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Abstract—This paper is concerned with the distributed re-
cursive filtering of cyber-physical systems consisting of a set of
spatially distributed subsystems. Due to the vulnerability of com-
munication networks, the transmitted data among subsystems
could be subject to deception attacks. In this paper, attackers
do not have enough knowledge of the full network topology and
the system parameters and therefore cannot carry out stealth
attacks. For this scenario, a defense strategy dependent on the
received innovation is proposed to identify the occurring attacks
as far as possible. In light of identified attacks, a novel distributed
filter is constructed and its gain is designed via a set of recursive
formulas on the upper bound of covariance of filtering errors. The
utilization of upper bound is to avoid the calculational challenge
of cross-covariance matrices and realize the requirement of
distributed implementation, simultaneously. Furthermore, the
developed scheme only depends on the neighboring information
and the information from the subsystem itself, and thereby
satisfying the requirement of the scalability. Finally, a standard
IEEE 39-bus power system is utilized to verify the effectiveness
of the proposed filtering scheme.

Index Terms—Cyber-physical systems; distributed filtering;
security defenses; deception attacks; power systems.

I. INTRODUCTION

Cyber-physical systems (CPSs), one of the cornerstones
in the era of Industry 4.0, are large-scale, geographical-
ly dispersed, networked systems, in which physical sen-
sors/controllers and software components are deeply inter-
twined to implement real-time monitoring and control. The
main merit of such systems is that integrate physical entities
with cyber networks provides greater autonomy, efficiency,
functionality and reliability, as well as adaptability [1]-[3].
As a new research frontier, they are being widely promoted
by governments and industry around the world and represen-
tative systems include distributed energy resources, intelligent
transportation networks, gas/water distribution networks, and
unmanned factories [4], [5]. In order to describe the character-
istic of complex coupling of subsystems, typical CPSs can be
modeled as large-scale systems or discrete sequential systems
when ignoring the function of cyber layers. It is worth noting
that the inherent coupling among subsystems is difficult to be
completely decoupled, which results in the critical challenge to
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guarantee the requirement of scalability, that is, the complexity
of parameter design is almost no effect from the increased
scale of CPSs. Generally speaking, the small gain condition,
the game theory and the arithmetic mean-geometric mean
inequality are some considerable approaches to realize the
easy-to-implement design of expected gain parameters.
Distributed filtering plays a critical role in performing real-
time monitoring and control in the area of CPSs, especial-
ly in power distribution grids and process control systems
[6]-[8]. Some representative approaches, such as consen-
sus/diffusion/distributed Kalman filtering as well as H, fil-
tering, have been developed in the literature. For instance, a
consensus-based Kalman filtering has been proposed in [9]
to carry out the dynamic state estimation for the purpose of
real-time monitoring of power systems, and developed in [8]
to estimate the slab temperature distribution in a hot rolling
process monitoring system. Furthermore, a diffusion Kalman
filtering has been designed in [10] for distributed hybrid power
state estimation, where an auto-encoder technique has been
employed to overcome the challenge from the data dimension-
ality in mixed measurements. Moreover, a distributed Kalman
filtering relying on differences among neighbors’ prediction
has been designed to estimate the operating condition of
renewable microgrids in [11] for the case of reliable channels
and in [12] for the case subject to packet losses, and the
corresponding convergence conditions have been analyzed
simultaneously. It is worth mentioning that a distributed filter
only using local data can effectively deal with the challenges
from both communication latency and communication cost
existing in a central paradigm. In other words, instead of all-
to-all or all-to-one (i.e. centralized fusion) communication, the
information only needs to be exchanged among neighbors,
who are usually sparsely deployed in a predetermined region.
In comparison with the centralized system over sensor
networks [13], the estimated states and/or covariance matrices
from neighboring subsystems in distributed CPSs have to take
part in the evolution of filter dynamics via interconnection
[14]. This kind of structure leads to the sensibility to abnormal
neighboring information even if some compensation schemes
are employed. Unfortunately, data collection or transmission in
practical systems could be incomplete or even unreliable due
to the vulnerability of shared communication channels without
enough capability or defense. That is to say, the resultant open
network makes distributed CPSs vulnerable to the destruction
coming from cyber-attacks [15]-[18]. This paper only focuses
on deception attacks, under which adversaries have the ca-
pability of overhearing and modifying the information of data

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI10.1109/TSMC.2019.2960541
IEEE TRANS. SYST,, MAN, CYBERN., SYST.

packets in cyber-layers [19]. More specifically, we assume that
attackers have no sufficient knowledge of full network topol-
ogy and system parameters and therefore cannot implement
undetectable attacks or stealth attacks [20]. Furthermore, the
purpose of attacks is to give rise to either physical or economic
impacts on CPSs by making filter’s output unreliable values
about the system operator. As a result, it is of great significance
to design a suitable filter structure with a defense mechanism
and develop a corresponding filtering algorithm that facilitates
the implementation of target monitoring in a reliable manner.

