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Scheduler-based State Estimation Over Multiple
Channels Networks

Fuad E. Alsaadi, Zidong Wang, and Khalid H. Alharbi

Abstract—We investigate the remote state estimation problem
for networked systems over parallel noise-free communication
channels. Due to limited network capabilities in practical network
environments, communication schedulers are implemented at the
transmit side of each subchannel to promote resource efficiency.
Specifically, the processed signals are transmitted only when it is
necessary to provide the real-time measurements to the remote
estimator. The recursive approximate minimum mean-square
error (MMSE) estimator is established to restore the state vector
of a target plant by utilizing the scheduled transmission signals.
All the information coming from the individual subchannels,
even if no measurement is sent, will contribute to improve
the estimation performance in an analytical form. Finally, a
numerical example is given to illustrate the effectiveness of the
main results.

Index Terms—State estimation; Event-based communication;
Multiple communication channels; Communication rate.

I. I NTRODUCTION

In the past decades, with the rapid development of sens-
ing, computing and communication technologies, networked
control has become a mainstream research topic receiving
much attention from both the control and signal processing
communities. A typical networked control system is composed
of sensors, controllers, and actuators linked via a wired or
wireless shared communication network [8], [25], [45]. To
achieve high-quality control performance, state estimate is a
necessary part for generating feedback control signals since
the state vector of the target plant is extracted from the
contaminated partial measurements [3], [4], [13], [32], [33],
[40], [46]. The merits of network devices render the remote
estimation possible and, in such scenarios, sensor measure-
ments are transmitted to a central unit with sufficient com-
puting resources for further processing [2], [15], [22], [24].
Since the networked environment greatly reduces the costs of
installation and maintenance, the remote state estimation has
been widely applied in engineering practice such as automated
highway systems, battlefield surveillance, and environmental
monitoring [18], [31], [47], [48].
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Traditionally, the remote state estimation problems have
mainly focused on the ideal channel settings, that is, energy
supply and available bandwidth for communication networks
are inexhaustible, and thus the remote estimator has access to
all the raw measurements from the sensor, where a Kalman
filter algorithm can be employed as an optimal estimator
for linear systems with Gaussian noises. However, for some
practical applications such as wireless sensor networks, the
communication processes are inherently subject to limited
bandwidth, and batteries of sensors are driven by restricted
energy supply [7], [11], [23], [36]. These adverse factors limit
the penetration of remote estimation because too frequent
transmissions might not improve the estimation performance
but, on the contrary, they could lead to some undesirable phe-
nomena such as network congestion and lifespan reduction. A
critical issue is how to utilize the available resources to achieve
a satisfactory result efficiently. Notice that the communication
process constitutes a major source of energy consumption.
For the sake of preserving the bandwidth and prolonging
the working hours simultaneously, a feasible scheme is to
reduce the number of transmissions as much as possible on
the premise of predetermined performance guarantee.

Up to now, a number of resource-efficient scheduling s-
trategies have been extensively investigated, which include
power scheduling [35], sensor selection [5], [29], event-based
communication [9], [12], [16], [17], [20], [26], [41], [43], self-
triggered communication [14], and compressed signals [21],
etc. These strategies aim to preserve the system resources
from various aspects. To be specific, for power scheduling
problems, it is supposed that the transmit side can switch
between two different transmission energy levels. A high
energy level results in a high packet reception ratio while
costing more resources, andvice versa. As a result, an op-
timal transmission power schedule is required for the remote
estimator to achieve the optimal estimation performance under
prescribed energy constraints. Moreover, for sensor networks
with a large number of sensors, it is meaningful to employ
an appropriate selection scheme by choosing reliable sensor
signals among all the available sources, where the fundamental
issues are to find out the optimal set of sensors and design
the estimator so as to minimize the error covariance. As
for event-based communication, it is essentially a controlled
transmission scheduling strategy where the scheduler forwards
signals to the remote estimator only when certain events
happen. Different from the classical clock-driven mechanism
that triggers a transmission at every sampling instant, in such
a case, a batch of unnecessary signals can be removed from
the transmission sequence to reduce resource consumption.
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Self-triggered communication can be regarded as an improved
version of the event-based communication. In the mechanism
of self-triggered communication, the next signal transmission
instant is calculated by a triggering scheduling based on the
previous transmitted data and the plant dynamics knowledge.
Compared with the event-based communication, the main
advantage of the self-triggered communication lies in the
fact that mechanism of self-triggered is implemented based
on certain “software” rather than the hardware (i.e. event-
generator) adopted in event-based communication, and thereby
reducing the hardware costs.

Due to its effectiveness in resource saving, the event-based
mechanism has received increasing attention in recent years.
Some initial works [30], [39] have considered an event-based
rule called Send-on-Delta (or Lebesgue sampling) principle.
By employing this principle the sensor data will be sent to
the estimator when a certain specified threshold is reached.It
can be further inferred that, when there is no transmission,the
sensor data must lie in the given bound from the previously
transmitted value. Therefore, one can utilize the previously
transmitted value as the estimator input while keeping in
mind that a bounded uncertainty exists. In this case, the
exact optimal estimator is hard to obtain, but an alternative
is to minimize the upper bound of the error covariance as
[19]. Moreover, in [38], the Send-on-Delta principle has been
extended to a more general one that is suitable for any type
of sampling strategy. A sum of Gaussians approach has been
employed to design the approximate optimal estimator for the
sake of reducing computational complexity. On the other hand,
another communication scheduling policy is based on the
values of the real-time innovation as shown in [6], [42], [44].
Since innovations characterize the gap between the predicted
and the current measurements, a small innovation implies that
the estimator could utilize the predicted value as a quasi-
optimal estimate and, in this case, the real-time transmissions
are no longer necessary.

