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Protocol-Based Tobit Kalman Filter under Integral
Measurements and Probabilistic Sensor Failures

Hang Geng, Zidong Wang, Lei Zou, Alireza Mousavi and Yuhua Cheng

Abstract—This paper is concerned with the Tobit Kalman unknown statistics [2], [7]. As such, direct employment of
filtering problem for a class of discrete time-varying systems the standard KF would lead to biased estimates or even de-
subject to censored observations, integral measurements and g a4eqd performances because of the violation of the Gaussian
probabilistic sensor failures under the Round-Robin protocol . . L.

(RRP). The censored observations are characterized by the Tobit noise assumption [3], [11], [26], [28]. T,O handle this issue,
observation model, the integral measurements are described as€normous endeavors have been made in the literature, where
functions of system states over a certain time interval required the overwhelming majority build themselves on the existing
for data acquisition, and the sensor failures are governed by a estimation techniques. Among various filters proposed so far,

set of uncorrelated random variables. The RRP is employed 10 \ye pighlight the iterative KF [39], particle filter [24] and TKF
decide the transmission sequence of sensors in order to alleviate
[2] that have proven to be rather popular.

undesirable data collisions. By resorting to the augmentation 5 : . a
technique and the orthogonality projection principle, a protocol- Since the pioneering work in [2], the so-called TKF has
based Tobit Kalman filter (TKF) is developed with the coexistence proven to be a powerful approach of practical significance
of integral measurements and sensor failures that lead to a couple jn dealing with censored observations. By introducing new
of augmentation-induced terms. Moreover, the performance of qafinitions (of the measurement expectation, residual as well as

the proposed filter is analyzed through examining the statistical . d loiti | | imation i lculati
property of the error covariance of the state estimation. Further variance) and exploiting a local approximation in calculating

analysis shows the existence of self-propagating upper and lower censoring probabilities, the TKF is capable of formalizing
bounds on the estimation error covariance. A case study on a fully recursive state estimation paradigm to handle the

ballistic roll rate es}imation is presented to illustrate the efficacy measurement nonlinearity caused by censored observations.
of the developed filter. Due to its succinct structure and recursive form, much research
Index Terms—Censored observations, integral measurements, enthusiasm has recently been attracted towards the TKF and a
Round-Robin protocol, sensor failures, Tobit Kalman filtering.  number of excellent results have been acquired with successful
applications in cooperative localization, fault detection, tar-
. INTRODUCTION get tracking, and so forth [12], [21], [23]. Within the TKF

Measurement censoring is a particular form of measuremdi@mework, the state estimation problem has been tackled
nonlinearity, in which the sensor output is a continuous fun#? [23] with both censored observations and time-correlated
tion of the system state within a certain dynamic range andmltiplicative noises. Later, TKFs under modelling uncer-
constant outside this range [2], [25]. The phenomenon of mdainties, non-Gaussian noises, redundant channel transmission
surement censoring is often caused by the saturation of ser@fl packet delays have been developed, respectively, in [12],
outputs as a result of dynamic changes or interferences [@j41-[16] with applications to ballistic roll rate tracking and
[42]. Many estimation applications, especially those massiv%neuvering target tracking problems. In addition, the fault
using low-cost commercial off-the-shelf sensors (e.g. pose etgtection problem has been solved in [21] via a variant TKF
mation [1], decentralized detection [4] and optical transmissi@PProach for discrete-time linear systems with dead-zone-like
[18]), are ubiquitously confronted by censored observatiorf&nsoring.
and this has triggered persistent research interest on stath! the context of state estimation problems, the overwhelm-
estimation problems with measurement censoring in the 143¢ majority of the existing work has implicitly assumed that
few years. the sensor observation relies only on therent system state

In case of censored observations, the conventional Kalmid9l, [311-[35]. This assumption is, unfortunately, sometimes
filter (KF) becomes futile since the measurement noises #lreasonable in certain applications such as the chemical

earing the censoring region turn out to be non-Gaussian wigction, nuclear fusion and synchrotron radiation [6], [36],
[43]. In these applications, the sensor observation is actually
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concerned nonlinear systems. Taking use of such a novel chdtering performance within a holistic Tobit Kalman filtering
acterization, the simultaneous state and fault reconstructivamework; 2) due to unreliable working conditions and de-
problem with integral measurements and ambient disturbant@ged data acquisition and analysis, sensors are inclined to
has been addressed in [30] by referencing to the augmentagaperience probabilistic failures and integral measurements,
technique and the unknown input observer approach. and the negligence of such phenomena would result in deterio-
Another underlying assumption behind the conventionedted filtering performances; 3) communication protocols have
estimation schemes is that the sensors are equipped with pheven to be beneficial in boosting transmission scheduling
capability to provide accurate observations to the designadd circumventing data collisions, but the investigation into
estimator. This assumption, however, does not always holdTiKFs under communication protocols has been still in its
reality. More often than not, sensors working in real-worléhfancy due mainly to the difficulty of appropriately describing
circumstances are ineluctably confronted with all sorts dKF-embedded protocol characteristics.
failures due mainly to abrupt environment changes, unexpectedrollowing the observations made previously, a seemingly
exogenous disturbances, internal component ageing andnstural research topic is to devise a protocol-based TKF, in the
forth (see [22], [29], [37], [45] and the references thereinpresence of sensor outputs undergoing integral measurements
Basically speaking, sensor failures usually happen in a protzand sensor failures, to achieve the optimal state estimation and
bilistic way which result in the phenomenon of measuremealso evaluate the associated filtering performance. This topic,
missing/degradation. The seminal work on filtering problemlough theoretically important and practically significant, is
with measurement missing/degradation can be dated bagkte challenging for three reasons: 1) it is unclear as how to
to 1969 in reference [37], where an optimal recursive filtaterive a protocol-based Tobit regression model in conjunction
has been put forward for systems suffering from missingith integral measurements and sensor failures; 2) it is fairly
measurements [37]. In [45], the variance-constrained staldficult to conduct the performance analysis on the developed
estimation problem has been coped with for multi-rate systerfilser due to its time-varying and stochastic nature; 3) it is
susceptible to quantized and degraded observations in temmsthematically hard to examine the joint impacts from the
of stochastic analysis techniques. Recently, regarding the coommunication protocol, integral measurements and sensor
strained network resource, an event-triggered resilient filter fagdures on the design and performance analysis of the filter.
been designed in [27] for systems subject to the simultanedttserefore, the main purpose of this paper is to overcome the
presence of measurement quantization and sensor failuidentified challenges.
where the variation of the filter gain has also been taken intoln this paper, we endeavor to deal with the protocol-
account. based Tobit Kalman filter under integral measurements and
In the past few decades, the networked system has gainqut@babilistic sensor failures. To be more specific, a protocol-
surge of research attention due largely to its broad applicatidressed Tobit regression model is first built that accommodates
in industrial fabrication, environmental monitoring and targeghe integral measurements and randomly occurring sensor
localization, see e.g. [27], [40], [41], [47], [48]. In an ideafailures. By resorting to the orthogonality projection principle,
situation, all system components (e.g. actuators, controllemsn optimal protocol-based TKF is designed in the sense of
filters and sensors) are supposed to have privileges for limear minimum mean-squared error (LMMSE), where most
formation propagation via shared communication networkst its computation can be carried out recursively or off-line.
This supposition, however, is often impractical as limitedn addition, the performance of the desired filter is statistically
bandwidth-induced data collisions are likely to happen whessessed, and sufficient conditions are established for the
the information exchanges take place simultaneously by maestence of self-propagating upper and lower bounds on the
than one component [9], [46]. In this respect, communicati@stimation error covariance.
protocols have been leveraged to orchestrate the transmissiofihe main contributions are highlighted as followsTo our
sequence of system components by giving the transmisslorowledge, this paper presents one of the first few attempts
permission to a single component at each time instant sotadook into the Tobit Kalman filtering problem with integral
to avoid possible data collisions (see [41], [48], [49] and thmeasurements and sensor failures under the communication
references therein). Among the various communication protarotocol, where the system model is both holistic and compre-
cols, the Round-Robin protocol (RRP) has drawn particulaensive in catering for engineering practice. ii) Compared with
research attention because of its succinct execution mantiee, TKF in [2], a couple of new terms emerge in the newly
where the information propagation among system componedesigned filter, which is seen as an envisioned reflection of
is conducted in afixed circular order [44]. Recently, the the addressed communication protocol, integral measurements
distributed set-membership filtering problem has been solvadd sensor failures. iii) The performance of the developed filter
in [29] for a class of multi-rate systems in sensor networks evaluated via analyzing the estimation error covariance
under the RRP scheduling, where the desired filter gains havigh its upper and lower bounds that are found to be self-
been obtained by minimizing a certain ellipsoid in the senggopagating.
of the minimum traces of weighted matrices. The remainder of the paper is organized as follows. In
To conclude the above discussions, we make the followiggction II, the problem under consideration is formulated.
observations: 1) although much work has been done hithehto Section 1ll, an optimal protocol-based TKF is designed.
on the design of TKFs under different circumstances, thele Section 1V, the performance of the developed filter is
has been a lack of analysis results on the correspondeluated. In Section V, a numerical example is provided to
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Sensor Nodes (Subject )

