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Abstract

Additive manufacturing (AM) is a popular manufacturing technique which is broadly exploited in rapid prototyping and

fabricating components with complex geometries. To ensure the stability of the AM process, it is of critical importance to obtain

high-quality thermal images by using image processing techniques. In this paper, a novel image processing method is put forward

with aim to improve the contrast ratio of the thermal images for image segmentation. To be specific, an image-enhancement

generative adversarial network (IEGAN) is developed, where a new objective function is designed for the training process. To

verify the superiority and feasibility of the proposed IEGAN, the thermal images captured from an AM process are utilized for

image segmentation. Experiment results demonstrate that the developed IEGAN outperforms the original GAN in improving the

contrast ratio of the thermal images.

Index Terms

Additive manufacturing, generative adversarial network, defect detection, image processing, image segmentation, thermal

image.

I. I NTRODUCTION

The past few years have witnessed the rapid development of the additive manufacturing (AM) technologies [1]. Owing to

their strong capabilities of manufacturing or replacing customized components that exhibit complex geometry and structure,

the AM technologies have been successfully applied to various areas which include, but are not limited to, aerospace industry,

healthcare sector and automotive engineering [2]. The AM technologies enable the rapid manufacturing of metal components

with complicated geometries which are difficult or even impossible to be built by using the traditional manufacturing methods,

such as the high added-value components and lightweight components. It should be pointed out that the AM approaches are

more efficient and cheaper than traditional manufacturing methods in numerous applications from prototypes to fabricated

products with complex geometries and structures.

The directed energy deposition (DED) method is a popular AM technique, which utilizes high-power energy sources (such

as laser or wire-arc) to create amelt pool (i.e., the region of molten metal) on the surface of a substrate where the metal powder

is deposited to form the desired geometry [1]. The melt pool is highly related to the solidification of the component, which

indicates that the morphology of the melt pool plays an important role in reflecting the geometric integrity, microstructure
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and mechanical properties of fabricated components [3]. Therefore, it is of practical significance to monitor the melt pool

morphology in the AM processes. In general, thermal imagingcameras are employed in the DED-based AM processes to

capture the thermal images of the melt pool. Recently, the investigation of the melt pool morphology has attracted enormous

interests in both academic and industrial communities [4]–[8]. For example, the control problem of the melt pool size has been

studied in [4] to understand the transient changes during the AM process. In [7], a self-consistent model has been developed to

simulate the heat transfer and fluid flow in the melt pool during the AM process. In addition, a two-dimensional cross-sectional

model has been developed in [8] to analyze the melt pool spreading issue during the laser solid forming process.

Notice that the melt pool may splash, shrink as well as elongate, and thus becomes unstable according to the complex thermal

environment during the AM process. It is therefore difficultto build a satisfactory model to simulate the morphology of the

melt pool [3]. It is well known that the thermal imaging system is a popular technique in measuring the melt pool dimension.

For example, the infrared thermal imaging technique has been utilized in [5] for analyzing the dimension of the melt poolin the

selective laser melting process. To further study the morphology of the melt pool, image segmentation methods are employed

to extract the shape of the melt pool in the thermal images. The thresholding-based methods are popular image segmentation

methods due to the advantages of fast processing speed and relatively small storage space. As a typical class of thresholding-

based methods, the so-called bi-level thresholding-basedmethods partition the background and the target object according to

the threshold [9]. Thus, the selection of a suitable threshold plays an essential role in image segmentation, especially when

dealing with the images corrupted by the blurring effect andnoise [10].

Owing to the rapid development of artificial intelligence, the popular machine learning technique seems to be an appropriate

option for image segmentation so as to quantify the morphology of the melt pool [6], [11]. In [6], a spatial reconstruction

methodology has been developed to analyze thermal images for process monitoring and control of the AM process. Very

recently, a data-driven predictive melt pool model has beenestablished in [11] to control the melt pool variation for the laser

powder bed fusion AM process.

Served as a powerful family of machine learning techniques,the deep learning techniques have been successfully applied to

a variety of research areas, such as image processing, signal processing, telecommunication and so on. Particularly, the deep

leaning techniques have been widely exploited in image segmentation owing to their strong ability in feature extraction [12].