Following the existing works, the focus of this paper is on
the remote state estimation problem under stringent energyand
bandwidth constraints.By co-designing the scheduling policy
and the state estimator, a balance between the estimation
performance and available resources can be achieved. Further-
more, motivated by the multi-input-multi-output channel tech-
nique [10] developed in communication theory, we consider
the communication channel to be composed of a set of parallel
and independent subchannels, and each subchannel transmits
the corresponding entry of the input vector. Since subchannels
may own different available resources, the schedulers shall
be specifically designed for the subchannels so that each
subchannel can work at its desirable working condition.To
the best of our knowledge, such a multiple channels setting
hasnot yet been taken into account in the design of resource-
efficient remote estimators.

The challenge for scheduler-based state estimation over
multiple channels networks lies in the fact that the signals
from subchannels are correlated and subject to the scheduling
strategies. To achieve our objective, the channel input is first
reconstructed by a dynamical linear transformation in order to
eliminate the correlation between the components of the input

vector. Therefore, the remote estimator can utilize the coming
information from each subchannel to correct the one-step
prediction independently. Furthermore, due to the scheduling
process, it is almost impossible to give the exact minimum
mean-square error (MMSE) when considering the amount
of computation. An alternative way is to utilize a Gaussian
assumption of the prior probability density function (PDF)at
each step. Throughout this paper, we consider two scheduling
strategies characterized by the signals injected to the channel.
To be specific, when the pre-assigned conditions are fulfilled,
the first one transmits the real-time signals, while the second
one condenses the packet of the transmission signal by sending
an indicator variable instead.

Summarizing the above discussion, the main contributions
of our work can be highlighted as follows.1) We investigate
the remote state estimation problem over multiple commu-
nication channels. Under our framework, the average com-
munication rate of each subchannel can be set specifically
according to the channel condition; 2) the error covariance
of the approximate MMSE estimator is obtained by a recursive
algorithm. This covariance sequence turns out to be stochastic,
but we can always find its tight upper and lower bounds at
each step; 3) a bridge is established between the communica-
tion rate and the boundedness of the estimator, which works
as a guideline to configure the schedulers.

The rest of this paper is organized as follows. In Section
II, the problem is formulated. Section III presents some
preliminary knowledge for preparation. Section IV computes
the MMSE under the scheduler-based communication and
gives the performance analysis. In Section V, the result is
extended to a more compressed scheduling policy. The results
are illustrated by a numerical example in Section VI. Section
VII concludes this paper.

Notation: Throughout the paper,Rn denotes then-
dimensional Euclidean space.E[x] stands for the expectation
of the stochastic variablex. When the expression forx is
long, xWx′ is abbreviated asxW (∗)′. Let the cumulative
distribution function of a standard normal distribution be
Φ(x) =

∫ x

−∞
1√
2π

exp(−x2

2 )dx. For any functiong(·), its
inverse function (if it exists) is denoted asg−1(·).

II. PROBLEM FORMULATION

Consider a discrete linear time-varying system in the fol-
lowing form:

xk+1 = Akxk + wk

yk = Hkxk + vk
(1)

where xk ∈ R
n is the system state andyk ∈ R

m is
the observed signal.wk ∈ R

n and vk ∈ R
m are external

disturbances obeying Gaussian distributions with zero mean
and covariance matricesQk > 0 andRk > 0. Ak andHk

are known matrices with appropriate dimensions. The initial
statex0 is a Gaussian random variable withE[x0] = µ0 and
Var(x0) = Σ0 > 0. We assume that the initial statex0, the
noiseswk andvk are mutually independent.

In this paper, we consider the remote estimation problem as
shown in Fig. 1. The processed measurements are transmitted
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Fig. 1. Scheduler-based remote estimator

to the remote estimation center for further signal processing.
For the sake of improving the utilization efficiency of network
resources, a set of schedulers are installed at the smart sensor
to prevent unnecessary transmissions. Moreover, it is worth
pointing out that the channel here is characterized by the
multiple-input-multiple-output model, see Fig. 2, where each
scalar component of the input vector is transmitted only under
the permission of schedulers in the corresponding subchannels.
In this research, it is assumed that the signal transmissions over
these subchannels are free from the packet losses and channel
fading effects.In particular, we denote the scheduling policy
for the channel as follows

S = [S1, · · · ,Sm]

whereSi represents the scheduling policy forith subchannel
that will be specifically clarified later on.

Subchannel i

ith Scheduler 

Remote 

Estimator

input

Fig. 2. Multiple communication channels

Under the scheduler-based communication, we define the
information set provided by theith subchannel for the esti-
mator at stepk as lk,i. For brevity, we introduce a bounded
set by stackingl0,i until lk,i, denoted byl0:k,i. As a result, at
instantk, the available information for the estimator is

Hk =

m⋃

i=1

l0:k,i, (2)

Likewise, we havelk,1:m by stackinglk,1 until lk,m, which
stands for the information gathered from all the subchannels
at stepk. Thus, it is obvious thatHk = Hk−1 ∪ lk,1:m. For
the remote optimal estimator, we take the minimum variance
estimator given by the conditional expectation

x̂k|k−1 = E[xk|Hk−1], x̂k|k = E[xk|Hk]

and the corresponding error covariance matrices

Pk|k−1 = E[(xk − x̂k|k−1)(∗)′|Hk−1]

Pk|k = E[(xk − x̂k|k)(∗)′|Hk]

where x̂0|−1 = µ0, P0|−1 = Σ0 and H−1 = ∅. Here, ∅
represents the empty set.