to Failures and Delays) Def|ne hk é mOCKk — 1,p) —|— 1 S {1, 2, e ,p} as the

ZlkJ selected sensor that has access to the network atitiwieere

|
. \ \ modk—1, p) is the unique non-negative remainder on division

‘ ¢ of k —1 by p, andT',, 1, £ §(hx —m) as the measurement
update matrix that regulates the token-dependent scheduling
of the mth sensor. Under the RRP and the zero-input strategy,

Communication

X, z )
( with RRP) ‘
|

---Z--‘f'-’ﬁJ the actual measurement that is sent to the estimator atitime
‘ is [29], [48]:
. L . P
Fig. 1: Schematic diagram for the concerned Tobit Kalman Ui = Z Lo i 2 k- ®3)

filtering problem.

m=1
At the input terminal of the estimator, let an additional
show the usefulness of the filter, and some conclusions &@fection device be equipped to check whether the received

drawn in Section VI. yr is censored or not, and this gives rise to the following
Notation The notation used here is fairly standard exloPit observation model [2]:

cept where otherwise statefk™ denotes then-dimensional Te, TG>T

Euclidean space. ™ and “0” represent identity and zero Yk = o (4)

matrices with proper dimensions, respectively. Superscripts T YT

“—1" and “T™ represent inverse and transpose operationgherey, € R is the censored observation with a constant
respectivelyE{x} andE{z|y} denote the expectation ofand thresholdr.

the expectation ofc conditional ony, respectively. varX } Based on the above Tobit observation model (4), let us
stands for the variance of. tr{ X} represents the trace ofdefine a Bernoulli random variabig to regulate the censoring
matrix X. 6(-) € {0,1} is the Dirac delta function. phenomenon ofy;, as follows:

1, gr>T,
(5)

Il. PROBLEM FORMULATION -
Ve = _
0, o<,

Consider the Tobit Kalman filtering problem for a net-
worked system as shown in Fig. 1. In this framework, thei he following probability distribution:
sensor is susceptible to probabilistic failures, the sampling is
subject to delays, the signal transmission between the filter and Prob{~, = 1} = 4%, Prob{y, = 0} = 1 — 7. (6)

the sensor is implemented through a communication netw

rk . . .
under the RRP, and the measurement arriving at the filteﬁ_f re. v 1s a known r_10n-nega'uv¢_a con_stant. Itis .SUDPOSEd that
inclined to censoring. In what follows, let us introduce thak 'S uncorrelated with other noise signals. Taking advantage

plant, the communication network, and the degraded, integ?z;LIVk' Y& I (4) can be rewritten as follows:

and censored measurement in a mathematical way. Uk = Wbk + (1 — )7 (7)
Consider the following linear discrete time-varying system

subject to integral measurements [17], [30] and probabilistic Let

sensor failures [27]’ [45] Y1:k = {y17y2a e 7yk}a Y1:k = {717727 cee a/yk}

L1 = Ay + wi, 1)
¢
Zm,k = Am,ka,k Zxk—s + Um,k, T = 1a 27 s Dy (2)
s=0 &y 2 E{aklyie—1, 761}, T =z — 4,
wherez;, € R"* is the state vector and,,; € R is the G 2 E{zk|yir, vk}, Tk L 2p— 2k,
uncensored observation of theth sensor.A; and C,, x
are known time-varying matrices with compatible dimensions.

be the measurement and censoring sequences up tillitjme
respectively. Furthermore, we denote

Ur = E{uklvie—1, 7161} T = yk — 95

. . L . A prs =T

A, € R is the sensor failure coefficientis the time length Py = B{& 2 [y1:, Mk}

required for the data collection, apds the n_umber of Sensors. P 2 B{G G) [Yak-1, Vick-1}

wy, € R™ andv,, ;, € R are zero-mean white Gaussian noises S -

with covariances), and R,, ., respectively. Pj; = E{z, (Z)" [y1h—1,71:6-1},
In the current investigation, the sensor measurements P 2 B{E (5) yak—1, Yok }-

Ty Yk

(m=1,2,...,p) are transmitted to the remote estimator via
a shared communication network. Due to limited communi- Assumption 1:The initial statexy has the mearx, and
cation bandwidth, it is assumed that at each communicatioovariance. The random variablesy, A, i, wi andwv,,
time instant, only one single sensor is granted the access mutually independent.

