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Distributed Recursive Filtering over Sensor Networks with
Non-Logarithmic Sensor Resolution

Hongwei Chen, Zidong Wang, Bo Shen, and Jinling Liang

Abstract—Sensor resolution, which is one of the most important param
eters/specifications for almost all kinds of sensors, playan important role
in any signal processing problems. This paper deals with théistributed
filtering problem for a class of discrete time-varying stoclastic systems
subject to non-logarithmic sensor resolution and stochagt nonlinearities.
The soft measurement technique is exploited in the filter dégn to
overcome the difficulties resulting from the sensor-resoltion-induced
(SRI) uncertainty. The aim of the presented filtering problem is to
construct the distributed filter over a sensor network such hat, in
the presence of SRI uncertainty and stochastic nonlineant an upper
bound on the filtering error covariance is guaranteed and subequently
minimized by appropriately designing the filer parameters a each time
instant. Moreover, a matrix simplification method is utilized to tackle
the difficulties stemming from the sparsity of sensor netwadks. Finally,
a numerical example is employed to illustrate the effectiveess of the
proposed filtering scheme.

Index Terms—Distributed filtering, recursive filtering, sensor resolu-
tion, stochastic nonlinearity, wireless sensor networks.

. INTRODUCTION

In wireless sensor networks (WSNSs), the distributed fifiggror
state estimation problem has been a central topic that ltasveel
a persistent research interest, and a great number of bdittd
filtering/estimation algorithms have been reported in fiterdture.
For example, the distributed filtering problems have begestigated

usually referred to as th&ochastic nonlinearityvhich, unfortunately,
would invalidate those control/filtering algorithms sbii for linear
and/or deterministic systems. As such, it is of theoretiwadessity
and practical significance to make dedicated efforts inidgakith
the impact from various stochastic nonlinearities on threesponding
control/filtering problems. In particular, in [25], a kind stochastic
nonlinearities has been characterized by a stochastiabtariwith
known first- and second-order moments. Subsequently, deradile
research attention has been paid to the filtering and corgsoles
with stochastic nonlinearities, see e.g. [12], [15], [4B}4], [26].

It is well known that the resolution is one of the most impotta
specifications for sensors applied in engineering pract®ensor
resolution (SR) is basically understood as the capabifiy ensor to
sense the smallest change of measurements, where a lowti@sol
means that the information received by sensors is inacumagn
extent. Clearly, the effect caused by the low resolutionughde
adequately taken into consideration. For example, in airartet
tracking problem, the SR is closely related to the capabidf
distinguishing the individual target from others and thuayp a
vitally important role in achieving the ideal tracking pamihance.
In [4], [5], [8], the tracking problem has been investigatéut
multiple maneuvering targets, where the case of false (asdilply
unresolved) measurements induced by the SR is tackled 3lntfe

in [9] within the H, filtering framework, and the distributed filtering SR-induced effects have been dealt with for an arbitrary remof

schemes have been proposed in [3], [7], [16], [18]-[20] Hase
the Kalman filtering technology. Representatively, in [1920],

a dynamic average-consensus scheme has been proposedeand fhowered by the advanced sensor technologies, WSNs have been

consensus-based distributed Kalman filters have been rdekidn
[18], three novel distributed Kalman filtering algorithmavie been
proposed over sensor networks by resorting to the dynanmsecsus
protocols, under which the local filter obtains the stateveste based

targets, and a multi-target SR model has been proposed which
be incorporated into the traditional Bayesian trackingeifdt

extensively deployed to record and monitor a wide varietyadfiable
information including seismic, thermal, visual, or othepés of
measured observations. In WSNSs, it is often the case thaethsors
are low-cost and low-power disposable devices [27], whioblies

on the measurements not only from the corresponding semste nthat these sensors might have limited resolution. As a tetut

itself but also from its neighboring sensor nodes.

As is well known, the nonlinearity is often encountered ial+e
world systems and is viewed as one of the essential souregs
complicate the system analysis and synthesis [11], [28F Worth
pointing out that, in some practical systems such as theankéd
control systems, the nonlinear disturbances may occur fochastic
fashion due mainly to unpredictable fluctuations of the oekw
load/traffic [21]. Such a randomly occurring nonlinear phraenon is
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available measurements obtained by these sensors areliagcto

a certain extent, which infers that the performance of tis¢ributed

tilers based on the limited-resolution sensors would be cidably

deteriorated. A fundamental issue then arises for the W&bls:to

construct the effective distributed filters to estimate &l states of
the target plants from the SR-induced inaccurate measutsmieor

many applications of WSNs such as target tracking, the $SReied

inaccurate measurements, if not felicitously handled, ldiseriously
impair the performance of the distributed filters.

