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Outlier-Resistant Remote State Estimation for Recurrent
Neural Networks with Mixed Time-Delays

Jiahui Li, Zidong Wang, Hongli Dong and Gheorghita Ghinea

Abstract—In this paper, a new outlier-resistant state estimation prob-
lem is addressed for a class of recurrent neural networks (RNNs) with
mixed time-delays. The mixed time-delays comprise both discrete and
distributed delays that occur frequently in signal transmissions among ar-
tificial neurons. Measurement outputs are sometimes subject to abnormal
disturbances (resulting probably from sensor aging/outages/faults/failures
and unpredictable environmental changes) leading to measurement out-
liers that would deteriorate the estimation performance if directly taken
into the innovation in the estimator design. We propose to use a certain
confidence-dependent saturation function to mitigate the side-effects from
the measurement outliers on the estimation error dynamics (EED).
Through using a combination of Lyapunov-Krasovskii functional and
inequality manipulations, a delay-dependent criterion is established for
the existence of the outlier-resistant state estimator ensuring that the
corresponding EED achieves the asymptotic stability with a prescribed
H∞ performance index. Then, the explicit characterization of the
estimator gain is obtained by solving a convex optimization problem.
Finally, numerical simulation is carried out to demonstrate the usefulness
of the derived theoretical results.

Index Terms—Recurrent neural networks; outlier-resistant state esti-
mation; H∞ performance constraint; measurement outliers; mixed time-
delays.

I. I NTRODUCTION

In the past several decades, artificial neural networks (ANNs)
have been gaining an ever-increasing popularity in various subject
areas such as computer science, brain science as well as cognitive
science. According to the ways of connections between neurons and
the directions of signal flows, ANNs are roughly divided into two
categories, i.e., feed-forward neural networks (FNNs) and recurrent
neural networks (RNNs). In FNNs, only the forward transmission
of signals is implemented, which means that the output cannot be
returned to regulate the input for the purpose of establishing dynamic
relationship. On this account, most FNN models are actually learning
systems with successful applications in various domains such as
pattern recognition, clustering and classification, and adaptive control
[7], [8], [35]. Compared with FNNs, a distinguishing feature with
RNNs is that certain information feedback occurs between the input
and output layers, thereby forming the dynamic relationship. So far,
much research attention has devoted to the dynamics analysis issues
for RNNs with examples including synchronization [1], [11], stability
[22], state estimation [33], [40], [41], [43], and dissipativity [23],
[33], and many available RNN-based algorithms have proven to be
powerful in a variety of practical applications such as associative
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memory, image processing and optimization calculation [18], [21],
[32], [38].

Time-delay is a well-known feature with RNNs that often occurs in
signal transmission among neurons due primarily to limited commu-
nication time of neurons and finite switching speed of amplifiers. It
is generally acknowledged that time-delays, if not appropriately dealt
with, could cause undesirable dynamical behaviors such as oscillation
or even instability. Over the past decade, the discrete time-delays
in RNNs have stirred much research attention and a great deal of
literature has been available, see e.g. [46], [47] on the synchronization
problem, [51] on the boundedness/stability analysis, and [10] on
the global stability issue. On the other hand, owing to the usually
large number of parallel pathways, RNNs would possess both the
temporal and spatial characteristics, and there might be a distribution
of conduction velocities along these paths as well as a distribution
of propagation delays over a period of time, which gives rise to the
so-called distributed time-delays, see e.g. [19], [28], [43]. Clearly, it
makes practical sense to look into the impact from mixed (i.e. discrete
and distributed) time-delays on RNNs’ dynamical behaviors.

For applications of RNNs in achieving certain tasks such as real-
time target tracking and navigation, it is often imperative to acquire
the full states of all neurons of the RNNs but, unfortunately, this turns
out to be a rather difficult mission for a variety of reasons including
the large size of the RNNs, the physical constraints of devices and the
limited resources with the measurements [48], [49]. Accordingly, the
state estimation problem for RNNs has become a focus of research
that attracts considerable attention leading to a great number of results
reported in the literature, see e.g. [12], [19], [20], [25], [37], [39],
[50]. In a wider context, the state estimation strategies forgeneral
dynamical systems can be categorized according to the performance
indices on the estimation error dynamics such as guaranteedH∞

disturbance rejection/attenuation level, the minimized variance con-
straints and the set-valued requirements, and the resulting categories
are generallyH∞ estimation [17], [20], [25], [27], Kalman-type
estimation [4], [26],H2 estimation [9], [31], set-valued estimation
[34] and set-membership estimation techniques [5], [42], [45].

