropy introduced in [109] to measure the uncertainty in a single node and shown below:

U(X) =
∑
xi

P (xi) log2
1

P (xi)
. (1)

• Mutual Information is a way of inferring links in data and measuring the connection

strength [109] [97]. The MI between node X and Y is uncertainties in Y that is decreased
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by knowing the state of X (or vice verse):

MI(X,Y ) = U(Y )− U(Y |X), (2)

where U(Y |X) is calculated by averaging U(Y |xi) over all possible states xi of X, taking

P (xi) into account in which:

MI(X,Y ) =
∑
x,y

P (x, y) log2(
P (x, y)

P (x)P (y)
). (3)

• The Link Strength [64] measure enables us to observe the impact of each discovered edge.

Moreover, the percentage points of uncertainty reduction in Y are utilised by knowing

the state of X if the states of all other parent variables are known. There are two types of

LS in measuring uncertainties: True Average Link Strength (LSTA), and Blind Average

Link Strength (LSBA).

• The LSTA calculates LS based on the average over the parent states using their actual

joint probability. For a node with only one parent, MI Percentage and the LSTA Per-

centage yields the same value. LSTA of the edge X → Y is defined as the MI of (X,Y )

conditioned on all other parents of Y, which shown as:

LSTA(X → Y ) ,X requires P(For all parents of Y) (4)

=MI(X,Y |Z) = U(Y |Z)− U(Y |X,Z) (5)

U(Y |X,Z) is the average over the states of all parents, and U(Y |Z) is the average over

all other parents.

• The LSBA is derived from the LSTA but ignores the actual frequency of occurrence of

the parent states. Thus, in the LSBA measure, all parents are assumed to be independent

156



of each other and uniformly distributed.

LSBA(X → Y ) = requires no inference at all. (6)

The same probabilities as the corresponding absolute measure above are converted to each

percentage measure. For removing all uncertainty, we require deterministic functions, in

which the state of a child is completely known if the states of all of its parents are known.

Representing all parents from Y in MI(X,Y |Z) in Equation(5) essentially blocks all

information flow through the other parents, Z. According to [45], we are confident that

there are no other indirect open links between Y and X through descendants of Y , once

all different parents are instantiated then there is a direct link from X to Y .

Theorem: Consider a BN (G,P ) consisting of a DAG (G) and a joint probability (P ).

Let X → Y be an edge in G and denote the set of all other parents of Y as Z. Let

G% be the modified DAG generated by deleting edge X → Y in G. Then X and Y are

conditionally independent given Z in BN (G%, P%) for any joint probability P%. As

indicated by the LSTA, most links are quite strong, can be classified as significant, except

for those with LSTA of less or equal to zero (removed from the final structure). The LS

measure may be useful in the context of constraint-based structure learning algorithms

to derive hypotheses of a system’s primary causal pathways. In addition, it can be used

to evaluate the quality of the structure learning algorithms. Currently, structure learning

algorithms are evaluated by counting the number of incorrect arrows when identifying

known systems. It may be more appropriate to weight those counts by the LS of the

incorrect arrows. By setting the value of the LSTA greater than 20 percent, though,

overfitting in the DAG can be reduced.

Quality Metrics

This Section provides an example to help understand the MCI algorithm and pattern mining

methods introduced in Section 6.3.2. The support measure of itemsets C(π)i ∗ (supp(C(π)i) is

defined as the proportion of transactions in the dataset containing RHS(C(π)i). In particular,

157



an association rule of ∂(C(π)i) ⇒ ∂(C(π)j) has a support of P (C(π)iC(π)j). The confidence

measure of a rule identifies the proportion of transactions with the most interesting/important

relationships. In addition, the confidence of a rule is defined as confidence (C(π)i =⇒ C(π)j ≡

support(C(π)i ∪ C(π)j) ≡ support(C(π)j) which satisfies Equation 7.

support(C(π)i ∪ C(π)j) > σ, confidence(C(π)i ⇒ C(π)j) > δ, lift(
P (C(π)i ∩ C(π)j)
P (C(π)i)× P (C(π)j)

),

(7)

Parameters such as σ and δ are the minimum support and confidence, respectively. Instead of

using accuracy, efficiency is an appropriate way to evaluate association rules [94]. To obtain

the frequents itemsets, first TARs are filtered by using minimum support (σ <= 0.001) and

confidence (δ <= 25%). However, they are not able to filter complications-rules based on the

different dependencies among the rules. For this purpose, a measurement of independence of