Noting that Rk > 0, we know HkPk|k−1H
′
k + Rk >

0. Therefore, there exists an orthogonal matrix such that
U ′
k(HkPk|k−1H

′
k + Rk)Uk = Λk, whereΛk is a diagonal

matrix of eigenvalues of the matrixHkPk|k−1H
′
k + Rk. By

letting

Fk = UkΛ
−1/2
k (3)

it is obvious thatFkF
′
k = (HkPk|k−1H

′
k + Rk)

−1. Further-
more, we denote

bk = F ′
k(yk −Hkx̂k|k−1) (4)

where bk = [bk,1, · · · , bk,m]′ is a column vector withm
components, and each component is the input of individual
channel. Moreover, the decision of when the communication
occurs and what the data is transmitted depends completely
on the underlying scheduling strategySi.

Throughout this paper, we aim to develop MMSE estimators
x̂k|k for system (1) under the given scheduling schemes,
and then carry out performance analysis on the proposed
estimators.Note that the desired MMSE estimator can be
calculated by the conditional mean

x̂k|k = E[xk|Hk] =

∫
xkf(xk|Hk)dxk

Unfortunately, the closed-form expression forf(xk|Hk) is
difficult to obtain due to the scheduler process, and we
then use an alternative approach to calculate the approximate
MMSE by exploiting Gaussian approximation of the prior pdf
f(xk|Hk−1) at each step.

Remark 1:Rather than adopting raw measurementsyk to
be channel input as the classical Kalman filter, we utilizebk
in our paper. A distinguished advantage of doing so is that
the transformation (4) removes the correlation between signals
injected into different subchannels, and therefore the estimator
can update the estimate based on the arrivals of each signal
from the subchannels independently.

Remark 2:To perform scheduler-based communication, the
one-step prediction̂xk|k−1 and error covariancePk|k−1 are
indispensable for generating the channel inputbk. One can
provide this information by letting the remote estimator send
the real-time estimates back to the sensor, but this will
inevitably increase the transmissions and lead to the additional
consumption of network resources. Noticing that the smart
sensor owns access and full control of the signals transmitted
to the remote estimator, an alternative is to make the sensor
run an identical copy of the estimator as the remote one.

III. PRELIMINARY

In this section, some preliminary knowledge, which is nec-
essary for the solution of the estimation problem, is presented
for preparation. We will show some properties of conditional
distributions of Gaussian random variables, and derive the
preliminary MMSE estimator with any type of scheduling
strategyS.
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Lemma 1:Given the conditionx ∈ Ω, the posteriori distri-
bution of the random variablex can be determined as follows:

f(x|x ∈ Ω) =

{ 1
Pr(x∈Ω)f(x), x ∈ Ω

0, otherwise

Lemma 2:LetX , Y andZ be random vectors with a jointly
Guassian distribution. Assume thatY and Z are mutually
independent. Then, the conditional distribution ofX given
Y, Z is with the expectation

E[X |Y, Z] = X̄ +ΣXY Σ
−1
Y (Y − Ȳ ) + ΣXZΣ

−1
Z (Z − Z̄)

and covariance

E [(X − E[X |Y, Z])(∗)′|Y, Z]
= ΣX − ΣXY Σ

−1
Y ΣYX − ΣXZΣ

−1
Z ΣZX

where χ̄ = E[χ], Σχ = E[(χ − χ̄)(∗)′], andΣχ1χ2
E[(χ1 −

χ̄1)(χ2 − χ̄2)
′].

Given the scheduling strategyS, the approximate MMSE
can be obtained by using the following two-step procedure.

Prediction Step. Given the previous estimation̂xk−1|k−1

and the corresponding covariancePk−1|k−1, the linearity of
the expectation operator yields that

x̂k|k−1 = Akx̂k−1|k−1

Pk|k−1 = AkPk−1|k−1A
′
k +Qk

(5)

Correction Step: By adopting the Gaussian approximation
f(xk|Hk−1) = N (x̂k|k−1 , Pk|k−1) and exploiting Lemma 2,
it is straightforward to show that

x̂k|k = x̂k|k−1 + Pk|k−1H
′
kFkE[bk|Hk] (6)

Pk|k = Pk|k−1 − Pk|k−1H
′
k(HkPk|k−1H

′
k +Rk)

−1HkPk|k−1

+ Pk|k−1H
′
kFkE[(bk − E[bk|Hk])(∗)′|Hk]F

′
kHkPk|k−1

(7)

IV. SCHEDULER-BASED COMMUNICATION

In this section, we will give the approximate MMSE estima-
tor with multiple communication channels under the scheduler-
based communication.

A. MMSE estimator design

Consider the following scheduling strategies for the respec-
tive subchannels:

