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Scheduler-based State Estimation Over Multiple
Channels Networks

Fuad E. Alsaadi, Zidong Wang, and Khalid H. Alharbi

Abstract—We investigate the remote state estimation problem  Traditionally, the remote state estimation problems have
for networked systems over parallel noise-free communication mainly focused on the ideal channel settings, that is, energy
cha_nnels. Due to I|m|teo! ne_twork capabilities m_practlcal network supply and available bandwidth for communication networks
environments, communication schedulers are implemented at the - h tibl d thus th t timator h ¢
transmit side of each subchannel to promote resource efficiency. aré inexhaustiole, an us the remote estimator has access 1o
Specifically, the processed signals are transmitted only when it is 5}” the raw measurements from the sensor, Where a Ka|man
necessary to provide the real-time measurements to the remote filter algorithm can be employed as an optimal estimator
estimator. The recursive approximate minimum mean-square for |inear systems with Gaussian noises. However, for some
error (MMSE) estimator is established to restore the state vector 4xticq| applications such as wireless sensor networks, the
of a target plant by utilizing the scheduled transmission signals. icati inh " biect to limited
All the information coming from the individual subchannels, commqmca lon proce§ses are inherently s.u ject 1o 'm' €
even if no measurement is sent, will contribute to improve bandW|dth, and batte”es Of Sensors are dl’lven by I’eStI‘ICted
the estimation performance in an analytical form. Finally, a energy supply [7], [11], [23], [36]. These adverse factors limit

numerical example is given to illustrate the effectiveness of the the penetration of remote estimation because too frequent

main results. transmissions might not improve the estimation performance
Index Terms—State estimation; Event-based communication; but, on the contrary, they could lead to some undesirable phe-
Multiple communication channels; Communication rate. nomena such as network congestion and lifespan reduction. A

critical issue is how to utilize the available resources to achieve
a satisfactory result efficiently. Notice that the communication
process constitutes a major source of energy consumption.
In the past decades, with the rapid development of serssr the sake of preserving the bandwidth and prolonging
ing, computing and communication technologies, networkelle working hours simultaneously, a feasible scheme is to
control has become a mainstream research topic receiviegluce the number of transmissions as much as possible on
much attention from both the control and signal processitige premise of predetermined performance guarantee.
communities. A typical networked control system is composedUp to now, a number of resource-efficient scheduling s-
of sensors, controllers, and actuators linked via a wired trategies have been extensively investigated, which include
wireless shared communication network [8], [25], [45]. T@ower scheduling [35], sensor selection [5], [29], event-based
achieve high-quality control performance, state estimate iscammunication [9], [12], [16], [17], [20], [26], [41], [43], self-
necessary part for generating feedback control signals sindggered communication [14], and compressed signals [21],
the state vector of the target plant is extracted from tlec. These strategies aim to preserve the system resources
contaminated partial measurements [3], [4], [13], [32], [33from various aspects. To be specific, for power scheduling
[40], [46]. The merits of network devices render the remoferoblems, it is supposed that the transmit side can switch
estimation possible and, in such scenarios, sensor measbegween two different transmission energy levels. A high
ments are transmitted to a central unit with sufficient conenergy level results in a high packet reception ratio while
puting resources for further processing [2], [15], [22], [24]costing more resources, amite versa As a result, an op-
Since the networked environment greatly reduces the costginfal transmission power schedule is required for the remote
installation and maintenance, the remote state estimation leatimator to achieve the optimal estimation performance under
been widely applied in engineering practice such as automaggdscribed energy constraints. Moreover, for sensor networks
highway systems, battlefield surveillance, and environmentaith a large number of sensors, it is meaningful to employ
monitoring [18], [31], [47], [48]. an appropriate selection scheme by choosing reliable sensor
signals among all the available sources, where the fundamental
This research work was funded by Institutional Fund Projects undpsyes are to find out the optimal set of sensors and design

grant no. (IFPHI-203-135-2020). Therefore, authors gratefully a(:knowled%ﬁe estimator so as to minimize the error covariance. As

technical and financial support from the Ministry of Education and Kin R, - )
Abdulaziz University, DSR, Jeddah, Saudi Arabi€otresponding author: for event-based communication, it is essentially a controlled

Zidong Wang. . _ transmission scheduling strategy where the scheduler forwards
F. E. Alsaadi and K. H. Alharbi are with the Department . | h . | h .

of Electrical and Computer Engineering, Faculty of Engineering’?"gnas tO.t e remote estlmato_r only w er_" certain evgnts

King Abdulaziz University, Jeddah 21589, Saudi Arabia. (Emailshappen. Different from the classical clock-driven mechanism

{fal saadi, khal har bi }@au. edu. sa). _ _ that triggers a transmission at every sampling instant, in such
Z. Wang is with the Department of Computer Science, Brunel Univer- batch of . | b d f

sity London, Uxbridge, Middlesex, UB8 3PH, United Kingdom. (Email:"sl case, a batch of unnecessary signals can be removed from

Zi dong. Wang@r unel . ac. uk). the transmission sequence to reduce resource consumption.