Although deep learning algorithms have proven to be effective in dealing with image segmentation tasks, there are stillsome

challenging problems to be considered: 1) the deep leaning techniques require “effective data” for the model training;and 2)

the data collection is expensive and time-consuming.

To tackle the above-mentioned challenges, the generative adversarial network (GAN) seems to be a proper candidate due

to its strong abilities in data generation and feature extraction [13]. In recent years, the GANs have been extensively applied

to a great variety of real-world applications, and some representative examples include data generation, image in-painting,

image translation, image synthesis, and image super-resolution [14]. It is worth mentioning that GANs have been successfully

exploited in image translation of thermal images thanks to their strong learning and pattern recognition abilities. Motivated by

the above discussions, we endeavor to put forward a GAN-based image processing approach for segmenting the thermal images

obtained during an AM process. In this regard, a target-driven model is developed by designing a new objective function for

training the GAN, which has the capability of improving the contrast ratio of the input images.

To sum up, the purpose of this paper is to develop a GAN-based image processing method with hope to segment the

thermal images and extract the shape of the melt pool. The contributions of this paper can be outlined as follows: 1) an image

enhancement GAN (IEGAN) is developed and utilized for segmenting the thermal images captured from an AM process for

the first time; 2) a novel objective function of the IEGAN is designed with the purpose of improving the contrast ratio of

the image; and 3) the performance of the IEGAN algorithm is comprehensively evaluated and employed in thermal imaging
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analysis. Experiment results show that the IEGAN outperforms the original GAN, thereby benefiting the feature extraction.

By using the IEGAN-based image processing method to analyzethe thermal images, the shape of the melt pool is extracted,

which would help quantify and characterize the morphology of melt pool.

The remaining part of this paper is organized as follows. Section II describes the background of the AM process, the

DED technologies and thermal imaging analysis. In Section III, the basic knowledge of the original GAN is provided, and

the proposed IEGAN is introduced with details. In Section IV, data pre-processing, experiment results and discussionsare

outlined. Finally, conclusions are drawn and future research topics are presented in Section V.

II. BACKGROUND

With the purpose of fabricating certified components with satisfactory quality, it is of vital importance to implement the

online monitoring of the welding process. Normally, the thermal cameras are used to monitor the welding process during a

DED-based AM process. In this context, the morphology of themelt pool is investigated by segmenting the acquired thermal

images. In this section, we first review the background of theAM process and the DED technology. Then, we discuss the

online monitoring of the welding process by using the thermal imaging cameras.

A. AM Process and DED Technologies

During the past few decades, the AM processes have received an ever-increasing interest from various communities, suchas

manufacturing, electrical engineering, medical science,and so on [2], [7]. The AM processes have been successfully applied

to produce components with complex geometries and structures. Among the AM processes, the DED technologies have been

widely utilized in producing customized components and repairing components with complex structures [1]. Notice thata

variety of complicated phenomena, e.g., thermal conduction, the absorption of the laser radiation in the substrate, and the

solidification of the melt pool, would occur in the DED process [2].

The components fabricated by using the DED-based AM processes have the problem of poor quality, which indicates that the

components are likely to have cracks, porosity, layer delamination and other defects [15]. In this context, there is a fundamental

need to guarantee the quality and repeatability of the fabricated components, especially for industries that require certification

constraints, such as aerospace, instrument engineering, and medical. Generally, the process monitoring is implemented to

enhance the stability and robustness of the AM processes. Moreover, the process data analysis is employed to detect the

defects and predict the process errors. In recent years, a vast body of work has been presented to develop online monitoring

and defect detection methods [2].

B. Thermal Imaging Analysis

Nowadays, the thermal imaging technique has been extensively exploited in quality monitoring and non-destructive testing

thanks to the rapid development of computer science, imaging, electrical and electronic techniques [16]. The thermal imaging

technique has proven to be effective in studying the thermalproperties of the target. It is worth pointing out that the DED

technologies require relatively high energy to melt and fuse the metal powder material on the substrate. A challenging problem

of the AM process by using the DED technologies is to avoid themelt pool instability which may be caused by the material

spattering and the material evaporation from the melted area [11], [15]. To overcome the melt pool instability problem,the

online monitoring of the melt pool by using the thermal imaging cameras has been exploited as a quality measurement method

to ensure the stability of the AM process and produce certified components.

