© 2021 Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at
https://doi.org/10.1016/j.compeleceng.2021.107183

FINAL VERSION 1

Melt Pool Segmentation for Additive
Manufacturing: A Generative Adversarial
Network Approach

Weibo Liu, Zidong Wang, Lulu Tian, Stanislao Lauria and Xiaohui Liu

Abstract

Additive manufacturing (AM) is a popular manufacturing technique which is broadly exploited in rapid prototyping and
fabricating components with complex geometries. To ensure the stability of the AM process, it is of critical importance to obtain
high-quality thermal images by using image processing techniques. In this paper, a novel image processing method is put forward
with aim to improve the contrast ratio of the thermal images for image segmentation. To be specific, an image-enhancement
generative adversarial network (IEGAN) is developed, where a new objective function is designed for the training process. To
verify the superiority and feasibility of the proposed IEGAN, the thermal images captured from an AM process are utilized for
image segmentation. Experiment results demonstrate that the developed IEGAN outperforms the original GAN in improving the
contrast ratio of the thermal images.

Index Terms

Additive manufacturing, generative adversarial network, defect detection, image processing, image segmentation, thermal
image.

I. INTRODUCTION

The past few years have witnessed the rapid development of the additive manufacturing (AM) technologies [1]. Owing to
their strong capabilities of manufacturing or replacing customized components that exhibit complex geometry and structure,
the AM technologies have been successfully applied to various areas which include, but are not limited to, aerospace industry,
healthcare sector and automotive engineering [2]. The AM technologies enable the rapid manufacturing of metal components
with complicated geometries which are difficult or even impossible to be built by using the traditional manufacturing methods,
such as the high added-value components and lightweight components. It should be pointed out that the AM approaches are
more efficient and cheaper than traditional manufacturing methods in numerous applications from prototypes to fabricated
products with complex geometries and structures.

The directed energy deposition (DED) method is a popular AM technique, which utilizes high-power energy sources (such
as laser or wire-arc) to createn®lt pool (i.e., the region of molten metal) on the surface of a substrate where the metal powder
is deposited to form the desired geometry [1]. The melt pool is highly related to the solidification of the component, which
indicates that the morphology of the melt pool plays an important role in reflecting the geometric integrity, microstructure
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and mechanical properties of fabricated components [3gréfore, it is of practical significance to monitor the mettop
morphology in the AM processes. In general, thermal imagiameras are employed in the DED-based AM processes to
capture the thermal images of the melt pool. Recently, thiesitigation of the melt pool morphology has attracted ermarsn
interests in both academic and industrial communities[8}]+or example, the control problem of the melt pool size haen
studied in [4] to understand the transient changes duriaghi¥ process. In [7], a self-consistent model has been dpeel®o
simulate the heat transfer and fluid flow in the melt pool dyitime AM process. In addition, a two-dimensional crossiseat
model has been developed in [8] to analyze the melt pool dprgassue during the laser solid forming process.

Notice that the melt pool may splash, shrink as well as elmgand thus becomes unstable according to the complexaherm
environment during the AM process. It is therefore difficidtbuild a satisfactory model to simulate the morphologyhs t
melt pool [3]. It is well known that the thermal imaging systés a popular technique in measuring the melt pool dimension
For example, the infrared thermal imaging technique has iébzed in [5] for analyzing the dimension of the melt paolthe
selective laser melting process. To further study the magagy of the melt pool, image segmentation methods are gredlo
to extract the shape of the melt pool in the thermal images. thiesholding-based methods are popular image segnoemtati
methods due to the advantages of fast processing speed laticeie small storage space. As a typical class of thredihgt
based methods, the so-called bi-level thresholding-besstiods partition the background and the target objectrdoapto
the threshold [9]. Thus, the selection of a suitable thriesptays an essential role in image segmentation, espgaidien
dealing with the images corrupted by the blurring effect angse [10].

Owing to the rapid development of artificial intelligencleg tpopular machine learning technique seems to be an ajmd®pr
option for image segmentation so as to quantify the morgholaf the melt pool [6], [11]. In [6], a spatial reconstruatio
methodology has been developed to analyze thermal imagesrdoess monitoring and control of the AM process. Very
recently, a data-driven predictive melt pool model has bestablished in [11] to control the melt pool variation foe tlaser
powder bed fusion AM process.

