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Abstract

Video-based person re-identification plays a critical role in intelligent video
surveillance by learning temporal correlations from consecutive video frames.
Most existing methods aim to solve the challenging variations of pose, occlu-
sion, backgrounds and so on by using attention mechanism. They almost all
draw attention to the occlusion and learn occlusion-invariant video represen-
tations by abandoning the occluded area or frames, while the other areas in
these frames contain sufficient spatial information and temporal cues. To over-
come these drawbacks, this paper proposes a comprehensive attention mech-
anism covering what, where, and when to pay attention in the discriminative
spatial-temporal feature learning, namely What- Where-When Attention Net-
work (W3AN). Concretely, W3AN designs a spatial attention module to focus
on pedestrian identity and obvious attributes by the importance estimating layer
(What and Where), and a temporal attention module to calculate the frame-
level importance (when), which is embedded into a graph attention network
to exploit temporal attention features rather than computing weighted average

feature for video frames like existing methods. Moreover, the experiments on
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three widely-recognized datasets demonstrate the effectiveness of our proposed
W3AN model and the discussion of major modules elaborates the contributions
of this paper.

Keywords: Person re-identification, What-where-when attention,

Spatial-temporal feature, Graph attention network, Attribute, Identity.

1. Introduction

Person re-identification (re-id) is a popular research on the video surveillance,
due to its extensive applications in forensic search, target human tracking, and
analysis of pedestrian trajectory. The goal of re-id is to find the correct person
from the non-overlapped camera videos, given a target image or video sequence.
To achieve satisfactory performance, person re-id must overcome the challenging
variations of pose, illumination, occlusion, and background, similar to general
object recognition tasks. In general, studies on re-id are mainly divided into two
categories: image based and video based matching tasks. The image based per-
son re-id attempts to retrieve the target pedestrian between single still images,
while the video-based re-id is of matching between video sequences. Though
image-based re-id has performed effective improvements [1, 2, 3], they are more
susceptible than video analysis, when the target data are exposed to the chal-
lenging variations, especially for occlusion. Compared to still image, pedestrian
video involves not only more appearance characteristics, but also temporal in-
formation to represent the object comprehensively [4, 5]. That permits the
video-based person re-id task potentially relaxed from various constraints, such
as occlusion, and pose variance.

The majority of existing person re-id techniques pay attention to diverse dis-
tance metric learning. Image-based person re-id has been further developed by
convolutional neural networks (CNN) [2, 3], while most video based methods ex-
tract temporal cues by integrating the learned CNN features of each frame [6, 4].
Specifically, the video-based person re-identification models extract appearance

spatial information from each video frame, and then aggregate these image-
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Figure 1: Examples of pedestrian video sequences. There are frequently-occurred occlusion
(red rectangle), and pose variations. Besides, the pedestrian attributes devote large contribu-

tion to the identity recognition, such as wearing backpack.

level features into the final spatial-temporal feature representations, which are
constrained by the distance metric learning. Besides, several researches [7, 8]
introduce optical flow into motion feature learning. However, an important
left problem of them is neglecting the frequently-occurred partial occlusion in
video frames. Recently, several attention models have made great efforts on
the problem of partial occlusion [5, 9, 10]. They employ attention module to
learn occlusion-invariant video representations by discarding the occluded video
frames. However, the most areas of occluded frames contain spatial information
and temporal cues in the video sequences, so directly discarding these frames is
inexpedient (as shown in Figure 1).

As mentioned in research [11], a faultless attention mechanism should learn
what (objects and their local motion patterns), where (spatial), and when (tem-

poral) to focus on. Existing attention-based person re-id models only utilize one
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of them, such as Rahman et al [7] exploited temporal information by aggregat-
ing the attention scores on each video frame, according to that not all frames in
a video are equally informative. In this paper, we focus on What- Where- When
(W3) attention problem in video-based person re-identification task, to inte-
grate what (looking at person appearance), where (focusing on obvious pedes-
trian attributes), and when (emphasizing important video frames) into a unified
attention model for re-id. Firstly, the model should look at the human body
to learn global identity appearance information from all video frames (what).
Then, the attention model needs to focus on where contains obvious pedestrian
attributes (such as red hat, green trouser) (where). Finally, it should evaluate
the importances of each frame because the occluded frame contains less spatial
information than normal frames, due to the noise from frequently-occurred oc-
clusion (when). In summary, the terms of what and where concern overcoming
the occlusion in exploiting spatial feature, while the term of when pays attention
to alleviating the impact of occluded region in temporal pattern.

In this paper, we propose a What- Where-When Attention Network (W3AN)
to particularly cope with partial occlusion both in spatial and temporal pat-
terns, by looking at the identity appearance, focusing on obvious attributes,
and emphasizing important frames in video person re-identification task. More
concretely, this paper integrates a spatial attention module and a temporal
attention module to focus on pedestrian identity appearance and obvious at-
tributes guiding by the class activation map (CAM), which can solve the what
and where to pay attention. Besides, a graph attention network is proposed for
the important frames in order to tackle the problem that draws attention to
when in video-based person re-identification. Finally, the What-Where- When
attention features are learned by the graph attention network with importance
adjacent matrix of the video frames.

The contributions of our W3AN model are summarized below.

(1) We firstly study the overall attention model for video-based person re-
identification, that is What, Where and When to pay attention, and proposes
a What-Where-When Attention Network (W3AN) method to learn spatial-
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temporal information for pedestrian video sequences, and designs a comprehen-
sively unified attention model to explore identical information from occluded
frames in re-id. Compared to traditional attention model, this paper especially
focuses on exploring spatial attention features both from global appearance
(What) and attributes ( Where), and learning useful information from occluded
frames (When), which are always abandoned in traditional attention models.

(2) We design a novel spatial attention module drawing attention on the
pedestrian identity appearance and obvious attributes by sharing attention pa-
rameters with class activation map, which can preserve the crucial information
in each video frame. Compared to recent popular transformer works, the spa-
tial attention mechanism proposed in this paper can explore both of identity
and attribute information with comprehensive attentive ability on pedestrian
appearance.

(3) We propose a graph attention network to learn the frame-level impor-
tance by a temporal attention mechanism. Then the learned attention parame-
ters are integrated into the adjacent matrix of spatially attentive frame features.
The Graph Convolutional Network (GCN) are executed at the attentive matrix
to learn the final video representation by global-average pooling.