Note that the geometry of the melt pool has been recognized asan important quality measure. As such, the morphology

(e.g. shape and size) of the melt pool has been widely investigated so as to determine the surface roughness and other defects



FINAL VERSION 4

of the fabricated components. The infrared thermal imagingcameras are normally utilized to quantitatively investigate the

morphology of the melt pool and observe the spattering phenomenon [2]. Each thermal image reflects the temperature of the

melt pool area. The shapes of the melt pool are different due to the complex heat environment. Hence, it is almost impossible

to manually categorize the melt pool images with satisfactory accuracy. A potential solution is to apply the machine learning

techniques for feature extraction and image segmentation of the melt pool. In this paper, a GAN-based image processing

method is established to improve the contrast ratio of the acquired thermal images for image segmentation.

III. G ENERATIVE ADVERSARIAL NETWORKS

In this section, the background of the GAN is presented, and the development of various GANs is reviewed. To detect the

melt pool in the thermal images, an IEGAN is put forward wherea penalty term is added in the objective function with hope

to enhance the contrast ratio of the image. Both frameworks of the original GAN and the developed IEGAN are provided.

A. Development of GANs

In the past few years, the GAN has become one of the most popular deep learning techniques in the computer science

and manufacturing societies. Owing to their distinctive merits in data generation and feature extraction, the GANs have been

successfully applied to computer vision, industrial maintenance, image processing, and speech recognition.

A GAN is composed of two networks, which are the generative network, and the discriminative network [13]. The generative

network as well as the discriminative network are also called as the generator and the discriminator, respectively. It is worth

pointing out that both the generator and the discriminator are trained in an adversarial learning manner.

The training process of the original GAN is to train a discriminator and a generator simultaneously. Notice that the purpose

of the discriminator is to distinguish between real samplesand generatedfake samples. The generator tries to generate fake

samplesas real as possible to “cheat” the discriminator. The framework of the originalGAN is depicted in Fig. 1.

D

Generated data
Random noise

G

Real data

Real or

Generated

Fig. 1. The architecture of the original GAN (G is the generator; D is the discriminator)

So far, tremendous efforts have been devoted to developing various GANs with hope to improve the generalization perfor-

mance of the original GAN [13], [14], [17]–[20]. The GAN variants can be briefly categorized into the following two aspects:

1) GANs with modified network architectures; and 2) GANs withtask-oriented objective functions.

Up to now, some GANs have been focused on modifying the network architecture, for example, the deep convolutional GAN

has been proposed in [19] by employing the convolutional neural networks (CNNs) as the generator and the discriminator.

Unfortunately, a traditional CNN has the limitation that itcan only capture the local spatial information, and this leads to the

difficulty in dealing with multi-class images. To overcome this difficulty, the self-attention GAN has been introduced in [20]

by utilizing an attention-driven framework for image generation. It is worth mentioning that the stacked GAN has been put

forward in [14] where a series of GANs have been stacked in a top-down manner. The stacked GAN demonstrates that the

quality of the generated images is much better than that of the original GAN.
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On the other hand, an ever-increasing research interest hasbeen attracted to design new loss functions of the GANs in order

to improve the stability during the learning process. For instance, the mode regularized GAN has been put forward where a

metric regularization has been introduced to penalize missing modes, which has been employed to solve the mode collapse

problem [18]. The least squares GAN has been proposed where the least squares loss function has been designed for the

discriminator to remedy the vanishing gradients problem during the training process [13]. In addition, the Wasserstein GAN

has been introduced in [17] where the Wasserstein distance has been used to design the loss function. The Wasserstein GAN

improves the learning stability by comparing with the original GAN.

B. The Structure of the IEGAN

In this paper, we aim to put forward a novel IEGAN with application in thermal imaging analysis. To achieve the target of

detecting the melt pool in the thermal images, the developedIEGAN is exploited for image segmentation. It should be noted

that the proposed IEGAN is a variant of the original GAN, which focuses on the design of new objective function. To be

specific, a penalty term is introduced in the designed objective function to improve the contrast ratio of the thermal image for

image segmentation.

The network architecture of the IEGAN is the same as the original GAN. The IEGAN consists of one generator and one

discriminator. The architecture of the IEGAN is shown in Fig. 2.