Served as a powerful family of machine learning techniqtlesdeep learning techniques have been successfully dpplie
a variety of research areas, such as image processing| pigitassing, telecommunication and so on. Particulahly,deep
leaning techniques have been widely exploited in image seggtion owing to their strong ability in feature extraatifi?].
Although deep learning algorithms have proven to be effedti dealing with image segmentation tasks, there aresstitie
challenging problems to be considered: 1) the deep leaeicigniques require “effective data” for the model trainiagd 2)
the data collection is expensive and time-consuming.

To tackle the above-mentioned challenges, the generativersarial network (GAN) seems to be a proper candidate due
to its strong abilities in data generation and feature etitva [13]. In recent years, the GANs have been extensivepfliad
to a great variety of real-world applications, and some esentative examples include data generation, image itipgj
image translation, image synthesis, and image superutgmol[14]. It is worth mentioning that GANs have been sustalfy
exploited in image translation of thermal images thanks#rtstrong learning and pattern recognition abilities.tivided by
the above discussions, we endeavor to put forward a GANebaszge processing approach for segmenting the thermalkisnag
obtained during an AM process. In this regard, a targetetrimodel is developed by designing a new objective function f
training the GAN, which has the capability of improving thentrast ratio of the input images.

To sum up, the purpose of this paper is to develop a GAN-basedié processing method with hope to segment the
thermal images and extract the shape of the melt pool. Theilbotions of this paper can be outlined as follows: 1) angma
enhancement GAN (IEGAN) is developed and utilized for segiing the thermal images captured from an AM process for
the first time; 2) a novel objective function of the IEGAN issined with the purpose of improving the contrast ratio of

the image; and 3) the performance of the IEGAN algorithm isgehensively evaluated and employed in thermal imaging
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analysis. Experiment results show that the IEGAN outpenfothe original GAN, thereby benefiting the feature extracti
By using the IEGAN-based image processing method to andahe¢hermal images, the shape of the melt pool is extracted,
which would help quantify and characterize the morpholofyynelt pool.

The remaining part of this paper is organized as follows.tiSedl describes the background of the AM process, the
DED technologies and thermal imaging analysis. In Sectlgnthe basic knowledge of the original GAN is provided, and
the proposed IEGAN is introduced with details. In Section t\ata pre-processing, experiment results and discussiens

outlined. Finally, conclusions are drawn and future redeaopics are presented in Section V.

Il. BACKGROUND

With the purpose of fabricating certified components witkiséactory quality, it is of vital importance to implemertig
online monitoring of the welding process. Normally, therthal cameras are used to monitor the welding process during a
DED-based AM process. In this context, the morphology ofrttedt pool is investigated by segmenting the acquired therma
images. In this section, we first review the background of Alv process and the DED technology. Then, we discuss the

online monitoring of the welding process by using the thérimaging cameras.

A. AM Process and DED Technologies

During the past few decades, the AM processes have receaivedes-increasing interest from various communities, fagh
manufacturing, electrical engineering, medical scietace] so on [2], [7]. The AM processes have been successfufiiieab
to produce components with complex geometries and strestdtmong the AM processes, the DED technologies have been
widely utilized in producing customized components andanépg components with complex structures [1]. Notice that
variety of complicated phenomena, e.g., thermal condngctioe absorption of the laser radiation in the substratd, the
solidification of the melt pool, would occur in the DED prosdg].

The components fabricated by using the DED-based AM presdsave the problem of poor quality, which indicates that the
components are likely to have cracks, porosity, layer delation and other defects [15]. In this context, there isradfamental
need to guarantee the quality and repeatability of the dabed components, especially for industries that requrgfication
constraints, such as aerospace, instrument engineemadgmedical. Generally, the process monitoring is implemerto
enhance the stability and robustness of the AM processesedvier, the process data analysis is employed to detect the
defects and predict the process errors. In recent yearsstebedy of work has been presented to develop online mongori

and defect detection methods [2].

B. Thermal Imaging Analysis

Nowadays, the thermal imaging technique has been exténgyploited in quality monitoring and non-destructivetieg
thanks to the rapid development of computer science, inga@lectrical and electronic techniques [16]. The thermagding
technique has proven to be effective in studying the themnaperties of the target. It is worth pointing out that the DE
technologies require relatively high energy to melt anckfilee metal powder material on the substrate. A challengioblem
of the AM process by using the DED technologies is to avoidrttedt pool instability which may be caused by the material
spattering and the material evaporation from the melted fié], [15]. To overcome the melt pool instability problethe
online monitoring of the melt pool by using the thermal inragtameras has been exploited as a quality measurementdnetho
to ensure the stability of the AM process and produce cettifiemponents.