It has been well recognized that ignoring the limited resofuof
the sensors in a WSN might result in an incorrect interpiataif the
data [23]. In order to cope with the data association probtetrack-
ing, various alternative computational models have beésbbshed
to provide a reliable description of the resolution phenoome One
effective way is to represent the capability of the sensoregolve
individual targets in a group by a resolution probabilitpllBwing
this line of modeling, a grid-based SR model has been prapose
the fundamental paper [8], where the model is integratexthe joint
probabilistic data association filter for tracking the riplé targets
in a cluttered environment. Such a model has been furthendgrd
and applied to a variety of target tracking algorithms [4]. [It is
worth mentioning that the aforementioned SR models areoppiaite
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for the situation where the measurements from differergetar are Remark 1:The stochastic nonlinearity characterized by (2)—(3)

merged into one due to an inherent resolution threshold.oAgshfe was first proposed in the pioneering work [14] by Jacobson and

SR-induced inaccurate measurements, a suitable modél isckting  then considered in [26] for the state estimation problemrafentain

in the literature, which motivates the work of this paper. nonlinear stochastic systems. Such kind of nonlinearitesers
Indeed, in the context of the distributed filtering problétmemains several well-known nonlinear phenomena as special casésling

challenging as how to model the SRs and how to design SRaesis the linear state-dependent multiplicative white noises thie random

filters. In the interesting paper [29], a model of the soemhlhon- variables with their powers depending on the sign of a nealin

logarithmic SR has been proposed and a robust filter has then bfunction. We refer the readers to [14], [26] for more details

designed. As for the more practical WSNs, to date, the SR bas n The output of system (1) is measured through a WSN consisting

received adequate research attention yet despite thehfaictte SR of n sensor nodes. The topology of the WSN is represented by a

phenomenon is deemed to be more prevalent in the WSN settidggraphG = (V, £, H) of ordern, whereV = {1,2,...,n} stands

Clearly, the SR-induced effect would contribute substdiytito the for the set of sensor node$,C V x V means the set of directed edges

complexity of designing distributed filters over WSNs, ahd tssue in digraphg, and’H = {as; }»xn refers to the weighted adjacency

would be even more intricate when the stochastic nonlineasi matrix of G. The elements of{ are nonnegative, an@ has a directed

also involved. In order to meet the challenges mentionedveaboedge(i,j) € £ if and only if a;; > 0, which implies that theith

the objective of this paper is to design a recursive filterdarlass sensor node can receive the information from jkie sensor node.

of discrete time-varying systems subject to the non-lagaric SR In this case, theith sensor node is called as a neighbor of itre

and stochastic nonlinearities, where the design of gaipgiformed sensor node. For notational convenience,thesensor node plus its

offline and requires the global information of the sensofge Main neighbors is denoted bi; £ {j € V|(i,4) € £}.

technical contributions of this paper can be highlightedd®ws: The ideal measurement model of tite ( = 1,2,...,n) sensor

1) an appropriate model is proposed for the SR which chaiaete is given as follows:

the actually available measurements; 2) the SR-inducesttsffare »

dedicatedly sorted out by exploiting the soft measuremestirtique; Yige = Hik@k + vik @

and 3) a set of distributed filters is designed recursivethshat an wherey”, € R"v means the perfect measurement of ttiesensor,

upper bound of the filtering error covariance is minimizedeath 5.4 vie € R™ is the measurement noise. Moreover, the noises

time step. Finally, a simulation example is presented tofwehe ., and v, , are mutually independent zero-mean Gaussian white

effectiveness of the proposed filtering scheme. processes with covariance®, > 0 and R; , > 0, respectively. In

Notations: N denotes the set of positive integefs]; represents aqgition, they are assumed to be uncorrelated with the etbehastic
the jth component of a vectar. E{z|y} means the mathematicalajapless, and ;.

expectation ofr conditional ony. For matricesV; (i = 1,2, ...,n), In practical applications, the available measurementsaioéi
diag,{M;} refers to a block-diagonal matrix where matri¥; is in by sensori (i = 1,2,...,n) with non-logarithmic SRS; =
the ith main diagonal block{;;}.x» means a partitioned x n [Si1, 862, - sin,]T satisfy
block matrix whereM;; is the (i, j)th block submatrix. col{z;} T o .
is an augmented vectde], 22, ..., 2217, 1k, Means anm x n , » Wi i g

' : ) 9 9 ) Un i — . s) = il 5
matrix with all entries equal to one. lwisls = Qlvixli) [Sil [5ils ®)

where[-] denotes the integer parof “”, v, € R™ represents the
available measurement from sengowith resolutionS;, and [S;];
Bands for thejith element of the resolutiof; for the ith sensor.