Generator

Discriminator

Training set

(reference image)

Reconstructed image

Real

Fake

Thermal image

Fig. 2. The architecture of the IEGAN

Notice that the purpose of the generator in the IEGAN is to generate “high quality” images which are the improved thermal

images with an enhanced contrast ratio. Different from the original GAN, the input of the generator in the IEGAN is the

thermal image (raw data captured by the thermal imaging camera). The output of the generator is the improved thermal image.

The discriminator aims to distinguish the generated image and the real image. In this paper, the real image is also calledas

the reference image, which is the pre-processed thermal image by using the pre-processing method proposed in [21].

C. The Objective Function of the IEGAN

In the original GAN, the optimization of the generator and the discriminator for an image processing task is a two-player

minimax game with the following objective function:

min
G

max
D

J(G,D) = Ex∼Preal(x)[logD(x)]

+ Ez∼Pz(z)[log(1−D(G(z)))]
(1)

wherex represents the reference image;z is the raw image;G(z) is the output image of the generator;D(·) stands for the

output of the discriminator;Preal andPz represent the distribution of the pixel values in the reference image and that in the

raw image, respectively.
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In our work, we aim to improve the contrast ratio of the thermal images to further extract the shape of the melt pool through

the DED process. In this context, a penalty term is introduced in the objective function of the IEGAN for image enhancement.

The objective function of the IEGAN is shown in Eq. (2):

JIEGAN(G,D) = J(G,D) + Jpenalty(G) (2)

whereJ(G,D) is the objective function of the original GAN which is provided in Eq. (2),Jpenalty(G) is the penalty term

shown in Eq. (3).

To facilitate the requirement of image enhancement, a penalty term Jpenalty(G) is introduced in Eq. (3):

Jpenalty(G) = λ expα|G(z)−z| (3)

whereλ andα denote the penalty factors which are two manually selected constant values according to experience;z is the

thermal image;G(z) represents the output image of the generator.

Intuitively, the penalty term is designed to improve the contrast ratio of the image, which should have the properties of

monotonically increasing and differentiable. The first property could enlarge the difference between the generated image and the

raw image, which benefits the binarization process for imagesegmentation. Therefore, a monotonically increasing function is a

suitable choice. The second property is determined according to the utilization of the stochastic gradient descent optimization

algorithm for training the GAN. Motivated by the above discussions, the exponential function is an appropriate choice due to

its characteristics: 1) the exponential function is monotonically increasing; and 2) the exponential function is differentiable and

smooth.

Remark 1: A practical problem is to choose suitable values of the penalty factors (λ andα). λ is an intensity factor that

limits the penalty term.α is the parameter which represents the steepness of the curve. Both λ andα are selected according

to experimental experience.

D. The Training Procedure of the IEGAN

In our work, the data pre-processing process is implementedto provide the data set, which is presented in the next section.

Here, we discuss about the training process of the IEGAN algorithm, which is demonstrated in Algorithm 1. It should be

noticed that the input of the generator is the raw image captured by the thermal camera. The input of the discriminator is

composed of the output of the generator and the corresponding reference image (i.e. the pre-processed raw image). One thermal

image and its pre-processed image form a pair of data. Detailed information of the data utilized in this paper is presented in

Sec. IV.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, the proposed IEGAN is applied to deal with the thermal images captured through the welding process by

using the DED-based AM technology. The background information of the thermal images and the data pre-processing process

are discussed. The performance of the IEGAN is evaluated by comparing with the original GAN. All the experiments are

conducted by using MATLAB software with the version of2015b on a PC with the Intel Corei7− 4590 3.30 GHz CPU. The

operating system of the PC is Microsoft Windows10.

A. Thermal Images

The data is collected during an AM process by using the DED approach where the thermal imaging camera is implemented

to monitor the welding process. The data set includes 24977 thermal images. The dimension of each image is a128 × 128

matrix. Here, eight thermal images obtained through the welding process are displayed in Fig. 3.
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Algorithm 1 Training Process of the IEGAN Algorithm
Require: Set up the mini-batch sizem, the maximum number of epochk, the penalty factorsλ andα.

Require: Initialize the weights of the networksθg andθd.

for epoch number =1 : k do

Randomly selectm raw images{z1, · · · , zm} from the raw image dataset.

Selectm corresponding reference images{x1, · · · , xm} from the pre-processed dataset.

Update the discriminator by ascending the stochastic gradient:

∇θd
1
m

∑m

i=1

[

logD(xi) + log(1 −D(G(zi)))
]

.