Si : γk,i =

{
1, if |bk,i| ≥ ∆i

0, otherwise
(8)

where∆i ∈ R is a nonnegative real number. The scheduler at
each subchannel decides whether the measurementbk,i shall
be sent or not at every stepk. Specifically, whenγk,i = 1, the
scheduler allows the transmission ofbk,i, otherwise, it does
not. In this case, the information set contains the indexγk,i
and transmitted databk,i as follows:

lk,i = {γk,i, γk,ibk,i}.
According to the definitions oflk,i andHk, it is easy to see
that the available informationHk for the estimator is largely
dependent on the scheduling strategiesSi, which implies that

the resultant estimation performance is affected by the schedul-
ing strategies.Furthermore, lettingFk = [fk,1, · · · , fk,m] with
fk,i being the ith columns, and introducing the following
notations

x̂∗k|k : = x̂k|k−1 +

m∑

i=1

Pk|k−1H
′
kfk,ibk,i (9)

we have the following results.
Theorem 1:Suppose that the prediction̂xk|k−1 and the

corresponding covariancePk|k−1 are known, and the prior
PDF is given byf(xk|Hk−1) = N (x̂k|k−1, Pk|k−1). Given
the scheduling strategySi in (8), the approximate MMSE can
be computed recursively as follows

x̂k|k = x̂k|k−1 +
m∑

i=1

γk,iPk|k−1H
′
kfk,ibk,i

Pk|k = Pk|k−1 −
m∑

i=1

νk,iPk|k−1H
′
kfk,if

′
k,iHkPk|k−1

(10)

where

νk,i = γk,i + (1− γk,i)ψ(∆i)

ψ(∆i) =

√
2

π
(2Φ(∆i)− 1)−1∆i exp

(
−∆2

i /2
)

Proof: Given the past observationHk−1, bk obeys the
standard Gaussian distributionN (0, Im×m). In the sequel, it
is known thatbk,i is independent withbk,j , for i 6= j, and
therefore we have the following equality

E[bk,i|Hk−1, lk,1:m] = E[bk,i|Hk−1, lk,i]

Partition the setN = {1, 2, · · · ,m} into two complement
subsects as follows

Mk = {i ∈ N|γk,i = 1}, MC
k = {i ∈ N|γk,i = 0}

Obviously, there are two possible statuses for theith subchan-
nel:

• i ∈ Mk: There exists communication.
• i ∈ MC

k : No communication occurs.
In the following analysis, we will discuss the above cases

separately.
Case I: i ∈ Mk. Since the subchannel transmits the

current observationbk,i accurately, it is trivial to see that
lk,i = {1, bk,i} and the conditional expectation becomes

E[bk,i|Hk−1, bk,i] = bk,i (11)

E[b2k,i|Hk−1, bk,i] = b2k,i (12)

Case II: i ∈ MC
k . Although no communication occurs, the

predefined scheduling rule still sheds some lights on the state
estimation by implying the fact that|bk,i| < ∆i. Therefore,
we have

E[bk,i|Hk] = E[bk,i|Hk−1, |bk,i| < ∆i]

In view of Lemma 1, it can be derived that

E[bk,i|Hk−1, |bk,i| < ∆i]

=
1

Pr(|bk,i| < ∆i|Hk−1)

∫ ∆i

−∆i

xfbk,i
(x|Hk−1)dx
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According to the definition of bk,i, we can see
fbk,i

(x|Hk−1) = N (0, 1), which implies that

E[bk,i|Hk−1, |bk,i| < ∆i] = 0 (13)

In addition, one has

E[b2k,i|Hk−1, |bk,i| < ∆i]

=
1

Pr(|bk,i| < ∆i|Hk−1)

∫ ∆i

−∆i

x2fbk,i
(x|Hk−1)dx (14)

The PDF of the random variablebk,i conditioned onHk is

fbk,i
(x|Hk−1) =

1√
2π

exp

(
−x

2

2

)

Therefore, one has

Pr(|bk,i| < ∆i|Hk−1) = 2Φ(∆i)− 1 (15)

and
∫ ∆i

−∆i

x2fbk,i
(x|Hk−1)dx

=

∫ ∆i

−∆i

x2√
2π

exp

(
−x

2

2

)
dx

= − x√
2π

exp

(
−x

2

2

)∣∣∣
∆i

−∆i

+

∫ ∆i

−∆i

1√
2π

exp

(
−x

2

2

)
dx

= 2Φ(∆i)− 1− 2∆i√
2π

exp

(
−∆2

i

2

)
(16)

Substituting the above inequalities into (14) yields that

E[b2k,i|Hk−1, |bk,i| < ∆i]

= 1− ∆i√
2π

(2Φ(∆i)− 1)−1 exp

(
−∆2

i

2

)
(17)

Now, from (6), we have

x̂k|k = x̂k|k−1 +
∑

i∈Mk

Pk|k−1H
′
kfk,ibk,i (18)

In order to calculate the covariancePk|k in (7), by noting
that definition ofx̂∗k|k in (9), one can derive that

Pk|k−1H
′
kFkE[(bk − E[bk|Hk])(∗)′|Hk]F

′
kHkPk|k−1

= E[(x̂k|k − x̂∗k|k)(∗)′|Hk−1, bk]

which yields that

E[(x̂k|k − x̂∗k|k)(∗)′|Hk−1, bk]

= E

[( ∑

i∈MC
k

Pk|k−1H
′
kfk,ibk,i

)(
∗
)′∣∣∣Hk−1, bk

]

To this end, we have

E[(x̂k|k − x̂∗k|k)(∗)′|Hk]

= E

[
E[(x̂k|k − x̂∗k|k)(∗)′|Hk−1, bk]

∣∣∣Hk−1, lk,1:m

]

=
∑

i∈MC
k

Pk|k−1H
′
kfk,iE[b

2
k,i|Hk−1, lk,i]f

′
k,iHkPk|k−1

which, together with (17), leads to the main result presented
in this theorem, and the proof is complete.

Remark 3:A major difference between the scheduler-based
communication and the packet losses (e.g., [37]) is that
the former gives up transmissions actively according to the
predetermined guideline, while the latter drops transmissions
stochastically based on the condition of the network. There-
fore, when the signalbk,i is dropped because of the packet loss,
the remote estimator can only run the time update process.
By contrast, for the scheduler-based communication, even if
the remote estimator does not receive the signalsbk,i, the
implementation of the measurement update process is still
possible since the estimator is aware of the fact|bi,k| < ∆i.

