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ABSTRACT A fully verifiable and deployable framework for optimizing schedules in a batch-based
production system is proposed. The scheduler is designed to control and optimize the flow of batches of
material into a network of identical and non-identical parallel and series machines that produce a high
variation of complex hard metal products. The proposed multi-objective batch-based flowshop scheduling
optimization (MOBS-NET) deploys a fully connected deep neural network (FCDNN) with respect to three
performance criteria of energy, cost and makespan. The problem is NP-hard and considers minimizing the
energy consumed per unit of product, operations cost, and the makespan. The output of the method has
been validated and verified as optimal operational planning and scheduling meeting the business operational
objectives. Real-time and look ahead discrete event simulation of the production process provides the
feedback and assurance of the robustness and practicality of the optimum schedules prior to implementation.

INDEX TERMS Scheduling, deep neural networks, discrete event simulation (DES), key performance
indicator (KPI), operational planning and scheduling (OPS), optimization, hard metal.

I. INTRODUCTION
The desire to find the silver bullet of implementable
scheduling solutions in a complex manufacturing environ-
ment is persistent. Despite their theoretical and mathemat-
ical strength, most scheduling optimization solutions have
remained impractical or, at best, highly restricted to exces-
sively controlled environments. However, with significant
advancements inmachines tools automation, shop floor infor-
mation management systems, and adaptability of the work-
force, a breakthrough is occurring. As the industrial system
evolves into the fourth generation known as ‘Industry 4.0’,
more accurate insight into the capabilities and constraints of
plants is becoming possible [1]–[3]. Industry 4.0 is widely
accepted in the manufacturing industry since it guides a novel
and promising production paradigm. The evolution of data-
driven system state analysis is encouraging new numerical
and logical methods but at the same time implementable.
Together, these generate and leverage the concept of ‘smart
factories’ to comprise the next industrial revolution for
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manufacturing, characterized by increased flexibility, pro-
ductivity, efficiency, and sustainability, ultimately ensuring
competitiveness in the global market [4], [5].

In today’s markets, diversity of demand and competi-
tiveness increases, and manufacturing corporations have to
cut out their costs and improve their production line flex-
ibility. However, they face complex scheduling problems
in their workshops. Operational planning and scheduling
(OPS) in flexible manufacturing systems (FMS) operations
is basically a challenging task, and if a decision-making
model can evaluate different scenarios based on production
constraints and business requirements, it will provide the
flexibility needed [6]. OPS involves effective resources allo-
cation (labour, material, equipment) to activities over time in
order to satisfy temporal and resource capacity constraints.
Moreover, OPS optimizes different objectives by minimizing
production cost and makespan whilst maximizing energy
efficiency (i.e., minimizing energy consumed per unit of
production) and customer satisfaction [7], [8]. The flowshop
scheduling or OPS problem, known as a non-deterministic
polynomial-time (NP) hard problem, is significantly diffi-
cult to optimize by most traditional optimization techniques.
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In these methods, performing the optimization algorithm on
the particular points on the domain of the target function
(e.g., the linear motion between these points) will cause
the process to be converged toward the local optimum [9].
Artificial Intelligence (AI) and Machine Learning (ML) [10]
techniques have a great place in the OPS domain due to their
abilities in dealing with the operational diversity and intrinsic
difficulty of most scheduling optimization problems [11].
Schalkoff [12] defined the field of AI in 1990 as follows:
‘‘Artificial intelligence includes problem-solving by methods
modelled after natural activities and cognitive processes of
humans using computer programs that simulate them’’.

The motivation of this study is to prove and subsequently
capitalize on the new capabilities of Industry 4.0 enabled
plants and provide a robust and implementable optimal
and effective schedule to maintain the highest production
efficiency and productivity. Optimal schedules lead to the
faster movement of products (higher productivity) with lower
energy consumption (green manufacturing), betters use of
assets (optimal efficiency) and most importantly, at a lower
cost. Even though the application of a robust scheduler is
articulated in one complicated use case in this paper, the same
solution can be deployed in any batch-based flowshopsmanu-
facturing system. The current scheduling tools have predomi-
nantly been designed to optimize performance oriented KPIs,
such as minimizing makespan and maximizing production
rate. Energy-aware scheduling [13] is a new trend to embed
sustainability into the production planning stage by explic-
itly considering energy consumption as a decision criterion
in shop floor scheduling. To the best of our knowledge,
no commercial tool is available in the market for discrete
part manufacturing operations in general and for batch-based
flowshop operations in particular. Motivated by the needs
of a major discrete part manufacturer in tungsten carbide
hard metal manufacturer in Europe that run energy-intensive
operations, the current research aims to develop and pilot test
a novel methodology for flowshop scheduling considering
multiple decision objectives, including cost, makespan, and
energy consumption, and to develop a prototype as the proof
of concept.