Il. MODEL FORMULATION AND PRELIMINARIES
Denote byy” € R"v the measurement received by a sensor wi

; _ T ny T
!’eSdO|]EtIOSS —f[8”17 82, n,]" € R, where the definition of SR 6 5ot sensor model adopted in this paper is given by
is defined as follows.

Definition 1 ([29]): Let [y"]; (G = 1,2,...,n,) be the jth [Wirli £ E{[] )il Lo ([winls) } (6)
physical quantity of the sensor measurement taking valoethe s n !
set{xsj|k = 0,%1,...,+z}, wherez is a given positive integer. whe.reyi’k € R™ means the .SOft measurement of die sensor and
Then,S = [s1, s2,...,sn,]" is called the resolution of the sensor. the interval;,;([y; ];) is defined by

In this paper, we consider the following class of discretaeti [y elss [ils + 1S:5), [wiels >0
varying systems with stochastic nonlinearity: . R I

ying sy B Y Lij (lwinli) = (= [Sis, [Sils), wirli=0 (7)

i1 = Froak + f(k, 2y 00) + Grows @ (lyfili =[Sy, winli],  [wisls <O

wherek € N represents the discrete time index, € R"* captures  Remark 2:Note that the perfect measuremefiy”,]; is a
the state of the process;, € R™ Xn"’ and Gy € R™ """ are  Gayssian-like random variable. For the obtained availaigesure-
known deterministic matricesy,. < R"* denotes the process noisement (5), from (7) one can derive the exact interval that tedgut
K 1S @ Zero-mean Gau_33|an noise seq_gence,féhdxk, k) G_R " measuremenly”,]; falls into, which implies that the soft measure-
describes the stochastic nonlinearity witti, 0, 7:) = 0. The initial - ment[ys,1; has a similar normal-like distribution and lies within the
statexo is a Gaussian random variable with meanand covariance jnteryal 7, (i ;). That is to say, the perfect measurempyit, |;
Xo. The stochastic nonlinearity under consllderatlon. has tte fiongditional onl; ;([y;.];) has a truncated normal-like distribution
momentE{/(k, zx, ne)|x} = 0 and the covariances given by for the obtained available measurem@yit,;. Its probability density
E{f(k1, mkl,nkl)fT(kg,:ck2, 77k2)|50k2} =0, ki #ke 2) fUnCtIOI.’] IS f(yu’iaj([y;,k]j)) for y € I’iaj([y;k]j) and f() =0 )
. otherwise, please refer to the proof of Lemma 3 for more tetai
]E{f(k,mk,nk)fT(k,xk,nkHwk} _ ZEAkmg\I’Akl’k ©) Fig. 1 gives an illustration of the probability density ftion of

=1
. . T 1The integer part of a real numberis |r] if » is nonnegative, andr]
wherel is a given positive integeExx and W, (A =1,2,...,1)  otherwise, wherd | and [-] are the floor function and the ceiling function,

are known matrices with compatible dimensions. respectively.
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Fig. 1. An illustration of the probability density functiofor the perfect

measurement. The red line and the blue line are, respagtie probability

density functions of[ygk}j with and without the conditional information
concerning[y; ;1.

The main objective of this paper is to design a set of disteibu
filters with the structure (8), based on the measurementsirmat
by the sensors with non-logarithmic SR, such that the fiiteerror
covariance is bounded and such a bound is then locally nieii
in the trace sense by utilizing a recursive scheme.

I1l. M AIN RESULTS

In this section, we aim to develop a unified framework to cojte w
the addressed distributed filtering problem in the presericeon-
logarithmic SR and stochastic nonlinearities. The softsnesments
of the distributed filters are first obtained to facilitate fiiter design.
Subsequently, an upper bound of the filtering error covagais
calculated, and appropriate filter gains are designed tcagtee that
the obtained upper bound is locally minimized at each tinstaint.