In the framework of Kalman filtering, the implementation
of filtering algorithms for distributed CPSs may depend on
the estimate, the covariance (or its upper bound), or/and
the innovation coming from neighboring subsystems. When
cyber-attack is a concern, much progresses have been made
on recursive filtering [21], [22], attack scheduling [23], [24]
and attack detection [25]. In contrast with research on the
delectability of attacks or the optimal attack allocation, we
should take designed filters and attack detectors as a w-
hole from the conception of system theory to ensure proper
monitoring and operation of CPSs. It naturally leads to that
the designed defense strategies should be realizable from the
engineering point of view. That is, its parameter can be easily
determined and the calculation burden is small such that the
defense rule can be performed in time via general processors.
It is noteworthy that residual-based detectors, such as the
most prominent x? detectors, are capable for the consid-
ered scenario. Surely, other model-based detectors, such as
CUSUM detectors [26], likelihood ratio detectors [27] as well
as graphic-based detectors [28], could be suitable especially
for the scenario of stealth attacks if ignoring the limitation of
the real-time and the communication burden.

Recalling the distributed filtering of CPSs modeled by large-
scale systems,there is no appropriate compensation scheme to
deal with the impact from the covariance subject to cyber-
attacks so far. As such, a conservative strategy should be
developed to enhance the reliability of designed filtering
algorithm in the presence of deception attacks. Obviously, it
is nontrivial to design the desired filter with attack detection
to satisfy the requirement of scalability due mainly to the
complex coupling among subsystems, which could not be
decoupled into some independent subsystems. Summarizing
the above discussions, in this paper, we focus on the distributed
recursive filtering of CPSs with attack detection. The main
contributions are highlighted as follows: 1) Via a designed
attack detector, a distributed filter with a novel structure
is designed in order to enhance the capability of dealing
with unreliable information transmission due to deception
attacks; 2) In light of the characteristic of x> distribution,
an upper bound of the filtering error covariance is recursively
calculated by the solution of a Riccati-like difference equation;
3) A distributed design scheme in a scalable way is developed
by resorting to a gradient-based method and the corresponding
upper bound is suppressed via the designed gains; And 4) a
standard IEEE 39-bus power system is utilized to verify the
effectiveness of proposed filtering scheme.

The rest of this paper is organized as follows. Section II
briefly introduces the problem under consideration. In Section
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TABLE I
INDEX OF SYMBOLS

Notations [ Descriptions

ik The state of subsystem ¢

ik The estimation of state x; 1,

Zik The innovation of subsystem 4

P; i The covariance of filtering errors of filter ¢
1L g An upper bound of F;

ﬁ?fj b Data on Z; j received by neighboring filter 7
zZTj & Data on z; , received by neighboring filter 4
HZT]. & Data on II; ;. received by neighboring filter 7
sz.zj & The malicious data added in z;
Gw'z?"‘j & The malicious data added in & g
waj, & The malicious data added in IT; j

0 The size of malicious data

@fj, @fj The covariance of ng”j i and wizj &

@i’; , @;P The column and row covariance of wfj &
Qi The covariance of process noises w;
R; The covariance of measurement noises v; j
N The set of neighbors of subsystem ¢
Si The number of neighbors of subsystem %

I, a distributed design scheme with a scalable form is
proposed in light of the minimized upper bound of filtering
error covariance. Section IV provides a real application on
power systems to validate the usefulness of obtained results.
Finally, some conclusions are stated in Section V.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. R™ denotes the n dimension-
al Euclidean space. N,, stands for the positive integer set
{1,2,--- ,m}. The notation A > B (respectively, A > B),
where A and B are symmetric matrices, means that A — B is
positive semi-definite (respectively, positive definite). Finally,
E{w} denotes the expectation of stochastic variable w, and
P{w} represents the occurrence probability of event w.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, the pair ¥ = (V, ) is employed to describe
the topology of CPSs consisting of a set of interconnected
subsystems, where V = {1,2,---m} and £ C V x V stand for
the sets of subsystems and interconnected edges. If there exists
an edge (i, ), the subsystem j is called as a neighbor of the
subsystem ¢. Furthermore, the general notations are provided
in Table L.