(4) We validate the W3AN model by a series of compared experiments
on popular datasets, and discuss the different contributions of major mod-
ules. The results elaborate its performable application in video-based person

re-identification.

2. Related work

The correlated researches of this paper are divided as two groups, including
image-based person re-identification, and video-based person re-identification.
This section will discuss the correlations and comparisons between our research

and these methods in related fields.
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2.1. Image-based Person Re-identification

In recent years, person re-identification becomes a popular research topic
with great challenges, which is caused by the frequently-occurred variations of
viewpoints, poses, illuminations, and occlusions in realistic application. Fore-
going researches mainly solve this problem by two ideologies of robust feature
extraction [12, 13], and distance metric learning [14, 15]. With the development
of Convolutional Neural Network (CNN), the performance of newly proposed
CNN based person re-id models [1, 2, 3] has been achieved clear improvements
on large scale pedestrian image data. For example, Bai et al [2] applied long
short-term memory in an end-to-end way to model the pedestrian, seen as a
sequence of body parts from head to foot, and it performs better results than
global features; Besides, Wang et al [3] proposed a convolutional deformable part
model by decoupling the complex part alignment procedure to extract robust
pedestrian features representations.

Though these CNN methods have shown well-behaved performance, they
only exploit spatial information from still images including global and local
regions. As for local feature extraction, several attention models [1, 16] are
designed besides simple part division strategy [3, 17]. Specifically, Xu et al
[1] introduced an attention-aware compositional network for person re-id, con-
sisting of pose-guided part attention, and attention-ware feature composition,
which achieved state-of-the-art results on several public datasets. Tay et al [16]
leveraged body parts and integrated the key attribute information in a uni-
fied framework, containing global person re-id task, part detection task, and
crucial attribute detection task to draw attention on the pedestrian attributes.
Although these methods have achieved improvements, they neglect the tem-
poral information compared to video-based person re-identification, and they
only conduct where to pay attention with susceptible sensitivity, rather than

the unified what-where-when attention.
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2.2. Video-based Person Re-identification

In real practice, image-based person re-id is easily developed into multi-shot
re-id by given pedestrian video sequences. Thus, many recent works gradually
exploit video-based person re-id problem. Specially, the works [7, 8] employ
optical flow mechanism to learn motion information from pedestrian adjacent
frames, which provides temporal correlations in video sequence. In detail, Rah-
man et al [7] proposed a temporal attention approach for aggregating frame-
level features by adding the optical flow into the network; Gong et al [8] et
al designed a flow-guided feature enhancement network that leverages flow in-
formation to enhance low-level features to achieve superior performance and
outperform most of existing methods. Besides, the works [18, 19] conducted
long short-term memory (LSTM) or recurrent neural network (RNN) to learn
the temporal features from sequential CNN features, and they usually utilized
average pooling strategy to investigate the temporal features. More concretely,
Xu et al [18] presented a joint spatial and temporal attention pooling network
enabling the feature extractor to be aware of the current input video sequences,
which are fed into a sequence of RNN units to learn temporal information;
Chen et al [19] employed competitive snippet-similarity aggregation and co-
attentive snippet embedding to divide long pedestrian sequences into multi-
ple short video snippets and aggregated the top-ranked snippet similarities for
sequence-similarity estimation. As the popular technologies, several researches
have leveraged spatial-temporal attention and graph convolutional network into
video-based person re-id [20, 21, 22, 23, 24]. Specifically, Chen et al [20] pro-
posed a spatial-temporal attention-aware learning model to attend the salient
parts of persons in videos jointly in both spatial and temporal domains; Li et
al [21] designed a relation-guided spatial attention to explore the discriminative
regions globally and proposed a relation-guided temporal refinement module
to further refine the feature representations across frames; Fu et al [22] inte-
grated a spatial-temporal attention approach, adopting a more effective way
for producing robust clip-level feature representation; Yang et al [24] developed

a spatial-temporal graph convolutional network to identify the visually simi-
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lar negative samples and utilize structural information from pedestrian video
frames. Liu et al [23] proposed a non-local video attention network to incorpo-
rate video characteristics into the representation at multiple feature levels, and
further introduced a spatially and temporally efficient non-local video attention
network to reduce the computation complexity, but this approach only exploited
multi-level features, without further considering the attribute and identity infor-
mation from the spatial-temporal feature representations for video-based person
re-id task.

Though these mentioned methods focus on learning spatial-temporal feature
representation, or attend region of interest for person videos, they neglect the
informative attribute information (where to draw attention) and treat the oc-
cluded frames equally or directly discard a few less important frames, which has
much spatial-temporal information in the un-occluded regions. In contrary, our
proposed W3AN model utilizes all frames weighted by the learned importances
without neglecting any frame. At the meanwhile, our attention mechanism also
focuses on what and where to draw attention. Detailed illustration can be seen

in Section III.

3. Proposed W3AN Model

3.1. Overview

Our What- Where- When Attention Network (W3AN) can pay more attention
on global identity appearance (what), obvious pedestrian attributes (where), and
important un-occluded frames (when) by a multi-task network to learn spatial-
temporal What- Where-When (W3) attention features. This paper designs a
Spatial Attention Network (SAN) to address what and where, and a Temporal
Attention Network (TAN) to tackle when. In detail, SAN generates Identity
Activation Map (IAM) and Attribute Activation Map (AAM) by the guiding
of Class Activation Map (CAM) [26] from two individual tasks, which includes
identity and attribute classification tasks. In contrary, TAN achieves frame-

level importance estimation by a fully convolutional attention module. Next,
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Figure 2: Overview of the proposed W3AN. The model consists of spatial and temporal
attention modules, following a graph convolutional network. Firstly, pedestrian video frames
are fed into a CNN backbone network to extract convolutional cube, with its element-wise
importance by the supervision of identity and attribute activation map learning. Then, the
spatial attention features extracted from CNN constitute a KNN-based graph convolutional
neural network with their attention weights, learned by temporal attention module, to output
final feature representations for pedestrian videos. Finally, a triple loss function optimizes the

trainable parameters to guarantee the discriminant capability of pedestrian attention features.

the learned what-where attention features and the frame-level importance scores
are fed into a Graph Attention Network (GAN) to calculate the What- Where-
When attention features for each pedestrian video. Finally, we utilize Global-
Average Pooling (GAP) strategy to generate the video representation, following
a triplet loss to learn distance metrics among different video sequences. The
overall illustration of our W3AN model is shown in Figure 2.