to the shared channel to transmit its output through theAssumption 2:The sensor failure coefficients,, » (m =
network. Accordingly, the RRP is leveraged to orchestrate thhe2. .., p) are mutually independent random variablesnin
transmission order of the sensors with a view to avoiding dadad &, and are also uncorrelated with), and other noise
collisions. signals.A,, , regulate the probabilistic failure phenomena of
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the mth sensor at timé and take values on the intenv@ll 1]  sponding Tobit Kalman filtering problem has not yet been fully

with certain probability density functions (PDFs) of meangvestigated, let alone the case where the RRP is employed to

]\m_,k and variancesf\m_,k. reinforce the reliability of network communication. As such,
Remark 1:It is noteworthy that the measurement sequendieere is a practical need to establish a holistic protocol-based

y1:, relies on the random censoring sequengg, implying  Tobit Kalman filtering framework to fill in such a gap.

thaty,.;, contains information of;.;., andy; ., will be different It is observed from (4) that, the random variabjg is

for different realizations ofy;.;,. As a result, all expectationsemployed to describe the censoring phenomenom;0fin

defined above areonditional expectations regard toy:.,. accordance with (4), if no censoring occurs fgg, i.e.

Thus, in this paper, we are interested in the statistical propefty = 1, the measurement becomgs = 7, which means

of the error covarianc@i;. that the output observation is equivalent to the latent one. If
When designing filtering algorithms, a widely acceptethe censoring occurs fog, i.e. v, = 0, the measurement

assumption is that the current sensor observation depebdsomes), = T, which means that the censoring threshold is

merely on the current state, whereas past states do exditicated to the output observation. Here, we suppose that the

influence on the current observation in the event that a timeensoring probability;, is knowna priori via some statistical

interval is required for data acquisition and analysis. Hencexperiments. Alternatively, inspired by [2};. can also be

the observation in (2) is modeled as the integral of statapproximated by

over a prescribed time slot to characterize such influence. A

typif:al .example of the integral measurement can be found in_ - Zi:o Conin Ak Com kSh—s — T
distillation columns [17], where lab analysis is often required 7= ~ ® = > , (8)
for measurements of the distillate and bottom compositions \/Zmzlrm,hkRmvk

as the use of online analyzers is often infeasible due to

economic considerations or technological difficulties. In ordé¢here ¢, = &, for s = 0 and ¢—s = 2, for
to analyze the composition, a sufficient amount of samplés= 1,2,...,¢. ®(:) is the cumulative distribution function

must be collected and the sample collection process canno{&&F) of the random variable™obeying the standard normal

completed instantaneously but in a time interval. Accordingl¢listribution.
the measurement model for the sampled distillate and bottomThe objectives of this paper are to i) design an optimal
compositions can be written as (2), wherg is the state protocol-based TKF for system (1)-(6) in the LMMSE sense
of distillate and bottom compositions$, is the time interval under the RRP; and ii) analyze the performance of the obtained
required to complete the sample collectiof,, , are the filter via the evaluation indeX{F; }.
known measurement matrices of the lab analysis, and.
are the lab analysis errors which are assumed to be zero-mean
white Gaussian noises with covariandes, ;.

Remark 2:It is worth noting that, model (2) is compre-

hensive as it accounts for several frequently encounteredn this section, we aim to formalize an ameliorated Tobit
measurement uncertainties (e.g. the packet dropout, time delgy¥man filtering paradigm to surmount the challenges brought
and measurement degradation). Specifically, at timeif py the coexistence of sensor failures, integral observations and
Am = 0, it is implied that themth sensor suffers from measurement censoring under the RRP. The formulation pro-
the entire failure and its output signa is completely missinggqure differentiates itself from [2] in the following aspects: 1)

if Ay =1 and? = 0, it is implied that themth sensor 5 protocol-based Tobit regression model where impacts from
works in a good condition and no delayed sample collectiofge integral measurements, sensor failures and RRP are taken
exist; if A, = 1 andZ > 0, it is implied that though the jntg consideration; and 2) extra computations of the gain and
mth sensor functions well, its sample collection is delayeghyariance matrices (resulting from the integral measurements
by a time interval/; if 0 < App < 1 and? = 0, itis and sensor failures) which comprise the augmentation of
implied that themth sensor undergoes partial failures andiates, derivation with respect to the augmented state as well
its output signal is measured with reduced gains that lead4g calculations in terms of failure coefficients.

degraded measurements;0if< A, < 1 andf > 0, itiS  Ag integral measurements are often caused by the delayed
implied that themth sensor is susceptible to both failures angample collection and signal processing, the augmentation
delayed sample collections, yielding the integral and degradt%‘éhnique is first applied to system (1)—(6) to accommodate

IIl. PROTOCOL-BASED TKF WITH INTEGRAL
MEASUREMENTS ANDPROBABILISTIC SENSORFAILURES

observations. _ _ such integral effects. Letting
As an efficient tool for handling censored observations, the
TKF has stirred much research interest during the last few &2 2l 2T, - ff;iz]T

years. By bringing in new definitions (of the measurement

expectation, residual as well as variance), the TKF is capalle have

of formalizing a fully recursive state estimation paradigm to

process the uncertainty caused by censored observations. Apgrt =Ar k-1 + Brwr, (9)
from the measurement censoring, sensor outputs are easily P

prone to uncertainties ranging from integral measurements tg; =7« Z Connie (M kCin k€1 + Vi) + (1 —vi)7, (10)
probabilistic sensor failures as shown in (2), and the corre- m=1
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where by ¢ = 25@:1 Ly i, A kCin k€ (the sum ofp products
Ay, 0 - 0 T with respect to the update coefficidny, 5, , failure coefficient
I 0 --- 0 0 Ak, augmented measurement matéix, , and augmented
A= . . ) A.Bye=1.1, state¢,) andRy, = >0 _, an,n,ﬁm,k (the sum ofp products
: T : with regard to the update coefficiehit, », and original noise
o -~ I 0 0 covarianceR,, ;) due to the involvement of the RRP, integral
Coe = [Comk Comk -+ Coi] - measurements and sensor failures. If these phenomena are

i o disregarded, (11) and (12) would degrade to (8) and (11) in
By means of augmentation, system (1)—(6) with integr ], respectively.
measurements is converted into th_e integra_l-free one in ( )_Remark 3: Thanks to (11)~(16), the Tobit regression model
(10) at the cost of extra computations pertinent to the aug- [2] (without the acknowledgement of the measurement
mented state. censoring) has been modified to the protocol-based one with
Let integral measurements, sensor failures and acknowledged mea-
gk— L E{&|y1e—1, Y161}, gk— L — gk—, surement censoring. .Be.aware that such a modification brings
£ 2 E{&x|y1. ) E lg — ¢ on board 1) the substitution 6f by~,, Crxy by (; andR,,
k FIYLE YLk Sy Sk = Gk Gk by R, throughout all measurement-related terms; and 2) the

ng— 2 EB{& (&) [yin-1,71:8-1}, emergence of a suite of new terms that further sophisticate the
o P subsequent algorithm design.
P, 2 B{&GE ks i), G 2 Z Lo be A kCim 1 Denote
m=1 P
p A T T A o
I_Ck Q:m k= 1—‘lm h Amkcm k C = Z Q:mkg
A 2 A . S BAm kbmoks - Gy RSk
Ri = mz::l Lo B, Uk = R A —
T—C

Before embarking on the filter design, the protocol-based Ui & ,]&m,k £ /_an_k + Am,k-
Tobit regression model entailing the integral measurements
and sensor failures is first derived. The following theorem presents the optimal protocol-based

Lemma 1:The expectation and variance gf conditional TKF in the LMMSE sense subject to integral measurements

on the observation sequenge,_; and censoring sequenceand sensor failures.