I. INTRODUCTION



2 REVISION

Self-triggered communication can be regarded as an imgroweector. Therefore, the remote estimator can utilize theingm
version of the event-based communication. In the mechanigmormation from each subchannel to correct the one-step
of self-triggered communication, the next signal transimis prediction independently. Furthermore, due to the sclieglul
instant is calculated by a triggering scheduling based en throcess, it is almost impossible to give the exact minimum
previous transmitted data and the plant dynamics knowledgeean-square error (MMSE) when considering the amount
Compared with the event-based communication, the maih computation. An alternative way is to utilize a Gaussian
advantage of the self-triggered communication lies in thessumption of the prior probability density function (PCdt)
fact that mechanism of self-triggered is implemented basedch step. Throughout this paper, we consider two schepulin
on certain “software” rather than the hardware (i.e. evergtrategies characterized by the signals injected to thereia
generator) adopted in event-based communication, aneldherTo be specific, when the pre-assigned conditions are fulfille
reducing the hardware costs. the first one transmits the real-time signals, while the sdco

Due to its effectiveness in resource saving, the eventebagme condenses the packet of the transmission signal byrggndi
mechanism has received increasing attention in recensyean indicator variable instead.

Some initial works [30], [39] have considered an event-dase Summarizing the above discussion, the main contributions
rule called Send-on-Delta (or Lebesgue sampling) prieciplof our work can be highlighted as follows) We investigate

By employing this principle the sensor data will be sent tthe remote state estimation problem over multiple commu-
the estimator when a certain specified threshold is readhednication channels. Under our framework, the average com-
can be further inferred that, when there is no transmissien, munication rate of each subchannel can be set specifically
sensor data must lie in the given bound from the previouskgcording to the channel condition; 2) the error covariance
transmitted value. Therefore, one can utilize the preVdjousof the approximate MMSE estimator is obtained by a recursive
transmitted value as the estimator input while keeping #lgorithm. This covariance sequence turns out to be stda@has
mind that a bounded uncertainty exists. In this case, that we can always find its tight upper and lower bounds at
exact optimal estimator is hard to obtain, but an altereatieach step; 3) a bridge is established between the communica-
is to minimize the upper bound of the error covariance @®n rate and the boundedness of the estimator, which works
[19]. Moreover, in [38], the Send-on-Delta principle hagibe as a guideline to configure the schedulers.

extended to a more general one that is suitable for any typeThe rest of this paper is organized as follows. In Section
of sampling strategy. A sum of Gaussians approach has béenthe problem is formulated. Section Il presents some
employed to design the approximate optimal estimator fer tipreliminary knowledge for preparation. Section IV compute
sake of reducing computational complexity. On the othedharthe MMSE under the scheduler-based communication and
another communication scheduling policy is based on tlgdves the performance analysis. In Section V, the result is
values of the real-time innovation as shown in [6], [42],][44 extended to a more compressed scheduling policy. The sesult
Since innovations characterize the gap between the peedicare illustrated by a numerical example in Section VI. Sectio
and the current measurements, a small innovation implegs tV1l concludes this paper.

the estimator could utilize the predicted value as a quasi-Notation: Throughout the paperR"™ denotes then-
optimal estimate and, in this case, the real-time transamiss dimensional Euclidean spacg[z| stands for the expectation
are no longer necessary. of the stochastic variable. When the expression far is

Following the existing works, the focus of this paper is ofong, W=z’ is abbreviated agW (x)'. Let the cumulative
the remote state estimation problem under stringent errdy distribution function of a standard normal distribution be
bandwidth constraintBy co-designing the scheduling policy®(z) = ffoo \/% exp(—%)dm. For any functiong(-), its
and the state estimator, a balance between the estimaji@ferse function (if it exists) is denoted as'(-).
performance and available resources can be achievedefrurth
more, motivated by the multi-input-multi-output chanreth-
nique [10] developed in communication theory, we consider ) ) . i . .
the communication channel to be composed of a set of parallefConsider a discrete linear time-varying system in the fol-
and independent subchannels, and each subchannel trandfHting form:
the corresp(_)nding entry of the input vector. Since subcaisnn Thor = Apzy + wp
may own different available resources, the schedulerd shal (1)
be specifically designed for the subchannels so that each Y = Hizi + v
subchannel can work at its desirable working conditibo. where x;, € R™ is the system state ang, € R™ is
the best of our knowledge, such a multiple channels settittte observed signakw, € R™ and v, € R™ are external
hasnotyet been taken into account in the design of resourcaisturbances obeying Gaussian distributions with zerormea
efficient remote estimators. and covariance matrice®; > 0 and R, > 0. Ax and Hy,

The challenge for scheduler-based state estimation oee known matrices with appropriate dimensions. The initia
multiple channels networks lies in the fact that the signaf$atez, is a Gaussian random variable wiff{z] = 1o and
from subchannels are correlated and subject to the schgdulVar(zy) = ¥y > 0. We assume that the initial staig, the
strategies. To achieve our objective, the channel inputss finoisesw;, andv, are mutually independent.
reconstructed by a dynamical linear transformation in otde  In this paper, we consider the remote estimation problem as
eliminate the correlation between the components of thetinghown in Fig. 1. The processed measurements are transmitted

Il. PROBLEM FORMULATION
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: where &g_y = po, Po—1 = Yo andH_, = (. Here, ()

! represents the empty set.