In the remaining part of this paper, defin€, £ E{zyzi},
P, 2 E{e; (¢,)"} and P, 2 E{¢/ (¢])"}. The following lemma
provides a recursive algorithm to calculate the covariafuzethe

the perfect measurement. An inspection of Fig. 1 motivates tone-step prediction error.

idea of the proposed soft sensor model (6) with aim of ohtgini

a better/computational approximation for the perfect raszment.

In this paper, the two-step Kalman-type filtering schemetilzed
to design the distributed filters for the nonlinear timeyitag system
(1) with imperfect measurement described by (6). Specijicéthe
structure of the distributed filters is given as follows:

(82)
(8b)

A A+
Ty = Froaly )

s+ s K s AT
Ty =T;p, + § aij Kijk (yj»k - HJ»kxj,k)
JEN;

wherez; and:&ik are, respectively, the one-step prediction and the

estimate of the system state based onithesensor node, anf’;
stands for the filter gain matrix to be designed. The init&tireate

:i:jo (i=1,2,...,n) are set to be the expectation of the initial state,

i.e., :i;fo = Zo.

Lemma 1:Consider the prediction error dynamic system given by
(11). The recursion of the one-step prediction error cevené P,
is given as follows:

P =Fra B Fi 4 T + Qi (13)

where T = Loxn @ S5 3 Exao1Tr{X5_1Wxk—1} and
Qi1 =Gr1(1nxn ® Qr_1)G{_; with X} satisfying

l
Xipi1 = FR X FL + Z ExaTr {Xp Uy 1} + GLQiGr.  (14)
A=1
Proof: It is easy to conclude from (3) that

1
E{fe1fi 1} = Loxn ® Z Exp1B{zh 1 Ua e 12h-1}-
=1

Noting thatx{,lkllk,k,lxk,l is a scalar, it follows from the prop-

For senori, define the local one-step prediction error and the locatty of the trace thal{zf W p 1ze 1} = Tr{Xp 1Urr_1}

filtering error bye;, =z, —&;, ande], =z, — &, respectively.
Then, we use (1) and (8a) to obtain

€k = Fk—leik71 + fk =125 1,m-1) + Gr1wr_1.  (9)

Let A, ;. be the difference between the soft measurement and ted is thus omitted here for the sake of brevity.

perfect measurement from sensgothat is, A; 2 Yip — Yyl . The
dynamics of the local filtering errors can be described dsvist:

+ — —
€k = €k — E aij Kij . (Hjnesp + vik + Ajk) -
JEN;

(10

For convenience of the later development, weege€ col,{e; , }

ande; £ col.{¢/,}. Then, the compact forms of (9) and (10) can

be obtained, respectively, as follows:

e =Fp_ 16 +f1 4+ Gro1wi 1 (11)
& =¢ — ZIiKkAi (Hre, + v+ Ag) (12)
i=1

where

Grio1 =1, ®Gr

Fr1=LL®F_1, Wi1=1px1Quw(k—1)

A; = diag{ainln,, ..., aqinln,}, Ak =coln{A;}

foo1 =11 @ f(k— 1, 26-1,M6-1), Vi = coln{vi}

H, = diag, {H;r}, I =diag{0,...,0,I,,,0,...,0}.
—— ——

i—1 n—i

Kk = {Kij,k}n)(’!h

which, together with (11), yields
Py =Fp 1Pl Fr + T 1+ Qe

which is (13). The proof of (14) follows a similar line as trwdt(13),

[ |
Lemma 2:Consider system (1) with initial stat&. The distribut-
ed filters (8) with:i:iO = Zo are unbiased, and the corresponding
filtering error covarianceP; satisfies the following dynamic equa-

tion:
P =(I+ KyHy) P, (I 4+ KpHy)"
+ KiB{vivi + A AT YKL
+ KiE{viAL + Apvi }KE
WhereICk = — Z?:l LKLA;.
Proof: First, let us show the unbiasedness of the distributed
filters (8), i.e.,E{¢/} = 0 for all k > 0. In view of 2/ = o,
it is easy to verify thaft{e}} = 0. Assume, inductively, that this is

true for the integers from to k£ — 1. By exploiting (12), it is obvious
that

(15)

e = (I +KipHy)e, + Ki(vie + Ag). (16)
Then, it follows from (11) that
en =(I + KpHip)Fr1€6f_y + Ki(vi + Ag)
+ (I + KeHe)(fe—1 + Ge—1Wi—1). a7