R

1. are Theorem 1:The optimal protocol-based TKF for the aug-
mented system (9)—(10) is
E{yklyrr—1, 1k} =0 {Ck + VRiA (191@)} + (1=, ) )
(11) & = Aklr-1, (17)
var{yk|y.e—1, vk} =R [ — ¢ (J5)], (12) Pe- = ’Akflpék,lAgfl +Br1 Qe Biy,  (18)
where € =& + Ki(ye — 95), (19)
P: =P — K,PT __. 20
AO) =150 ¢g?; 7 (13) & . R o (20)
- k
The one-step measurement prediction and filtering gain are
@ (91) =X (90) [\ (90) = D] (14) P messHiement prediet g 9%
Here, ¢ (¥;) and ® (9;) are, respectively, the PDF and CDF U =k [CA;Z + VRiA (ﬁk)} + (1 — )T, (21)
of the Gaussian random variablg of following structures: K, :Pf"*ﬂfpgil’ (22)
1 B (T*Ck)2 k 9k k
Qb('l?k) :\/Ee e (15) where
(I) (19 ) _/T 1 _(ykz;;k)z d (16) P T
k)= . 27TRke Y * Pék,g; :Pg; <'Yk Z;€m7k> , (23)
Proof: See Appendix A. n .
The prptocol-based Topit regressiqn model givgn by Lemma P, =y Z Z Qm,kng (7k€n7k)T
1 embodies the expectation and varianceypftonditional on ok el mel Tk
sequencesg;.x—1 and v1.,. In contrast with its counterpart p D R .
in [2] which barely cares about the measurement censoring + Z ZFm,hkAm,ka,kPEk (V6L 1, Conke)
in case of unknowny;.;, two noteworthy distinctions of m=ln=1
model (11)-(12) can be encapsulated. The first distinction is +Ri [1—¢ (9k)] . (24)

the substitution of the censoring probabilify, by the true _ _ )
censoring variabley, owing to the exact acknowledgement1€r®: A (19%16). and ¢ (9n,.x) can be calculated via (13)-
of y1.,. The second distinction is the replacement(fz;, (14) by replacing;, with ¢;; andek = Ak_ngkilA}f_l +
(the product of the original measurement matfix and state Bi—1Qxr—18]_;.

xr) and R,, , (the original noise covariance), respectively,  Proof: See Appendix B. [ |
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TABLE I: The Pseudocode of the Protocol-Based TKF  ¢5jcjated, where, is the dimension of the measuremept
Hence, the proposed filtering algorithm has the computational

Algorithm: Protocol-Based TKF . 3
PUE Zo, Fo, v,y complexity of O {(nm(é +1)" + (ny)ﬂ.
Output: &, P, Remark 4:The specifically tailored Tobit Kalman filtering

1: letzg = o, Pio = Pp.

> for b 1N & architecture is composed of Lemma 1 and Theorems 1-2, and

exhibits two extraordinary advantages. On one hand, system

3: compute the predicted vallé-;; and associate covariance ’ . . - . S -
P;— by (17)-(18); (1)—(7) under investigation is comprehensive for its inclusion
4: compute the predicted valug, and associate covariance of the RRP and mu_lt|ple_ measurement uncertainties (e.g.
P__ by (25); measurement censoring, integral measurements and sensor
5: compute the gain matrif;, by (22)—(24); failures) which are prevalently confronted in a myriad of

6: compute the updated estimafe and associate covariance  gpplication ranges and are elegantly settled in a holistic yet
Pe, by (19)-(20); valid framework. On the other hand, in comparison with

’ ;?m%l;tiztgﬁ updated estimatg and associate covariance  whe fijter in [2], the protocol-induced measurement update
8: end for coefficient I',,, 5, and a bank of new terms arise in the

development of our TKF, which transparently reveals the im-
pacts from the RRP and measurement uncertainties. Explicitly,

the term~, throughout the paper manifests the influence

Two exceptional features can be spotted when comparigg measurement censoring, the tef), in Lemma 1 and
the proposed protocol-based TKF in Theorem 1 with its COUfhaorem 1 reveals the im|’3act of the RRP. the tdimin

terpart in [2]. One is the substitution of the tefpCy (Which  Theorem 2 reflects the effect of the integral measurements,
is the product of the censoring probability and the Or'g'”%etermyk S ST A, 1C 1w Pe (Tnn,C k)T

. . P . . m=1 n=1"mM,nEg"*m, m, K n,hg>~n,
measurement coefficient) by the tesm)_;_, €, . (Whichis i, Thegrem 1 sketches the influence of sensor failures, and
the sum ofp products in relation to the known censoring variterms ¢, and ¢, characterize the simultaneous influence of
able~, and the equivalent measurement coeffici€nix) in e RRP, integral measurements and sensor failures.
all prediction-related equations. The other is the emergence oft should also be noted that, the protocol-based Tobit

p p A T ’

Fher':ermylk %:mzlZf}'g:lljl_"ﬁﬁkf.Am’?Cmkafk Q’?F"ﬁkﬁ"’k) h Kalman filtering paradigm proposed in Theorems 1-2 is
In the calcu aufor;]o g € ws'; (.alature.onglnaltes rom M€g,chastic due to its dependence on the random censoring
concurrence of the RRP, sensor failures, mtegra measurem%ﬁable%. This indicates that the state estimates and associate
and exact acknowledgement of the censoring phenomengi,. covariances are now functions of. Given such a

whilst the second feature stems from the presence of sens@ychastic filtering paradigm, a viable way to analyze its

failures. performance is to investigate the statistical property of the

é .
Let 1 = [1 0 ... 0]. On the basis of Theorem 1, thefiyering error covariance?, as shown in the later section.
following theorem presents the optimal protocol-based TKF k

for the original system (1)—(7).

Theorem 2:The optimal protocol-based TKF for system IV. PERFORMANCEANALYSIS
D)) is
& = Hék‘, In this section, we aim to come up with a holistic analysis
5 11é of the filtering performance in relation to the proposed optimal
k= ks

(25) protocol-based TKF. The analysis is performed by taking

— T o .
Paz,; - HPE;H ' advantage of the mean estimation error covaridbige’, - ;.