C(π)i and C(π)j which is known as lift. Lift is the deviation of the whole rule support from the

expected support under independence given both sides of the rule support. Higher lift values

indicate strong associations. Lift of 1 represents C(π)i and C(π)j are independent as shown in

Equation 8.

lift(C(π)i =⇒ C(π)j) = support(C(π)i ∪ C(π)j) = support(C(π)i)× support(C(π)j) (8)

For example, the probability of developing bothHY P and LIV is associated with the likelihood

of developing RET. Confidence of HY P,LIV implying RET is given as the likelihood of

developing HY P,LIV and also RET over the likelihood of developing only HY P and LIV

(see Equation 9).

confidence({HY P,LIV } =⇒ {RET}) = support({HY P,LIV,RET})
support({HY P,LIV })

(9)

The confidence measures whether {RET,HY P,NEU,RET} implies LIV . This reveals that

how likely a given patient develops {RET,HY P}, NEU,RET and LIV . In order to find the

most interesting itemsets, support ensures that all sub-rules of the frequent itemsets are also

158



frequent, hence no superset of infrequent itemsets can be frequent. Confidence is very sensitive

to the frequency of the consequent. It has been reported that consequents with higher sup-

port will produce higher confidence even though there is no association among the antecedent

and consequent. Thus, it might not be useful in performing effectively with the existence

of bias in dataset DS with a having small number of patients and relatively complications.

Confidence measures the strength of the association rules in which the patients that have

complication C(π)i also developed C(π)j together. There is a number of choices for select-

ing the filtering measures [55] such as lift, leverage and coverage. Where Lift(C(π)i =⇒

C(π)j) = confidence(C(π)i =⇒ C(π)j) × support(χj), leverage(C(π)i =⇒ C(π)j) =

support(C(π)i =⇒ C(π)j) - (support(χi) × support(χj)), coverage(C(π)i =⇒ C(π)j) =

support(C(π)i). In T2DM dataset, there is a strong association (indicated by the highest

lift) among the complications, which shows the likelihood of the complication being developed

relative to its general developing rate, given that the patient developed other complications.

For instance, the conditional probability of developing both HYP and LIV in are associated

with the likelihood of the patient developing RET. There is a strong association (indicated

by the highest lift) among the complications, which shows the likelihood of the complication

being developed relative to its general developing rate, given that the patient developed other

complications. For example, the conditional probability of a patient developing both HYP and

LIV is associated with the likelihood of the patient developing RET. Whereas Coverage filters

the rules mostly based on their antecedents. This opposite the present paper preferences where

the consequents (the complications occur in the future visits) have been considered as the most

revealing itemsets in the decision making and prediction process. Similar to lift, conviction

metric assesses the likelihood of the appearance of an antecedent in which the corresponding

consequent is not likely to occur.

Overall, a question still remains to answer whether it could be possible to trust these

metrics by the user-defined thresholds. In particular, there are many challenges to find the most

interesting rules [42] only by relying on TARs. Nevertheless, most of the previously mentioned

metrics in this study are mainly depended on the support and frequency. In a small-sized

dataset like DS, where there is a different imbalance ratio for each item (complication), bias,
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and latent factors, it may not be beneficial if is only trust on the obtained itemsets resulted

by using support, confidence, and lift.

Moreover, there are some itemsets which are called frequent itemsets while their occurrence

exceeds the threshold in the database. In order to generate interesting rules, one could come

across many frequent itemsets with minimal confidence. In the other words, by applying a

rigid constraint with having bias in data, the final itemsets can be identified as interesting

itemsets wrongly. This is because interestingness is only based on the association of HYP with

the items, not the relationships among the items themselves. An item like HYP with a high

occurrence rate can affect the way how other items are associated with each other. To avoid

the above issue in a small-sized dataset, this thesis tended to discover all types of associations

regardless of effect of bias (e.g., HYP) and focus mostly on the relaxed or flexible filtering

metrics.

It does not seem to be possible to only rely on lift as it may not be trustworthy enough

and unable to perform effectively with the existence of bias in the incomplete data. Lift suffers

from having non-fixed range of variables. It only assesses the dependency and correlation of the

items without taking into consideration the importance of the cause and effect relationships

among antecedents and consequents. Similar to the issue related to support and confident, lift

is susceptible to infrequent items with a relatively low probability complications-rules that can

be ranked wrongly as the most interesting itemsets. Although having a very low or minimal

constraints to be applied on the quality metrics, it does not eliminate the above issue which is

caused by generating all possible permutations of complications for all transactions as an

non-optimal option. This is because, Tables 6.1 contains many different antecedents and

consequents which increase the database size exponentially based on the number of items.