In our W3AN network, we employ ResNet [27] framework and remove its
last fully connected layer as the CNN backbone network of the spatial attention
module (Figure 2), due to its widely-acknowledged effectiveness in pedestrian
feature extraction. The SAN subnet consists of a pedestrian identity classi-
fier, and several attribute classifiers to generate Class Activation Map (CAM),
and it provides a fully convolutional layer to estimate the importances of each

convolutional cube. In addition, temporal attention module introduces Graph



200

205

Convolutional Network (GCN) to learn the temporal attention features based

on the learned frame-level spatial features, and the frame-attention scores.

8.2. Spatial Attention Module

We denote a pedestrian video as V- = {I1,--- ,I},--- , IT}, where I; is t-th

frame in video V. The convolutional cube of I; through CNN is C;, € RFT*WxM

)

where M denotes that it is constituted by M feature maps with H x W shape.

We define the elements in the convolution cube by

Ci(1) Ci(W)
Ct: ’ (1)
C:(Wx(H-1)41) --- Cy(W xH)

For each element in Cy, Cy(k) € RM is the feature vector at the k-th position,
and k € R*. This convolution cube is the base of generating spatial attention
score in Spatial Attention Network (SAN).

In each pedestrian video frame, the most discriminant information is con-
tained in the whole human body with global identity appearance (what), and
the pedestrian attributes with different weights (where). Inspired by this point,
we propose a spatial attention mechanism to estimate the attention score of
what and where, providing the importances of each location in convolutional
cube (%, which is achieved by a spatial attention layer of fully convolution with

trainable parameters
d (k) = vr tanh(W,Ci (k) + by), (2)

where &;(k) € RM represents the unnormalized spatial attention score for each
elements of C;, and the attention parameter v; € RM*M 7, ¢ RMxM (weight
matrix) and b, € R (bias) denote the attention parameters to conduct the
convolution on Cy(k), where W and bs are shared for all frames, and v; is
distinct for each frame. The operation between Wy and Cy(k) is linear trans-
formation. The shared parameters Wy and by ensure that activation map of

attention score &; can maintain the discriminative importance both on global

10
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identity appearance and the pedestrian attributes, and distinct v; preserves the
individual information for each specific video frame.

Then, the spatial attention score is normalized to the final score ay(k) to
ensure each element in [0,1], according to

exp{dy(k)}
S exp{dr(j)}

where (k) € RM and d; (k) € RM denote the k-th feature vector of a; and diy,

Oét(k) =

(3)

respectively. Thus, the spatial attention score a; can represent the importances
of each spatial feature vector from C}, and we can calculate the spatial-attention

feature for ¢-th pedestrian frame by
F= S (k) © Cilk), (4)
k

where ® means element-wise product and F, € RM.

This combination of spatial attention score and the convolution cube empha-
sizes the important regions estimated by the spatial attention layer. Here, the
most important issue in SAN module is how to train the spatial attention layer
to output a reasonable attention score ;. Essentially, a is the coefficients that
can reflect the discriminative information of identity and attributes in the pedes-
trian video. As we all know, the class activation map [28] expresses a weighted
linear sum of the presence of visual patterns at different spatial locations, which
can help us identify the image regions most relevant to the particular category,
such as identity or attributes in pedestrian video. Therefore, to guarantee the
effectiveness of this attention layer, this paper designs a spatial attention net-
work loss function jointly trained with a multi-task learning strategy according
to identity and attribute classification. So that it can generate the identity and
attribute activation maps (IAM m; and AAM m,) by Class Activation Map
(CAM)[28].

In our network, for a given identity or attribute class ¢, if we use S, denotes

the input of the softmax layer, then the output of the softmax can be computed

11



by %. The formula of S, is shown in Eq.5.

Se=Y wi ) fulwy) =) Y wifilz,y), (5)
2 T,y Ty k

where fi(x,y) represents the activation values of unit & in the last convolutional
layer at spatial location (x,y), w§ indicates the importance of fi for class c. If
we use back-propagation to get the value of w when network training is done,
the CAM of identity/attribute class ¢ is denoted by TAM(m;)/AAM(m,), which
is computed by Eq. 6.

mifma = 3" wi fie,y) (6)
k

The purpose of using CAM is that it has excellent capability of explaining
meaningful regions in original input images, which make our model can easily
pay attention to important pixels with identity and attribute information. In

detail, the IAM and AAM are adding together to the original frame
Il =1, &m; ®myg, (7)

where I} is the baseline image with importances of IAM (m;) and AAM (m,),
obtained according to [26]. Specifically, AAM m, is calculated by multi-label
task and this paper fuses CAMs from each attribute task by directly adding
operator @. Here, we can obtain spatial attention score oy when we feed I] into
the same spatial attention network. Therefore, we utilize this baseline attention
score to train SAN module by

WxH

Loan =Y llove (k) — o (K)II*. (8)

t=1 k=1
This loss function can achieve that the spatial attention score is similar to
the IAM and AAM, so that makes our network focuses on global identity ap-
pearance and attributes. Note that, the class activation map has been adopted
into convolutional neural network for feature representation [29, 30, 31] simi-
lar to Eq.8, because the pixel-level supervision from IAM and AAM expresses

abundant appearance and attribute information with attentive importance. In

12
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Table 1: The employed pedestrian attribute groups in our model.

Group Attributes

Gender & Age Female, Agelessl6, ---, Age31-45
Head-Shoulder Hat, Glasses, - - -, Black Hair
Up-Body Shirt, Suit Up, - - -, up-Blue
Low-Body Dress, Skirt, -- -, low-Black
Shoes Sport, Leather, - - -, shoes-White
Attach Backpack, Hand Bag, - - -, Plastic Bag

addition, we also introduce the multi-task training strategy for identity and

attribute classification losses following the form of

N
Leam = Y _ =i - yi log(softmax(FC;(C}))), (9)

i=1

where C) € RU-W-M) ig the feature vector reshaped from convolutional cube
C, € REXWXM i denotes i-th classification task, N represents the number
of pedestrian identity and attribute classification tasks, y; is the label of i-th
task, and F'C; denotes the i-th fully connected layer to transform C} into the
dimension of class number in i-th task. Here, each fully connected layer F'C;
is specifically designed for each attribute and identity classification task, which
can exploit more information than utilizing a shared FC layer. To demonstrate
the employed attributes, we summarize the employed attribute groups in Table

1, which is totally 68 specific attributes following [6], with N = 69 in Eq 9.