P. =T11P: 117, Considering the time-varying nature of the filter, Wg show
Ty & . .
_ that there exist self-propagating lower and upper bounds on
Proof: Theorem 2 follows readily from Theorem 1 byp P, . The pursuit of such bounds complies with two

nating the correlation between system (1}-(7) and system (%rlnciﬁles: 1) the optimality of the filter motivates us to

(10). ) . construct a suboptimal filter whose mean estimation error
Theorems 1-2, together with Lemma 1, constitute the . . isioned to be th boundidp. \-
protocol-based Tobit Kalman filtering algorithm with its pseu_covanance IS envisioned to be the upper oim G[ Ty }

docode outlined in Table 1. 2) the semi-positive definiteness Bg;, Py Ak and R

It can be seen from Lemma 1 and Theorems 1-2 that, whes\es the way for us to envisage the lower bounﬂ:({rﬂf }
Tk

implementing the presented protocol-based Tobit Kalman fUTa some subtle matrix manipulations

tering algorithm with integral measurements and probabilisticF th ke of notation brevit defing. 2 £ { p
sensor failures, the computational complexity mainly involves or the sake of notation brevity, we defiig; = { & }

the matrix multiplication and inversion. In the matrix mul-N,, £ E< P,— ¢ and g, £ ¢ (J;). To begin with, the error
tiplication, the multiplication of matrices with dimensionsgovarianceP-.~ in (17) is rearranged into
ng (¢ + 1) x ny(¢ + 1) needs to be calculated, wheng is Skt

the dimension of the system state afids the time length

P T
reqqired for the da!ta coII.ectiqn. As. to the matrix inversion,Péf :AkPg— A;;F + BkaB,f _ AkPg— i ZQ&’C
the inverse of matrices with dimensiong x n, needs to be k1 k h =
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P& ¢ P ¢ On account of the randomness of the gain mafkix in
T = m.k (7 n k) Theorem 1, a straightforward idea is to construct a suboptimal
;n pn protocol-based TKF by setting the gain matrix to be determin-
+ Vi Z Zrm,kAm,kcm,kpfk ('Ykrn,hkcn,k)T istic. Consequently, Theorem 3 presents an upper bdufid
1l on M, and the suboptimal gaif’} is obtained via minimizing
-1, the trace ofM/}*. Provided the initial condition, such an upper
+Ri [1 — @1 } Vi Zeft,kPg—Af- (26) bound holds for allk > 0 due to the fact that, the filtering
=1 * performance of the optimal protocol-based TKF should be no

less than any of its suboptimal counterparts. It needs to be

Taking expectation on both sides of (26) leads to pointed out that, the self-propagation &f;’ holds regardless

My =AM AL + BrLQuBY of the fact thatM, is not self-propagating. This provides a
» T feasible way to the online recursive computationidf. In
_ AkE{P (% Z ¢, k) addition, it can be observed from (28) that, the calculation of
¢ M} has close relationships with the augmented coefficients
A and¢,, , , updated coefficiert,, , failure variancé\myk
|"'Yk Z Z Com, kp (W, e and censoring probability;, which explicitly elucidates the
=1 ne1 impacts from the integral measurements, RRP, sensor failures

PP . ,  and measurement censoring on.
+ Vi Z ZFm,hkAm,ka,kng (V6,1 C k) Theorem 4:Let the initial conditionM} > 0 be given.

m=1n=1 Calculate the matrix sequent{eM,CH}]€>0 according to the
oo following difference equation:
+ Ry [1 — @kl ‘| Yk Z Q:t,kng }Af (27)
=1 ’ Mi iy = (1= 3) A My AL + BrQi B, (30)

It is apparent that the complex structure of the third term orhen, the calculated materJrl satisfies
the right side of (27) prevents the self-propagation\éf, 1,
that is to say, the acknowledgement &f is not sufficient Mj iy < My, (31)
for the determination of\/;., 1, which further hinders us from .
finding the self-propagating bound ai.. Nonetheless, it will

tbhe shc;‘wn later tgt?t sucth an uppelr tbound is well- e>(pecmdl\/laking full use of some subtle matrix manipulations, a self-
rSUQ Ilsomti Stuth N m? X Imanlpu 6} |l§)ns d TKE derived _Bropagating lower bound?! on M, is acquired in Theorem 4
ecalling that the optimal protocol-base €rved 1lased on the semi- -positive definitenesng)f P, Am . and

;hEOFGm.ZthS. at rgntdotr;: f|ger|_ngt_gam;;, the l;ollowmg tR Casting insights into Theorem 4, a remarkable finding is
corem Is dedicated to e derivation of a Sell-propagatl t, the calculation ofV/} tightly hinges on the augmented

upper bound onl/; via constructing a suboptimal prOtOCOI'coefficientsAk and B, and censoring probability, which

based TKF with a detorrolnlstlc flllt.erlng gaiiy;. . noticeably characterizes the effects of the RRP, integral mea-
Theorem 3:Let the initial conditionMg > 0 be given. surements, sensor failures and measurement censoring.
Calculate the matrix sequenc{ez?\/[kﬂ},€>0 according to the Keeping in mind the relationship betwedfy andP, - as
following difference equation: shown in Theorem 2, we arrive at the foIIowmg theorem
T Theorem 5:There exist an upper boundf}* and a lower
Q:s k)

i.e. M} 41 Is a self-propagating lower bound awy ;.
Proof: See Appendix D. [ |

P
M =AMEAL + BrQiBL — A M <§}; Z bound N} on the mean error covariancé, such that

s=1

P Nj, < Ny < N, (32)
~U U (U T
x { 2 2 Tk M () holds for all & > 0, where N} = IIMII” and N} =
it IRV I
58 Z Z T, » ¥Con 1 Pe, (F2T 0 1C k) Proof: The result follows noticeably from Theorems 2-4.
m,n m m, k n, n,
[ |
m=1n=1
—1 » Remark 5:Theorems 5 manifests the upper and lower
+ Ry [1— @Y %LZQ WMEAT. (28) bounds on the mean estimation error covariange under
= the RRP and multiple measurement uncertainties (e.g. mea-

surement censoring, integral measurements and sensor fail-
ures). The concurrence of the RRP and uncertainties provokes
Myiy < MY, (29) Substantial difficulties in the assessment of the filtering per-
formance which can be encapsulated from the following two
i.e. My, , is a self-propagating upper bound o4y, 1, where aspects. 1) The exact acknowledgement of the censoring phe-
¢ and ¢} are the suboptimal counterparts ®f and ¢;, nomenon gives rise to a time-varying and stochastic protocol-
respectively. based TKF as shown in Theorems 1-2, which prevents us from
Proof: See Appendix C. H carrying out a rigorous convergence analysis on the proposed