! Noting that Ry > 0, we know Hy Py, Hj, + Ry >

! 0. Therefore, there exists an orthogonal matrix such that

= Up(Hp Pyp—1 Hy, + Rp)Ux = Ag, Where Ay is a diagonal
Remore matrix of eigenvalues of the matrikiy, Py, H;, + Ry. By
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it is obvious thatFy F; = (HyPyx—1Hj, + Ri)~'. Further-

Fig. 1. Scheduler-based remote estimator
more, we denote

be = Fy(yrx — HeZpp—1) 4
to the remote estimation center for further signal procegsi
For the sake of improving the utilization efficiency of netko Where by = [bx 1, ,bk,m] is @ column vector withm
resources, a set of schedulers are installed at the smaxdrsefOmponents, and each component is the input of individual
to prevent unnecessary transmissions. Moreover, it ishwoghannel. Moreover, the decision of when the communication
pointing out that the channel here is characterized by tR€curs and what the data is transmitted depends completely
multiple-input-multiple-output model, see Fig. 2, wheacke on the underlying scheduling strategy.
scalar component of the input vector is transmitted onlyeund  Throughout this paper, we aim to develop MMSE estimators
the permission of schedulers in the corresponding subetsnniy; for system (1) under the given scheduling schemes,
In this research, it is assumed that the signal transmissieer and then carry out performance analysis on the proposed
these subchannels are free from the packet losses and tha@siégmators.Note that the desired MMSE estimator can be
fading effects.In particular, we denote the scheduling policyalculated by the conditional mean
for the channel as follows
B = Bl [Hi] = / 1 f (on M) de

S= [Sla"' 7Sm]
whereS; represents the scheduling policy fith subchannel Unfortunately, the closed-form expression féfxy|H;y) is
that will be specifically clarified later on. difficult to obtain due to the scheduler process, and we

then use an alternative approach to calculate the apprexima
MMSE by exploiting Gaussian approximation of the prior pdf
f(xx|Hr—1) at each step.
, Remark 1:Rather than adopting raw measuremempisto
e °—><Subchannel D——' pemote be channel input as the classical Kalman filter, we utilize
in our paper. A distinguished advantage of doing so is that
the transformation (4) removes the correlation betweemadsy
injected into different subchannels, and therefore thienasbr
can update the estimate based on the arrivals of each signal
from the subchannels independently.

Under the scheduler-based communication, we define theremark 2: To perform scheduler-based communication, the
information set prOVided by thé&h subchannel for the esti- one-step predictio@kwil and error Covariancé)k‘kil are
mator at stept asl,;. For brevity, we introduce a boundedingispensable for generating the channel inpuit One can
set by stackingo,; until /; ;, denoted byl.;.;. As a result, at provide this information by letting the remote estimatondse

Fig. 2. Multiple communication channels

instantk, the available information for the estimator is the real-time estimates back to the sensor, but this will
m inevitably increase the transmissions and lead to the iaddit
Hi = U Lok, i (2)  consumption of network resources. Noticing that the smart
=1

sensor owns access and full control of the signals transhitt
Likewise, we havel, 1., by stackingly ; until I; ., which to the remote estimator, an alternative is to make the sensor
stands for the information gathered from all the subchanneln an identical copy of the estimator as the remote one.
at stepk. Thus, it is obvious that{, = Hr—1 U lk,1.m. FOr
the remote optimal estimator, we take the minimum variance
estimator given by the conditional expectation

Trip-1 = Elzg[Hi—1], Zrp = Elzk|[Hi

I1l. PRELIMINARY

In this section, some preliminary knowledge, which is nec-
essary for the solution of the estimation problem, is presgbn

and the corresponding error covariance matrices for preparation. We will show some properties of conditiona
. , distributions of Gaussian random variables, and derive the
Pyjpe—r = El(@r = Zrjpe—1) (+)'[Hi—-1] preliminary MMSE estimator with any type of scheduling

Py = El(zr — &ge) () [ M) strategys.
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Lemma 1:Given the condition: € €, the posteriori distri- the resultant estimation performance is affected by thecigh

bution of the random variable can be determined as follows:ing strategiesFurthermore, letting”, = [fr.1,- - , fr.m] With
flal € Q) = Pr(zleﬂ)f(‘r)’ reQ Sri peing theith columns, and introducing the following
N 0, otherwise hotations -
Lemma 2:Let X, Y andZ be random vectors with a jointly iz‘k D= Dpp—1 + Z Pk‘k,lH,;fk,ibM 9)
Guassian distribution. Assume th&t and Z are mutually i=1
independent. Then, the conditional distribution &f given we have the following results.
Y, Z is with the expectation Theorem 1:Suppose that the predictiofy,;_; and the