In this study, the case study is a highly complex hard metal
like most in real-world general flowshop operations. Due to
the shortage of OPS collected from live operation to the Deep
Neural Network (DNN) training, a simulation model has
been designed and implemented in Arena 2018 simulation
package. Simulationmodelling is a conventional approach for
evaluating the scheduling of a flowshop system; however, it
is costly and time-consuming, and design and developing a
model and interpreting the results requires expertise [14]. The
simulator generates limited random scenarios for scheduling
sequences based on various random batch numbers and their
related makespan, total cost, energy consumption and other
key performance indications (KPIs). These limited scenarios
OPSs andKPIs assign as a training dataset to a proposed Fully
Connected Deep Neural Network (FCDNN) as a decision-
making model to replace the simulation model. FCDNN is

a data-driven approach to OPS problems that does not rely on
the traditional prescriptive formulation. NNs are effective and
cheaper alternative modelling of flowshop scheduling opti-
mization problems which, due to their robustness, parallelism
and ability for optimization, have been successfully deployed.

This study reports on research aiming to develop and
pilot test a novel methodology for a Multi-Objective Batch
Base Flowshop Scheduling Optimisation using FCDNN
(MOBS-NET) that schedule batch jobs for identical and non-
identical machines in parallel and series formations and find
quick optimal solutions to the flowshop OPS problem that
is not possible to meet through the simulation. The main
contributions of this research can be listed as follows:
• Design and development of a bespoke data acquisition
system to collect critical production data. This is a com-
plex exercise in the industry, and the process of digiti-
zation can be replicated and scaled to similar industrial
processes and cases (i.e., powder metallurgy)

• Data analytics for combining total production system
and co-relating key performance indicators of manufac-
turing process.

Deploy the FCDNNmethod to find the optimal production
plan by satisfying makespan, total cost, energy consump-
tion objectives. In the following section, we will critically
review the literature on scheduling methods. In Section 3,
we describe a real-world hard metal use case flowshop with
an overview of the framework and some results of the sim-
ulation model. In Section 4, we propose the FCDNN model
that has been designed to be trained from a combination of
collected and a finite number of simulation outputs. This will
be followed by a comparison and evaluation of the deployed
model’s behaviour in the dynamics of the complex opera-
tions. Finally, this study is concluded by a discussion of the
proposed method application, conclusion and future research
direction.

II. RELATED WORK
In the last three decades, extensive research has been dedi-
cated to the pressing problem of how to schedule a production
plan to meet all the desired efficiency, productivity, eco-
nomic, and environmental needs. A plethora of Mathemati-
cal [15], Heuristic [16], and AI-inspired [10] methods have
been suggested. Despite their significant theoretical and at
times, specific practical achievements, to the best knowledge
of the authors, there does not seem to be a complete and
universally accepted scheduling method. Current solutions
and in our own experience with a wide range of industries
show that the efficiency of scheduling solutions is marred
with inflexibilities that arise from the dynamics of system
settings, characteristics, operating conditions, and the ever-
changing production objectives [17].

Alternative names given to scheduling methods in the liter-
ature are priority rules, scheduling rules, or dispatching rules.
Earlier enumerative algorithms provided prescriptive mod-
elling solutions such as linear programming, and later, more
advanced techniques such as mixed integer programming
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(MIP) were introduced [4], [15]. For instance, [15] applied
MIP to analyze the trade-off between minimizing makespan,
a measure of service level and total energy consumption.

In the heuristic approach, a problem-specific algorithm
is developed. Heuristics scheduling methods, due to their
ease of implementation, satisfactory performance, low com-
putational requirement, and flexibility to incorporate domain
knowledge are regularly applied in practice [16]. A heuris-
tic approach is a typical way to solve scheduling problems
because they are NP-hard. But the inherent weakness of
classical Heuristic methods is their reliance on expert judg-
ments, perspective and continuous interference. In the former
cases, bias and in the latter inefficiencies make them at times
impractical and case constrained (meta-heuristic [18], [19]
and hyper-heuristic [20]–[22]. For example, the dispatching
rule approach calculates the priority of each job via a set
of predetermined dispatching rules (i.e., limitation of expert
perspective). The jobs are then processed in order of descend-
ing priority. This approach occasionally encounters issues in
selecting the optimal dispatching rule because it cannot out-
perform other rules in every scheduling situation (i.e., ineffi-
ciency) [16], [17]. Thus, an optimal universal dispatching rule
is absent (i.e., case constrained). To address this shortcoming
and to leverage the emergence of big data in manufacturing,
a strand of scheduling literature has emerged [23]–[28].

Zarandi et al. [11] and Li et al. [29] have conducted
comprehensive literature reviews on artificial and computa-
tional intelligence techniques for scheduling problems and
categorized them into five methods of Fuzzy logic [30],
Expert systems, Machine learning [31]–[33], Stochastic local
search optimization algorithms and modern heuristic algo-
rithms with global optimization performance. Figure 1 shows
these AI techniques applied in the scheduling problem.

Despite extensive research workstreams, there is a persist-
ing inflexibility in the scheduling models; they are incapable
of absorbing the real uncertainties and the unpredictability of
real-time and real-world events. To name a few, quality and
quantity changes of demand, changes to the due date, states
and condition of the shop floor equipment, machinery, raw
material quality fluctuation, etc.