It also leads to generating large number of uninteresting distances among many small rules

despite the previously chosen optimal/minimal threshold for support and confidence. In this

situation, neither clustering nor ARM methodology perform effectively and can be even worse

and problematic in a sparse dataset (such as T2DM). In conclusion, for making a better

decision, the uninteresting rules needs to be reduced at another level which is addressed by

using pattern clustering.
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Table A.1: Database r1 of the associated rules with the complications generated using TARs.

RuleAntecedent Consequent Itemsets/Objects in D SupportConfidenceLift

7 { } =⇒ {NEP} 2,11,13,14,16,17,18,20,25 0.11 0.11 1.00
,29,30,32,35,36,37,38,41

8 { } =⇒ {NEU} 5,7,13,15,16,19,21,25,26,28 0.16 0.16 1.00
,29,31,34,35,37,38,39,40,41

9 { } =⇒ {RET} 3,4,8,14,15,17,22,23,25,27,280.15 0.15 1.00
,32,33,34,38,41

10 { } =⇒ {LIV} 6,12,18,19,22,24,29,30,31,32 0.15 0.15 1.00
,33,34,35,36,37,39,40

11 { } =⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23 0.86 0.86 1.00
,24,26,27,28,30,31,33,38,41

12 {NEU|HYP} =⇒ {NEU} 13,26,38,41 0.01 0.27 1.71
39 {HYP} =⇒ {LIV} 6,24,30,31,33,35,36,37,39,40 0.14 0.16 1.06
40 {{NEP|HYP}|NEU}=⇒ {RET} 28,38,41 0.01 1.00 6.57
42 {NEU|RET} =⇒ {NEP|HYP}28,38,41 0.01 0.19 6.84
53 {LIV|NEP} =⇒ {RET} 32,36 ≥ 0.0010.06 0.41
62 {LIV|NEU} =⇒ {RET} 34,39,40 0.01 0.29 1.88
80 {HYP|LIV|NEU} =⇒ {NEP} 37 0.01 0.33 3.11

Table A.2: A subset of Database r2 of the associated rules with the complications generated using TARs.

RuleAntecedent Consequent Itemsets/Objects in D SupportConfidenceLift

10 { } =⇒ {LIV} 6,12,18,19,22,24,29,30,31,320.15 0.15 1.00
,33,34,35,36,37,39,40

11 { } =⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23 0.86 0.86 1.00
,24,26,27,28,30,31,33,38,41

16 { }{ } =⇒ {RET} 3,4,8,14,15,17,22,23,25,27 0.01 0.22 1.46
,28,32,33,34,38,41

18 { }{ } =⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23 0.02 0.78 0.90
,24,26,27,28,30,31,33,38,41

20 {NEP} =⇒ {NEU} 13,16,25,26,29,38,41 0.02 0.19 1.17
25 {LIV} =⇒ {NEP} 18,29,30,32,36,37 0.04 0.27 2.49
39 {HYP} =⇒ {LIV} 6,24,30,31,33,35,36,37,39,400.14 0.16 1.06
40 {{NEP|HYP}|NEU}=⇒ {RET} 28,38,41 0.01 1.00 6.57
42 {NEU|RET} =⇒ {NEP,HYP}28,38,41 0.01 0.19 6.84
48 {LIV|NEU} =⇒ {NEP} 29,35,37 0.01 0.29 2.66
60 {HYP|LIV} =⇒ {NEP} 30,35,36,37 0.04 0.27 2.54
69 {HYP|LIV} =⇒ {NEU} 31,35,37,39,40 0.02 0.11 0.68
80 {HYP|LIV|NEU} =⇒ {NEP} 37 0.01 0.33 3.11
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Table A.3: The power set (MCI) obtained based on the MCI algorithm of the most interesting rules in MCI
representing two subsets (r1 and r2) of the intersected associated rules with the complications.