> _ 5 _ 5 ding covarianc®,,,_,; are known, and the prior

E[X|Y,Z] = X + Sxy Sy (Y - V) + Sy 8, (7 — z)  corresbon klk—1 @re ' .
[XTY, Z] 2y By )+ Ex2%, ) PDF is given by f(zi|Hr—1) = N(Z_1, Pijr—1). Given

and covariance the scheduling strategy; in (8), the approximate MMSE can

be computed recursively as follows
E[(X - EX|Y, Z])(%)'|Y, Z]

=Tx - IxvEy ' Byx — Exz¥; ax Tk = Thjk—1 + Z'Vk.,ipkw—lH]/gfk,ibk,i
_ _ =1
wherey = E[x], ¥ = E[(x — x)(+)'], and X, ., E[(x1 — m (10)
~ ~\/
X1)(xz = x2)']- _ _ Puk = Poje—1 — Y VkiPojp—1 Hi fri fr i Hi Pji—1
Given the scheduling strategy, the approximate MMSE =1

can be obtained by using the following two-step procedure
Prediction Step. Given the previous estimatiofy, ;) _;
and the corresponding covarian& ,;_,, the linearity of Vkyi = Yy + (1 = 7k,0) (D)

the expectation operator yields that 2
. . P(A;) =1/ =(29(A;) — 1) Ajexp (—A7/2)
Tpp—1 = ArTp_1jp—1 m

Pkt = ApPr 11 4% + Qi ©) Proof: Givep the. past (_Jbservatioﬂk_l, b, obeys thg
. ] ) _ . standard Gaussian distributioi(0, I,, <., ). In the sequel, it
Correction Step: By adopting the Gaussian approximatiors known thatby, ; is independent withb, ;, for i # j, and
f(@rHi—1) = N(Zxjp—1, Prjp—1) @nd exploiting Lemma 2, therefore we have the following equality
it is straightforward to show that
Elbki|Hi—1,le1:m] = Elbk,i| Hr—1, 1k i]

Partition the sebt = {1,2,--- ,;m} into two complement
subsects as follows

where

Tk = Tpjp—1 + Prjp—1 Hy FRE[br| M) (6)
Py = Pujr—1 — Pojp—1 Hy(Hp Pryo—1 Hy, + Ri) ™ Hy Py

+ P HLFRE| (b — Elbu|Ha]) () [ Ha] FLHy Peo
i1 Hi F{ (b = E{bs [P () M FeHi P "o My = {i € My =1}, ME = {i € Ny, = 0}

Obviously, there are two possible statuses forithesubchan-
IV. SCHEDULER-BASED COMMUNICATION nel:

In this section, we will give the approximate MMSE estima- « i € M} There exists communication.
tor with multiple communication channels under the schedul « i € M$: No communication occurs.

based communication. In the following analysis, we will discuss the above cases
separately.
A. MMSE estimator design Case I ¢ € My. Since the subchannel transmits the

current observatiorb, ; accurately, it is trivial to see that

Consider the following scheduling strategies for the respelk.’i — {1, by;} and the conditional expectation becomes

tive subchannels:
S . LA bk = A @® Elbr,i|Hi—1,bk,i] = br,i (11)
©5 Tki= 00, otherwise E[by ;[ He—1,bri] = by (12)

whereA; € R is a nonnegative real number. The scheduler atCase II: ¢ € Mkc. Although no communication occurs, the
each subchannel decides whether the measuretyerghall predefined scheduling rule still sheds some lights on the sta
be sent or not at every stép Specifically, wheny, ; = 1, the estimation by implying the fact thgb, ;| < A;. Therefore,
scheduler allows the transmission &f ;, otherwise, it does we have
not. In this case, the information set contains the inggx B
and transmitted dath, ; as follows: Blbe.i#x) = Elbr,i[Hr—1, lbril < Adl
In view of Lemma 1, it can be derived that

Ebri|Hr—1, [br,i| < A4

Uei = {Vk,is Vi,ibii}-

According to the definitions ofy, ; and Hy, it is easy to see A,
that the available informatiof{, for the estimator is largely = 1 / zfy, (x| Hp_1)dx
dependent on the scheduling strategseswhich implies that Pr(lbr.i| < AilHr-1) J-a, ’
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According to the definition of b;;, we can see Remark 3:A major difference between the scheduler-based
for., (®[Hr—1) = N(0,1), which implies that communication and the packet losses (e.g., [37]) is that
the former gives up transmissions actively according to the

Elbw,i|He—1, bril < Ai] =0 (13) predetermined guideline, while the latter drops transionss
In addition, one has stochastically based on the condition of the network. There
fore, when the signal; ; is dropped because of the packet loss,
E[biﬂ-lﬂkm bk, < Ag] the remote estimator can only run the time update process.
1 Ai ) By contrast, for the scheduler-based communication, efen i
= Pr(fors] < Ai[Hpo1) /Aif ors(@[He-1)dz (14)  the remote estimator does not receive the signals the

implementation of the measurement update process is still
possible since the estimator is aware of the fact| < A;.