In dynamic scheduling models where one or more con-
ditions like the number of jobs or the number of operation
machines are not constant, the problems are under the con-
sideration of multiple objectives, time-dependent processing
time and uncertainty [4], [34]. TheML techniques are becom-
ing popular because they can handle NP-Hard problems by
learning complex relationships between the input and out-
put variables, which are difficult to express with analytical
and heuristic methods in a dynamic manufacturing envi-
ronment [10], [31], [35]. As examples of these techniques,
studies of scheduling sequences by decision trees by [36]
and Support Vector Machine (SVM) algorithms by [37].
Other studies used Self- OrganizingMaps (SOMs) to indicate
adequate dispatching [38]. However, these machine learn-
ing methods cannot easily guarantee sufficient prediction

FIGURE 1. AI techniques over intelligent scheduling problem [11].

accuracy and are not suitable for high dimensional data due
to the curse of the dimensionality problem.

NNs are one of the AI techniques that have been used
to solve complex problems which might do not have any
analytical or heuristic solutions. TheNNs are a computational
model inspired by the biological nerve system and has an out-
standing learning ability between input and output patterns
of a complex system. The feed-forward NNs are a model
used for data collection, pattern recognition, and simulation
of various complex systems. Through the use of non-linear
data, artificial and deep NNs have better predictive quality
due to their excellent learning ability. The ability to learn from
examples makes NNs a particularly powerful programming
tool when domain rules are not entirely certain or in the
presence of inaccurate or conflicting data [39].

Although NNmodelling has been employed for scheduling
problems in the literature [40]–[42], most of these studies
have focused on simple operations flow, whichmay not incor-
porate the complexity of real-world operations. Modelling
and analysis for the detailed scheduling of complex opera-
tions flowshop systems by NN need more attention. With this
objective, [14] developed a classical NN model to quickly
assess the expected profit, as the main KPI, of different
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schedules of flowshop scheduling. The proposed model helps
managers estimate the throughput based on historical data
with a trained classical NN model instead of a simulation
model, which is costly and complex. We borrowed some of
the ideas from this study and extended it for a multi-objective
flowshop scheduling where multiple KPI’s are considered,
including machines utilization, energy consumption, opera-
tion cost, and settings changes time. Furthermore, the applied
NN in this study has a simple structure (since published
in 2013) and has a significant difference with the proposed
MOBS-NET in our study in the layout and performance.

The recent examples of improved NNs methods in produc-
tion scheduling and objective optimization are the applica-
tion of Long-short term memory (LSTM) in [10], Artificial
NN in [39], DNN in [40], and Convolutional NN in [40].
Recently, hybrid techniques that involve searching strategies
that navigate heuristic algorithms in the problem domain
away from local optima have been applied, such as hybrid
neural network–genetic algorithm [41].

Kim et al. [40] studied machine allocation in a semicon-
ductor fabrication production scheduling problem with an
automated material handling system’s constraint. A DNN-
based scheduling algorithm to solve the problem has been
proposed, and a small-sized experiment was simulated to
address a machine targeting problem. This study claims that
the proposed method could improve the productivity KPI
(throughput and machine utilization) of each workstation.
Despite some similarities of this study with our proposed
method in data preparation and collection, but there are some
differences in the selected objective KPIs and applied DNN
layout with the proposed MOBS-NET. For instance, energy
consumption has not been selected as a decision criterion in
shop floor scheduling in this research.

The makespan of the orders depends on several factors,
including arrival rate of material, variability of material/
production process, and the batch sizes. Some manufactur-
ing systems deploy batch processing procedures to avoid
cumbersome setups, stoppages and to facilitate material han-
dling. A batch is defined as a group of jobs that have to
be processed jointly, and a batch scheduling problem con-
sists of grouping jobs on each machine into batches that are
scheduled either in serial or in parallel. They can be classi-
fied into static and dynamic scheduling [42]. In our experi-
ence with multiple plants, we have realized that batch size
is an important parameter that affects makespan (directly)
and scheduling (indirectly) of an FMS. Literature suggests
meta-heuristic evolutionary learningmethods such as Genetic
Algorithm (GA) or nature-inspired meta-heuristic algorithms
such as monarch butterfly optimization (MBO) [43] or ele-
phant herding optimization (EHO) [44] algorithm as useful
approaches to deal with scheduling challenges [45]. A good
scheduling method can use the ability of batch processing
machines (BPMs) efficiently to achieve expected perfor-
mance while satisfying the constraints of batch size and other
properties, i.e., grouping jobs into batches before applying a
scheduling rule [46]. In recent years, there have been many

studies on BPMs scheduling problems in different manufac-
turing processes.