Note that the geometry of the melt pool has been recognizexhamportant quality measure. As such, the morphology

(e.g. shape and size) of the melt pool has been widely imadsiil so as to determine the surface roughness and othetsdefe
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of the fabricated components. The infrared thermal imagiameras are normally utilized to quantitatively investgthe
morphology of the melt pool and observe the spattering pmemon [2]. Each thermal image reflects the temperature of the
melt pool area. The shapes of the melt pool are different duke complex heat environment. Hence, it is almost impdtessib
to manually categorize the melt pool images with satisfgctcuracy. A potential solution is to apply the machinenesy
techniques for feature extraction and image segmentaticheo melt pool. In this paper, a GAN-based image processing

method is established to improve the contrast ratio of tlgpiiaed thermal images for image segmentation.

Ill. GENERATIVE ADVERSARIAL NETWORKS

In this section, the background of the GAN is presented, Arddevelopment of various GANs is reviewed. To detect the
melt pool in the thermal images, an IEGAN is put forward whangenalty term is added in the objective function with hope

to enhance the contrast ratio of the image. Both framewofkBeooriginal GAN and the developed IEGAN are provided.

A. Development of GANs

In the past few years, the GAN has become one of the most podakp learning techniques in the computer science
and manufacturing societies. Owing to their distinctiveritsein data generation and feature extraction, the GANs Hmen
successfully applied to computer vision, industrial ma@nce, image processing, and speech recognition.

A GAN is composed of two networks, which are the generatitevagk, and the discriminative network [13]. The generative
network as well as the discriminative network are also da#le the generator and the discriminator, respectivelg Vtarth
pointing out that both the generator and the discriminatertained in an adversarial learning manner.

The training process of the original GAN is to train a disdriator and a generator simultaneously. Notice that theqaep
of the discriminator is to distinguish between real sampled generatethke samples. The generator tries to generate fake

samplesas real as possible to “cheat” the discriminator. The framework of the origi@AN is depicted in Fig. 1.
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Fig. 1. The architecture of the original GAN (G is the generaD is the discriminator)

So far, tremendous efforts have been devoted to develogirigus GANs with hope to improve the generalization perfor-
mance of the original GAN [13], [14], [17]-[20]. The GAN varits can be briefly categorized into the following two aspect
1) GANs with modified network architectures; and 2) GANs wiidlsk-oriented objective functions.

Up to now, some GANs have been focused on modifying the né&tenahitecture, for example, the deep convolutional GAN
has been proposed in [19] by employing the convolutionakalemetworks (CNNs) as the generator and the discriminator.
Unfortunately, a traditional CNN has the limitation that#n only capture the local spatial information, and thigléeto the
difficulty in dealing with multi-class images. To overcontast difficulty, the self-attention GAN has been introducad20]
by utilizing an attention-driven framework for image gea@n. It is worth mentioning that the stacked GAN has been pu
forward in [14] where a series of GANs have been stacked inpadtawn manner. The stacked GAN demonstrates that the

quality of the generated images is much better than thatebtiginal GAN.
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On the other hand, an ever-increasing research interestdmasattracted to design new loss functions of the GANs ierord
to improve the stability during the learning process. Fatance, the mode regularized GAN has been put forward where a
metric regularization has been introduced to penalizeingssodes, which has been employed to solve the mode collapse
problem [18]. The least squares GAN has been proposed wheréeast squares loss function has been designed for the
discriminator to remedy the vanishing gradients probleminduthe training process [13]. In addition, the Wassenst@ AN
has been introduced in [17] where the Wasserstein distaasdéen used to design the loss function. The Wasserstein GAN

improves the learning stability by comparing with the anigi GAN.

B. The Sructure of the IEGAN

In this paper, we aim to put forward a novel IEGAN with apptioa in thermal imaging analysis. To achieve the target of
detecting the melt pool in the thermal images, the develdg&AN is exploited for image segmentation. It should be dote
that the proposed IEGAN is a variant of the original GAN, whiocuses on the design of new objective function. To be
specific, a penalty term is introduced in the designed old¢tinction to improve the contrast ratio of the thermal gador
image segmentation.