Remark 4: It is worth pointing out that, when we set
∆i = 0 for all the subchannels, the inequalities|bk,i| ≥ ∆i

are always fulfilled. According to the scheduling strategies (8),
all the signals are transmitted to the estimator at every step,
and hence the results in the above theorem will reduce to the
traditional Kalman filter.

B. Performance analysis

The average communication rate of theith subchannel is
defined by

γ̄i := lim
N→∞

sup
1

N + 1

N∑

k=0

γk,i (19)

Corollary 1: Given the estimation algorithm proposed in
Theorem 1, the average communication rate for theith sub-
channel can be computed as follows

γ̄i = 2− 2Φ(∆i), for i = 1, · · · ,m (20)

Proof: Since the random variablesbk,i satisfy the standard
Gaussian distributions, it can be verified that

E[γk,i] = Pr(γk,i = 1) = Pr(|bk,i| > ∆i|Hk−1) = 2− 2Φ(∆i)

where the first equality is from the scheduling rule (8), and
the last equality comes directly from (15). For the stationary
variablebk,i, it is obvious that̄γi = E[γk,i].

The iteration equation of the MMSE estimator in (10) is
stochastic because of the randomness of the indicatorγk,i.
For the sake of evaluating the effect of the thresholds on
estimation performance, it is necessary to investigate the
average covariance reduction per correction step as follows:

δPk := E[Pk|k−1 − Pk|k] (21)

Corollary 2: At each step, the average covariance reduction
(21) is monotonically decreasing with respect to the threshold.

Proof: First, one has from (10) that

δPk =

m∑

i=1

E[νk,i]Pk|k−1H
′
kfk,if

′
k,iHkPk|k−1 (22)

Notice thatνk,i = γk,i + (1 − γk,i)ψ(∆i) is a stochastic
scalar at each stepk, and its average can be calculated by

~(∆i) := E[νk,i]

= Pr(γk,i = 1) + Pr(γk,i = 0)ψ(∆i)

= 2− 2Φ(∆i) +
2∆i√
2π

exp

(
−∆2

i

2

)
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Taking derivative to the both sides of such an equality with
respect tox gives rise to

∂~(x)

∂x
= −2

x2√
2π

exp(−x
2

2
) ≤ 0

where the equality is achieved only whenx = 0. Therefore,
E[νk,i] is a monotonically decreasing function in∆i > 0.

As for the time-invariantsystems, we would like to estab-
lish a relationship revealing how the selection of thresholds
influences boundedness of the proposed remote estimator.
For stochastic matrix sequence{Pk}k∈N, the boundedness of
Pk is usually investigated in the mean sense, such as [37].
Note however that even ifsupk∈N

E[Pk] < +∞, we still
cannot assert thatPk is bounded for every single sample path.
Therefore, it is necessary to evaluate the evolution properties
of Pk in the rest of this subsection.

To facilitate the following analysis, it is assumed that all
the thresholds are identical, i.e.,

∆1 = · · · = ∆m = ∆ > 0

Introduce a set ofm dimension column vectors asνk =
[νk,1, · · · , νk,m]′, ψ(∆) = [ψ(∆), · · · , ψ(∆)]′, and 1 =
[1, · · · , 1]′. Moreover, let us denote a simplified notation
Pk := Pk|k−1 and define the evolution equation of the one-step
prediction error covariance by using the modified algebraic
Riccati equation (MARE) as follows:

Pk+1 = G(νk, Pk)

:= APkA
′ +Q−

m∑

i=1

νk,iAPkC
′fk,if

′
k,iCPkA

′

Now, we can give the bounds of the stochastic covariance
Pk in the following corollary.

Corollary 3: The upper and lower bounds of the one-step
prediction error covariancePk are given by

Xk ≤ Pk ≤ Xk (23)

whereXk andXk are positive definite matrices satisfying the
following respective MAREs

Xk = G(1, Xk−1), Xk = G(ψ(∆), Xk−1)

with the initial valuesX0 = X0 = P0.
Proof: From the definition ofνk,i in Theorem 1, one has

ψ(∆) ≤ νk,i ≤ 1, ∀k ∈ N. Obviously,

G(1, X0) ≤ G(ν0, P0) ≤ G(ψ(∆), X0)

Assume, inductively, that the inequalitiesXk ≤ Pk ≤ Xk

are fulfilled at the stepk. Utilizing the properties of the
MARE, we have

G(νk, Pk) ≤ G(ψ(∆), Pk) ≤ G(ψ(∆), Xk)

which indicates thatPk+1 ≤ Xk+1. In analogy to the above
procedure, we can show that the inequalityXk+1 ≤ Pk+1 also
holds. The inductive hypothesis implies that the inequalities
(23) are always true.

Introduce a scalar̄ν > 0, which can be obtained by solving
the following optimization problem as [37]

ν̄ = arg inf
ν
{∃X > 0|X > AXA′ +Q

− νAXC′(CXC′ +R)−1CXA′}
(24)

Subsequently, the following corollary sheds light on how to
set the communication rate to guarantee the boundedness of
the covariance matrixPk.