Due to the complexity of solving batch scheduling
sequences in a real-world flowshop (for more than two-stage
flowshops), there is no mathematical function to analyze a
stochastic model for these problems. Therefore, computer
simulations or AI methods can be employed to deal with the
complexity of this kind of complex and non-linear problem.
In this approach, different sequence combinations can be
considered for processing different jobs with different spec-
ifications (e.g., processing time). Hence, different sequence
combinations lead to different makespan, cost or KPIs
(e.g., energy consumption and quality) as the outputs of
the simulation or trained AI model. An excellent example
of a research study on batch grouping and scheduling was
conducted by [16]. A clustering algorithm has been designed
to group similar jobs under machine capacity constraints and
then applied a scheduling rule selection model based on a
classical NN for batch sequencing. Furthermore, two differ-
ent computer simulations based on networkmodelling (visual
SLAM language software) and Discrete Event Simulation
(DES) (Arena 12 simulation software), which were designed
to solve the batch grouping and scheduling problems, respec-
tively, are discussed in [14] and [47]. Noteworthy, the pro-
posedMOBS-NET in this study offers significant insight into
the grouping of the batches.

All reviewed literature has been applied in one or a com-
bination of various platforms such as single machine [48],
parallel machine [49], flow shop [8], series batch [50], [51],
real-time [20], and flexible manufacturing systems schedul-
ing [52]. Between these, the parallel machine scheduling
(PMS) problem is an atypical scheduling problem with
extensive practical relevance. The solution approach to the
PMS problem mainly includes heuristic algorithm, and AI
method such as EA and NNs have been widely studied
to solve the problem with the objective of minimizing the
makespan [15], [53]–[55].

With reference to the reviewed literature on the weakness
and strengths of different production scheduling and objective
optimization techniques, batch grouping, as well as PMS
problems, the proposed alternative MOBS-NET is presented
in the following section.

III. PROBLEM DESCRIPTION AND DATA PREPARATION
In this section, a real-world case study in a tungsten carbide
hard metal corporation will be reviewed.

A. CASE STUDY
A Tungsten carbide hard metal corporation is an intensive
user of precision grinding, milling and turning operations,
particularly for the final stages of hard metals (WC-Co) wear
tooling for numerous industrial applications. Surface fin-
ishing, including surface roughness, dimensional tolerances
and structural integrity, must meet precise standards which
demand continuous measuring and quality control. The non-
quality is very costly at this stage since the production process
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is based on powder metallurgy. The recycling process must
then be made through the chemical dissolution of the parts
to recover the starting powders. The production strategy is
MTO, and the process is included three productions’ cell’.
The production details are as the following.
• Cell 1 includes powder preparations in two non-identical
furnaces and dry machine; the prepared powder enters
cell 2 for pressing with two identical machines to build
the products and then enters to green machining to preci-
sion machining. The product then moves to cell 3, which
includes two identical sintering and a finishingMachine.
Figure 2 shows the production process flow.

• There are four products (P1 to P4) with the presented
raw material (RM) usage in Table 1. RM contains RM1,
RM2, RM3 andRM4 and cost £50, £60, £65, and £70 per
kilogram, respectively.

• Furnaces 1 and 2 have a capacity of 10 and 15 kg (20%
overload is acceptable) and need to run for 10 hrs and
20 hrs (plus 4 hrs for warming up) respectively to cook
and prepare the raw materials.

• The dry machine has a capacity of a maximum of 15kg
and takes 8 hrs to dry and dehumanize the raw material
and make the final powders. Three operators work for
furnace and dry machine.

• Press machine 1 and 2 press the powders for products
P1 to P4 in 15, 45, 30 and 60 minutes, respectively. Set
up a time for each machine is 15 minutes. Press machine
causes defect type 2 over 1% of products.

• Green machine cuts and machines the products are com-
ing out of press machines. For products P1 to P4 in 1,
2, 1.5 and 2 hours respectively. Set up a time for each
machine is 30 minutes. Green machine causes defect
type 3 over 1% of products.

• Two sintering machines sinter the products in 1hrs for
lighter than 2kg and 1.5hrs for heavier products. The
defect cost in this machine is 10% of product cost to
recycle and recover the powders.
Finishing the products last 2 hours and machine set up
time is 15 min. 70% of whole defects occur in this stage
which is called tolerance defect (type 4). Defects in
this line are non-recyclable and should be sold to the
scrapyard with 2% of their raw material weights.

• Overall, six operators are available for pressing, green,
sintering and finishing machines.

• Each shift is 7 hrs work plus an hour break (8 hrs
overall).

• Furnaces and Machines running costs (including labour,
electrical power, depression and maintenance but
excluding raw material cost) and Electrical power usage
are presented in Table 2.

• Electricity cost rate is: 5p/kWh

B. DATA ACQUISITION AND PREPARATION
A detailed shop floor data collection solution was imple-
mented to collect the required data for OPSs and KPIs.
We implemented a digital material tracking and traceability

FIGURE 2. Production flowshop.

TABLE 1. Product raw material contents.