Then, the calculated matrix/;!, , satisfies
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filter. As such, we turn to explore the self-propagating upper
and lower bounds on the mean error covariaNge The upper
bound is achieved by establishing a suboptimal protocol-based
TKF whose gain matrix is independent ¢f, and the lower

- - - - True state ===PBTKF —— PBTKF-IMSF

and its estimate

1
X
&

bound is acquired by resorting to subtle matrix manipulations T e e e e e o e e 0
based on the semi-positive definiteness of matrkgks P, Time (k)
ixm,k and Ry. 2) The conjunction of the RRP and mea- 10

T T T T T T
- - - - True state === PBTKF —— PBTKF-IMSF

surement uncertainties gives rise to a set of protocol-induced
and uncertainty-induced terms, significantly sophisticating the
design of the suboptimal filter and the implementation of the
involved matrix manipulations. To sum up, the simultaneous p- S S —
resence of the RRP and measurement uncertainties ineluctably S
results in distinctive filter design techniques and performance

analysis procedures which are elegantly orchestrated throligé- 2: True values of the first and second dimensions of the
Theorems 1-5. state and their estimates.

and its estimate

2
k

X

V. ILLUSTRATIVE EXAMPLE

4 T T T
In this section, we leverage an oscillator example (modified o
from [2]) to elucidate the applicability of the presented filter %2
design strategy and performance analysis mechanism. NN N e SN
Denote the root mean-squared errors (RMSEs) cdndz?, R P
ime (k)
. AN 2
: 1 M 1(8) Al(z)) 4 i i — I
respectively, as RMSEL \/M Y i (:c,C T, and ; \
) N 2 S0 - AN PN - ]
A 1 M 2(i) ~2(7) 4 , N NS N NN ,
RMSE2= \/W Y oich (:ck — I , and the mean error LI, ., s NN
. ; 0 10 20 30 40 50 60 70 80 90 100
covariance trace (MECT) as MEGT (1/M) Zi]\iltr(Pé,)) Time (K
k

where M is the number of Monte Carlo trials. ) ) )
Let the discrete time-varying system (1)—(6) have following Fig. 3: Performance comparison in RMSE1 and RMSE2.
parameters:

A, = c.os(w) —sin(w) ,w = 0.0527,
sin(w)  cos(w)
Rip=Rop=1,7=0,p=2,0=2,
Cre=[1 0].Cor=[0 1].20=[ 0",
Q. =diag{0.0025,0.0025}, Py = I, My = I,

log, ,(MECT)

where/ is the interval required for the measurement integral.
The oscillator example concerns about the estimation of ballis-

tic roll rates in case of the noisy dynamic model and uncertain 2T 0 0 w0 % o w0 0 o w0 10
magnetometer data. Sensor failure ratgs; (m = 1,2) can Time (k)

be determined via statistical tests, and are supposed to be _. . .

regulated by the PDR(s) = 0.058(s) + 0.105(s — 0.5) + Fig. 4: Performance comparison in lggMECT).

0.855(s — 1). Apparently, expectations and variances\of
are computed as\,,, = 0.90 and A,,, = 0.065. Note e
that the dynamic model is corrupted by ambient disturbances T erbound.
entering the system viay,. The magnetometer sampling is h = = ~Lowerbound |
subject to sensor failures and integral measurements, and thi

data transmission is scheduled by the RRP.

Fig. 2 depicts the true state values and associate estimate
generated by the protocol-based Tobit Kalman filter (which is
named as PBTKF and is capable of tackling censored obser-
vations under the RRP) and the protocol-based Tobit Kalman
filter with integral measurements and sensor failures (which 2% 10 0 . 40 s e 70 8 s 100
is named as PBTKF-IMSF and is capable of simultaneously fime (9
tackling integral measurements, sensor failures and cens . ; u
observations under the RRP). Fig. 3 plots the comparigggj' 5: Comparison among leg(tr{N}), logio (tr{Nj;}) and

: tr{ N\ 1).
result in RMSE between the PBTKF and PBTKF-IMSF after 10 (tr{Ni})

o
o

o
g

. o
R
:

Iog, (tr(N,)

=
o
T

)
T
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2 T T T T T

----- PBTKF-IMSF with failure coefficient A,

——— PBTKF-IMSF with failure coefficient A,

T T T T T
----- PBTKF-IMSF with censoring threshold =0
— PBTKF-IMSF with ing threshold 7=-5 | 7

“
o)

Qa1 AN B
o

h I V. f I . I
T I f 3 h h I
0 10 20 30 40 ) 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time (k) Time (k)
0.8 T T T T T T T T T 2 T T T T T T T T T
_____ PBTKF-IMSF with censoring threshold 7=0 —-=-= PBTKF-IMSF with failure coefficient ALm.k
——— PBTKF-IMSF with failure coefficient A.

o~ PBTKF-IMSF with censoring threshold =-5 b o~
b y 7 0 i} . 2.mk
Doar! o 3 Bl nil A

= F 2

= 4

i - 7
I AN
VAR . o~ g

L d h L L
0 10 20 30 40 50 60 70 80 90 100 0

I . I L Nod f
0 10 20 30 40 50 60 70 80 90 100
Time (k)

Time (k)

Fig. 6: RMSE1 and RMSE2 comparison of the PBTKF-IMSFBig. 8: RMSE1 and RMSE2 comparison of the PBTKF-IMSFs
with different censoring thresholds:= —5 and = 0. with different failure coefficientsA ,, » andAs ,, k.

T T T T T T T T T
i-nNn T PBTKF-IMSF with integral interval I=2 '»

censoring, integral measurements and sensor failures, simula-

tion scenarios with different values of censoring threshelds

IR A RN TN VA integral intervals¢ and failure coefficients\,, , are tested.

L Let us consider two sets of censoring threshofdss, 0},
—— two sets of integral interval§2,5} and two sets of failure
Tk Mok with oot el s coefficients{ A1 .k, A2k} Where Ay, x and Ay, 5 are,

respectively, regulated by PDIps(s) = 0.350(s) +0.105(s —

Wl W WS ‘ 0.5) +0.555(s — 1) andpz(s) = 0.05(s) + 0.100(s — 0.5) +

P ® w0 s e @ 0 0.855(s—1). Apparently, expectations and variances\ef,, x

andAg ,,, 5, are cqmputed ad; . = 0.6, Ay = 0.215,

Fig. 7: RMSE1 and RMSE2 comparison of the PBTKF-IMSF42.m .k = 0.9 and Ay 5, x = 0.065.

with different integral intervals¢ = 2 and? = 5. After 1000 independent Mote Carlo trials, RMSE results

of our PBTKF-IMSF under different censoring thresholds,

integral intervals and failure coefficients are, respectively,

1000 independent Mote Carlo trials. It is witnessed from Fig. §ketched in Figs. 6-8. It is .W|tnessed from Fig. 6 that,
that, the PBTKF-IMSF manages to track the true state valu@? RMSE curve generated in case of = =5 alvyays
precisely, whilst the PBTKF appears to have consideratfi¢at€s lower than that generated in caserof 0. This is
deviations from the true state values. Besides, it is sketcH&gSonable as a smaller censoring thresholddicates that,

in Fig. 3 that, the RMSE curve of the PBTKF-IMSF residelSs measurements are mplmed tQ the censoring phenomenon
lower than that of the PBTKF, indicating that issues ofintegrﬁllnq more mez_'slsurement information can be.ut|I.|zed In state
measurements and sensor failures are suitably addressed irffijination. This undoubtedly leads to better filtering accuracy

PBTKF-IMSF, whilst they are not settled in the PBTKF., ~ ©f the PBTKF-IMSF.
cos(w) — sin(w)l One observes from Fig. 7 that, the RMSE curves generated

—— PBTKF-IMSF with integral interval I=5

P A VA
VAT \.