Selectm raw images{z1, · · · , zm} from the raw image dataset.

Update the generator by descending the stochastic gradient:

∇θg
1
m

∑m

i=1

[

log(1−D(G(zi))) + λ expα|G(zi)−zi|
]

.

end for

Fig. 3. Thermal images obtained through the welding process

The acquired thermal images contain three parts, namely, the background, the melt pool and the tail. Detailed information

of the melt pool can be seen in [2]–[6]. The characteristic ofthe thermal images is different from the optical images. In the

thermal images, the intensity of the pixel value reflects thetemperature of that pixel. Normally, the larger the pixel value, the

higher the temperature at that point. The difference between the pixel value of the current melting points and that of thenearby

points is not large, which indicates that it is difficult to find an appropriate threshold to further segment the melt pool.

B. Data Pre-processing

In this paper, data pre-processing is required to produce data with high quality and guarantee the training performance of the

GANs. The acquired thermal image is transferred to the gray image because the color does not contain much more information

than the gray image. The thermal images used for training andtesting the GANs are shown in Fig. 4. It should be mentioned

that the pixel value of the gray image is in the range of[0, 255].

Note that the training dataset of the discriminator includes the raw thermal image and its corresponding reference image. In

the experiment, an automatic image processing algorithm, the so-called average threshold scanning (ATS) algorithm, developed

in [21] is utilized to pre-process the thermal image, and theoutput image is the corresponding reference image of the thermal

image. The advantages of the ATS algorithm can be summarisedinto three aspects: 1) easy implementation; 2) low memory

requirement; and 3) relatively fast computation speed.
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Fig. 4. Thermal images used in the experiment

To overcome the data imbalance problem, data augmentation is employed in the training process of the GANs. To be specific,

the mirroring and flipping methods are used to provide effective training data. As such, a large number of effective training

images and their corresponding reference images (also known as the real images) are generated.

C. Parameter Setting

In the experiment, 479 images captured at the beginning and ending stages of the AM process are removed from the

database due to low image quality. 22000 images are randomlyselected from the rest 24000 thermal images as the database.

In the experiment, 11000 images are randomly chosen from thedatabase as the testing dataset to evaluate the performance

of the GANs. Data augmentation is employed to the other 11000images so as to improve the diversity of data. After data

augmentation, the total number of images that are used for training is 44000. All the pixel values of the thermal images used in

the training and testing processes are normalized in the range of [0, 1]. The “Leaky ReLU” function is selected as the activation

function for both the GAN and the IEGAN. The parameter settings of the networks are given in Table I.

TABLE I

CONFIGURATION OF THEIEGAN AND THE ORIGINAL GAN

Parameter GAN IEGAN

Learning rate 0.001 0.001

Mini-batch size 100 100

Maximum Epoch 200 30

Generator: Number of hidden layers 6 6

Generator: Number of units in each hidden layer [100 80 64 128640 100] [100 80 64 128 640 100]

Discriminator: Number of hidden layers 2 2

Discriminator: Number of units in each hidden layer [100 110] [100 110]

The contrast improvement index (CII) is utilized as the indicator to evaluate the performance of the proposed IEGAN. CII

is calculated as follows:

CII =
Cnew

Craw

(4)

whereCnew is the contrast ratio of the melt pool in the new image generated by the GANs;Craw represents the contrast ratio

of the raw image. The contrast ratioC of the melt pool is defined by:

C =
Ia − Ib

Ia + Ib
(5)
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whereIa andIb denote the mean gray-level values of the foreground and thatof the background, respectively.

D. Results

In the experiment, the thermal images are pre-processed to obtain the reference images. It should be noted that the performance

of the discriminator must be better than the performance of the generator so as to guarantee the effectiveness of the training

process. In this case, the discriminator is trained first in the experiment. The procedure of the developed IEGAN-based image

processing method is given in Fig. 5.

Data Pre-processing

Start

Parameter initialization and

network set up

Train the IEGAN

Stop ?