TABLE 2. Machine electrical consumption.

solution that followed the product throughout the production
pathways. In addition, we developed an efficient real-time
data acquisition platform to collect live data in the process.
It included a combination of automatic data acquisition, e.g.,
sensors, actuation, machine states, and operator availability,
as well as a simplified digitalized manual data acquisition
(e.g., Human Machine Interface panels) connected within
a shopfloor Control Area Network (CAN) and SCADA.
Furthermore, operational data was also automatically and
directly queried from the proprietary enterprise data man-
agement system (in this case, the SAP platform). Further
contextual intelligence was gathered through interviews with
production and accounting managers. The collected dataset
was limited to ten regular orders and wasn’t sufficient for the
training of the proposed FCDNN model. For this purpose,
a Mont Carlo simulation of the use case has been designed
and implemented in Arena simulation to generate a reliable
and larger amount of dataset.

C. DES SIMULATION AND MODELLING
The DES simulation is used in this study used to generate
a reliable and sufficient number of scenarios for the train-
ing and validation of the proposed MOBS-NET method.
Based on the availability and accessibility of accumulation
of live production data and manufacturing information from
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the shopfloor, DES simulation of the use case was designed
and modelled in Arena 2018 simulation and modelling pack-
age. DES is an effective tool for the analysis of system
performance, system monitoring, prediction and scheduling
problems [58]. DES has also shown to outperform other
analytical or physical models capturing the complexities of
manufacturing systems [59].

The simulation details are not objective of this research
study; see more details in [60], [61]. To create a steady-
state analysis and to statistically validate the DES models
of optimum scheduling solutions, the following assumptions
have been made in consultation with the production man-
agement team at the plant, it was agreed that: (1) the trans-
fer time between machines are ignorable (cellular layout),
(2) jobs are prepared for processing at the machine release
times (sufficient material buffer), (3) the total manufactur-
ing cost calculation excludes raw material cost, and (4) the
machine capacity is one item per cycle, except for the two
furnaceswhich can be loaded up to their maximum capacities.

In the end, the simulation model has been compared and
validated through 10 direct collected scenarios and also in
consultation with the production management team. The sce-
narioswere collected based on a regular order which is a batch
size of 20 from various products (P1, . . . , P4).
An example of the direct collected OPSs from shopfloor

is in Appendix I. Appendix I includes the OPS for all the
machines in the process line (the batch and machine numbers
for the parallel furnaces and machines, starting and leaving
process times for all the machines). Moreover, Appendix II
presents the manufacturing KPIs including machines uti-
lizations, machines energy consumption, machines operation
cost, and settings changes time. TheseKPIs are the simulation
outputs for the collected scheduling in Appendix I (approved
by the production management team).

As explained above, the simulation purpose is to generate
a larger dataset for the training of the proposed method.
However, implementation of all these possible scenarios in
the simulation is time-consuming and costly; therefore, a total
of 300 various scenarios (including ten direct collected) have
been prepared. The operational planning, scheduling and
KPIs will be used in training and validation of the proposed
NN method in the following section.

Table 3 presents four production scenarios with the mini-
mum total cost, energy consumption, quality and makespan
from 300 simulated scenarios. There are two approaches to
find the production plan for a specified period and defined
decision objectives of the total cost, makespan, and total
energy consumption. The first approach is to run the simula-
tion for a long period and detect the best solution. The second
approach is to train a model with the known scenarios and
monitor the patterns of model inputs (e.g., machines cycle
time, batch size, machine capacity and numbers), and find
their correlations/impact on the system outputs (e.g., cost,
makespan and energy consumption).

In the following section, we will propose an FCDNN
model to find the pattern and inter-relationship between the

OPSs and the corresponding KPIs to meet the customer’s
ideal cost and makespan as well as the manufacturer’s con-
straints in energy consumption.

IV. FULLY CONNECTED DEEP NEURAL
NETWORKS (FCDNN)
NN algorithms are extensively used by machine learning and
data scientists for solving different kinds of data regression
and classification problems [62]. In this research study, three
NN regression models will be built for each cell to find the
OPS which meet the customer’s ideal cost and makespan as
well as the manufacturer’s desired energy consumption.

Artificial Neural Networks (ANN) has proven in many
applications to be a robust data modelling tool capable of cap-
turing and representing complex input/output relationships.
They are a human brain-inspired programming paradigm that
allows a computer to learn from observational data similar to
the brain. Fully connected networks are ‘Structure Agnostic’
and the subcategory of deep neural networks [63]. DNNs have
been shown great success in various tasks like nonparametric
regression and classification.

Numerous research has explained the reasons for the great
success of this method in practical applications and filled the
gap between practical use and theoretical Understanding [64].
A fully connected deep neural network (FCDNN) consists of
a series of fully connected layers that connect every layer
neuron to the others in another layer. The structure of the
proposed FCDNN developed for this study is represented as
follows in Figure 3.

A. FCDNN STRUCTURE
The FCDNN used in this study has a five-layer network
structure, consisting of an input layer, three hidden layers,
and an output layer, each composed of a plurality of neurons
that can be calculated in parallel. The connection between the
hidden layers and between the first hidden layer and the input
layer are connected by an activation function. The details of
the structure of the proposed FCDNN are as following:

1) FULLY CONNECTED LAYER (OR DENSE LAYER)
The fully connected layers are able to learn non-linear combi-
nations of input features considerably efficiently. Neurons in
a fully connected layer have full connections to all activations
in the previous layer. Their activations can hence be computed
with a matrix multiplication followed by a bias offset [65].