Next, letting A, = 0.9 sin(w)  cos(w) and M = iy cases off = 2 and/ = 5 are intertwined with each other,
1000, the comparison result between the PBTKF and PBTKHdicating that no deterministic relationship exists between the
IMSF in MECT is manifested in Fig. 4. Besides, relationshipength of the integral interval and the filtering accuracy of our
among the trace of the mean error covariange its upper PBTKF-IMSF. As a matter of fact, in case of the integral
bound N and lower boundV} (calculated by our PBTKF- measurement, the sensor observation is actually proportional
IMSF) are sketched in Fig. 5. Due to the impossibility ofo the integral of system states within a prescribed time interval
analytically computingNy, logio (tr{ N, }) is approximated ¢, and hence the information from not only the current system
by logio(MECT). It can be spotted from Fig. 3 that, thestate, but also the past system states, can be utilized for the
value of logg (tr{N,}) calculated by the PBTKF-IMSF is estimation of the current system state. The variation of the
always smaller than that calculated by the PBTKF, certifyntegral intervall (from ¢ = 2 to ¢ = 5) implies that more
ing the superiority of our PBTKF-IMSF in simultaneouslyinformation on the past system states is introduced to the
handling integral measurements and sensor failures over g&msor observation. Nevertheless, the extra information about
PBTKF. Additionally, it is observed from Fig. 4 that, thethe past system states does not contain any knowledge about
curve of logy (tr{N;}) always resides between those ofhe current system state and makes no contribution to the
logio (tr (N*)) and log (tr (IV})), which justifies the state- estimation of the current system state. As a result, it can be
ment in Theorem 5 thafVy and N} can be, respectively, concluded that the variation of the integral inter¢ahas no
treated as reasonable upper and lower bound&’gn explicit influence on the filtering performance of our PBTKF-

In addition, to further demonstrate the filtering performand®ISF, which coincides with the observation made from Fig. 7.
of our developed PBTKF-IMSF under different measurement It can be spotted from Figs. 8 that, the RMSE curve gener-
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ated by our PBTKF-IMSF with the failure coefficieft, ., ,  whereg (%) and @ (Jy,) are calculated via (15)-(16), and

k

always locates lower than that generated by our PBTKIg(y, — ) is the unit step function. Taking advantage of (4),
IMSF with the failure coefficient\ ,,, . This is reasonable (33) is further translated into

as it can be observed from the expectations and variances of
A1 andAs . 1 that, the sensor with the failure coefficient 10) (M)

UL, RS X ) o Tk VR
Ay is more likely to have failures than the sensor with the f (Ykly1:k—1,71:6) = R.1-0(0h) + (=), (34)
failure coefficientA, ,, . This indicates that the sensor with _ k - _ _
the failure coefficientA; ,, is capable of providing more In the light of (34), the conditional expectation gf is
state information to the filter than the sensor with the failure

coefficient Ay ,,, .. As a result, the PBTKF-IMSF with the E{f’;lyl:’“‘l’%k}
failure coefficientA ,, , outperforms the PBTKF-IMSF with :/ e f (e, ik d
the failure coefficient\s ,, » in filtering accuracy. o e R
k=€
VI. CONCLUSION . VRAL—®(0,) ™
In this paper, we have settled the protocol-based Tobit = [<k + /Rk/\(ﬁk)] + (1 =)

Kalman filtering problem susceptible to phenomena of integral
measurements and sensor failures. The integral measuremesiigh is exactly the same as (11), whevé€dy,) is calculated
have been described as functions of states over a time perigd, (13). In line with (11), we get
the sensor failures have been characterized by random vari-
ables taking values on the intenvial, 1] according to certain E {ylyrn—1,v1k-1,% = 1} = G + VRIA (V5)
PDFs with known means and variances, and the data transmis- E {yx|y1.6-1, V1:k—1,7 =0} = 7,
sion in the network has been commanded by the RRP. These 5/ (,,
phenomena have been elaborately addressed via bringing on
board a couple of new terms, which have provoked additiond$ a result, we have
calculations in measurement predictions, gain matrices as well
as error covariances. Fortunately, the increased calculatiof@ 1¥klYuk—1, v} =var{yelyrm—1, yuk—1, 76 = 1}
are recursive or can be conducted off-line. Consequently, =E {y1§|y1:k71,’71;k71,7k = 1}
the de_vised filter is propitious for online spengrios. Further — (B A{ys|yrn—1,Y1h1, 76 = 1})?
analysis has been performed to assess the filtering performance — R [1— o (93)]
and a sufficient condition has been pinned down to guarantee k PRI
the existence of self-propagating upper and lower bounds @hich is exactly the same as (12), wher¢d;,) is calculated
the mean estimation error covariance. Finally, an applicatigfa (14). This completes the proof. u
case study has been exploited to verify the efficacy of the
developed method.

In addition, related topics for further research work can g& Proof of Theorem 1
listed as follows. Proof: A straightforward exploitation of the orthogonality

e Tobit Kalman filtering problems subject to multiple non®Projection principle [3] to system (9)-(10) yields (17)-(20)

linearities, e.g. the stochastic nonlinearity [19] and satthere the optimal gain matrix is computed by (22). The

[y1:6—1, Y1:6—1, 76 = 0} = 0.

ration nonlinearity [10], [38]. combination of (10) and (11) generates
e Tobit Kalman filtering problems under different commu- P
nication protocols, e.g. the event-triggered protocol [27], =& Z Tonhe (A kCm k& + U ke)
and try-once-discard protocol [41]. m=1
e Tobit Kalman filtering problems with various network- L 7 .
induced phenomena, e.g. the signal quantization [20], — V& [Z Ty B kCon k€ + VR (ﬁk)]
m=1

[50] and channel fading [8].

p
=Yk Z Loy (Am,kcm,kék_ + (Ank — Amsie) Cm,kfk)
APPENDIX m=1

p
A. Proof of Lemma 1 + Ve (Z Lo i Umik — VR (19k)> ’ (35)