Corollary 4: Suppose that(A,C) is observable,(A,Q
1

2 ) is
controllable, andA is unstable. Then, the following hold:

1) Let ∆̃ = ψ−1(ν̄). The stochastic covariance sequence
is bounded (i.e.,supk∈N Pk < +∞) if and only if the
average sensor-to-estimator communication rate satisfied
γ̄i > γ̄ci , whereγ̄ci is the critical value defined as

γ̄ci = 2− 2Φ(∆̃)

2) If γ̄i > γ̄ci , when time tends to infinity, the error
covariance are bounded by

X ≤ lim
k→∞

Pk ≤ X

where two positive definite matricesX andX are the
solutions of the respective MAREs as follows

X = G(1, X), X = G(ψ(∆), X).

Proof: Since the lower boundXk+1 equals to the predic-
tion error covariance of the Kalman filter, by the observability
and controllability of the system, it is not hard to verify that
limk→∞Xk = X . On the other hand, according to (24), we
conclude that the upper bound is convergent if and only if
ψ(∆) > ν̄. In the proof of Theorem 1, it can be seen that

ψ(∆) = 1− 1

2Φ(∆)− 1

∫ ∆

−∆

x2√
2π

exp (−x
2

2
)dx

Keeping in mind that both Φ(∆) and∫∆

−∆
x2

√
2π

exp (−x2

2 )dx are increasing in∆, we have that
ψ(∆) is a decreasing function in∆ with the largest threshold
ensuring the convergence of MARE as̃∆ = ψ−1(ν̄), which
ends the proof.

It is important to remark that, compared to the Kalman
filter, the covariance sequence{Pk} will not converge to a
fixed point, and it still shows the time-varying properties even
when time trends to infinity. That is because such a sequence
depends heavily on the stochastic variableγk,i. Fortunately, if
the communication rate is larger than the critical value given in
above theorem, the limit of the covariancePk will be always
bounded by two positive definite matricesX andX .

V. EXTENSION TO SINGLE BIT COMMUNICATION

In this section, we would like to further condense the
information set available to the remote estimator by employing
new scheduling strategies

S ′
i : γk,i =

{
1, if bk,i ∈ Ωi

0, otherwise
(25)

where the intervalΩi = (∆i,∆i) is with the extreme points
∆i ∈ R and ∆i ∈ R. When γk,i = 1, the sensor sends a
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single bit packet to inform the remote estimator, otherwise, it
will not. Therefore, the information set is described by

lk,i = {γk,i}

Compared with the scheduling strategies (8), under such
strategies, there is no need to providebk,i for the estimator
whenγk,i = 1, and therefore the network traffic can be greatly
reduced. However, the problem now is more complicated
due to the fact that the estimator cannot access to the exact
observation data any more.Fortunately, we could still use
the technique developed previously to obtain the following
MMSE.

Theorem 2:Suppose that the prediction̂xk|k−1 and the cor-
responding covariancePk|k−1 are known, and the prior PDF
is f(xk|Hk−1) = N (x̂k|k−1, Pk|k−1). Given the scheduling
strategyS ′

i in (25), the approximate MMSE can be computed
recursively as follows

x̂k|k = x̂k|k−1 +

m∑

i=1

αk,iPk|k−1H
′
kfk,i

Pk|k = Pk|k−1 −
m∑

i=1

βk,iPk|k−1H
′
kfk,if

′
k,iHkPk|k−1

(26)

where

αk,i =
1√
2π

h(γk,i)(exp(−∆2

i

2 )− exp(−∆
2

i

2 ))

1− γk,i + h(γk,i)(Φ(∆i)− Φ(∆i))

βk,i = α2
k,i +

1√
2π

h(γk,i)(∆i exp(−∆
2

i

2 )−∆i exp(−∆2

i

2 ))

1− γk,i + h(γk,i)(Φ(∆i)− Φ(∆i))

and

h(γk,i) =

{
1, if γk,i = 1

−1, otherwise

Proof: Partitioning the setN = {1, 2, · · · ,m} into two
complement subsects

Mk = {i ∈ N|γk,i = 1}, MC
k = {i ∈ N|γk,i = 0},

we discuss the individual cases as follows.
Case I: For i ∈ Mk, it indicatesbk,i ∈ Ωi, so we have the

equality

E[bk,i|Hk−1, lk,i] = E[bk,i|Hk−1, bk,i ∈ Ωi]

According to Lemma 1, an explicit expression of the condi-
tional expectation can be calculated as follows

E[bk,i|Hk−1, bk,i ∈ Ωi]

=
1

Pr(bk,i ∈ Ωi|Hk−1)

∫

x∈Ωi

xfbk,i
(x|Hk−1)dx

=
1

Φ(∆i)− Φ(∆i)

∫ ∆i

∆i

1√
2π
x exp(−x

2

2
)dx = αk,i (27)

where the last equality can be obtained directly by computing
the integral term

∫
x exp(−x2/2)dx. Likewise, we can deal

with the conditional expectation of the quadratic term, and
have

E[b2k,i|Hk−1, bk,i ∈ Ωi]

=
1

Pr(bk,i ∈ Ωi|Hk−1)

∫ ∆i

∆i

x2fbk,i
(x|Hk−1)dx

= 1−
(
βk,i − α2

k,i

)
(28)

Case II: For i ∈ MC
k , we understandbk,i /∈ Ωi. Therefore,

it can be seen that

E[bk,i|Hk−1, lk,i] = E[bk,i|Hk−1, bk,i /∈ Ωi]

Along the procedure of Case I, we have

E[bk,i|Hk−1, bk,i /∈ Ωi]

=
1

1− (Φ(∆i)− Φ(∆i))

1√
2π

(∫ ∆i

−∞
x exp(−x2/2)

+

∫ ∞

∆i

x exp(−x2/2)
)

= αk,i (29)

and

E[b2k,i|Hk−1, bk,i /∈ Ωi]