8.8. Temporal Attention Module

In spatial attention module, the what and where to pay attention has been
solved by the proposed spatial attention network. Nevertheless, the occlusion in
pedestrian video is frequently-occurred, which appears in random video frames,
and contains considerable discriminant identity information except for the oc-

cluded regions. Hence, directly removing these frames is ridiculous, and this

13
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paper designs a Temporal Attention Network (TAN) to solve when to pay at-
tention in video-based person re-id task. TAN can estimate the frame’s im-
portance adding into the video feature learning to eliminate the influence of
occluded frames rather than directly discarding them.

As for the given pedestrian video V = {Iy,--- , I,-- - , IT }, we have obtained
its frame-level spatial attention feature collection F' = {Fy,---,F},--- ,Fr}
by the proposed SAN module. As shown in Figure 2, the temporal attention
module illustrates that we employ a fully connected network to roughly estimate
the frame score for each frame feature (frame importance learning in Figure 2),
and propose a TAN loss to train the performable parameters by modeling the
frame relations.

Mathematically, the calculation of ¢-th frame importance can be represented
by

B = sigmoid(WyF; + by), (10)

where 8, € [0,1] is the estimated temporal attention score for t-th frame, W,
and by are the trainable parameters in the fully connected layer, and the sigmoid
function is the adopted activation function after fully connected layer.

To make TAN estimate the temporal attention score 3; more accurate, we
propose a TAN loss to enforce that the minimum attention score (3,,;, should be
smaller than the overall one SB,yerqir, Which is calculated by feeding the average
spatial attention feature into Eq.10 (Boyerar = sigmoid(Wf% ET:lFt)) Formally,

=

it can be represented by

Ltan - max{(), mi — (ﬁo’uerall - ﬁmzn)}; (11)

where my denotes the margin parameter. This TAN loss constrains the learned
parameters 8 = {81,---, B, - , fr} more realistic, and provides accurate self-

attention score for the spatial-temporal feature learning in next subsection.

8.4. Graph Attention Network

In spatial and temporal attention modules, we can learn the frame-level

spatial attention features F' = {Fy,--- ,F},---, Fr} and its related frame at-

14
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tention score 8 = {B1, -, B¢ -, Br} for the given pedestrian video sequence
V. The features and frame attention scores contain the most informative char-
acteristics of spatial and temporal representations, whereas they are expressing
sufficient knowledge from individual aspects. As concluded, these two inter-
mediate modules mine what, where, and when to individually pay attention in
person re-id without further combination. The remain major step in W3AN ap-
proach is to integrate them into a spatial-temporal attention feature. Inspired
by the outstanding capability of automatically correlation modeling of Graph
Convolutional Network (GCN)[32], which has been widely employed to mine
spatio-temporal correlations in various computer vision tasks [33, 34, 35, 24],
we propose to develop GCN with temporal attention mechanism on modeling
relations among different pedestrian video frames. For each identity, the con-
secutive temporal information is expressed among video frames, and there often
contains occlusion and pose variations. Thus, constructing graph for frame-level
features to achieve GCN can effectively model the spatial-temporal information
for pedestrian video. As for the graph construction, we treat each spatial atten-
tion feature as nodes, and connect each other according to K nearest neighbor
algorithm, as illustrated in Figure 3, added by the calculated temporal attention
scores to balance the different weights of each frame in GCN. Finally, W3AN
utilizes a Global-Average Pooling (GAP) layer on the learned graph attention
features to compute the final spatial-temporal attention feature vector for the
given pedestrian video.

Firstly, we utilize KNN algorithm to compute the connected nodes for each
frame-level spatial attention feature Fi, and generate the adjacent matrix A €
RT*T for the learned graph , where A;; denotes relationship between i-th and
Jj-th nodes. Specifically, A;; = 1 denotes nodes ¢ and j are connected when they
belong to the K-nearest neighbors for each other, or A;; = 0 when they belong

to other relations. Secondly, we transform the temporal attention scores as the

15
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Figure 3: Illustration of KNN graph building for spatial attention features from each pedes-

trian video.

temporal attention matrix A; by

B O 0
0 0

At = B2 ’ (12)
0 Br

which is integrated into the overall adjacent matrix A by
A=A+ A, (13)

Thus, W3AN constructs a graph representation G(F, fl), with our graph

convolutional network containing one input layer and a number of hidden layers.

16
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Given the input F(©) = F and the temporal attention graph A, GCN conducts

the graph convolution in hidden layers by
F(k-i-l) :O'(D_l/2AD_1/2F(k)Wq(k+l)), (14)

where F(*+1) is the output graph representation set of k + 1 GCN layer, k =
0,1,--- ,K -1, D (D;; = Z;‘Ll A;;) is the diagonal degree matrix of A, o
represents the nonlinear activation function. At the last GCN layer, the graph
representation for each frame is denoted by F9 = {F{, ... |F/ ... F7}. Dif-
ferent with existing temporal attention mechanism in video-based person re-
identification [7] that they fused the temporal attention score into the weighted
average pooling on the learned frame-level features, our W3AN integrates the
scores into GCN to further improve the involvement of the temporal attention.

Finally, we compute the spatial-temporal attention feature for each video

sequence by
T
1
FY=— E F? 15
T " (15)

where F" is the spatial-temporal attention feature representation as well as
What- Where-When (W3) attention feature for pedestrian video V.

Moreover, we utilize the batch-hard triplet loss [36] to further boost the
person re-id performance on the learned W3 attention features. Formally, there
are N videos in each training batch, containing P identities, and the loss is

described by

P
1 N
‘Ctriplet = F Z[m2 + max ||Ful,)(l) - Fp (Z)H?
i=1 (16)

—min |[F7 (@) — F(5) 2]+,
J#i

where F}/(i) and Fy (i) are positive spatial-temporal attention video represen-
tation pair of the i-th identity, F(j) is of j-th pedestrian identity which is
negative to F¥(i), and my denotes the margin to constrain the distance across
positive and negative pairs.