Note that the stochastic nonlinearities and process naiseofl
zero means. Taking mathematical expectation of both sifl€&7)
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yields the following recursion (for the mathematical expéon of Assumption 1:The covariance of the measurement nalgg; is
the filtering error): a diagonal matrix.
Lemma 3:Consider system (1) with measurement described by
+ +
Ble} = (I + KoHp)FeaE{e o} + KeE{Ax} (18) (5). The soft measurement given by (21) is calculated asvsi
On the other hand, it follows from (6) that

: . 9(8%) — (o)
E{1Ax]s} = E{E{(y7, )5 Loy (lpial )} — [00)s} Wirls = WHindiols = VIBulia goey = topy - @2

®(B) - @(al)
- E{E{[yi"“]j|Ii’j([yi’k]j)}} —E{[yi"“]j} where [R; x];,; is the (j,7)-th entry of R; x, ¢(-) and ®(-) are,

:E{[yf,k]j} —E{[Z/f,k]j} respectively, the probability density function and the clative
=0 (19) distribution function of the standard normal distributi@nd
which, together with the induction hypothesis and (18), liesthat [y?k]jHsi]f*[Hi)kjf,k]f7 [yl > 0
E{e{ } = 0 holds for all nonnegative integers. Hence, the proposed v s ;I/[I?jf]f’j ’
distributed filters (8) are unbiased. BY) = []J’;i’”kb? Wi, =0
Next, we are in the position to calculate the covariance imaty WV [Rirlig
of the filtering error. Applying (16), we arrive at Wisli o n?ls [yirli <O
1 Ing . ApplyiIng , W \" m ) Yikli
P =+ KeHp) Py (I + K Hy) "+ T +T" (975~ [Hi k85 Wl > 0
+ KE{vivi + AcAT KT (20) o s o
(7)) _ Wil T kT g r _
+ K:k]E{VkAZ + Akvf}leT ai,Jk = W’ [yixl; =0
where7 = E{(I+KrHy)e, (vi +Ax)TKL}. Noting that the one- [yfwk]f’[sil];*[’{i)ki;k]f . ylaly < 0.
step prediction erroe;, is uncorrelated withv, and A, one can VIR ki
obtain the recursion (15), which ends the proof. (] Proof: For the casdy; ]; = 0, it follows from (7) that
In the light of (4) and (6), the soft measurement can be furthe r
Lii([yr 1) = (=1[Sil5, [Sil;)-
replaced as gy ,k]J) (=[8il5,[Sil;)
s 1 - It is easy to see that the random varialpj¢,]; obeys a normal
[yi ks = E {[.Zi,k:ck]] + [U:,kb’f” (lwiuls) } distribution N ([H; x#; ], [Ri,k]s,;). Note that the probability that
=E{[974); |15 ([vinls) } @D g, falls into the interval(—[S.];, [S;) is B(8Y) — ®(a)).
where[§?,]; 2 [Hid); + [vikl;- Then, the conditional probability density function [gf’, ]; is
Remark 3:Note that, when calculating the soft measurement v [H; w30 ]
[y; 1], one needs to know the knowledge of the true stateand \/[Rjk]j - 1) ( \/[R; k]]j J)
this makes the calculation quite difficult. In order to copighvthis f Wi (ily)) = — 5 N (23)
issue, we replace the real state by its estimate in the eaicnl of (6%) — Plagy)

the soft measurement. Actually, such a practice is ofteni@ref in  for —[S;]; < y < [S:]; and f(-) = 0 otherwise. The corresponding
the situation that the state is unknown but the state infdomas  moment-generating function dfj”,];, denoted byM (t), can be

still expected, see e.g. [1], [10]. obtained as follows:
Remark 4:In our developed filter design scheme, the soft mea- .
surement model (6) is established to guaranteeutitdasednessf M(t) = E{ exp{ty}|y € L;([yixls)}
the proposed distributed filter (8) (as shown in Lemma 2)ciihis a _ [Sil; i
desirable property of the filters because it means that, enage, - /45] exp {ty} f (i1 ([wils)dy. (24)