H (x) = Wx + b (1)

where W ∈ R(K ,n) is weight matrix and b ∈ RK is the bias
offset.

2) ELU ACTIVATION LAYER
Exponential Linear Unit (ELU) is a function that tends to
converge cost faster and generate more accurate results [66].

ELU(x) =

{
α(exp(x)− 1), if x ≤ 0
x, if x > 0

(2)
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TABLE 3. Some Scenarios with a minimum total cost, makespan and total
energy consumption.

FIGURE 3. Proposed FCDNN with multiple hidden layers and a dropout
layer.

ELU uses the activation function to achieve mean zero,
as the learning can be made faster. For the ELU activation
function, an α value is picked; a common value is between
0.1 and 0.3. Hence it is a good option against activation
functions like ReLU (Rectified Linear Unit) since it decreases
the bias shift by pushing the mean activation towards zero.
Unlike ReLU, ELU can produce negative outputs.

3) DROPOUT LAYER
Dropout is a sort of regularisation that randomly drops some
proportion of the nodes that feed into a fully connected
layer. Dropping a node means that its contribution to the
corresponding activation function is set to zero, and therefore
it prevents the network from memorizing the training data
(overfitting). With dropout, training loss will no longer tend
rapidly toward zero, even for very large deep networks.

4) LINER ACTIVATION LAYER
A linear activation function takes the form [63]:

A = cx (3)

where c is a constant number and activation is proportional to
the input. This way, it provides a range of activations, so it is
not binary activation.

B. LOSS AND OPTIMIZATION FUNCTIONS
In most learning networks, the error is determined as the
difference between the actual output and the predicted out-
put [57].

J (w) = p− p̂ (4)

where J is a function of internal parameters of model, i.e.
weights and bias. The function that is used to compute this
error is known as Loss Function.

Different loss functions will provide different errors for the
same prediction, and therefore have a considerable effect on
the performance of the model. One of the most widely used
loss functions is Mean Absolute Error (MAE) that is used
in this research, which calculates the absolute of the differ-
ence between the actual value and predicted value. Various
loss functions are used to deal with different type of tasks,
i.e., regression and classification.

For accurate predictions, minimization of the calculated
error functions is needed. In a NN model, the weights and
biases are modified using a function called optimization func-
tion. Some important first-order optimization functions are
Adaptive Moment Estimation (Adam), Stochastic Gradient
Descent, and Adagrad [67]. It also calculates a different
learning rate. Adam works well in practice, is faster, and
outperforms other techniques and is used in this paper with
a learning rate set to 0.01.

C. THE IMPLEMENTATION OF THE PROPOSED FCDNN
The simplified production process flow shown in figure 2,
consists of three cells which each cell begins with two parallel
furnaces or machines and continue with a series machine. The
first cell includes two non-identical furnaces with different
capacities and process time, and then raw material enters
a drying machine. The second cell starts with two parallel
identical press machines, and then the pressed products go to
the green machine and at the end in the third cell, pressed,
and machined products enter to either of the parallel identical
sintering machines to be sintered and then to the finishing
machines for precision quality.

For this experiment, the proposed architecture consists of
three similar FCDNNs (Figure 3) for three cells and several
hyperparameters that should be determined, including the
number of fully connected layers, the number of nodes in
fully connected layers, dropout, etc. Choosing the number
of hidden layers and nodes in hidden layers depends upon
the use case and problem statement that we are dealing with.
The introduction of the hidden layer(s) makes it possible
for the network to exhibit non-linear behaviour. The uncaused
increasing hidden layers and the number of neurons would
increase the complexity of the model. Choosing hidden lay-
ers such as eight, nine, or more may sometimes lead to
overfitting.

The presented network settings in Table 4 are set after
several comparative experiments, which shows that this com-
bination produces the best performance for all three networks.
Hidden layers (dense layers) 1 to 3 are features extraction,
the ELU layer is added at the end of every dense layer for
accelerating the training speed, and the dropout layer is added
after the third dense layer to avoid the extraction of redundant
features and to prevent over-fitting, a challenge in deploying
deep neural networks to applications [68].
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TABLE 4. FCDNN layer types, Output shapes and parameters numbers.

1) MODEL STRUCTURE
There are 300 scenarios collected from the simulator. The
input for each FCDNN is a cluster of cell costs, finishing
time and the number of products from each type (Categorical
data). After gathering all data and encoding categorical data
to numbers, the final input vector dimension is (58× 1).
The output vector dimension is (40× 1) that denotes the

machines number (for parallel machines) and starting pro-
cess time for every single product. As we mentioned earlier,
the structure of FCDNN for all three cells are the same.
Before training, a normalization process has been applied
to re-scale the data to [0, 1] in order to diminish the data
redundancy and progress data integrity.