=
1

Pr(bk,i /∈ Ωi|Hk−1)

∫

x/∈Ωi

x2fbk,i
(x|Hk−1)dx

= 1−
(
βk,i − α2

k,i

)
(30)

Substituting (27) and (29) into (6), we have the propagation
of x̂k|k as shown in Theorem 2. Furthermore, letα̃

(1)
i = αk,i,

∀i ∈ Mk, andα̃(0)
i = αk,i, ∀i ∈ MC

k . Combining (6) and (9)
yields

x̂∗k|k − x̂k|k =
∑

i∈Mk

Pk|k−1H
′
kfk,i(bk,i − α̃

(1)
i )

+
∑

i∈MC
k

Pk|k−1H
′
kfk,i(bk,i − α̃

(0)
i )

Here, we can partitionE[(x̂k|k − x̂∗k|k)(∗)′|Hk−1, lk,1:m] into
four terms, namely,

E[(x̂k|k − x̂∗k|k)(∗)′|Hk−1, lk,1:m] = B11 +B12 +B
′
12 +B22

(31)

where

B11 =E

[
(
∑

i∈Mk

Pk|k−1H
′
kfk,i(bk,i − α̃

(1)
i ))(∗)′

∣∣∣∣∣Hk−1, lk,1:m

]

B12 =E

[
(
∑

i∈Mk

Pk|k−1H
′
kfk,i(bk,i − α̃

(1)
i ))

× (
∑

i∈MC
k

Pk|k−1H
′
kfk,i(bk,i − α̃

(0)
i ))′

∣∣∣∣∣∣
Hk−1, lk,1:m





B22 =E


 (

∑

i∈MC
k

Pk|k−1H
′
kfk,i(bk,i − α̃

(0)
i ))(∗)′

∣∣∣∣∣∣
Hk−1, lk,1:m



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Since bk,i are mutually independent, and the scalarsα̃
(1)
i

and α̃(0)
i are deterministic, recalling (27) and (29), it is not

hard to verify thatB12 = 0,

B11 =
∑

i∈Mk

Pk|k−1H
′
kfk,if

′
k,iHkPk|k−1

× E

[
(bk,i − α̃

(1)
i )2|Hk−1, lk,1:m

]
(32)

and

B22 =
∑

i∈MC
k

Pk|k−1H
′
kfk,if

′
k,iHkPk|k−1

× E

[
(bk,i − α̃

(0)
i )2|Hk−1, lk,1:m

]
(33)

By combining (27)-(30), (32), and (33), one can compute
(31). Moreover, we substitute (31) into (7), and eventually
have the result ofPk|k, which ends the proof.

Now, the average covariance reduction per correction step
is described by

δPk =

m∑

i=1

E[βk,i]Pk|k−1H
′
kfk,if

′
k,iHkPk|k−1 (34)

Obviously,

E[βk,i] =
1

2π

(
exp(−∆2

i /2)− exp(−∆2
i /2)

)2

(
Φ(∆i)− Φ(∆i)

)(
1−

(
Φ(∆i)− Φ(∆i)

))

To maximization the average correction, it is necessary to
choose the optimal intervalΩi by considering the following
optimization problem

Ω∗
i = (∆∗

i , ∆
∗
i ) = arg sup

∆i, ∆i

E[βk,i]

whose numerical solutions can be easily computed by utilizing
MATLAB as ∆∗

i = 0, and ∆∗
i = ∞. Substituting these

values into (26), one hasαk,i ≡ h(γk,i)
√
2/π andβk,i ≡ 2/π.

For the scalar measurement case, i.e,m = 1, the proposed
MMSE estimator withΩ∗ shares the same form as SOI-KF in
[34] indicating that making decisions based on the sign of the
innovation sequence is indeed the best strategy.

Remark 5:The above result is interesting from a practical
point of view, since it explicitly gives a clue on how to im-
plement the modified Kalman filter according to the indicators
from the subchannels. For vector measurements, the iteratively
quantized Kalman filter (IQKF) has been proposed to compute
MMSE with single bit transmissions in [28]. However, the
IQKF needs to iteratem times so as to give the final estimate
at each step. In contrast, our method does not need multi-step
iteration at each step, and hence is more efficient.

Remark 6:An intriguing observation of Theorems 1-2 re-
veals that the proposed estimator owns the merits of high flexi-
bility. Communication schedulers implemented in subchannels
can choose strategies with different thresholds accordingto
their available channel resources. Additionally, mixturestrate-
gies containing bothSi andS ′

i among subchannels can be also
employed. To obtain the corresponding MMSE, the only thing
we need to do is simply revising the update from the specific
channel in the iteration of̂xk|k andPk|k.

Remark 7: In this paper, the plant under consideration is
a time-varying system, where the measurement model is a
delay-free model. Nevertheless, our proposed method can
be extended to the scheduler-based state estimation problem
subject to measurement delays by using the measurement re-
organization method [27].

VI. NUMERICAL STUDIES

In this section, we present the simulation results to validate
the proposed scheduler-based remote estimation algorithms.

The linear time-varying system under consideration in (1)
is with the transition matrix

Ak =




0.9 + 0.2 cos(0.2k) 0.21 0
0 0.9 0.5
0 0 0.98 + 0.1 sin(0.3k)




and the measurement matrix

Hk =

[
2 + 0.5 sin(0.2k) 3 1

1 0 0.98 + 0.25 cos(0.31k)

]

The covariances of the process noise and measurement noise
are given byQ = 0.2I3×3 and R = 0.2I2×2, respectively.
The initial valuex0 is a Gaussian random vector with mean
[1; 1; 1] and covariance4I3×3.