ilj

the estimatedz;, equals to the true valuey. In the following, . o - )
we will further show that the distributed filter (8) isiasedif it ~ BY 1€tting i = [Riklj;t + [Hi k&, 15, itis not difficult to verify
is constructed on the basis of the available measuremeteaihof that (25) (see the bottom of the next page) holds, and it tobowis

the soft measurement. Let us first defide . £ y7, — y7,, ie, [OM (24) that
the difference between the available measurement and ttiecpe o Rijlsqt>
b M) =exp {tHini s + %}

measurement from sensarThe local filtering error can be derived 2

ase/, =€, — > jen, @il (Hjkes ) 4k +Aj,) and it then (I)(ﬂf]k) —t/[Rinlsy) — @(afjg — ty/[Rinlsy)
follows thatgz =¢, — > LKiAi(Hie, + vi + Ay) where X PYZ O YO .
Ay = col,{A, x}. Proceeding as in the proof of Lemma 2, the mean (Bii) — leiy)

of this filtering error can be computed as follows: (26)
- By resorting to the properties of moment-generating fuumstive
+1 +
Eleg} = (I + KoHp)Fr1B{ep 1} + KeE{Ar}. obtain equality (27) (see the bottom of the next page).
Next, we fix our attention on the second term in the right-hsiae The proof for the casgy; ,]; # 0 follows the similar lines as

(RHD) of the above equation. Combining (4) and (5), we have above, and is thus omitted here for the sake of brevity. [ |
_ Based on Lemmas 1-3, the following result provides an upper

which is not always identically equal to zero, and this ireplthat the ~ Theorem 1:Consider the one-step prediction error covariafige
proposed distributed filter is biased. Therefore, the sefasurement in (_1_3) and the estimation error _covarlanEgL in (15)- Lety, be a
information adopted in the structure of the distributecefil{8) is Positive scalar. If the following difference equations

essential/indispensable. P =Fk7177k+,1F571 +Te 1+ Qs (28)

For the purpose of analysis simplicity, we introduce théofeing . B i -
assumption. Pr = + KxHi)Py (I + KeHy)™ + Ko Tuly (29)
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with initial condition P = P;" have positive-definite solutior®;, With the help of the moment-generating function (24), thetfir
and P, then matrixP;" is an upper bound of", that is, term in the RHD of (33) is calculated as
N . d>M(t
<P} @0 B i = SR
t=0
holds for allk > 0, where Py = 1,x» ® Xo, #(B <J)) ’(af.j))
= [Riklj + [Hi, ks, k] + [Ri ks o3 (]) (Jf
i £(1+ ) diag, {Rix} + (1+ 7 ')diag, {Zix} (Bil) — lai)
1) (ny) (ﬁ(J)) e (J))
T 2diag{o; ..., 003" } — 2[H, i, 5 [Ri,k]],]ﬁ (34)
BNH(BY)) — al)(a) (8;%) — @(ey7y)
G) 21R. 1. . — [R: ¢(B ) — Qg (ai,k)
0% =[Riklig — [Rikl (I)(ngg) _ (I)(a(_jlz) In light of the fact thaty’(z) = —z¢(x), it foIIows from (32) that
. 6(89)) — d(al7) 12 " Pl < (I+KeHp) Py (I + KeHi)™ + Ko YRKE
— [Ritj [W] : (1) < (I + KeHi)Py (I + KiHy)T + Kp TRKE =Py

By induction, one concludes that (30) holds for all positiviegers.
Proof: This theorem is proved by the mathematical inductionfpe proof is complete. -

The conclusion follows immediately for the cake= 0 based onthe |, what follows, we will design the filter parameters whicte ar
initial condition. For the induction step, we assume intkety that |ocally optimal in the sense that the trace Bf is minimized.
Pf, <P/ ,. Combining (13) and (28), one obtains that Since P, is a square matrix with dimension,n x n,n, it can
be partitioned inton x n submatrices with dimensiom, x n.
The partitioned matrix can be written &," = {P;; ; }nxn. Let
K(i) and P, (i) be, respectively, theéth row of the partitioned
matrlx Kk andP;, that is, Kk( ) 2 [Kig Kiog - King) and

Py =Py =Fra (P, =P )Fi1 <0

which implies P, < P, . By resorting to the elementary inequality

For 5|mpI|C|ty of presentatlon we denolé( DAaA; (Hx Py, H{ +
it follows readily from (15) that Ti)As andV( 92 P, (1) H] A, Subsequently, one can partition the