2) TRAINING DATASETS
Training a NN is the process of finding the values for the
weights and biases. The training of a NN model is most
challenging because it requires solving two difficult problems
at the same time; learning and generalizing. Learning the
training dataset is intended to minimize the loss function
while generalizing the model performance allows predictions
on test examples (validation dataset). The dichotomy of learn-
ing models is that if it learns well, it could be at the cost of
generalization (i.e., overfitting), and if a model generalizes
well, it may lead to underfitting. One of the objectives in
training a NN is to obtain a good balance between these two
problems.

In this experiment, the existing 300 scenarios are randomly
split into a training dataset (typically 80 per cent of the data),
a validation dataset (10 per cent of data) and a test dataset
(the remaining ten per cent, usually this been named valida-
tion of the model in non-neural network research domains).
After training is completed, the trained model’s weights and
biases will be applied and tested on the test dataset. One of
the significant difficulties when working with NNs is over-
fitting. Model’s overfitting often occurs when the training
algorithm runs too long. The validation helps to find when

FIGURE 4. The loss changes and convergence during training for cell1.

model overfitting starts to happen by keeping the model
parameters when the validation error is lowest during the
training. Figure 4 shows the training and validation data
loss curve for predicting the cell 1 network parameters after
200 epochs. The training process is carried on the other two
cells as well. The results show the proposed model addresses
the dichotomy of learning and keeps the balance between
learning and generalization.

3) MODEL DEPLOYMENT
Three distinctive trained FCDNN models for the three cells,
deployed in this section to predict the machine numbers
in the parallel process as well as starting process time for
each cell in unseen scenarios (named validation) dataset. The
series machines (i.e. dry machine, green machine and fin-
ishing machine) scheduling have not been predicted through
this model since, in the series production process, it has
been assumed the first output enters the next series machine.
Appendix III presents the predicted scheduling and machine
numbers for the three cells in a randomly selected sample
scenario in which its machine OPS and KPIs are presented
in Appendix I and II, respectively. Figure 5 compares the
actual and predicted starting process time of all three cells
on random sample scenario (See Appendix I and III) Starting
process times of each cell have been chosen as the trigger of
scheduling events of the cell, and the start event of subsequent
processes in downstream cells are based on parts leaving the
previous process (contiguous process). The results reveal that
some divergence between actual and predicted scheduling
of cells occurs for each order number. For instance, while
the actual starting process time for order no.5 in cell 1 is
56 hours, but the model estimates it to be hour 32 hours. This
divergence is somewhat inevitable because of the nature of
the NN models and can be reduced by increasing the number
of training datasets. Although increasing the number of sce-
narios means more direct sampling or simulation runs which
are time-consuming and costly. The authors have chosen
300 scenarios since themodel can be validated and testedwith
30 scenarios (ten per cent of the dataset). Furthermore, these
divergences are not evidence of the model flaw in predicting
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FIGURE 5. Comparison of the actual and predicted scheduling of three
cells on the selected scenarios.

the OPS. Any logical and practicability flaw in the new OPC
will be identified when the process simulator calculates the
values of the process KPIs.

In the following section, the predicted OPSs from the
proposed FCDNN model is fed to the DES for the purpose
of predicting the values KPIs in look-ahead mode. This novel
approach allows the scheduling solution to be verified into a
near accurate computer simulation of the plant. Avoiding any
disruption and disturbance to the actual system. Moreover,
it allows the operation managers to visualize and assess the
efficacy of the scheduler prior to implementation.

V. VALIDATION AND COMPARISON
The proposed FCDNN performance in calculating the pro-
cess OPSs is compared with the actual OPSs on the test

FIGURE 6. Comparison between the actual and predicted objective KPIs
for the test dataset.

dataset in this section. As discussed before, ten per cent
of the existing 300 scenarios (i.e., thirty scenarios) hasn’t
been trained for the final validation purpose. These sce-
narios’ selected KPIs, i.e., energy consumption, cost of
each machine, plus final Markesan, have been presented in
Appendix IV. The proposed model takes these KPIs as inputs
and calculated the operational planning (machines number
and batch numbers) and machines scheduling as a sample is
presented in Appendix III.
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In this section, the estimated OPSs fed to the simulator to
predict the KPIs for the machines (and cells) in Appendix V.
These objective KPIs comparison between total actual and
predicted KPIs on the test dataset (thirty scenarios) are shown
in Figure 6 in three distinctive charts of the total cost,
makespan and total energy consumption. The MAE (Mean
Average Error), average deviation and t_Test between these
parameters are compared in Table 5. The comparison meth-
ods have been chosen because of their extensive applications
in the observations’ comparison domain. The purpose of the
applied paired T-test (two-tailed) is to assess whether the
mean scores from two paired thirty actual and predicted KPIs
in the test dataset are statistically different from one another.
The results present that the proposed FCDNNmethod regard-
ing the number of model’s inputs and outputs and training
dataset volume (240 scenarios) has met the manufacturer’s
satisfying accuracy of under %4 deviations of estimated
KPIs.