( x2> Remark 4:1t is worth pointing out that, when we set
exp

The PDF of the random variablg ; conditioned orfH, is

o i) = 2=

Y A; = 0 for all the subchannels, the inequalitigg ;| > A;

are always fulfilled. According to the scheduling stratedi®),

all the signals are transmitted to the estimator at everp, ste
Pr(|bi| < Ai[Hi_1) = 20(A;) — 1 (15) and_hence the resu_lts in the above theorem will reduce to the
traditional Kalman filter.

Therefore, one has

and
A .
: B. Performance analysis
| e e o | |
—A; The average communication rate of tit subchannel is
/Ai 72 ( xQ)d defined by
= — X —_—— X
_A; V2T P 2 1 X
- 22\ 1A Ay 22 ~; = lim sup N1 Z'y;“- (29)
= ———exp (——> +/ exp <——>dx N=veo +1.=
V2 2 Jl-n; —A; V2T 2 ) o ) _
2A. A2 Corollary 1: Given the estimation algorithm proposed in
=20(A;)—1— \/—2_1 exp (—7> (16) Theorem 1, the average communication rate for ithesub-
7

channel can be computed as follows

Substituting the above inequalities into (14) yields that 5 =2 2B(A), for =1, m (20)

Ebj ;[ Hr—1, |bri| < A
A
Ve

Now, from (6), we have

) Proof: Since the random variablég ; satisfy the standard
20(A;) — 1) Lexp (_ﬂ) (17) Gaussian distributions, it can be verified that

2
E[Vk.,i] = Pr(wm- = 1) = Pr(|b;“| > A”kal) =2 2(I)(Az)

=1

where the first equality is from the scheduling rule (8), and

aje = Exho1 + Y Popo1 Hi fuibra (18) the last equality comes directly from (15). For the statigna
€M variableby, ;, it is obvious thaty; = E[v ;). ]
In order to calculate the covariandg; in (7), by noting The iteration equation of the MMSE estimator in (10) is
that definition ofgi:;;“C in (9), one can derive that stochastic because of the randomness of the indicater
, , ) For the sake of evaluating the effect of the thresholds on
Pyjy—1 Hi FRE[(bk — E[bi[Hee]) (+)' | i Fy Hie Py -1 estimation performance, it is necessary to investigate the
= E[(Zpx — f;‘k)(*)’mk_l,bk] average covariance reduction per correction step as feilow
which yields that 0Py = E[Prr—1 — Ppil (21)
E[(Zr — SAUZ\;C)(*)/kala by] Corollary 2: At each step, the average covariance reduction
, / (21) is monotonically decreasing with respect to the thokh
= ]EK > Pk\klekfk,ibk,i) ( *) ‘Hk—ubk] Proof: First, one has from (10) that
ieMy m
To this end, we have 0P, = ZE[Vk,i]Pklk—lHl/cfk,ifllc,inPk\k—l (22)
=1
A, Ak !/
E[(Zx — xk\k)(*) H] Notice thatvy,; = vk + (1 — v&,:)1(4;) is a stochastic
= ]E{E[(j;klk — jz‘k)(*)’|’}{k717 bk]"}-[k717 lk.l:m} scalar at each stef, and its average can be calculated by
= Z Py Hy fr i BI07 i H—1, Uil £ s Hi Py h(Ai) = Elvp]
iEME =Pr(vk,; = 1) + Pr(vk,: = 0)9(Ay)
2
which, together with (17), leads to the main result presente =2 2B(A;) + 24 exp <_ﬂ)
in this theorem, and the proof is complete. [ | V2r 2
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Taking derivative to the both sides of such an equality with Introduce a scalawz > 0, which can be obtained by solving

respect tar gives rise to the following optimization problem as [37]
i 2 2 v =arginf{3X > 0|X > AXA +
aam = -2 —exp(—5) <0 syt | N (24)
z V2 2 —VAXC'(CXC'+ R)"'CX A"}

where the equality is achieved only when= 0. Therefore, sypsequently, the following corollary sheds light on how to
E[v,:] is a monotonically decreasing functiondy; > 0. B get the communication rate to guarantee the boundedness of
As for thetime-invariantsystems, we would like to estab-the covariance matri®;.
lish a relationship revealing how the selection of thredbol Corollary 4: Suppose thatA, C) is observable(A,Q%) is
influences boundedness of the proposed remote estimag@htrollable, andd is unstable. Then, the following hold:
For stochastic matrix sequen¢®;, }.cn, the boundedness of 1) Let A — = 1(#). The stochastic covariance sequence
Py is usually investigated in the mean sense, such as [37]. * 5 pounded (i.e.suppey P < +o0) if and only if the
Note however that even ifup,eyE[F] < +oo, we still average sensor-to-estimator communication rate satisfied
cannot assert tha®, is bounded for every single sample path. 5; > ¢, wheres¢ is the critical value defined as
Therefore, it is necessary to evaluate the evolution ptazser ! ! _
of P, in the rest of this subsection. 35 =2—-2P(A)
To facilitate the following analysis, it is assumed that all 2)