The network architecture of the IEGAN is the same as the ma@igGAN. The IEGAN consists of one generator and one

discriminator. The architecture of the IEGAN is shown in.Fg

Training set
(reference image)

@m
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| [=T
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Reconstructed image

Thermal image

Fig. 2. The architecture of the IEGAN

Notice that the purpose of the generator in the IEGAN is toegate “high quality” images which are the improved thermal
images with an enhanced contrast ratio. Different from thgimal GAN, the input of the generator in the IEGAN is the
thermal image (raw data captured by the thermal imaging c@me€he output of the generator is the improved thermal enag
The discriminator aims to distinguish the generated imagkthe real image. In this paper, the real image is also calted

the reference image, which is the pre-processed thermaearbg using the pre-processing method proposed in [21].

C. The Objective Function of the IEGAN

In the original GAN, the optimization of the generator and tliscriminator for an image processing task is a two-player

minimax game with the following objective function:

mén max J(G, D) = Eyup,., () log D(z)] (1)
+ E.p.(z)[log(l — D(G(2)))]

wherex represents the reference imageis the raw image(=(z) is the output image of the generatdpy-) stands for the
output of the discriminator?,.,; andP, represent the distribution of the pixel values in the refeseimage and that in the

raw image, respectively.
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In our work, we aim to improve the contrast ratio of the therimeages to further extract the shape of the melt pool through
the DED process. In this context, a penalty term is introdunehe objective function of the IEGAN for image enhancemen
The objective function of the IEGAN is shown in Eq. (2):

Jieaan(G, D) = J(G, D) + Jpenalty (G) 2

where J(G, D) is the objective function of the original GAN which is proed in Eq. (2),Jpenaity (G) is the penalty term
shown in Eq. (3).
To facilitate the requirement of image enhancement, a peteim Jyenaity (G) is introduced in Eq. (3):

Jpenalty(G) = )\expa|G(z)—z| (3)

where A and « denote the penalty factors which are two manually selectedtent values according to experieneds the
thermal image(=(z) represents the output image of the generator.

Intuitively, the penalty term is designed to improve the tcast ratio of the image, which should have the properties of
monotonically increasing and differentiable. The firstgedy could enlarge the difference between the generatadgerand the
raw image, which benefits the binarization process for inssggnentation. Therefore, a monotonically increasingtfands a
suitable choice. The second property is determined acogrdi the utilization of the stochastic gradient descenintipation
algorithm for training the GAN. Motivated by the above dissions, the exponential function is an appropriate choicetd
its characteristics: 1) the exponential function is monatally increasing; and 2) the exponential function is eliéintiable and
smooth.

Remark 1: A practical problem is to choose suitable values of the ftgriactors (\ and«). A is an intensity factor that
limits the penalty terma is the parameter which represents the steepness of the. &otle\ and « are selected according

to experimental experience.

D. The Training Procedure of the IEGAN

In our work, the data pre-processing process is implemetatgaovide the data set, which is presented in the next sectio
Here, we discuss about the training process of the IEGANr#kgo, which is demonstrated in Algorithm 1. It should be
noticed that the input of the generator is the raw image cegdtby the thermal camera. The input of the discriminator is
composed of the output of the generator and the correspgmneiierence image (i.e. the pre-processed raw image). @ne#h
image and its pre-processed image form a pair of data. Bdtaiformation of the data utilized in this paper is preseérnte
Sec. IV.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, the proposed IEGAN is applied to deal with thermal images captured through the welding process by
using the DED-based AM technology. The background inforomadf the thermal images and the data pre-processing goces
are discussed. The performance of the IEGAN is evaluatedobyparing with the original GAN. All the experiments are
conducted by using MATLAB software with the version 2if156 on a PC with the Intel Coré7 — 4590 3.30 GHz CPU. The
operating system of the PC is Microsoft Window&

A. Thermal Images

The data is collected during an AM process by using the DEDagath where the thermal imaging camera is implemented
to monitor the welding process. The data set includes 24B&ial images. The dimension of each image iR& x 128

matrix. Here, eight thermal images obtained through thealingl process are displayed in Fig. 3.
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Algorithm 1 Training Process of the IEGAN Algorithm
Require: Set up the mini-batch size:, the maximum number of epodh the penalty factora anda.