A. The plant of interest

Let us investigate a class of CPSs consisting of m intercon-
nected subsystems, whose dynamics is described by

Ti k1 = Aiixik + E ATk + Wik (D
JEN;
with measurements

Yik = Cizip +Vig, 1€N, (2)

where z; ;, € R"* is the state of target subsystem ¢ that cannot
be observed directly, y; , € R™v is the measurement output
from sensor ¢, and {w; x }x>0, and {v; ; }x>0 are independent
and identically distributed (i.i.d) random sequences obeying
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Gaussian distribution with zero mean and covariance @; and
R;. Additionally, we assume that all stochastic variables and
the initial state z; ¢ are mutually independent. A;;, A;; and
C; are known matrices with compatible dimensions.

Considering the distributed characteristic, the following
filter, called as filter 7, is constructed:

i k1 = Aulig + Kii p2ik
+ ) Ayt Y Kijazin ©)
jENL' ]ENz
where Kj; 1, and K; 5, are the filter gains to be designed.

In what follows, we define the corresponding filtering error
covariance:

Py =E{(w;p — 2ip)(wig — 2ip)" ). 4)

Under the framework of distributed Kalman filtering, filter 7
usually needs to send its estimate Z;j, innovation z;j and
covariance P; ;. (or its upper bound) to its neighbors at each
time step for the purpose of implementation.

Remark 1: It is worth noting that the model (1) is a very
general form and has been widely utilized to model various
CPSs, such as power systems, automation processes, and series
systems [29]-[32]. For example, in an array of masses, the
elements of x; ;, consist of the horizontal and vertical velocities
and displacements of masses [29], where the displacements
are with respect to a given equilibrium position in the plane.
For multiple maneuvering targets, the elements of x; j, are the
position coordinates and the corresponding velocities along X -
and Y -axes [30]. Furthermore, the state vector x; j is selected
as ( Aw;p APy APk APfie’k )T in [14] in power
systems, where Aw; i, APy, APy, i and APtiie’k describe,
respectively, the deviation of frequency, generator mechanical
power, turbine valve position and the net tie-line power flow,
or selected as ( Vi,k Iti,k (I)V,k' q)],k \I’V,k \I’I,k )T in
[31], where Vi, Ik, Pvi, ®rx, Yy and ¥y, denote,
respectively, the load voltage at point of common coupling,
the load current, the dynamics of primary control (the third
and fourth elements), and the dynamics of secondary voltage
controllers (the last two elements).

Remark 2: In the model (1), A;; combining with the topol-
ogy ¥ reflects the physical connection of spatially distributed
subsystems in CPSs. As such, in comparison with traditionally
distributed filtering over sensor networks, the estimate Z;
from neighbors of subsystem i is indispensable to guarantee
the filter’s implementation, which results in that the covariance
matrix (or its upper bound) needs to be transmitted as well. On
the other hand, different from the physical coupling of CPSs,
the topology ¢ in (3) describes the communication among
filters and therefore the exchanged data could suffer from
cyber-attacks. This kind of characteristic is clearly disclosed
in Fig. 1 to be further discussed in the following subsection.

B. Cyber-attacks and a detection strategy

Due to the vulnerability of communication networks, the
adversary may overhear and modify the information in the
transmitted data packets in order to yield a larger estimation
error in supervisory units, which will produce some negative
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impacts on the operation of systems [33]. In this paper, we
only consider the case that attackers do not have knowledge
of full network topology and system parameters. In other
words, they cannot carry out stealth attack [20]. A schematic
block diagram of CPSs under deception attacks is shown in
Fig. 1. Specifically, we assume that attackers can overhear the
information transmitted by unsecured channels and randomly
modify them by adding malicious data 6v7; ., 017, and
07/’;?;‘71@ into three transmitted data Z;, 2, and P;j. Here,
6 is a given constant quantifying the size of malicious data,
and ¢, € R, ¢F,, € R™ and ¢}, € R">*"= are zero-
mean white Gaussian variables with covariance @?j, @fj, @Z? R
and ©;7. Furthermore, random variables 1, ,, ¥7; , and ¢}, |

are mutually independent at any instants.
Py [k 240
Recey

Filter j —

... _—
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Fig. 1. A schematic block diagram of CPSs under deception attacks.