By integrating the losses proposed in this paper together, the overall end-

17
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to-end loss function can be defined as

L= A/lﬁsan + 72£cam + 73£tan + 74£triplet7 (17)

where 71, 72, 73 and 74 are balance parameters to leverage the trainable terms
of SAN, CAM, TAN and triplet identification, and the detail optimization is

summarized in Algorithm 1.

Algorithm 1 What- Where-When Attention Network (W3AN)
Input: Pedestrian Video V and its identity/attribute labels yo/y:|S21, each frame

is resized as 224 x 224, and parameters mi, msz, and /\¢|£V:O; Each video contains
consecutive frames and the size of mini-batch is 16; The backbone network parameters
are initialized by a pre-trained model from ImageNet.
Output: The optimized network parameters.
for n =1 to Ny (number of iterations) do:
for t =1 to T (frames of video) do:
Learn convolutional cube Cy for each frame;
Estimate spatial attention score a; for each frame;
Calculate the frame-level feature F; by Eq. 4.
end for
Estimate the importance for each frame;
Establish temporal-attention graph correlations A for each video;
Conduct graph convolution on the graph according to Eq.14;
Compute the spatial-temporal attention feature F¥ by Eq.15;
Optimizing the network parameters by minimizing Eq 17.

end for

4. Experimental Results

In this section, we elaborate the extensive person re-identification experi-
ments to show the superiority of our proposed W3AN. To train W3AN model
more efficiently, the experiments adopt MARS [37], iLIDS-VID [38], and PRID2011
[39] datasets (Figure 4), which have been widely evaluated in video-based person

re-identification, to provide training and testing pedestrian videos. Moreover,
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we discuss the major attention modules to validate the combined influence of

overall what-where-when attention mechanism.

4.1. Datasets

The MARS dataset is a recently large scale person re-id dataset, containing
1261 pedestrian identities with 20715 video sequences from six cameras. The
bounding boxes are produced by DPM detector [40] and GMMCP tracker [41].
This dataset meets significant challenges because of the poor quality from the
failure of detection or tracking, while this dataset is close to realistic person
re-id task.

The iLIDS-VID dataset contains 600 image sequences from 300 pedestrian
identities captured from two cameras, which the number of video frames is
ranged from 23 to 192 with average of 73. Different from Mars, the bounding
boxes are manually annotated and occlusion appears frequently.

The PRID2011 dataset consists of shared 200 pedestrian identities from
two cameras and another 734 identities only appears in one camera. We utilize
these shared identities with 5 to 675 video frames. Their bounding boxes are
also annotated by human power.

It should be noted that, these three datasets do not contain attribute labels
while our W3AN network requires attribute labels to generate class activation
map with supporting spatial attention module. To solve this problem, we em-
ploy the transfer learning strategy for attribute recognition following [6]. It
employs maximum mean discrepancy (MMD) [42] to measure their distance to
an attribute-labeled dataset RAP [43], and then transfers the same attribute
knowledge into the datasets employed in this paper, by a weighted binary cross-
entropy loss. Detail transfer learning can be find in [6].

The RAP dataset is a large-scale pedestrian attribute dataset and it pro-
vides 91 fine-grained binary attributes for each image. This paper also selects
68 specific attributes (e.g. black hair, T-shirt) and neglects others (e.g. talking,
face right) following [6].
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(a) MARS (b) iLIDS-VID (¢) PRID2011

Figure 4: Pedestrian video sequences from MARS, iLID-VID, and PRID2011 datasets.

4.2. Settings and Protocols

Settings. In our what-where-when attention network, we adopt ResNet-18
[27] pre-trained on the ImageNet [44], and remove the fully connected layer in
W3AN. Each video frames are reshaped to 144 x 288, randomly cropped to
128 x 256 and resize them into 224 x 224 before feeding into the network. For
the network training, this paper employs SGD optimizer to train the parameters
and set the video batch size to N = 16 from P = 8 identities. The learning
rate is set by 2e-2 which multiply 0.1 in every 50 epochs and will be decayed to
0 in the last 10 epochs. Besides, the maximum epoch is 300 and the length of
video sequence is T' = 10, randomly sampled from image sequences. Specifically,
we implement W3AN by 4 GPUs of NVIDIA Geforce 2080Ti on Ubuntu 16.04
system, and firstly predict the attribute labels for the experimental datasets to
support the overall W3AN model. As for the balance parameters in loss function
17, we directly set A; = 1192, of Eq.9 and the margin parameters m; = 0.08,
me = 0.55. Besides, for the balance parameters in Eq.17, the final values of
[vjlj=1] in our experiments are [0.3,0.15,0.2,0.35]. As for the parameter settings
of GCN, we set K = 4 in KNN algorithm to connect 4 neighbors for each
pedestrian video, and the number of GCN layers in W3AN is 2.

Protocols. This paper utilizes the standard measurements to evaluate the
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performance of our W3AN model on video-based person re-identification, in-
cluding Cumulative Matching Characteristic (CMC) accuracies (Rank-m) and
mean Average Precision (mAP). Each datasets are divided as training and test-
ing data equally, and the experiments are repeated 10 times with randomly

training/testing division to calculate average results for each evaluation metric.

4.3. Compared with recent works

In our experiments, we report the rank-m accuracies of W3AN compared

with several recent works, and the results are summarized in Table 2. CNN+XQDA

[37] combines convolutional neural network and XQDA features to extract space-
time descriptors for pedestrian video. SeeForest [45] automatically chooses
the most discriminative frames from pedestrian videos by a temporal atten-
tion model, and it integrates the surrounding information at each location by a
spatial recurrent model when measuring the similarity with another pedestrian
video. Snippet [46] divides long pedestrian video sequences into multiple short
video snippets and aggregates the top-ranked snippet similarities for sequence-
similarity estimation, which is achieved by temporal co-attention for snippet em-
bedding. RQEN [47] is a region based quality estimation network in which the
ingenious training mechanism enables the effective learning to extract the com-
plementary region-based information between different frames. Attribute [48] is
an attribute-driven method for feature disentangling and frame re-weighting to
enhance the most informative regions of each frame and contribute to a more
discriminative sequence representation. STMP [49] proposes a refining recurrent
unit that recovers the missing parts and suppresses noisy parts of the current
frame’s features by referring historical frames, and a spatial-temporal clues inte-
gration module to mine the spatial-temporal information from those upgraded
features. STPN [50] utilizes a weighted triple-sequence loss to optimize the
video-based feature and reduce the impact of outliers, and it also designs a
spatial transformed partial network to jointly learn image-level and video-level
features to generate more robust representation. MSTA [51] designs a multi-

scale spatial-temporal attention model to measure the regions of each frame in
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s different scales from the perspective of whole video sequence, which focuses on
exploiting the importance of local regions to the whole video representation in
both spatial and temporal domains. AMEM [52] proposes an appearance and
motion enhancement model to enrich these two kinds of information contained
in the backbone network in a more interpretable way. FGRA [53] integrates

w0 a frame-guided region-aligned model for discriminative representation learning
in video-based person re-identification in an end-to-end manner. MGH [54]
proposes a multi-granular hypergraph framework to pursue better representa-
tional abilities for pedestrian videos by modeling spatio-temporal dependencies

in terms of multiple granularities.