Require: Initialize the weights of the network&, andf,.
for epoch number = : k£ do
Randomly selectn raw images{z!,--- ,z™} from the raw image dataset.
Selectm corresponding reference imaggs', - - - , 2™} from the pre-processed dataset.
Update the discriminator by ascending the stochastic gradi
Vo, LY, [mg D(z) + log(1 — D(G(zi)))] .
Selectm raw images{z!,--- , 2™} from the raw image dataset.
Update the generator by descending the stochastic gradient
Vo, £ S, [log(1 - D(G(1))) + AexpelED=1].

gm

end for

Fig. 3. Thermal images obtained through the welding process

The acquired thermal images contain three parts, namaybdickground, the melt pool and the tail. Detailed infororati
of the melt pool can be seen in [2]-[6]. The characteristithef thermal images is different from the optical images.ha t
thermal images, the intensity of the pixel value reflectstémperature of that pixel. Normally, the larger the pixeluea the
higher the temperature at that point. The difference betvtiee pixel value of the current melting points and that ofriearby

points is not large, which indicates that it is difficult todimn appropriate threshold to further segment the melt pool.

B. Data Pre-processing

In this paper, data pre-processing is required to produtaewlith high quality and guarantee the training performance of the
GANSs. The acquired thermal image is transferred to the greage because the color does not contain much more infonmatio
than the gray image. The thermal images used for trainingtestthg the GANs are shown in Fig. 4. It should be mentioned
that the pixel value of the gray image is in the rangdo®55].

Note that the training dataset of the discriminator inchittee raw thermal image and its corresponding referencedmniag
the experiment, an automatic image processing algorithenso-called average threshold scanning (ATS) algoritreveldped
in [21] is utilized to pre-process the thermal image, anddhtput image is the corresponding reference image of thentile
image. The advantages of the ATS algorithm can be summainsedhree aspects: 1) easy implementation; 2) low memory
requirement; and 3) relatively fast computation speed.
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Fig. 4. Thermal images used in the experiment

To overcome the data imbalance problem, data augmentatemployed in the training process of the GANs. To be specific,
the mirroring and flipping methods are used to provide eiffedraining data. As such, a large number of effective tragn

images and their corresponding reference images (alsorkasvthe real images) are generated.

C. Parameter Setting

In the experiment, 479 images captured at the beginning adihg stages of the AM process are removed from the
database due to low image quality. 22000 images are randsefdgted from the rest 24000 thermal images as the database.
In the experiment, 11000 images are randomly chosen frond#it@base as the testing dataset to evaluate the performance
of the GANs. Data augmentation is employed to the other 11i6@@es so as to improve the diversity of data. After data
augmentation, the total number of images that are useddimirtg is 44000. All the pixel values of the thermal imagesdis
the training and testing processes are normalized in thtgeraf{0, 1]. The “Leaky ReLU” function is selected as the activation

function for both the GAN and the IEGAN. The parameter sg#iof the networks are given in Table I.

TABLE |

CONFIGURATION OF THEIEGAN AND THE ORIGINAL GAN
Parameter GAN IEGAN
Learning rate 0.001 0.001
Mini-batch size 100 100
Maximum Epoch 200 30
Generator: Number of hidden layers 6 6
Generator: Number of units in each hidden layer [100 80 646408100] [100 80 64 128 640 100]
Discriminator: Number of hidden layers 2 2
Discriminator: Number of units in each hidden layer [100]110 [100 110]

The contrast improvement index (ClI) is utilized as the aadior to evaluate the performance of the proposed IEGAN. ClI

is calculated as follows:
C’VICIU

raw

CII = 4)

whereC),.,, is the contrast ratio of the melt pool in the new image geeerdy the GANs('..., represents the contrast ratio
of the raw image. The contrast ratf® of the melt pool is defined by:
Ia - Ib

C:
Ia+1b

(®)
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where [, and I, denote the mean gray-level values of the foreground andothite background, respectively.

D. Results

In the experiment, the thermal images are pre-processdutamdhe reference images. It should be noted that the jpeaioce
of the discriminator must be better than the performancéefgenerator so as to guarantee the effectiveness of téngai
process. In this case, the discriminator is trained firshi éxperiment. The procedure of the developed IEGAN-basedé
processing method is given in Fig. 5.