. - , ‘ above two matrices bjd(i) = (U Ynxn and VY = (V11,0

Py <(I+ KpHp) P (I+ KiHe)™ + (1 +7)Kediag, {Rik}  Before proceeding further, definky, (i) (respectlvely,V( ) to be
x Kii + (1+ 7, HKE{ArAL K - (32) the matrix derived from (1) (respectlvely,V(Z)) by deleting the

column blocks with indexeé ¢ N, andU to be the simplified

Now, we are in the position to cope with the third term in theDRH 5trix derived fromU(Z) by deleting both the row and the column
of the above equation, which requires the computatioB{df\; »]7}.  pjocks with indexes ¢ N

From the definition ofA; , noticing the approximation of;; in  Theorem 2:Consider the time-varying system (1) with real mea-

(21), we have surement (5) and distributed filters (8). The trace of theenfwund
. P." is locally minimized with filter gairkKy, = {K; x }nxn designed

E{[Aix]}} = E{([yf,k]j —E{[Wf )| L ([yi,k]j)})2} askK,L-M — 0 for j ¢ N; and !
=E{[97,)5 |1 (lwieli) } — [winl3- 33 Ki(i) = VO@OD)™" for i=1,2,...,n.  (35)

1 /'[Si]j exp{ty} exp{ _ l(y — [Hiyki;’k]j)Q}dy
V2[Rl J-1si); 2N VRiklj

B 1 s (8l (y—w)?
= exp{ TR, ([Hiwi; )5 — )} \/m / s ]J B 2?Ri7§j,j }dy
= exp {1l ]y + TR0 g [S[]]%‘]“) - @(7[;}]‘ L)) (25)

[yf,k]j :—d]\gt(t)

t=0

o8 — t\/TRirl;;) — (o) — ty/TRikl;;)
®(87)) — ®(a 5’;3)

= exp {1l iy + BN (07,570, 4 1(Ru)

Y [Rinls50(B5) — tv/TRinlss) — VIRl 0(al) —t [Ri,k]j,j)]
) —

(B(J) (I,(a(l)) t=0
_(j) — $(a?



FINAL VERSION

Proof: Taking the trace of both sides of (29) yields
Te{P; } =Tr{P; } + Tr{KxHy P, HLKL}

+ 2Tr{C, Hy Py, } + Te{Kx YiKr }. (36)

The second term in the RHD of the above equation can be furthe

represented by
Te{KH, P, HE KL }
= { (YLK AP HE (D AKLL) |
im1 j=1
- Tr{ 3 IiKkAinP,;HfAiKkT.Ii}
=1

where the last equality follows from

Tr{LK,AHP, H{ AK( L} =0,

(37

Vi .

Similarly, the last term in the RHD of (36) can be rewritten as
Te{K,TRKE} = Tr{ 3 IiKkAiTkAinL-}.
=1

Taking the partial derivative offr{P;"} with respect toKy, one
obtains the following equality

aTI‘ {P+} n 3 n B
T: =2 ; LK AH,P, HLA; —2 ; LP, HLA;
+2) LKeATLA,.

i=1

(38)

In order to minimize the trace of matrik,, the partial derivative
(38) is set as zero, which immediately yields

> LKA (H P HE + Th)Ai =Y LP, Hi A,

i=1 i=1
Exploiting the inherent special structure of matilix we have the
following equations:

K:() UV =VvP  i=1,2...n (39)

which give rise 1037 | KijxUS), = V() for 1 = 1,2,...n.
Note thatA; = diag{anl,...,ainI}, where the entrya; = 0
when! ¢ N;. From the definitions 01U§f) and V,(f), it is easy to
see that/}), = 0 and V;}) = 0 hold for I ¢ A;. In this case, the
corresponding filter gains can be designedikas, = 0 because the
ith sensor node cannot receive any information from its neighbor

senorl. Consequently, it is apparent from (39) that
Ki(i)) U =V =12 .n

which, together with the fact that matrid is full-row rank, yields
Ki(i) = V(U1 i = 1,2,...,n. Therefore, the filter gain

State

10 I I I
100 150

Time k

200

Fig. 2. The true state, ; and its estimatqs?:jkh (i=1,2,3,4).

State X5

State

200
Fig. 3. The true statey, » and its estimate{fcjk}g (i=1,2,3,4).

the upper bound for the estimation error covariance. As ,stlah
constructed distributed filter is effectively a locally opél one, and
the possible conservatism stems from the difference betwezreal
estimation error covariancg,” and its upper bound;". According
to (32), it is apparent that the conservatism comes from titization

of the elementary inequality. One of our future researchctofs to
further reduce such conservatism in order to improve thiopaance
of our designed locally optimal filter.