Proof: It follows from (2)-(3) thaty, is a Gaussian m=1

variable with the meag, and variancé?. Then, the PDF of where\ (¥;) can be calculated via (13) by replacigg with
yi conditioned ony;.,—1 and~;.; can be expressed as é‘;_

1 Putting (35) into the definitions aP-_ __ and P__, respec-
7 Yr — Ck . . €k Ui, Y
[ (rlyre—1,71:1) —\/R—ksb ( N ) u(ye —7) tively, gives (23) and

+ 0 (T=yk) @ (Vi) , (83 P =E{J; (5" [y1n—1, 71}
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pp
=Yg Z Z Con, kP (76, k)
m=1n=1
P P B T
+ Yk Z Z Lo i A kCon i Pe, (V6L 'n 1 Coake)
m=1n=1

+ Var{yhk7k|yhl:k—1 ) ’thzk}

P P
=YY Con e P - (W Cnk)”

m=1n=1

P P
+ Yk Z Z Lo ri A kCom i P, (%Fn,hkcn,k)T

m=1n=1

+Ri[L =@ ()]

which

is exactly the same as (24). This completes the proof.

11

Taking expectation on both sides of (37), we arrive at

My =AMPAT + BQuBT — AE {Pgt T AT
- [am{pe, wpryaz]

+ AE{KpPe (KT} AT (41)

Bearing in mind the non-randomness/of and substituting
(40) into (41), we have

M =AMPAT + BoQiBE — Ay KV'E {P;, - } AT
P T
=ALMEAL + BrQiBE — A M} <’_Y}$ Z Qfs,k>

s=1

m p P
y {uz S €M (520"
m=1n=1
C. Proof of Theorem 3 p p
. . . = T
Proof: Now, let us concentrate on designing a suboptimal + Y Z Z T e Ao kCon, i Pey, (31T i Con )
protocol-based TKF whose gain matti;' does not hinge on m=1n=1

—u fu— ~u— o —=u U U u u
Ve Let 3, & U, o ng, Pg;, Ky, P{k g

M;*, respectively, be the suboptimal counterpartsypf 5,;,
331;: Pk Pfk’ ng—, Ky, P

P* and
Y

we have
~ - T
re=w{ (@ - mei) (& - ki) paon
T T
=P = P (K" - K (P; ﬂ;)

T+ KEP (K
Y

_E{ (Aké};— + Brws — AkK;;g};—)

(36)
Pu

§k+1

o o T
X (Akg;j + Brwi — A Ky, ) ‘yl:ka'}/l:kJrl}
=ArPE AL + BB — AP (A KT

T
— [ARPE (AT + ALK P (AGKE)T

(37)
Taking expectation on both sides of (36) yields
2le)-ele}-a (e, boor -x
¥ E { (Pg, )T} + K'E {P;; } (KT
(38)

In this regard, the suboptimal gaili;’ can be determined by

}. Taking the matrix trace and
derivative with respect td(gkon both sides of (38), we have

minimizing the trace off < P¥

M ——ar{E{P: }}

0K}
+otr {K;;]E {P;k, }} )
Letting (39) be equal to zero generates
K :E{Pg; NE}IE* {P;;}. (40)

g Pg;and M;.. In this respect,

—1
+ Ri[1— o] } Vi Z ¢ M{AL,
t=1

which is exactly the same as (28). Assuming that the initial
condition of (28) is independent of the realization in regard
to the censoring sequenee.;,, we setM§ = My > 0. For

k > 0, since the performance of the optimal protocol-based
TKF must be no less than any of its suboptimal counterparts,
it can be concluded thaltf;, < M;'. As such,M}! is an upper
bound on)M;, for all & > 0. This completes the proof. ®

D. Proof of Theorem 4

Proof: DenotingRAy, = Ay +7,.8% >0
- A, K}, we have

P T P P B
Ry, Pe - <’Yk > €m,k> +ﬁk{7k S ToncAmk
m=1

m=1n=1

Co i ANdKy, =

m=1

X Crn, kP, (WL Cok)" + Ry [1— 3] }

<Ak + R Z Con, k) (% e, k>T

m=1
p p B .
+ 8 {% Z Z Lon i A kCon ke P, (V6L 0,1, Con k)
m=1n=1
+ R [1— @] }
» T
= AP~ <'Yk Z an,k> + &Py
n=1

=0. (42)

It follows from (26) that
Py, =0 =) (AcPe AT + BuQuBT)
+ 'Yk(.AkPék—.Ag + BkaBg) — AkP~;
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T
p

-1 § 5 T
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n=1

P
< v Y Ck
m=1

=1 =) (Akpg; Af, + BkaBkT)
+ 9 (Ar P A+ BuQuBy)

P
+ Ve Rk Z Qﬁm,kPé;Af

m=1

=1 =) (Akpg; Aj, + BkaBkT)

+ 9 (AePe AT + BeQuBY ) (43)

Inserting (42) into (43) generates

P-

Eht1

=1 =) (Akpg; Af, + BkaBkT)

+ (%kpg; Af, + BkaB;;F)
T

p
) T
+ AL | D k| S

m=1

p p
+ YRk Tk Z ZFm,hkAm,ka,k

m=1n=1

X Pe, (%L Ci)” + Ri [1 — @i

=(1— ) (Akpg; AL+ BkaBkT)
+ (kP - AL+ BrQiBy)

p p
+ Ve Req Yk Z Zrm,hkAm,kcm,k

m=1n=1

X Pe, (MTnn,Coi)” +Ric[1— @] pRE. (44)
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0, we haveM} = 0 < M,. Supposing thafi/! < M, holds
at time k, we have

My =1 — ) A MEAT + 3.BeQi B,
<(1 = 3) A My AL + 3B Qi B
SMk-i-la (46)

where the last inequality holds from (45). As a result, it can
be concluded that)/} < M holds for allk > 0, i.e. M} is
a lower bound on\/,. This completes the proof. [ |

(1]

(2]

(3]
(4]

(5]

(6]

(7]
(8]

El

[10]

Taking expectation on both sides of (44) and noting the

non-negative definiteness (E@;, ng, A and Ry lead to

M1 =E {(1 — ) (AkP£~; AL+ BkaB;;F) }
+E {% (Ak P AT + BkaBkT)}

P P
+E Fykﬁk Tk Z Zrm,hkﬂm,kcm,k

m=1n=1

X ng (%Fn,hkcmk)T + Ry, [1 - (ﬁk] ﬁ}f

>E {(1 ) (Akng— Al + BkaB;;F) }
+E {vBrQiB{ }
=(1 — ) A My AL + 3 BeQi B (45)
Inspired by (45), let us define
My 2 (1= 3) AMLAY + 31BrQ1BY

which is initialized atM{ = 0. Now, let us proveM} < M
via mathematical induction. Noticeably, at the initial tirhe=

[11]

[12]

[13]

[14]

[15]

[16]

[17]
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