From Theorems 1-2, it can be found that{Pk|k} is in
fact a stochastic sequence due to the randomness of the
indicatorsγk,i in the MAREs (10) and (26). To numerically
compute the expectationE[(Pk|k)], we conduct the Monte
Carlo simulations with1, 000 repeated trials. The simula-
tion results are depicted in Fig. 3, where the evolutionary
trajectories ofE[tr(Pk|k)] under two strategiesSi and S ′

i

are compared. Additionally, the variance of the Kalman filter
without communication scheduling is presented as a bench-
mark. We can see that the estimation error covariance of the
proposed strategies, i.e.,E[tr(Pk|k)], is always larger than the
optimal onePKF

k|k from the Kalman filter. For the single-trial
tracking performance, the actual statesxk = [xk,1, xk,2, xk,3]
and the corresponding estimates are given in Fig. 4, which
implies that the scheduler-based estimator performs well to
estimate the system states.The average communication rate
γ̄i and its empirical value under the strategiesSi are shown
in Fig. 5, which indicates that the two values fit quite well
when the threshold∆ is small. With the increase of∆, the
Gaussian approximation becomes inaccurate, and thus a gap
appears. We finally consider the influence of the thresholds
∆1 = ∆2 = ∆ on the performance of the remote estimator
under strategies (8) in Fig. 6. As∆ → 0, the gap between
E[tr(Pk|k)] and tr(PKF

k|k ) narrows, and, eventually, it has
E[tr(Pk|k)] = tr(PKF

k|k ) when∆ = 0.

VII. CONCLUSION

This paper has investigated the remote estimation problem
for linear time-varying systems under constrained network
resources. The communication network is composed of a
set of parallel and independent subchannels, which transmit
the vector input in a componentwise manner. Schedulers are
implemented in every subchannel to help reducing the com-
munication rate. We aim to design the MMSE estimator which
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Fig. 3. Expectation of the variances of the remote estimators with different
scheduling strategiesSi andS′

i
. Kalman Filter is presented as a benchmark.

The expectations are obtained by averaging 1,000 Monte Carlo simulations.
(∆1 = ∆2 = 1 andΩ1 = Ω2 = [0, 10])
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in a single-trial experiment. Kalman Filter is

presented as a benchmark. (∆1 = ∆2 = 1 andΩ1 = Ω2 = [0, 10])

utilizes the scheduled signals from each subchannel under the
predetermined scheduling strategies. The high computational
cost inherent to handling the scheduling process motivates
an approximate MMSE as an alternative. We have made a
Gaussian assumption on the prior PDF of the prediction so as
to obtain the approximate MMSE in a linear recursive form.
Two scheduling policies have been taken into consideration,
wherein the first one transmits the signals when it is necessary,
and the second one further condenses the signals to be
transmitted into a single bit variable. Finally, the effectiveness
of the proposed algorithms has been validated by a numerical
example.It should be pointed out that the estimation method
developed in this paper is inapplicable to the scheduler-based
distributed state estimation problem over sensor networks. The
main challenge of such an issue lines in the fact that the signal
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Fig. 5. Compare the theoretical communication rateγ̄i with its empirical
value obtained by averaging 1,000 Monte Carlo simulations.
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Fig. 6. Expectation of the variances of the remote estimators with the schedul-
ing strategiesSi under different thresholds∆1 = ∆2 (= 0, 1.0, 1.2, 1.50).
The expectations are obtained by averaging 1,000 Monte Carlo simulations.

transmission behaviors of distributed state estimation are more
complicated as compared with the non-distributed case. The
corresponding estimator structure and scheduling strategies are
quite distinguished from those proposed in this paper. One
of our future research topics is to study the scheduler-based
distributed state estimation problem over sensor networks.

APPENDIX

A. Proof of Lemma 1

Proof: Using Bayes’ rules, one has

f(x|x ∈ Ω) =
Pr(x ∈ Ω|x)
Pr(x ∈ Ω)

f(x) (35)

Moreover, it can be seen that

Pr(x ∈ Ω|x) =
{

1 x ∈ Ω
0 otherwise

(36)
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which yields the results presented in this Lemma.

B. Proof of Lemma 2

Proof: Let ~Y =
[
Y T ZT

]T
and Y̌ =

[
Ȳ T Z̄T

]T

where Ȳ and Z̄ represent the expectations ofY and Z,
respectively. Then, according to the results in [1], it is easy to
conclude that
{
E[X |~Y ] = X̄ +ΣX~Y Σ

−1
~Y

(~Y − Y̌ )

E[(X − E[X |~Y ])(∗)′|~Y ] = ΣX − ΣX~Y Σ
−1
~Y

Σ~Y X

(37)

Noting that

ΣX~Y =
[
ΣXY ΣXZ

]
, Σ~Y =

[
ΣY 0
0 ΣZ

]
,

it follows from (37) that




E[X |~Y ] = X̄ +ΣXY Σ
−1
Y (Y − Ȳ ) + ΣXZΣ

−1
Z (Z − Z̄)

E[(X − E[X |~Y ])(∗)′|~Y ] = ΣX − ΣXY Σ
−1
Y ΣYX

− ΣXZΣ
−1
Z ΣZX

,

(38)

which yields the results presented in Lemma 2.
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timal state estimation for networked systems with random parameter
matrices,correlated noises and delayed measurements,Int. J. Gen. Syst.,
vol. 44, no. 2, pp. 142–154, 2015.

[4] R. Caballero-́Aguila, A. Hermoso-Carazo and J. Linares-Pérez, Net-
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