( Start )

Y

Data Pre-processing Training images
i

'y (raw images and reference images)
A
Parameter initialization and Train D
network set up networks
v Train G
Train the IEGAN HEGEIS
N
Stop ?
Y
Test the IEGAN

\

Post-processing

()

Fig. 5. Flowchart of the GAN-based image processing frannewo

The training curves of the original GAN and the IEGAN are a¢gd in Fig. 6 and Fig. 7, respectively. It can be seen in
Fig. 6 that the training error of the original GAN is gettirgyder as the epoch increases. Additionally, the traininyeof
the original GAN does not converge. In Fig. 7, the trainingveuconverges to a relatively small point, which demonewat

the superiority of the proposed IEGAN over the original GAN.
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Fig. 6. Training curve of the original GAN
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Fig. 7. Training curve of the IEGAN

The results of the original GAN are displayed in Fig. 8. It dam seen that there exists a large amount of noise in the
reconstructed image. We can see that the generated imagetaaconstruct the raw input, and the shape of the melt pool
cannot be accurately segmented after the binalizationggsaodn addition, the number of epoch in training the orig®BAN
is 200 which is much more than that of the developed IEGAN.
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(a) (b) (c)

Fig. 8. Reconstructed image by using the original GAN (apnstructed image; (b) post-processing of (a) with the tiokekof 0.6; (c) raw input

TABLE Il
PERFORMANCE EVALUATION
Methods Cll
Original GAN  0.9143
IEGAN 1.1429

Experiment results of the IEGAN are shown in Figs. 9-12. We see that the developed IEGAN demonstrates satisfactory
performance in reconstructing the thermal images with apraved contrast ratio. In the experiment, the post-praogss
technique is employed to binarize the grayscale image wiftehto extract the shape of the melt pool.

(a) (b) ()

Fig. 9. Example 1: Reconstructed image by using the IEGANéadpnstructed image; (b) post-processing of (a) with thmestiold of 0.6; (c) raw input

(a) (b) ()

Fig. 10. Example 2: Reconstructed image by using the IEGANdeonstructed image; (b) post-processing of (a) with tmeshold of 0.6; (c) raw input

(a) (b) (c)

Fig. 11. Example 3: Reconstructed images by using the IEG#)Negconstructed image; (b) post-processing of (a) withthineshold of 0.6; (c) raw input
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(a) (b) (c)

Fig. 12. Example 4: Reconstructed image by using the IEGANdeonstructed image; (b) post-processing of (a) with tmeshold of 0.6; (c) raw input

The CII of the original GAN and the IEGAN are shown in Tableltlcan be seen that the IEGAN has a larger value of
CllI than the original GAN, which indicates that the image geted by the IEGAN has a higher contrast ratio than the raw
image. It is clear that the IEGAN is capable of improving tlmntrast ratio of the input images, which can be easily used
for image segmentation with a constant threshold. Note libét the reconstructed image and the post-processed intage a
quite “clean”, which indicates that noise is reduced by gdime proposed IEGAN. Thus, the superiority and feasibitify
the developed IEGAN-based image processing method are rdgrated, and the shape of the melt pool is extracted which
contributes to the monitoring of the AM processes.

It should be pointed out that the performance of the IEGANGghly related to the hyperparameters (such as the learaieg r
the penalty term and number of hidden layers). Owing to thieong abilities in finding satisfactory solutions in opiation
problems, evolutionary computation seem to be a suitabblaedefor choosing hyperparameters of GANs [22]-[24]. Amoth

research topic is to apply the GAN-based algorithms in otloenplex systems [25]-[28].

V. CONCLUSION

The monitoring of the AM process plays a significant role ibrfeating certified products. The states of the melting pssc
are justified by analyzing the thermal images obtained floathermal imaging cameras. In this paper, a new image Bioces
method has been put forward with hope to improve the quafith@thermal images for feature extraction. To extract thegps
of the melt pool, a novel IEGAN has been developed where afieddbbjective function has been introduced for the training
process. In particular, a designed penalty term has beefopuard in the objective function of the IEGAN to enhance the
contrast ratio of the image reconstructed by the IEGAN. TB8AN-based image processing method has been successfully
employed to improve the quality of the thermal images cautuhrough the DED-based AM process. The effectivenesseof th
proposed IEGAN has been shown by comparing the contrasta&the reconstructed thermal image with that of the origina
GAN. Experiment results have demonstrated that the praptS8&AN outperforms the original GAN in terms of the CII.
Furthermore, the shape of the melt pool has been successkithcted on the post-processed image, which contriliatdse
process monitoring of the AM process. In the future, we aim)timprove the objective function of the IEGAN to overcome
the model collapse problem; 2) introduce evolutionary cotafion algorithms to automatically select suitable patars of
the developed image processing framework; and 3) apply tbpoged IEGAN-based image processing framework to other

applications, such as thermal-to-visible image trarstati
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