IV. AN ILLUSTRATIVE EXAMPLE

K;j,, can be designed as in (35). This accomplishes the proof of

Theorem 2. [ |

In this section, a simulation example is employed to illatgr

Remark 5:1t is worth pointing out that the distributed recursivethe validity and applicability of the developed distribuitéltering

filtering algorithm proposed in this paper is an offline algon,

algorithm. Consider a sensor network with four nodes, witaee

which means that the filter gains in (35) are firstly computeBommunication topology is described by a directed gréphith the

iteratively offline and then implemented/installed on picad plants
for application. On the other hand, the design of the gain&35)
depends on the output matrild, = diag, {H;} of all agents
and hence needs the global information of the sensor netwhgn
conducting the offline computations.

set of nodesy = {1, 2, 3,4} and the adjacency matrix

1 0 09 06
04 1 0 0.7
H= 0 07 1 05

03 07 0 1

Remark 6:It is worth mentioning that, due to the influence from

the SR and the stochastic nonlinearity, the parameters aendis-
tributed filter (8) are skillfully designed by minimizing eéhtrace of

The target plant is described by (1) whete= [z 1 z1.2]7 € R?,

the initial statero and the process noise obey the zero-mean Gaussian
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Fig. 4. The MSE and its upper bourit{P;" }.

distribution with respective covarianc&, = diag{1.5,1.5} and
Q. = diag{0.2,0.1}, and

1.02 +0.03 cos(0.12k) 0.4

Fi = { —0.1 0.88

] , G =diag{1,1}.

The nonlinearityf (k, xx, nx) is set as

Flky zyme) = {0?‘135} (0.6[k]1 [ sign ([zx]1)

+ 0.8[nk]2[zk]2sign([zk]2))

appropriately designed to iteratively minimize such anearppound

in the trace sense. Finally, a numerical example has beefidpobto

illustrate the effectiveness of the developed filteringtetgy. One of
the future research topics is to extend the main resultsisfpiper
to more general systems with more complicated networkdadu
phenomena [2], [6], [32], [33].

(1]

(2]

[3

—

(4

(5]

(6]

[7

—

(8]

wheren, € R? represents the zero-mean Gaussian white noise witf®]

unitary covariance. It is obvious to confirm th&{ f (k, zx,nx)} =
0 and E{f(k7:ck7nk)fT(/<:,xk7nk)|:ck} = Ekmzlllkxk with = =
[0.3 0.15][0.3 0.15]7 and ¥, = diag{0.36,0.64}. The dynamics of
the target plant is monitored by sensors with=1 (: = 1,2, 3, 4)
and the following measurement parameters:

Hy, =[0.85 0.38 +0.12sin(0.12k)], Hay = [0.5 1.2]
Hs i, =[0.98 + 0.04sin(0.1k) 0.435]
Hyj, =[0.75 + 0.03sin(0.1k) 0.435 + 0.03 sin(0.1k)].

In the simulation, the measurement noises, (¢ = 1,2,3,4)
are mutually uncorrelated zero-means Gaussian white segsevith
R; . = 0.4. Figs. 2-3 display the trajectories of the true stgteg;
(j = 1,2) and their corresponding estimatbgfk]j (i=1,23,4),
which confirm that the proposed filter scheme can perform teell
estimate the system states. This is mainly due to the sofsuneaent
technique we have adapted in coping with the SR. In order anify
the estimation accuracy, the mean square estimation ermefined
asMSE(k) £ £ 327 3" | |lef,|I3. Fig. 4 shows the upper bound
Tr{P;} as well as the MSE derive frofi" = 100 independent
experiments, which illustrates that the MSE stays belowujiper
bound.

V. CONCLUSION

In this paper, the distributed filtering problem has beenreskkd
for a class of discrete time-varying stochastic systemgestito non-
logarithmic SR and stochastic nonlinearities. A soft measient
technique has been exploited to deal with the effect rempliom
the SR-induced uncertainty. The upper bound for the filgegrror
covariance has been calculated by solving certain Ridigatidiffer-
ence equations. After that, the distributed filter paransettave been

[10]
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[12]

(23]

[14]

[15]
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[17]
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