In what follows, for the purpose of description, we introduce
a binary variable & (j € N;) to indicate whether the
attackers launch the attack on data transmitted from filter j
to filter 4:

Sijk = {

and fu[ther assume that its statistical characteristic is P{&j, =
1} =¢

With the help of the introduced binary stochastic variable,
the received data by filter ¢ from filter j are described by

1, Data from j to ¢ subject to attacks;

0, Otherwise. )

Tij e = Tk + 0856055 1
Zijk = Zjk + 085607 ks (6)

Pl = Pk + 085107 .-
In this paper, a detection strategy dependent on both zj; ,
and a predetermined threshold « is employed to improve the

security of proposed distributed filter. To identify the attack,
let us first introduce a value function ¢(-):

o(2i;5) =1 —exp (- (zfj,k)TRglz:j,k)~ @)
Then, the following indicator function

O7 a < 2r R
Vg = { . £l ®)

otherwise,
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is adopted to indicate whether attacks occur. Specifically, we
claim that an attack to the communication between filter ¢ and
filter j occurs when ;;;, = 0. Additionally, for the conve-
nience of analysis, we denote ¥4, = 1 for any instants. It
is well known that z; kR zj  obeys the x? distribution with
degree of freedom ny, and the corresponding distribution table
can be easily obtained. Therefore, for any given probability p,
we can easily obtain «y, such that P{Z}ijj_IZj,k <ap}>p
and then calculate o = 1 — exp(—ay).

According to above analysis, the adopted model is essential-
ly the well-known y2-detector, which keeps the Gaussianity
of filtering error dynamics [34] and hence possesses the irre-
placeable superiority in performance analysis. Let us further
disclose the reason of this kind of selection in comparison
with existing detection approaches. First, detectors based on
weighted least square are also y2-detectors essentially and can
further generate cumulative-sum detectors [26] via detecting a
change in the distribution, which could be the presence of a
large detection delay; Second, detectors based on a Kullback-
Leibler distance [35] are suitable for quasi-static systems
and highly depend on the probability distribution of ideal
measurements; Third, detectors based on Bayesian inference
[36] have to calculate the filter gains in real-time and reveal the
disadvantage in time complexity when the dynamical system
is a concern. As such, for the case of no-stealth attacks, the
employed detector should be the best one. Finally, more attack
models can be found in [37] and corresponding detectors are
not surveyed due to the limited space.

C. The object of this paper

With the help of this identification function, the distributed
filter (3) is improved as follows:

i1 = Aili g + Kis k2 i
+ Y Ayt Y iaKgazhy ©
JEN; JEN;

According to the analysis in Subsection II-A and Subsection
II-B, the objective of this paper is to design a Kalman-type
distributed filter of the form (9) such that an upper bound
of filtering error covariance is guaranteed over a given finite-
horizon Ny, that is, there exists a sequence of positive-definite
matrices {I; x|x }ren, satisfying

Pi7k < Hi,lm Vk € Nf. (10)

Furthermore, the sequence of upper bounds {Il;}ren, is
optimized via the designed filter parameters K;; for j €
N;U{i}. It is worth mentioning that such a bound II; ;, should
own the computational advantage of Riccati-like difference
equation and must reflect the attack detection ;) in real-
time in order to guarantee its security.

Remark 3: Lots of results are essentially performed in a
centralized way for recursive filtering issues of CPSs modeled
by (1). Specifically, the desired gain is usually dependent
on cross-variance matrices [30], or calculated via matrix
parameters of augmented systems [38]. At the same time,
various approaches have been proposed to overcome this
disadvantage. For instance, 1) taking Zje N Aijzip as a
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whole input produces a new distributed Kalman filtering in
[39], whose gain is related with the error cross correlation;
2) considering the utility function on prediction errors and
measured local outputs leads to distributed moving horizon
estimation [40], of which the developed approach is dependent
on the Chebyshev approximation with the help of traditional
lifting techniques; and 3) the technique of covariance’s bounds
is adopted in [7] to obtain partition-based distributed Kalman
filtering, the idea of which is also employed in our paper. It is
worth mentioning that, taking the addressed cyber-attacks into
account, these approaches are commonly incapable due mainly
to the high calculation burden of error cross correlation, the
infeasibility of lifting techniques, and the covariance bounds
subject to attacks.

III. MAIN RESULTS

This section is first concerned with the unbiasedness of
designed distributed filter and then obtains an upper bound
of filtering error covariance.

A. The design of filter gains

As mentioned in Subsection II-B, we need to propose a
rule to replace the covariance matrix P; j, by the received one
(i.e. Pr k ) at instant k because the real covariance matrix
could be unknown for filter ¢. For this purpose, we first find
from (6) that

Pj = 0%ij k00 1o (11)

By resorting to the property of conditional expectation of
random matrix [41], one has

ij‘

E{P; i + PT Kl Pt =Pl + (‘Pz'rj,k)T (12)
and
E{(Pjx — Pfj ) (P — P5i) " 1P}
+E{(Pjx — Phu)" (Pix — Phu)lPhe}  (13)
= 92§(trace(®§f)92? + trace(@g)@g’).
For the analysis convenience, we denote
Qi; =0 f(trace(@m )@é? + tlface(@g?)@:jp)7 (14)
and
o Pz ks 1= .7
Tije = { 5(PL g+ Ph) + ko, Qij,  otherwise (15)

where the scalar ry,,, (i.e. Ko and k1) predetermined by
statistical experiments is utilized to adjust the probability of
Tijr > Pjk.