. . . If 4%, > ~¢ when time tends to infinity, the error
the thresholds are identical, i.e., Vi i y

covariance are bounded by

Al=-=A,=A>0 X < lim P, <X
- k—oc0

Introduce a set ofn dimension column vectors ag, =
Voo vkml's $(A) = [B(A),- %), and 1 =
[1,---,1]. Moreover, let us denote a simplified notation
Py, := Py,—1 and define the evolution equation of the one-step X =6(1,X), X =G((A),X).
prediction error covariance by using the modified algebraic
Riccati equation (MARE) as follows:

where two positive definite matrice¥ and X are the
solutions of the respective MARESs as follows

Proof: Since the lower bound’;,; equals to the predic-
tion error covariance of the Kalman filter, by the obsenigbil

Pii1 = G(vg, Py) and controllability of the system, it is not hard to verifyath
m limg_, o, X = X. On the other hand, according to (24), we
= APA +Q — ZukyiAPkC’fkyif,'c_iCPkA’ conclude that the upper bound is convergent if and only if
i=1 ' Y(A) > . In the proof of Theorem 1, it can be seen that
Now, we can give the bounds of the stochastic covariance 1 A2 72
Py in the following corollary. P(A) =1- 20(A) — /A \/— (_7)(15”
Corollary 3: The upper and lower bounds of the one-step , .
prediction error covarianc, are given by Keeping in_ mind  that  both ®(A)  and
_ _A%exp( )da: are increasing inA, we have that
X < P < Xy (23) y(A)isa decreasmg function ins with the Iargest threshold
ensuring the convergence of MARE ds = ¥ ~1(¥), which
where X, and X, are positive definite matrices satisfying th&nds the proof. -
following respective MAREs It is important to remark that, compared to the Kalman
o - - filter, the covariance sequendd’,} will not converge to a
i =G, Xi—1), Xi = G(¥(A), K1) fixed point, and it still shows tﬁe ti}me—varying propertiege
with the initial valuesX, = X = Pp. when time trends to infinity. That is because such a sequence
Proof: From the definition of, ; in Theorem 1, one has depends heavily on the stochastic variablg. Fortunately, if
W(A) < v < 1, Yk € N. Obviously, the communication rate is larger than the critical valuegiin
' above theorem, the limit of the covariangg will be always
G(1,X0) < G(vo, Po) <G((A), Xo) bounded by two positive definite matricés and X.
Assume, inductively, that the inequalitie§, < P, < X V. EXTENSION TO SINGLE BIT COMMUNICATION

are fulfiled at the stepk. Utilizing the properties of the

In this section, we would like to further condense the
MARE, we have

information set available to the remote estimator by emiplpy
G(vi, Pr) < G(p(A), Py) < G(w(A), Xy new scheduling strategies

o = / 1, if by, €8
which indicates tha;,,; < X;.:. In analogy to the above St Vi = {07 otherwise (25)
procedure, we can show that the inequality,; < P, also _

holds. The inductive hypothesis implies that the ineqigalit where the interval), = (A;, A;) is with the extreme points
(23) are always true. B A, € RandA; € R. When ki = 1, the sensor sends a
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single bit packet to inform the remote estimator, otherpise with the conditional expectation of the quadratic term, and
will not. Therefore, the information set is described by have

ki = { kit E[bF ;| Hr—1, bk € ]
A;
Compared with the scheduling strategies (8), under such  — L / & for . (#|Hi-1)
strategies, there is no need to provige; for the estimator Pr(bgi € Qi[Hp-1) A, ’
when~;, ; = 1, and therefore the network traffic can be greatly =1— (ﬂ,“- — Oéi Z.) (28)

reduced. However, the problem now is more complicated

due to the fact that the estimator cannot access to the exadtase II: Fori € M{, we understand,. ; ¢ ;. Therefore,

observation data any mor&ortunately, we could still use it can be seen that

the technique developed previously to obtain the following

MMSE. E[bk,i|Hr—1,lki] = Elbr,i|Hr—1,bki ¢ Qi
Theorem 2:Suppose that the predictidn,;,—; and the cor-

responding covariancey,;_, are known, and the prior PDF

is f(zr|Hr—1) = N(&gjk—1, Prje—1). Given the scheduling E[bg.i| Hr—1, bri ¢ Q]

strategyS! in (25), the approximate MMSE can be computed

Along the procedure of Case |, we have

. 1 1 A
recursively as follows - _ / zexp(—a2/2
B 1—@@J—M@DV%<w e
Thlk = Thlh—1 + Z%Pklk—lﬂzifk-,i + /_ xexp(—x2/2)) = ap. (29)
1;1 (26) Ay
Py = Prjp—1 — Zﬂk,ipk\k—lH];fk,ifl/c,inPMk—l and
1=1