Table 2: Comparative results on MARS, iLIDS-VID and PRID2011 datasets. Measured by

rank-m accuracies and mAP (%).

Dataset MARS iLIDS-VID PRID2011

Models mAP -1 -5 120 | r-1 -5 120 | r-1 -5 1r-20
CNN+XQDA (ECCV16) [37] | 49.3 683 826 894 | 53.0 81.4 951 | 77.3 93.5 99.3
SeeForest (CVPR17) [45] 50.7 706 90.0 976 | 55.2 86.5 97.0 | 794 944 99.0
Snippet (CVPR18)[46] 76.1 863 947 982 | 8.4 96.7 99.5 | 93.0 99.3 100
RQEN (AAATIR) [47)] 51.7 737 849 916 | 76.1 929 99.3 | 924 98.8 100
Attribute (CVPR19)[48] 782 870 954 98.7 | 86.3 974 99.7 | 939 99.5 100
STMP (AAAT19)[49] 727 844 932 963 | 843 968 99.5 | 92.7 98.8 99.8
STPN (NeuroC20) [50] 779 859 946 973 | 822 945 99.0 | 95.2 99.1 100
MSTA (TIP20) [51] 79.7 841 935 98.0 | 70.1 887 97.6 | 91.2 98.7 99.7
AMEM (AAATI20) [52] 79.3  86.7 940 971 | 87.2 97.7 995 | 93.3 98.7 100
FGRA (AAAT20) [53] 812 873 96.0 981 | 8.0 96.7 99.3 | 95.5 100 100
MGH (CVPR20) [54] 85.8 90.0 96.7 985 | 8.6 971 99.5 | 948 99.3 100
W3AN (Ours) 86.3 91.1 96.8 98.9 | 89.2 98.1 996 | 95.8 99.5 100

305 From Table 2, the comparison elaborates the superior performance of our

W3AN, compared to the recent works. The best results in rank-m are in bold
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Figure 5: CMC curves on MARS dataset with comparison to baselines.
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and the second is in underline. For MARS dataset, W3AN obtains the best
results in each rank-m accuracy and mAP (mAP 86.3% , rank-1 91.1%, rank-5
96.8%, and rank-20 98.9% ). Moreover, our W3AN achieves similar performance
on iLIDS-VID dataset, which realizes best rank-1, rank-5 accuracies of 89.2%,
98.1%, and second best rank-20 accuracy of 99.6%. As for PRID2011 dataset,
the best rank-1 and rank-20 accuracies are 95.8% and 100% (achieved by our
model), while rank-5 also performs well (second best of 99.5%). It can be easily
observed that the average performance of our W3AN approach is superior to the
chosen state-of-the-art methods. In overall, Our proposed W3AN achieves im-
provements ranged from 0.3% to 1.2% of rank-1 accuracy on three datasets, and
0.5% of mAP on MARS dataset. Besides, our model also achieves better perfor-
mance on other evaluation metrics. To visualize the comparative performance,
Figures 5, 6, and 7 draw the CMC curves on three datasets with comparison to
baselines, which also proves the advantages of our method. The major reason
of the W3AN'’s effectiveness is that the what-where-when attention mechanism

exploits more discriminative information from pedestrian video sequences than
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other spatial-temporal feature representation models. Particularly, our W3AN
model contains three principle components: spatial attention module to achieve
what-where to attend, temporal attention module to pay attention on when,
and a graph attention network to learn final spatial-temporal attention feature
representations by the integrated graph convolutional network. The validations

of these components are discussed in the Ablation Study.

4.4. Compared with spatial-temporal attention and GCN works

Moreover, we also compare W3AN with several spatial-temporal attention
and GCN works mentioned in Section II (2.2), including STAL [20], RGSA
[21], STA [22], NVAN [23], and STGCN [24]. These methods are proposed to
exploit spatial-temporal information, combined with attention and GCN. The
compared results are summarized in Table 3, where the best performance is
achieved by our W3AN model. Therefore, this comparison demonstrates the
excellent effectiveness and superiority of W3AN, compared to existing spatial-
temporal attention and GCN based person re-identification methods. The main
reason is that our W3AN model can address the problems of attending where

(attributes), and learning useful information from occluded frames.

Table 3: Comparative results of spatial-temporal and GCN methods. Measured by rank-m

accuracies and mAP (%).

Dataset MARS iLIDS-VID PRID2011
Models mAP -1 r-5 r-20 | r-1 r-5 120 | r-1 r-5  r-20
STAL (TIP19) [20] 735 822 928 98.0 | 828 953 98.8 | 92.7 988 100
RGSA (AAAT20)[21]) 84.0 894 969 983 | 8.0 980 994 | 93.7 99.0 100
STA (AAAT19) [22] 80.8 86.3 95.7 981 - - - - - -
NVAN (BMVC19)[23] 82.8  90.0 - - - - - - - -
STGCN (CVPR20)[24] | 83.7 90.0 964 98.3 - - - - - -
W3AN (Ours) 86.3 91.1 96.8 98.9 | 89.2 98.1 99.6 | 95.8 99.5 100
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4.5. Compared with attribute-based re-id works

To fairly reveal the superiority of our proposed W3AN model, we also com-
pare it with three advanced attribute-based video re-id models, including FDTA
[55], TALNet [56], and AITL[57], on MARS dataset. Specifically, FDTA [55]
proposed an attribute-driven method for feature disentangling and frame re-
weighting in video-based person re-id task; TALNet [56] designed a temporal
attribute-appearance learning network for video-based person re-id, which can
simultaneously exploits human attributes and appearance to learn comprehen-
sive and effective pedestrian representations from videos; AITL [57] introduced
a metric learning method for video-based person re-id, which is the attribute-
aware identity-hard triplet loss to reduces the intra-class variations among pos-
itive samples via calculating attribute distance. The comparative results are
reported in Table 4, and W3AN makes the best mAP and rank-m accuracies,
while the second one is the AITL (with distances of 1.9% mAP and 2.9% rank-1
to W3AN). It is obvious that W3AN outperforms other attribute-based video
re-id methods for pedestrian videos. The dominant reason is W3AN proposes
novel modules of spatial attention and temporal attention to focus on What-
Where-When to extract video representations, including attribute, identity and

temporal discriminative clues in video-based person re-identification.