In what follows, the upper bound of P; ;. (denoted as II; ;)
is employed to realize the distributed implementation of the
filter (9) with attack detection. In this case, the corresponding
matrix T, in (15) is replaced by

Hi,kv
(lej,k)T) + K9k Qija

1=7
otherwise.
(16)

T =
ok { %(Huk
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Under this scheme, we have the same probability to guarantee

Tije = Wk = P

Remark 4: A conservative bound Tij, , in (16) is adopted to
improve the security of distributed filter. In this scheme, the
parameter Ky, , which takes the value kg or k1, is utilized to
adjust the effect from cyber-attacks. Obviously, x¢ is greater
than k1 because the probability of occurring cyber-attacks is
higher when 9;; 5, = 0.

Now, by means of above analysis, we have the following
results.

Theorem 1: For CPSs described by(1), if &; o = E{x;0}
for any ¢ € N,,, the proposed distributed filter with the form
(9) is unbiased, that is, E{x; — Z; 1} = 0.

Proof: The proof of the unbiasedness will be performed
via mathematical induction. Under this conception, since
Zi0 = E{z; o} for any i € N,,, we first assume E{z; —
Z; 1} = 0 for any ¢ € N,,, and then verify that this assumption
is also true for the instant £ + 1.

By means of the statistical properties of cyber-attacks, it
follows from (20) that

E{zir — Zix} = E{eirs1}
= > E{(Aij - 19ij7kKij,ij)€j,k}
JEN;U{i}
=0

which implies that the proposed filter is unbiased. The proof
is now complete. ]

Theorem 2: For any i, let II; o > P; o be given. For the
distributed filter (9) with gains

- - Aoy —1

Kijk = AiTikCl (C X3k CY + Vi), (D)

a feasible upper bound II; ;1 of the covariance matrix P; ;1
is calculated by

py1 = (1+ GGin)AiiSii Al + Qi

+ ZjeN‘ (si + G )AiSii kAL (18)
where (; ;. is any positive scalar and
f},, _ Riaf i = j)
YT R 07665, i #
. _{ Iy, i=3,
ok (I 5 + (ng,k)T) + K9y, i, 1F

1
2
Sijre = Yijr — ﬁij,kTij,kC]T
X (CjTijJCCJT + f/ij)ileTij’k + W”
Proof: Recalling (4) and (10), we can find that the
evaluation of filtering performance is based on the filtering

errors describing the deviation between the real state z; j
and the estimated state &; ;. In what follows, let us denote

5

2k — 2 as e;  for the convenience of analysis. Subtracting
(9) from (1) leads to the following filtering error dynamics

€ik+1
= (A — Kis kCi)ei s + wi i — Kii ki
+ ((Aij — 035k KijnCj) ejh — 08350 iy, (19)
JEN;
— Vi Kk (Vi + 9€ij,k¢fj,k))
which is further written as
€ik+1 = Z ((Aij - ﬁij,kKij_’ij)ejyk
JEN;U{i}

— Vi . Kij ki — 9§ij,kA¢jl/1f},k) + Wik
Vik, { :.]

Vij e = C %
Ry { Vik + 08605, 1 F ]

It is not difficult to see from (20) that the accurate covari-
ance P; 1 depends on

Z Z (Aij — ?9ij,kKij,ij)
JEN;U{i} seN;U{i}
X E{ej,kezk}(Ais - ﬁis,kKis,sz)T

(20)

where

that is, depends on all cross-variance matrices Pj,
(ie. E{ejrel ), j, 5 € Ni). Considering the connectivity of
topology, the optimal filtering is only realized in a centralized
way, which results in the serious burden in both calculation
and communication as increasing the scale of subsystems. As
such, in order to overcome this shortage, its upper bound of
P; i, (denoted as II; ;) is employed to realize the distributed
implementation of the filter (9) with attack detection.