E[b7 i[Hr—1, b1, ¢ Qi
where 1

2
Pr(by,i ¢ Qi|Hk-1) /zezm 2 for, (M1 )dx

1 h(vei)(ex ALy _ ex A
i — (Vi) (exp(=F) — exp(=F)) 1= (Bui—ad) (30)
V271 1 =i + b)) (P(A ) (4,)) ’
1 () (D exp( A ) A, exp(_%?)) Substituting (27) and (29) into (6), we have the propagation
Br,i =y, + — of 2y, as shown in Theorem 2. Furthermore, t) = Ok 4
VET 1= + () (B(A) — B(4,) . o) me € ’
Vi e My, anda; ’ = ay4, Vi € My . Combining (6) and (9)
and yields
o 17 if Vk,i = 1 . . ~
hivw.i) = { —1, otherwise xZ\k — Trlk = Z Pk|k—1H1;fk,z'(bk.,i - 041('1))
€My
Proof: Partitioning the sedt = {1,2,--- ,m} into two + Z Pajp—1 Hj s (b — d(_O))
complement subsects e MC ’ !
? k
My, = {i € Ny =1}, MY = {i € M|y =0}, Here, we can partitio[(&y, — &7,) (+)'[Hk—1, lk,1:m] into

. o four terms, namely,
we discuss the individual cases as follows.

Case  Fori € My, it indicatesby, ; € Q;, so we have the E[(Zx, — @) (+)' [Hi—1, Ik, 1:m] = B11 + Biz + By + B

equality o
Elbk,i|Hi—1,lki] = Elbki|Hi—1,bk,i € ] where
According to Lemma 1, an explicit expression of the condig,, —F | ( Z Pyjp—1 H, fro,i(brei — GO ()| Hers 1 1om
tional expectation can be calculated as follows A . ; |
Pl b B, =E [( ST Pt Hy fri(bri — &)
1 ieM
Pr(by,i € Qi[Hi-1) /zeszi @ for. i (2| Hpe—1)da O
1 A 1 22 X ( Z Pk|k*1Hl/cfk,i(bk,i _ O~41(- )))/ Hk—lalk,l;m
oA vexp(—7)dr = axi (27) e
P(A;) — P(A:) /Ai Vor ( ) ) k, hie

where the last equality can be obtained directly by computifB22 =E | ( Z Prjo—1 Hy, fr,i(br,i — &) () | Ham 1, o
the integral term[ x exp(—2?/2)dx. Likewise, we can deal ieM¢
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Since by, ; are mutually independent, and the scalé&é) Remark 7:In this paper, the plant under consideration is
and @'” are deterministic, recalling (27) and (29), it is no@ time-varying system, where the measurement model is a
hard to verify thatB,, = 0, delay-free model. Nevertheless, our proposed method can

, , be extended to the scheduler-based state estimation proble
B = Z Prejr—1 Hi, Frei Fe,i Hi Prjr—1 subject to measurement delays by using the measurement re-
ieMy organization method [27].

x E {(bk,i - 5@(»1))2|7'lk—1, lk,l:m} (32)
VI. NUMERICAL STUDIES

and : . . . .
In this section, we present the simulation results to védida
Boog = Z Pk|k,1H,;fk,if,;7inPk|k,1 the proposed scheduler-based remote estimation algaithm
iEME The linear time-varying system under consideration in (1)
< E {(bm _ dEO))QIHk_h lk,l:m} (33) is with the transition matrix
0.9+ 0.2cos(0.2k) 0.21 0
By combining (27)-(30), (32), and (33), one can computel;, = 0 0.9 0.5
(31). Moreover, we substitute (31) into (7), and eventually 0 0  0.98+0.1sin(0.3k)
have the result of%,,, Whlc_h ends the proof. “®d the measurement matrix
Now, the average covariance reduction per correction step )
is described by H, = { 24 0.5sin(0.2k) 3 1
m 1 0 0.98+0.25cos(0.31k)
0P, = Z ]E[ﬁk,i]Pk\kqH;'cfk,if;'c,inPk|k71 (34) The covariances of the process noise and measurement noise
i=1 are given by@Q = 0.2I3x3 and R = 0.2159, respectively.
Obviously, The initial valuez, is a Gaussian random vector with mean
5 [1;1;1] and covariancé 5y ;.
1 (exp(—é§/2)—exp(—ﬁf/2)) From Theorems 1-2, it can be found th@P .} is in
E[Bk.,i] fact a stochastic sequence due to the randomness of the

27 (@(Az‘) - ‘I’(éi)) (1 — (@A) — ‘I’(éi))) indicators~;; in the MARESs (10) and (26). To numerically
¢gmpute the expectatiofi[(F )], we conduct the Monte
Carlo simulations with1,000 repeated trials. The simula-
tion results are depicted in Fig. 3, where the evolutionary
_ trajectories ofE[tr(Fy)] under two strategiesS; and S;

Q7 = (A7, A}) =arg sup E[Bk,] are compared. Additionally, the variance of the Kalmanffilte
A, A without communication scheduling is presented as a bench-
whose numerical solutions can be easily computed by utiizi mark. We can see that the estimation error covariance of the