Test the IEGAN

Training images

(raw images and reference images)

Y

N

Train D

networks

Train G

networks

End

Post-processing

Fig. 5. Flowchart of the GAN-based image processing framework

The training curves of the original GAN and the IEGAN are depicted in Fig. 6 and Fig. 7, respectively. It can be seen in

Fig. 6 that the training error of the original GAN is getting larger as the epoch increases. Additionally, the training curve of

the original GAN does not converge. In Fig. 7, the training curve converges to a relatively small point, which demonstrates

the superiority of the proposed IEGAN over the original GAN.
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Fig. 6. Training curve of the original GAN
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Fig. 7. Training curve of the IEGAN

The results of the original GAN are displayed in Fig. 8. It canbe seen that there exists a large amount of noise in the

reconstructed image. We can see that the generated image cannot reconstruct the raw input, and the shape of the melt pool

cannot be accurately segmented after the binalization process. In addition, the number of epoch in training the original GAN

is 200 which is much more than that of the developed IEGAN.
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Fig. 8. Reconstructed image by using the original GAN (a) reconstructed image; (b) post-processing of (a) with the threshold of 0.6; (c) raw input

TABLE II

PERFORMANCE EVALUATION

Methods CII

Original GAN 0.9143

IEGAN 1.1429

Experiment results of the IEGAN are shown in Figs. 9-12. We can see that the developed IEGAN demonstrates satisfactory

performance in reconstructing the thermal images with an improved contrast ratio. In the experiment, the post-processing

technique is employed to binarize the grayscale image with hope to extract the shape of the melt pool.

Fig. 9. Example 1: Reconstructed image by using the IEGAN (a)reconstructed image; (b) post-processing of (a) with the threshold of 0.6; (c) raw input

Fig. 10. Example 2: Reconstructed image by using the IEGAN (a) reconstructed image; (b) post-processing of (a) with the threshold of 0.6; (c) raw input

Fig. 11. Example 3: Reconstructed images by using the IEGAN (a) reconstructed image; (b) post-processing of (a) with thethreshold of 0.6; (c) raw input
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Fig. 12. Example 4: Reconstructed image by using the IEGAN (a) reconstructed image; (b) post-processing of (a) with the threshold of 0.6; (c) raw input

The CII of the original GAN and the IEGAN are shown in Table II.It can be seen that the IEGAN has a larger value of

CII than the original GAN, which indicates that the image generated by the IEGAN has a higher contrast ratio than the raw

image. It is clear that the IEGAN is capable of improving the contrast ratio of the input images, which can be easily used

for image segmentation with a constant threshold. Note thatboth the reconstructed image and the post-processed image are

quite “clean”, which indicates that noise is reduced by using the proposed IEGAN. Thus, the superiority and feasibilityof

the developed IEGAN-based image processing method are demonstrated, and the shape of the melt pool is extracted which

contributes to the monitoring of the AM processes.

It should be pointed out that the performance of the IEGAN is highly related to the hyperparameters (such as the learning rate,

the penalty term and number of hidden layers). Owing to theirstrong abilities in finding satisfactory solutions in optimization

problems, evolutionary computation seem to be a suitable method for choosing hyperparameters of GANs [22]–[24]. Another

research topic is to apply the GAN-based algorithms in othercomplex systems [25]–[28].

V. CONCLUSION

The monitoring of the AM process plays a significant role in fabricating certified products. The states of the melting process

are justified by analyzing the thermal images obtained from the thermal imaging cameras. In this paper, a new image processing

method has been put forward with hope to improve the quality of the thermal images for feature extraction. To extract the shape

of the melt pool, a novel IEGAN has been developed where a modified objective function has been introduced for the training

process. In particular, a designed penalty term has been putforward in the objective function of the IEGAN to enhance the

contrast ratio of the image reconstructed by the IEGAN. The IEGAN-based image processing method has been successfully

employed to improve the quality of the thermal images captured through the DED-based AM process. The effectiveness of the

proposed IEGAN has been shown by comparing the contrast ratio of the reconstructed thermal image with that of the original

GAN. Experiment results have demonstrated that the proposed IEGAN outperforms the original GAN in terms of the CII.

Furthermore, the shape of the melt pool has been successfully extracted on the post-processed image, which contributesto the

process monitoring of the AM process. In the future, we aim to1) improve the objective function of the IEGAN to overcome

the model collapse problem; 2) introduce evolutionary computation algorithms to automatically select suitable parameters of

the developed image processing framework; and 3) apply the proposed IEGAN-based image processing framework to other

applications, such as thermal-to-visible image translation.
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