In what follows, in order to develop a distributed design
method on desired filter gains K; 1., we introduce the follow-
ing auxiliary dynamics

Nigr1r = (Aij = 0ij 1 Kij 1 Cj) €k
— 0ijkBKij ki ke — 0851 Aij i -
For this dynamics, one has

)

2L

.
= E{nj k17 g1}
= (Aij — 031 K1y Cy) Pra(Asj — 9356 Ki50C5) " (22)
+ 0 i Kij kB 1775 1 YK o,
+ AijE{92fz'2j,k ke fgk)T}A;‘g
Then, the expectation in the above equation is calculated as
follows

E{Dij,kﬁg;,k} = Vi, E{f?j,k zzgk(wf]k)T} = W;;.
Therefore, it is easy to obtain that
@71
T
= (Aij = Vi1 Bi1C5) Pige(Asj — Viju KijnCy) " (23)
+ 95 Kij o Vig K + Ay Wi AL
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In what follows, replacing P; ; by Tij’k, one has an upper
bound

® ki
< (Aij — i1 KijnCs) Tijor (Aij — 'lgij,kKij,ij)T (24)
+ 05 KijuVig K+ Ay Wi AL
and its trace is suppressed by selecting
1

Kijr = AijTij,kC]T(CjTij,kC]T + ]A/ij)7 ) (25)
which means that
<I>;7’k+1 < Aii(Tijr + WZJ)AZ; — 941 Ai Tij i
x CT(C; Ty CT +Vij) T Cj Ty AL (26)

T
Finally, according to the relationship between (19) and (20),

one has
P g1 = E{( Z 77j,k+1)( Z 7737':1«+1)}
JEN;U{i} JEN;U{i}
= E{m,kaT,kH}
+ Z E{ni,k+177]7‘:k+1 + 77j,k+177i7:k+1}
JEN;
27
>0 E{nj7k+1n£k+1} + Qi
jEM seN;
< (T +6Gw)2] 0
JEN;
< I g1
which completes the proof. ]

So far, we have realized the mentioned objective in Subsec-
tion II-C, that is, obtaining the upper bound and the desired
filter parameters via formulas in Theorem 2. In what follows,
we will further discuss the developed result in comparison with
existing ones to systematically expose the main contribution.

B. Two modified versions

It is worth noting that the obtained upper bound II; 1 is
dependent on the scalar (; 3, and therefore such a bound can
be further optimized, which leads to the following corollary.

Corollary 1: For any i, let 1I; 0 > P; o be given. For the
distributed filter (9) with gain (17), a feasible upper bound
II; ;.41 of the covariance matrix P; ;11 is optimized by

II; k41 = min ((1 + Gii k) AiiSii k Aii + Qi
C1,,lc>0

+ Zje/\/i (Q‘ + C;;)A”S”;CA”)

In some practical engineering, the innovation from neigh-
bors may not be employed to perform the state estimation. An
improved version of distributed filter design is easily accessed,
and provided in the following corollary.

Corollary 2: For any i, let 1I; 0 > P; o be given. For the
distributed filter

i k1 = Aulip + Z Aijai; g + Kii kzik
JEN;

(28)
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with the gain
Kiip = ATl xCT (CIL . CF +05R,) ™!, (29)

a feasible upper bound II; ;.11 of the covariance matrix P; 311
is calculated by

IL g1 = 244855 1. Asi + Qs

+ Z GiAij (2T ik + VAVU)Aﬂ (30)
JEN;
where
Y 1 T T T
Tijre = §(Hij7k + (I35 6)7 ) + Koy 0 g
-1
Sii,k =1L, — HLkO;'T (OiHi,kCiT + 05R1) OiHi,k-

Proof: For the adopted filter (28), one has

€i k+1
= (Aii — Kis 1Ci)ei e — Kii wVik
+ Z (Aijej,k - eﬁij,kAijl/ij,k) + wik
fJENi ) . (31)
= V2! (* Aji — KiixCi)eik + —=Aije;
_Z \/5( K ) ok NG €5,k
JEN;
1 G0 k
— — K Vi — = Ay Zc )+wz .
\/5 Wi,k Vi k \/5 ﬂb g,k N

Then, along the similar line of the proof of Theorem 2, one
selects the following auxiliary dynamics

i

. 1
M1 = —7= (A — KiikCi)ei + —=Aije;
Lo Sk g s
- ﬁ ii,kVik — \/i zﬂ/}ij,k~
For above dynamics, one has
O, = E{n;,kﬂnﬁﬂ}
T
< (Aii — Kii 1Ci) Py i (Aii — Kii 1 Ch)
1
+ APl + K RiKE, O
S AW AT
Ty AWV i
In what follows, replacing Pjj by Y;;  results in
i T
(I)j12+1 < (A — Kii,kci)ﬂi,k(Aii - Kii,kci)
= 1
T T
+ 67 A Yo R AL + o K e i K (34)

2
+ EZAUWUAZ;

Then, selecting the filtering gain (29), one has an upper bound
of @’}

i,k+1
, i EEE )
CI’;-’,ZH < AySi AL + EZAij(QTij,k + Wij)Af}. (35)

