
Abstract. Abstract: Holoscopic 3D imaging system, also known as in-
tegral imaging, is an innovative 3D imaging principle that overcomes
key limitation of traditional 2D imaging issues such as depth, scalabil-
ity and multi-perspective with its simplistic form of 3D data acquisition
and visualisation which provides robust and spatial information of the
real world 3D scene. In this paper, an innovative 3D map generation
technique is proposed which produces accurate 3D map of a scene from
a single holoscopic 3D image based on angular information preserved
in its elemental images. 3D depth map is generated from the elemen-
tal images based on the semi-global block-based matching algorithm. A
weighted least squares filter is utilised to minimise the noise in the re-
sulting disparity image. The evaluation result outperformed state of the
art 3D depth generation techniques and the proposed technique enlarges
the industrial application of 3D imaging applications such as AR/VR,
inspection, robotics, security and entertainment.
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1 Introduction

3D depth estimation from a holoscopic 3D (H3D) image is a promising tech-
nique that has gained an interest in the past few years due to the advantage of
calculating depth using a single aperture camera. The concept of H3D was first
introduced in 1908 by Gabriel Lippmann [1] which he called integral photogra-
phy. In today’s H3D cameras such as Lytro [2], a micro-lenses array is placed
behind the lens and in front of the camera sensor to capture the colour and
intensity of light rays from every direction, through every point in space, break-
ing down the entire image into individual rays of light. H3D technology has the
advantage of providing motion parallax, binocular disparity and convergence.
Some of the most compelling feature that H3D cameras afford is the limitless
refocus of the scene due to its infinite depth of field [3] and the wide depth of
field.

The micro-lens array is the core of this technique as it is utilised to achieve the
effect of an entire array of cameras but with only a single lens and a single sensor
design. As a result, each elemental image, which is the micro-image is formed
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behind each micro-lens, preserving different information about the direction,
colour, and intensity of light in the scene.

In contrary to typical approaches to estimate depth map using the extracted
and up-sampled viewpoint images from the H3D camera, in this paper, we esti-
mate the depth map using elemental images. The reasoning behind this is that
viewpoint images are orthographic image, where elemental images are perspec-
tive images that contain true angular information, thus, giving more accurate
depth information.

In H3D image, light rays first pass through the primary lens into what is
called a relay lens, which is used to focus the light rays to each micro-lens in the
micro-lens array. A single lenslet among the full micro-lens array captures the
light coming from the relay lens, meaning that the exit pupil is being re-imaged
to the image sensor, giving the full amount of angular information. Accordingly,
each lens is capturing a perspective of the scene recorded from that array lo-
cation. Each micro-lens has a number of pixels behind it, creating a 2D format
image that is referred to as the micro-lens image or elemental image. The H3D
image captured is a 2D image of an array of elemental images.

Fig. 1. H3D system projection

H3D plenoptic function can be represented by four dimensions H3D(s, t, u, v).
Each micro-lens corresponds to the position described in the image at (s, t),
where the orientation (u, v) resembles the image aperture, meaning that each
pixel in the elemental image corresponds to a particular angle of light rays
passing through the camera to a specific micro-lens. Consequently, H3D can
be parameterised in two-plane schemes as seen in Fig. 1. The main lens can be
considered as the first plane (s, t) and the micro-lens array as the second plane
(u, v). The resolution of the micro-lens image is determined by the image sensor.
Accordingly, the number of pixels of each elemental image is equal to the number
of pixels of the entire H3D image divided by the number of elemental images.
viewpoint images are a collection of images that can be extracted from a H3D
image, each presenting a specific perspective.
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2 Related Work

Many recent studies concerning H3D imaging system focus on depth estima-
tion since it is one of the main features of a single aperture camera. Joen et
al. [4] employed multiview viewpoint images, generated from a Lytro camera.
They used traditional cost-volume-based stereo depth estimation approach [5],
which assigns a hypothesised disparity to each pixel derived from a pixel-by-
pixel matching. However, to overcome the narrow baseline problem, they have
adjusted the cost-volume algorithm by incorporating sub-pixel displacement and
Graph cuts algorithm has been utilised to refine the depth maps.

One of the most compelling features of the H3D cameras, is the limitless
refocus of the scene due to its infinite depth of field. This feature has been used
in [6] where depth is estimated from both defocus and correspondence depth cues.
The depth algorithm was later refined using shading information to improve the
shape estimation [7].

Occlusion-aware depth estimation algorithms were developed such as im-
posing the colour consistency in the viewpoint images in [8] and using multi-
orientation epipolar plane images in [9].

Previous algorithms have achieved reasonably accurate depth maps. How-
ever, all previous works have focused on extracting depth maps from enhanced
viewpoint images, generated mostly from Lytro camera. Here, we focus on ob-
taining depth maps using elemental images from the H3D images.

3 Methodology

A single H3D image contains both spatial and angular information of the scene.
Therefore, the depth map of a scene can be estimated locally, i.e. from a single
shot. The disparity can be generated from viewpoint images extracted from a
calibrated H3D image by applying traditional stereo matching algorithms [10].
However, employing the current stereo matching algorithms directly to H3D’s
viewpoint images cannot offer a precise depth map due to the narrow baseline be-
tween them. In some approaches such as in [4], sub-pixel displacement algorithm
is used. In our method, we have found that elemental images offer a more sub-
stantial baseline between two consecutive elemental images, particularly when
the main lens is placed further away from the sensor.