The performance of the proposed FCDNNmethod is com-
pared with the two most popular data mining and ML [69]
methods. Random Forest Regression and single hidden layer
NN methods (with 100 hidden neurons and ReLU active
transfer function) were chosen due to their accuracy and
applications in similar industrial experiments. Both models
are trained with the same training dataset, and the outputs
between the actual and predicted KPIs on the test dataset are
shown in Table 6. In comparison, FCDNN performs better
accuracy due to the more advanced and extensive architec-
ture. However, in the training algorithm’s speed and com-
putational complexity, the single-layer NN is faster and less
complex to implement.

In the following section, the application of the proposed
method in the optimal OPSs calculation will be discussed.
Furthermore, minimum final production cost, makespan and
energy consumption for the regular order will be reviewed.

VI. DISCUSSION
In a general flowshop environment, dynamism and complex-
ity of operations enhance the need for an accurate model pre-
diction. The dilemma of the businesses is manufacturing with
minimum costs, makespan, defects and energy consumption.
As discussed in Section III.C, the presented four scenarios
in Table 3, which have the minimums, do not prove that they
are optimal solutions or have the overall minimums KPIs.
There are two approaches to find the optimal solution(s);
1) collection of thousand scenarios (direct collection or
through the validated simulator) and find the optimal(s)
between them or 2) build a representative function model to
generate the optimal OPSs. In Section 4, an FCDNN model
proposed based onNN’s predictive ability to generate the sce-
narios. The proposed model acquires the KPIs as the inputs
and generates the OPS, i.e., details of operational plans and
schedules to meet the KPIs. And finally, for validation of the
proposed model, the generated OPSs applied to the simulator
and the calculated KPIs compared with the actuals KPIs on a
test dataset in Table 7.

TABLE 5. MAE, average variation and T test between the actual and
predicted parameters on the test dataset with the proposed FCDNN.

TABLE 6. MAE, average variation and T-test between the actual and
predicted parameters on the test dataset with single hidden layer NN and
Random Forest methods.

TABLE 7. Some scenarios with minimum total cost, Makespan and
energy consumption.

To find the optimal solution(s) of this multi-objective prob-
lem, a deviation test is conducted. In this test, the less than
minimums of makespan, total cost and energy consumption
(Table 3) were fed into the proposed model, and the resulting
calculated OPSs were tested in the simulator. The deviation
results (in Table 6) show if the KPIs are reduced fromTest 1 to
Test 4, the deviation increases. In other words, there is no spe-
cific single optimal solution, and the production manager will
be informed of the possible ‘‘no single optimum solution’’.
At this stage, an intuitive decision-making exercise based on
business priorities and local regulations (e.g., regulation in
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GHG emissions) could allow the decision-maker to select
one solution from a number of alternative solutions. This
is still significant assistance to continuous improvement in
operations and decision making to meet business and legal
objectives in production systems.

VII. CONCLUSION
This study proposes MOBS-NET framework to solve the
batch base production flowshop scheduling problems in live
real-world complex manufacturing production systems. The
experiment in this study is from hardmetal use case flowshop,
where sequences of a wide variety of jobs are processed in
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identical and non-identical machines. The machines operate
in parallel and series, forming complex routing production
process plans. Any change in the production plan, resource
schedules, job sequences, or formation of batches (i.e., OPS)
lead to different cost, makespan, and energy consumption as
the chosen KPIs by our operations managers in the plant. This
problem is NP-hard.

The accumulation of shopfloor real-time data, as well as
a finite number of scenarios of a verified DES model, have
been used to train the FCDNN model. Once the proposed
model trained, it will be used to generate OPSs of the complex
production lines. It will be able to capture the underlying
relationship between input and output variables and conse-
quently build the optimal OPSs based on the optimal KPIs.
Therefore, complex simulation settings can be replaced by the
proposed FCDNN. The results of the proposed model proved
statistically equivalent to the results provided by the verified
discrete event simulation model.

This decision support model can help decision-makers
evaluate possible OPS and make the best decision automat-
ically and without the intervention of experts. This model
adds flexibility and convenience for managing the hard and
complex operations of day-to-day production systems and
sustain continuous optimal production settings.
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The primary objective of this studywas to demonstrate how
to design an effective DNNmodel for detailed scheduling and
operational planning of a complex flowshop. This method
is open to additional complexity, modification of objective
functions, and customized KPIs. One future possibility is to
include preventive maintenance and sudden breakdowns as
new input parameters of the system. These input parameters
act as a new KPI and will lead to the generation of the
OPSs to meet the KPIs while generating Zero Breakdown
processes. Another line of research could be to compare the
proposed technique with evolutionary optimization methods
such as [43], [44].
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APPENDIX I
A sample scenario in Arena simulation package for opera-
tional planning and scheduling of the machines in the pro-
duction line.

See Table 8.
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APPENDIX II
A sample scenario in Arena simulation package for the main
KPIs of the machines in the process line.

See Table 9.

APPENDIX III
A sample of estimated operational planning and machines
scheduling by the proposed method.

See Table 10.

APPENDIX IV
The applied test Dataset for validation.

See Table 11.

APPENDIX V
The simulator’s outputs on the OPSs created by the proposed
method.

See Table 12.
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