Finally, according to the relationship between (31) and (32),
one has

P k11
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. _ T
= E{ (\/5%_1 Z ”JZ‘,kH) (\[2%_1 Z ”;',k+1> }
JEN; JEN;
. . T
= 29-_21[‘3{( Z U},kﬂ)( Z 77;‘,1@+1> }
JEN; JEN;
=2 Z Z E{n;,k+1(7/z,k+l)T} + Qi

JEN; sEN;
260D Pl T Qi
JEN;
2§,»_1 Z (Au‘gi,kAg;
JEN;
§'2 - A T
+ A (2T + Wi AT ) + Qi

IN

IN

= 1I; j+1,

which completes the proof. ]

In summary, this paper made a successful attempt to develop
a novel distributed filtering algorithm with attack detection.
The developed result is nontrivial and processes the following
identified characteristics: 1) the adopted detector is simplistic
and can be carried out in usual processors. There is no
doubt that the utilization of detectors can effectively identify
abnormal data and therefore increases the security of dis-
tributed filtering when occurring a deception attack. 2) the
filtering algorithm developed in Theorem 2 is only dependent
on the subsystem information itself and the received data
from neighboring subsystem, that is, the implementation of
algorithm is mutually independent among subsystems. In other
words, such an algorithm is carried out in a distributed way
and is not affected by increasing the scale of subsystems (i.e.
the requirement of scalability).

IV. SIMULATION RESULTS

In this section, the developed recursive algorithm with attack
detection is verified by resorting to the standard IEEE 39-
bus power system, which includes 10 generators, 29 loads,
and 40 transmission lines. The objective is to design a set of
desired filter gains K;; , and Kj;j via Theorem 2 to realize
secure filtering. Similar to the application in [42], the system
is partitioned into 10 areas, with one generator in each area,
as shown in Fig. 2 for clear description. The dynamics of
each power generation area is modeled by the following linear
continuous-time model:

i(t) = AGmi(t) + Y Afw;(t) + Biu,
JEN;

where z; and wu; are, respectively, the system state and the
control input of area . More specifically, the system state
consists of

;=] Aw; APy AP,, AP, |"
where the definitions of elements (i.e. system variables of
power systems) are shown in Table II.
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TABLE II
SYSTEM VARIABLES OF THE IEEE 39-BUS SYSTEMS

Aw; Deviation of the the angular velocity of the rotor
APy,; Deviation of the mechanical power
APy, Deviation of the electrical power
AP;; Deviation of the power flow on the tie-line from
area ¢ to area j
H; Inertia constant defined as
i Kinetic energy at rated speed

v Machine rating
R; Speed regulation
D; The load damping constant
Ten, The time delay of non-reheat turbine
Ty, The time constant of the governor
T;; The synchronizing torque coefficient

TABLE III
PARAMETERS FOR THE IEEE 39-BUS SYSTEMS

D; | Ten, | Tq, | Ri | H;
Areal | 5 | 02 | 025 05| 12
Area2 | 4 | 02 | 025 |05 8
Area3 | 4 | 02 | 025 |05 8
Aread | 6 | 02 | 025 ] 05 10
Area5 | 35| 02 | 025 |05 ] 7
Area6 | 3 | 02 | 025 | 05| 7
Area7 | 75 | 02 | 025 | 05| 10
Area8 | 4 | 02 | 025 |05 4
Area9 | 65| 02 | 025 |05 6
Areal0 | 5 | 02 | 025 | 05 5

Introducing stochastic noises, all system matrices in this
application are

r _D; _ 1 1 0
AS = ZjENi Tii O1 0 (1)
" 0 " Ten, 0 Ten; ’
1 1
L RiTy, 0 0 T Ty,
[0 0 0 0 0
e | Tz 0 0 O c 0
A = oo 000l BT 0 |
0 000 o
and the covariance of process noises is (); = 0.5/. Fur-

thermore, the model parameters in above matrices are given
in Table IIlI, where T;; is the same with that in [42], and
omitted here due to the limited space. In what follows, the
measurement matrix is

0 1 0 01
ci=10 01 0
0 00 1
and the covariance of measurement noises is R; = 0.11.

We can find that the information Aw; cannot be involved
in measurements. For the purpose of gain design and system
simulation, the sampling period is selected as 0.02s and
the corresponding discrete-time model is not difficult to be
obtained approximatively.