MATLAB as A? = 0, and A} = oo. Substituting these Proposed strategies, i.&[tr(Py )], is always larger than the
values into (26), one has, ; = h(vx.:)\/2/m andBy.; = 2/. optimal oneP,f‘(kF from the Kalman filter. For the single-trial
For the scalar measurement case, ie= 1, the proposed tracking performance, the actual states= [x,1, Tk 2, %3]
MMSE estimator with)* shares the same form as SOI-KF irand the corresponding estimates are given in Fig. 4, which
[34] indicating that making decisions based on the sign ef tfimplies that the scheduler-based estimator performs weell t
innovation sequence is indeed the best strategy. estimate the system statéBhe average communication rate
Remark 5:The above result is interesting from a practicaj: and its empirical value under the strateg@&sare shown
point of view, since it explicitly gives a clue on how to im-in Fig. 5, which indicates that the two values fit quite well
plement the modified Kalman filter according to the indicatowhen the threshold\ is small. With the increase o\, the
from the subchannels. For vector measurements, the itelsati Gaussian approximation becomes inaccurate, and thus a gap
quantized Kalman filter (IQKF) has been proposed to compuagpears. We finally consider the influence of the thresholds
MMSE with single bit transmissions in [28]. However, thed; = Az = A on the performance of the remote estimator
IQKF needs to iteraten times so as to give the final estimateunder strategies (8) in Fig. 6. AA — 0, the gap between
at each step. In contrast, our method does not need muyiti-sttr(Px)] and tr(P/") narrows, and, eventually, it has

To maximization the average correction, it is necessary
choose the optimal intervdl; by considering the following
optimization problem

iteration at each step, and hence is more efficient. E[tr(Prx)] = tr(P,fl(kF) whenA = 0.
Remark 6:An intriguing observation of Theorems 1-2 re-
veals that the proposed estimator owns the merits of high flex VIl. CONCLUSION

bility. Communication schedulers implemented in subclesIn - This paper has investigated the remote estimation problem
can choose strategies with different thresholds accortng o inear time-varying systems under constrained network
their available channel resources. Additionally, mixteteate- | osources. The communication network is composed of a
gies containing bott§; andS; among subchannels can be alsget of parallel and independent subchannels, which transmi
employed. To obtain the corresponding MMSE, the only thinge vector input in a componentwise manner. Schedulers are
we need to do is simply revising the update from the specifig,slemented in every subchannel to help reducing the com-
channel in the iteration afy; and Py munication rate. We aim to design the MMSE estimator which
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Fig. 3. Expectation of the variances of the remote estirsatdth different Fig. 5. Compare the theoretical communication rafewith its empirical
scheduling strategieS; and S;. Kalman Filter is presented as a benchmarkvalue obtained by averaging 1,000 Monte Carlo simulations.
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Fig. 4. Tracking performance of the remote estimator witfiecint the The expectations are obtained by averaging 1,000 Monteo Garlulations.

scheduling strategieS; andS! in a single-trial experiment. Kalman Filter is
presented as a benchmarkh (= Az =1 andQ; = Q2 = [0, 10])

transmission behaviors of distributed state estimatiemaore
complicated as compared with the non-distributed case. The
utilizes the scheduled signals from each subchannel uhder ¢orresponding estimator structure and scheduling siestege
predetermined scheduling strategies. The high computtioquite distinguished from those proposed in this paper. One
cost inherent to handling the scheduling process motivaigiSour future research topics is to study the schedulerébase
an approximate MMSE as an alternative. We have maded@tributed state estimation problem over sensor networks
Gaussian assumption on the prior PDF of the prediction so as
to obtain the approximate MMSE in a linear recursive form.
Two sphedull_ng policies haye been_ taken into _cqn5|derat|o'&|' Proof of Lemma 1
wherein the first one transmits the signals when it is necgssa
and the second one further condenses the signals to be Proof: Using Bayes’ rules, one has

APPENDIX

transmitted into a single bit variable. Finally, the effeehess Pr(z € Q|z)

of the proposed algorithms has been validated by a numerical flzlr € Q) = mf(x) (35)
example.lt should be pointed out that the estimation method )

developed in this paper is inapplicable to the schedulsetha Moreover, it can be seen that

distributed state estimation problem over sensor netwditkg p Olz) — 1 zeQ 36
main challenge of such an issue lines in the fact that theakign r(e € Qlz) = 0 otherwise (36)
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which yields the results presented in this Lemma.

B. Proof of Lemma 2

[14]

N . — - 15
Proof: Let Y = [Y7 ZT]T andY = [Y7T ZT}T [l
where Y and Z represent the expectations &f and Z,
respectively. Then, according to the results in [1], it isyeto [16]
conclude that
— - -1 — ~
EX|Y]=X+ EX?EY/ Y -Y) 37)
¥ ¥ — 17
E[(X — E[X|[7])(+)|7] = Bx — S4p 5 Sy 1
Noting that
by 0
Sy = Exy Exzl], Zp = [ OY Ez} ; (18]
it follows from (37) that
E(X|Y] =X + SxyS (Y - V) +Ex28,0 (2 - 2) 19
E[(X —E[X|Y])(*)]Y] = x — SxyZy Sy x S
—Yxz5,'Yrx
(38) [21]
which yields the results presented in Lemma 2. [ |
[22]
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