Table 4: Comparative results of advanced attribute-based methods on MARS dataset. Mea-

sured by rank-m accuracies and mAP (%).

Dataset MARS

Models mAP -1 -5 r-20
FDTA (CVPR19) [55] | 782 87.0 954 98.7
TALNet (Arxiv)[56]) 823 89.1 96.1 985
AITL (Arxiv)[57] 844 882 96.5 984
W3AN (Ours) 86.3 91.1 96.8 98.9
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Figure 8: Attention Visualization for SAN and TAN modules. The class activation maps
from identity classification are visualized in pedestrian video frames, and the frame-level
importances are marked by lines around each frame. Note that, the yellow, green and red

borders divide the importance as three average ranges.

4.6. Attention Visualization

To exhibit the visualization of What- Where- When attention, the CAM and
frame-level importance of pedestrian video sequences are integrated for validat-
ing the attention mechanism. In Figure 8, the class activation maps for specific
identity labels for each video frame are set in original pedestrian images, and
frame-level importance from TAN is marked by border colors in three levels.

Four pedestrian video frames are employed, and each video contains five
images for visualization. As shown in Figure 8, the CAM from SAN covers major

pedestrian body and neglects occlusion, backgrounds or other unrelated regions,
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and our model marks the occluded frame with a lower temporal importance
according to the occluded severity. Furthermore, the yellow border denotes

w0 lower spatial attention weight to our model by larger occluded body regions,
green borders denotes a spot of occlusion and red border is non-occlusion. The
visualization results in Figure 8 explain the efficiency of our designed What-
Where-When attention mechanism more specifically on video-based person re-
identification task.

Table 5: Ablation study on the major components of our W3AN on MARS, iLIDS-VID, and
PRID2011 datasets (%).

Dataset MARS iLIDS-VID PRID2011

Models mAP -1 r-5 r-20 | r-1 r-5 120 | r-1 r-5  1-20
WAN (non-spatial) 77.0 813 90.2 96.2 | 81.8 90.8 950 | 91.7 964 98.3
WAN (non-IAM&AAM) 754 798 87.3 910 | 788 86.2 90.2 | 89.8 932 964
W2AN (non-temporal) 79.8 85.6 889 93 84.7 942 96.7 | 923 96.0 97.3
W3WAN (non-GCN) 83.6 87.6 926 95.8 | 86.9 957 98.0 | 93.5 97.1 99.0

W3WAN (non-occluded frame) | 84.8 89.5 94.3 96.6 | 88.0 96.5 98.8 | 94.9 984 99.2

AP-W3AN 85.5  90.3 932 950 | 87.6 948 96.2 | 93.0 952 97.0
AL-W3AN 84.8 88.6 939 955 | 86.5 939 957 | 91.8 93.7 96.0
W3AN(Complete) 86.3 91.1 96.8 98.9 | 89.2 98.1 99.6 | 95.8 99.5 100

ws  4.7. Ablation Study

We evaluate the major modules of spatial attention, temporal attention,

and graph attention network to demonstrate the contributions of our proposed
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W3AN. Moreover, the parameter analysis is also conducted to prove the influ-
ence of the major modules.

Effectiveness of the Spatial Attention Module. We remove the spatial
attention layer and SAN loss, which directly feed the CNN features into the
TAN and GAN modules (named When Attention Network, WAN) to evaluate
the spatial attention model. Table 5 shows the WAN achieves mAP with 77.0%
and rank-1 accuracy of 81.3% on MARS dataset. Combining the performance
on other datasets, the rank-1 accuracies of WAN are less than W3AN about
4.1% to 9.8%. In order to further discuss the impact of using IAM and AAM
in Eq.7 as the guidance in SAN, we evaluate them by making I close to I;
(achieved by adding a random sparse matrix ranged in [0,0.001] on I;), named
WAN (non-TAM&AAM) in Table 5. Compared to directly removing spatial
attention layer and SAN loss, adding a random sparse matrix on I; performs
worse results on re-id datasets, since random matrix mislead s the training of
spatial attention layer. This evaluation experiment demonstrates that adopting
IAM and AMM is a reasonable solution and they provide much more helpful
attentive information for spatial attention. Hence, the spatial attention module
improves the effectiveness in a substantial distance because of solving the what
and where to attention, that demonstrates the spatial attention module devotes
a major contribution to the video-based person re-identification.

Effectiveness of the Temporal Attention Module. Similarly, we aban-
don the temporal attention module and directly employ the adjacent matrix A
to conduct GCN without adding the temporal attention matrix A; ( What- Where
Attention Network, W2AN). From Table 5, W2AN achieves rank-1 accuracies
of 85.6%, 84.7%, and 92.3% on MARS, iLIDS-VID, and PRID2011 datasets
separately, with a distance from 3.5% to 5.5% to W3AN. This comparison also
proves the effectiveness of temporal attention module. Compared to the per-
formance of WAN, it can be seen that the spatial attention module contributes
more discriminative information, that illustrates the spatial appearance provides
the major effectiveness and the temporal cues further develop the performance

with a relative-less improvement.
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Effectiveness of Graph Attention Network (GAN). Different from
other frame-level attention models that calculate the weighted average frame
feature with the frame attention score, our W3AN integrates the frame atten-
tion score into the adjacent matrix and implement GCN on them. To prove this
novel feature representation method, we replace the graph attention network by
computing the weighted average frame feature (What-Where-When Weighted
Attention Network, W3WAN). The W3WAN only achieves 83.6% mAP and
87.6% rank-1 accuracy on MARS dataset as reported in Table 5, and the per-
formance on other datasets also verifies the effectiveness of our graph attention
network, because directly calculating weighted average features is an inflexible
method without considering the correlations among consecutive video frames.
Moreover, the primary issue addressed by graph attention network is to exploit
useful information from occluded frames, which are always abandoned in pre-
vious methods. To prove the abandoned frames containing helpful features, we
discard the half of video frames, which have less temporal attention scores than
other frames, and then conduct graph attention network on the frames with
higher scores. This experiment is defined by “W3AN(non-occluded frames)’ in
Table 5, and it can be observed that abandoning occluded frames can reduce the
rank-m accuracy and mAP results on all datasets. That further demonstrates
the necessary of graph attention network on pedestrian video matching, and
the occluded frames can not be discarded due to its discriminative information
conveyed by un-occluded regions.