For checking the effectiveness of proposed algorithm, ma-
licious data in deception attacks (6) are randomly produced
via Matlab software. Specifically, the Matlab command used
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Fig. 2. IEEE 39-bus power system decomposed into ten control areas [42].

x

in this paper is “normrnd(0, X)”, where “X” stands for @lj,
@;‘j or @liy . Moreover, the attack instants are from k£ = 55 to
k = 74, the size of malicious data is assumed to be 6 = 0.55,
the statistical characteristic is & = 0.95, and the covariance of
malicious data are

or =1, 0% =1,
lp _ Arp _ T
O —er—045x[1 1 1 1][1 1 1 1],

This simulation is concerned with distributed filtering, and
the controller u; is designed directly via the corresponding
augmented system in the framework of linear quadratic regula-
tors. The adopted Matlab code is “lqr([Af;]10x 10, diag;o{ B},
0.1149, 1.1119)”. For the proposed algorithm, we select the
parameters o« = 0.85, kg = 3 and k1 = 1. The simulation
is run by the PC deployed an Intel Core CPU i7-5500U at
2.40Hz and 8GB RAM, and MATLAB (R2014a). The initial
conditions of IEEE 39-bus power systems are chosen as

Tgo =50 =710 = [1.4, 1.5, 1.3, 1.4]T,
Te0 = o0 = [1.1, 1.2, 1.8, 1.3]7,
x70 =130 = [1.1, 2.8, 2.8, 1.6]7,
Ti00 = T80 = 240 = [1.3, 1.3, 1.1, 1.4]7,
;o = 0.5, #;0 = 0.5z, 0, i € Nyg.

Without loss of generality, we only analyze the test results
on Areas 1, 3, 6, and 8. First, the trajectories of true states
Aw;, AP;j, AP,,,, AP, (solid lines) and their estimation
(dotted lines) are depicted in Figs. 3-6, where Fig. 3 and Fig. 4
occur some fluctuations from instant £ = 55 to instant k = 74.
Comparing the estimated trajectories with true ones, we can
see that errors are small even though deception attacks happen.
Then, the successful detection rate of designed detector is
obtained in Table IV, and the values are over 95% based on
Monte Carlo simulations with 400 runs, which verifies the
effectiveness of adopted attack detector.

In what follows, keeping the same deception attacks,
noises and initial conditions, performing traditional filtering
(i.e. without any defense) results in the corresponding esti-
mation of Aw;, AP,,, which are plotted in Figs. 7-8. We
can find from these two figures that the filtering errors are
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TABLE IV
SUCCESSFUL DETECTION RATE
Areas 1 2 3 4 5
Rate (%) | 96.40 | 96.87 | 97.38 | 9547 | 97.23
Areas 6 7 8 9 10
Rate (%) | 96.09 | 96.22 | 95.18 | 97.50 | 97.45

obviously larger than that in Fig. 3 and Fig. 6 over the time
range [55, 74), and such errors further lead to the degradation
of filtering performance after attacks vanish. These verify that
the developed filter is performed very well while showing good
defense capacity.
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= = = Ady
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E] Z 05
) ER
<< <<
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-1 -1
0 100 200 0 100 200
Time (k) Time (k)

Fig. 3. The true value Aw; and its estimation Aw; (i =1, 3,6,8).
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Fig. 4. The true value AP;; and its estimation Apij (i=1,3,6,8).

V. CONCLUSIONS

In this paper, the distributed recursive filtering issue with
attack detection has been investigated for a class of CPSs
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Fig. 6. The true value AP,, and its estimation Aﬁvi (1=1,3,6,8).

consisting of a set of spatially distributed subsystems. Ac-
cording to deception attacks coming from inherent security
vulnerability of communication networks, a detector, depen-
dent on both the received innovation and a predetermined
threshold «, has been proposed to identify the occurring
attacks as far as possible. In light of identified attacks, a
novel distributed filter has been constructed and its gains have
been designed via a set of recursive formulas. These formulas
have been derived by resorting to a set of auxiliary error
dynamics and have also been utilized to calculate the upper
bound of covariance of filtering errors. It has been further
found that the upper bound only depends on the neighboring
information and the information from the subsystem itself. As
such, the calculation burden almost remains unchanged when
the scale of addressed CPSs increases and thereby satisfying
the requirement of the scalability. Moreover, noting the rule
of attack detectors, the proposed filter is applicable for the
case that attackers cannot carry out stealth attack. Finally,
a standard IEEE 39-bus power systems has been utilized to
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Fig. 7. The true value Aw; and its estimation Aw; (i =1, 3,6, 8).
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Fig. 8. The true value AP,, and its estimation Aﬁvi (i=1,3,6,8).

verify the effectiveness of proposed filtering scheme. The test
results shown that the designed filter has the good capability
to reduce the impact from deception attacks. Further research
topics include extending our results to more complex scenarios
as well as various engineering applications: 1) CPSs with
varying or switching topologies, 2) communication scheduling
with various protocols, 3) communications subject to different
attacks or network-induced phenomena, and 4) more effective
detection schemes for cyber-attacks [43]-[45].
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