Rule LHS RHS Objects Support Confidence Lift

7 { } =⇒ {NEP} 2,11,13,14,16,17,18,20,25 0.11 0.11 1.00
,29,30,32,35,36,37,38,41

8 { } =⇒ {NEU} 5,7,13,15,16,19,21,25,26,28 0.16 0.16 1.00
,29,31,34,35,37,38,39,40,41

9 { } =⇒ {RET} 3,4,8,14,15,17,22,23,25,27,28 0.15 0.15 1.00
,32,33,34,38,41

10 { } =⇒ {LIV} 6,12,18,19,22,24,29,30,31,32 0.15 0.15 1.00
,33,34,35,36,37,39,40

11 { } =⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23 0.86 0.86 1.00
,24,26,27,28,30,31,33,38,41

12 {{NEU|HYP}} =⇒ {NEU} 13,26,38,41 0.01 0.27 1.71
11 { } =⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23 0.86 0.86 1.00

,24,26,27,28,30,31,33,38,41
42 {NEU|RET} =⇒ {NEP,HYP} 28,38,41 0.01 0.19 6.84
60 {HYP|LIV} =⇒ {NEP} 30,35,36,37 0.04 0.27 2.54
62 {LIV|NEU} =⇒ {RET} 34,39,40 0.01 0.29 1.88
80 {HYP|LIV|NEU} =⇒ {NEP} 37 0.01 0.33 3.11

Minimal Coverage Itemsets Algorithm

The MCI algorithm in Section A.1 ascertained whether patients in each cluster were developing

a similar pattern of complications. This was used to discover the most frequent itemsets which

were also unique for the corresponding cluster as well as a different pattern from other patients

within another cluster. For instance, once HY P have happened before the appearance of

LIV , RET and (NEU or NEP or no complication), there could be a co-occurrence pattern

of {HY P, {LIV,RET}, {NEU |NEP}}. To illustrate this, two subsets of rules were selected

with maximum lift and reasonable support and confidence (meeting the constraints defined in

Section ) as was shown in Tables A.1,A.2:

r1 = {R7, R8, R9, R10, R12, R27, R39, R40, R42, R53, R62, R80},
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r2 = {R10, R11, R16, R18, R20, R25, R39, R40, R42, R48, R60, R69, R80}

The union of objects in these subsets was met the most items in D. It is then aimed to find

out whether the rules set have covered the optimal/minimal number of the associated Objects.

This illustrated an ideal itemsets MCI of the intersection of r1 and r2 which is defined as MCI

= {R10, R11, R42, R60, R62} (as was shown in Table A.3. These itemsets are generated based

upon the intersection of objects in MCI representing a unique/minimum coverage set of Items

in D and seen in Figure 6.2.

A.2 Research Ethics approval and consent to participate

All participants of focus groups consented to study participation. The studies described in

the evaluation activities were approved by the biomedical research ethics committee from the

Ethics Committee at Istituti Clinico Scientifici Maugeri.
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Glossary

Accuracy An analysis results from a classification model generated by splitting the labelled

data and comparing the predicted class membership generated by the classification model

with the actual class membership provided by the observational data; sum of true positive

and true negative cases over all population.

AUC Area Under receiver operating characteristic Curve

BMI Body Mass Index

Confusion matrix A table generated to show true labels derived from the input data that

are compared to the predicted labels from a classifier

classification a supervised machine learning approach to assign observation into different

pre-defined classes.

clustering an unsupervised machine learning technique to assign unknown observational sam-

ples into categories.

COL Cholesterol

complications-rules rules between complications

CRT Creatinine

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Network

DBP Diastolic Blood Pressure

EM Expectation-Maximization

H Hidden / latent variable
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HBA Glycated Haemoglobin/H2A1c

HDL High-Density Lipoprotein

HMM Hidden Markov Model

HYP Hypertension

IC Induction Causation for observed variables

IC* Induction Causation for observed variables and latent variables

Jaccard Jaccard Index

LS Link Strength

LHS Left Hand Side

LSTA True Average Link Strength

LSBA Blind Average Link Strength

MAP Maximum A posteriori Probability

MCI Minimum Coverage Itemsets

MCMC Markov Chain Monte Carlo

NEP Nephropathy

NEU Neuropathy

NHS National Health Service

PLS Partial Least Squares

REVEAL Reverse Engineering Algorithm

REP Retinopathy

RHS Right Hand Side
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ROC Receiver Operating Characteristic curve

SBP Systolic Blood Pressure

SD Standard Deviation

SMK Smoking habit

SSM State Space Model

T2DM Type 2 Diabetes Mellitus

TAR Temporal Association Rules

TS Time-Series

TS Bootstrapping Time-Series Bootstrapping approach

WHO World Health Organisation
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