Impacts of Employed Attribute Groups. As summarized in Table 1,
our W3AN model adopts six attribute groups to implement Where to draw
attention. As we all know, different pedestrian attributes preserve various iden-
tity information and their impacts on video-based person re-identification can
convey their contributions to our attention model. Hereby, we evaluate the in-
fluence of each attribute group by removing target group one by one, and report
their rank-1 accuracy results of MARS dataset, as show in Figure 9. From the
results, it is obvious that our W3AN achieves limited reduction when removing

gender & age and shoes groups, and obtains prominent improvements by up-
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body, head-shoulder, and attach groups. The most contributed attribute group
is up-body, because its appearance provides major identical information for per-
son re-identification as attention from human beings. From this analysis, the
contribution of attribute groups and their detailed influence for our attention
mechanism are elaborated, demonstrating the reasonability and scalability of

the proposed What- Where-When attention model.
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Figure 9: Evaluation for attribute groups on MARS dataset. Blue histograms is the rank-1
accuracy (%) when we removing each attribute group and the red points denotes contributed
rank-1 improvements (%) from the removed groups, which is the reduction, compared to

W3AN involving six attribute groups.

Evaluation for Alternative Spatial Attention models. As demon-
strated above, the major contribution of this paper is to propose a novel frame-
work about three points ( What- Where- When) to pay attention for video-based
person re-identification, which is achieved by modules of spatial attention, tem-
poral attention, and graph attention network, involving identity, attribute and
temporal clues. Here, the effectiveness of spatial attention is alternatively imple-
mented by two another models (AP-CNN [58], and AL-network [59]) to compre-
hensively reveal the superiority of our proposed What- Where-When attention

network. AP-CNN [58] proposes an attention pyramid convolutional neural
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network to integrate low-level information (e.g., color, edge junctions, texture
patterns) into distilling high-level features to enhance the feature representation
and accurately locate discriminative regions, which can improve the fine-grained
image classification task. AL-network [59] is an attention long short-term mem-
ory network for fine-grained classification task, which can extract local fea-
tures of category-sensitive regions by the long short-term memory unit. We
re-implement the W3AN experiments by replacing spatial attention module by
these two modules, keeping the same settings with original papers [59, 59], and
report the results in Table 5 (AP+W3AN, and AL+W3AN). Compared with
W3AN model, AP/AL-W3AN models perform relative lower mAPs and rank-m
accuracies on MARS, iLIDS-VID, and PRID2011 datasets. Though these two
methods can sufficiently locate discriminative regions by their proposed atten-
tion mechanism, the main reason of W3AN’s superiority is that the attribute
and identity information contributes precise discriminative clues compared to
the self-learned local regions from AP-CNN [58], and AL-network[59].

Influence of different K values in GCN. As described in Section 3.4, K
is a key factor in graph attention network to construct graph structure, which
denotes how many neighbors are connected to each feature. To evaluate the
influence of different K values, we conduct re-id experiments on MARS dataset
by changing K from 1 to 5, and report the results in Figure 10 (a). It is
obviously to observe that W3AN achieves the best performance when K = 4,
and the re-id performance is improved with the increasing of K when it is lower
than 4. The reason is that, the optimal neighbors can produce positive impact
on GCN, and too many neighbors may bring much noisy information to cause
negative influence.

Impacts of GCN layers. In the experiments of W3AN, we involve 2 GCN
layers in graph attention network. The GCN layers is in charge of learning graph
feature representations, which is a major cues for re-id. Here, we evaluate the
impact of different number of GCN layers on MARS dataset, and the evalu-
ation for different numbers of GCN layers (1,2,3,4,5) are visualized in Figure

10 (b), which reveals that two GCN layers have more excellent feature learning
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capability than other numbers in our proposed W3AN re-id model.
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Figure 10: Parameter analysis for the numbers of connected neighbors and GCN layers on

MARS dataset.
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Figure 11: The balance of SAN and TAN modules on MARS dataset.

Parameter Analysis for Losses of SAN, CAM, TAN, and Triplet.
To further evaluate the contributions of our proposed spatial and temporal

attention modules, we implement the balance parameter analysis for them. We
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change the parameters v; and 73 from 0.1 to 0.5, 72 in [0.05:0.05:0.25] and 74
in [0.25:0.05:0.45], and report the results in Figure 11. When we set a smaller
parameter for both SAN and TAN, the performance reduction of SAN is more
obvious than TAN, and it quickly reduces to the rank-1 accuracy and mAP
when increasing the value of 3. This tendency demonstrates the importance
of those two modules of SAN and TAN, showing the SAN contributes more
information than TAN. On the other hand, SAN and TAN are both important
for our W3AN since it generates a major improvement when we alleviate the
balance parameter for them. Besides, CAM loss expresses a stable variation
compared to triplet loss, that reveals the influences from adjusting CAM and

triplet loss in different weights.

5. Conclusion

In this work, we propose a comprehensive attention framework for video-
based person re-identification, namely What- Where-When Attention Network
(W3AN), which can focus on the pedestrian identity appearance, obvious at-
tributes and the important frames in pedestrian video representation learning.
Specifically, the Spatial Attention Network (SAN) employs class activation map
of identity and attributes to guide the attention layer estimating the spatial
importance; Then a Temporal Attention Network (TAN) learns the frame-level
importances, which is integrated into a Graph Attention Network to extract fi-
nal what-where-when attention feature representations. Relatively speaking, the
proposed W3AN approach covers the overall attention aspects in video-based
person re-identification. Furthermore, the extensive experiments on three rec-
ognized datasets demonstrate the superiority of our approach, and the ablation

study discusses different contributions of SAN, TAN, and GAN.
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