3.1 Pre-processing

H3D image comprise of a large number of elemental images. To easily access and
manipulate specific elemental images and viewpoint images, given a calibrated
H3D image using [11], we produced an equation that loops through the entire
H3D image pixels to generate a 4D parameterisation H3D function such as:
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Fig. 2. The proposed method’s framework and results for 3D disparity estimation
froma H3D image

H3D = (u, v, s1 : sn, t1 : tm)
s = (u− 1) ∗ n + 1)

sn = (u ∗ n)
t = (v − 1) ∗m + 1)

tm = (v ∗m)

(1)

where u and v are the positions of elemental images and n and m are the
number of pixels in each elemental image. An extra dimension has been added
to the function, which consists of RGB colour channels generating a final 5D
function.

Since elemental image are low-resolution images, detecting distinctive fea-
tures is challenging. Thus, we used the up-sampling solution used in [12] to
improve the quality of the image and detect unique features as seen in figure 3.

Fig. 3. Pre-processing H3D images
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3.2 Disparity Estimation

For our stereo matching algorithm, we have used Semi-global Based Matching
(SGBM) method [13]. SGBM has shown more significant results when used on
images with shorter baseline. For each elemental image, block of pixels in the first
elemental image are matched to their corresponding blocks of pixels in the next
elemental image along the epipolar line, returning the corresponding vertical
displacement, which is proportional to its depth. This problem can be expressed
in a global cost function [14]:

E(D) =
∑
d∈D

C(d) +
∑

d′∈N(d)

P1I [|d− d′| = 1] +
∑

d′′∈N(d)

P2I [|d− d′′| > 1]


(2)

where I equals to 1 if its argument is true, and 0 if its argument false. C(d)
denotes the data term similarity metric of chosen disparity d, each similarity cost
is stored in a 3D cost structure. This step is repeated for every block of pixels
in the elemental images. The minimal costs in the stack of the 3D structure
represent a potential disparity estimations. Finally, penalty terms P1 and P2,
which rely on the difference to the neighbourhood disparities are introduced.

The produced minimal costs are not highly distinctive, which could result in
incorrect disparity estimation. Cost aggregation within these 3D cost structures
is applied to solve this matter. The final cost is derived by the accumulation of
minimal costs along multiple paths in the image. In our case, we used 8 paths.
Potential cost values are aggregated, and a weighted summation is performed
on these cost possibilities. Accordingly, for each pixel, we analyse all its neigh-
bouring pixels along the paths, the more significant the difference of the lateral
parallax axis with the neighbouring pixels, the higher the penalty resulting in a
high addition to the source value of the matching costs. This process is performed
to force the strings in the path to be moderately continuous, which guarantees a
smooth surface. We repeat this method on every path and every correspondence
in the image to produce the final cost.

To minimise the noise in the resulting disparity image, we have applied
weighted least squares (WLS) filter [15].

3.3 Disparity reconstruction

The resulting disparity image of the estimation process resembles the disparity
maps of the multiple elemental images of the H3D image, as seen in figure 2
(b). We can extract multiple disparity maps from different viewpoints. Given a
H3D disparity image coordinate, the first plane coordinates (s, t) can be used to
represent the viewpoint disparity images and (u, v) representing the disparity
elemental images. To extract the final depth, pixels from disparity elemental
images are rearranged accordingly. From a particular (u, v) coordinate, the pix-
els sharing the same location of (s, t) from each elemental disparity image are
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extracted and arranged according to each pixel’s associated micro-lens position
(u, v) to generate a single viewpoint disparity image. Thus, each elemental dis-
parity image is considered as one pixel in the viewpoint disparity image such as
in figure 4.

Fig. 4. Viewpoint disparity extraction based on re-arranging pixels, on the right dif-
ferent viewpoint disparity map can be viewed from different perspectives

4 Evaluation

The results of the proposed depth extraction algorithm were examined using
synthetic H3D images created using POV-Ray software. Each image consists of
around 97×53 elemental images; each is 100×100 pixels. Some of the elemental
disparity images were not as accurate as of the surrounding elemental images.
This is due to the fact that in our solution, we have employed fixed parame-
ters throughout the whole elemental images. In the future, we wish to create a
threshold to adjust the parameters according to the images. Our method was
tested against Joen et al. [4] method, where we modified their algorithm to work
with elemental images. Their algorithm has resulted in an incorrect disparity
labelling as seen in 5 (a), This is mainly due to the fact that their algorithm
uses the central images as a reference to compute disparity and since elemental
images differ this approach is unreliable. However, we have used their algorithm
on a slice of similar elemental images and we still did not get a robust result as
seen in figure 5 (b). where our results provide a smoother, and more accurate
disparity labelling. Even when we used viewpoint images with their method, we
still got incorrect disparity due to the fact that viewpoint images are low in
resolution.
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Fig. 5. Results against Joen et al. [4] algorithm. (a) fist row shows the original H3D
image, second row shows our result from elemental images, third row is the result of
[4] on elemental images and forth row is the result of [4] on viewpoint images. (b)
result from a slice of similar elemental images

5 Conclusion

An innovative technique for 3D depth generation is proposed and evaluated by
comparing to the state of the art techniques. 3D disparity maps are obtained
from a single H3D image by constructing a 5D matrix based on holoscopic el-
emental images. The disparity map is measured from elemental images using a
semi-global block-based matching algorithm and Weighted least squares Filter is
applied to minimise the noise in the resulting disparity image. In contrary to typ-
ical approaches to estimate depth generation using the extracted and up-sampled
viewpoint images from a H3D camera, we have estimated the depth map based
the elemental images rather than viewpoint images as they contain true angular
information, giving more accurate depth. The evaluation result demonstrated a
reasonable good outcome compared to the state of the art techniques.
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