RNNs have recently become extremely fashionable especially
when applied to the deep learning areas such as speech recognition
and machine translation. Due to the large scale of the RNNs and the
heavy burden of the computation, the implementation (e.g. training
and prediction) of the RNNs can be carried out on one site, and the
monitoring (e.g. state estimation) can be conducted on another site,
where the two sites are connected through networks. Such a scenario
of remote state estimation (RSE) of RNNs is particularly realistic in
nowadays data-intensive networked environments [29], [30]. In this
scenario, the measurement outputs of the RNNs are transmitted to the
remote estimator through a communication channel (often wireless
or distributed networks) of limited bandwidth that might result
in network-induced phenomena (NIP) jeopardizing the information
transmission. So far, in the context of RSE for RNNs, some well-
known NIP have been thoroughly investigated, see e.g. [25] for
missing measurements, [19] for fading channels, [37] for unreliable
links, and [29] for communication bandwidth constraints. In [30], the
Round-Robin protocol has been introduced to actively mitigate the
NIP’s negative impact on the neuron state estimation problem.
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For large-scale RNNs, the measurement outputs are sometimes
subject to abnormal disturbances resulting probably from 1) sensor
aging/outages/faults/failures; 2) unpredictable/sudden/dramatic envi-
ronmental changes; and 3) cyber-attack from adversaries. Such kind
of abnormal outputs are referred to as measurement outliers which, if
not appropriately tackled, would seriously deteriorate the estimation
accuracy for the RSE problems for RNNs. To be more specific, if
the measurement outliers are directly utilized in estimating the states
of the artificial neurons, the corresponding innovation value would
become abnormal, thereby leading to the undesirable state estimates
that are out of range. Up to now, in contrast to the rich literature
regarding various NIP, the available results on the RSE problems for
RNNs subject to measurement outliers have been very few, and this
constitutes the main motivation of our current investigation.

It should be noticed that the measurement outlier problem has
received some initial research attention in the general area of state
estimation or filtering. For example, in [15], a new type of Kalman
filter has been constructed which is insensitive to measurement
outliers. Moreover, a modified maximum likelihood estimator has
been designed in [2] which is robust to the possible outliers. Recently,
a novel observer has been constructed in [3] with a saturated output
injection to attenuate the impact of measurement outliers on the
state estimation problems. Unfortunately, when it comes to the RSE
problems for RNNs, the relevant literature has been very little, not
to mention the case when theH∞ disturbance attention/rejection
requirement is also a concern. It is, therefore, our main purpose of this
paper to deal with the outlier-resistant RSE problem by employing
a certain confidence-dependent saturation function to mitigate the
side-effects from the measurement outliers on the estimation error
dynamics (EED).

Inspired by the above discussions, the main aim of this work is
to look into the outlier-resistant RSE problem for a class of RNNs
subject to mixed time-delays. This appears to be a rather challenging
research topic involving two substantial objectives as follows: 1) the
design of an effective estimator to mitigate the effects of measurement
outliers on the RSE issue; and 2) the determination of the estimator
parameters such that the EED is asymptotically stable with a specified
H∞ performance index. Accordingly, the main contribution of our
investigation is outlined as threefold:1) a new outlier-resistant state
estimation problem is, for the first time, put forward for a class
of RNNs subject to mixed time-delays; 2) a confidence-dependent
saturation function is introduced into the estimator structure so as
to attenuate the side-effects from the measurement outliers on the
EED; and 3) a delay-dependent criterion is derived to guarantee the
asymptotic stability of the corresponding EED with guaranteedH∞

performance constraint.

Notation: The notation utilized here is quite normative except
where otherwise declared.Rn represents then-dimensional Euclidean
space andRn×m is the set of all real matrices of dimensionn×m. Z−

denotes the set of all negative integers. The occurrence probability of
the event“·” is denoted by Prob{·}. E{x} means the expectation of a
random variablex. For a vectory, ‖y‖ stands for its Euclidean norm.
The symbol⋆ indicates an ellipsis for symmetry-induced terms. For
a square matrixM , λmax(M) means the maximum eigenvalue ofM .
l2[0,∞) denotes the space of square-integrable vector functions over
[0,∞).

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the followingn-neuron neural networks with mixed time-
delays:






















xk+1 = Exk +Dḡ(xk−dk) +B

∞
∑

τ=1

µτ f̄(xk−τ ) +Hwk

yk = Mxk

xs = ϕs, s ∈ Z
−

(1)

wherexk ∈ R
n represents the neural state vector with the initial

conditionsxs = ϕs, s ∈ Z
−; ḡ(xk) ∈ R

n and f̄(xk) ∈ R
n denote

the nonlinear activation functions;wk ∈ R
n is the disturbance input

belonging tol2[0,∞); yk ∈ R
m is the output of the neural networks;

E , diag{e1, e2, . . . , en} is a real constant diagonal matrix;D ,

(dij)n×n is the time-varying delayed connection weight matrix and
B , (bij)n×n denotes the distributively delayed connection weight
matrix; dk is a positive integer representing the discrete time-varying
delays that satisfyd ≤ dk ≤ d, in whichd andd are constant positive
integers denoting, respectively, the lower and upper bounds ofdk; τ
describes the infinitely distributed delays; andM andH are known
constant matrices with compatible dimensions.

Assumption 1:The constantsµτ ≥ 0 (τ = 1, 2, . . . ,∞) satisfy
the following convergence condition:

µ̄ =
∞
∑

τ=1

µτ <∞ and µ̄0 =
∞
∑

τ=1

τµτ <∞. (2)

Assumption 2:The nonlinear activation functions̄g(·) and f̄(·)
are continuous which satisfȳg(0) = 0, f̄(0) = 0 and the following
sector-bounded constraints:

(ḡ(x)− ḡ(y)− L1(x− y))T (ḡ(x)− ḡ(y)− L2(x− y)) ≤ 0,
(

f̄(x)− f̄(y)− T1(x− y)
)T (

f̄(x)− f̄(y)− T1(x− y)
)

≤ 0
(3)

for all x, y ∈ R
n, whereL1, L2, T1 andT2 are real-valued matrices

with appropriate dimensions.
The objective of this paper is to design an effective estimator

for estimating the neurons’ statesx̂k through available measurement
outputsyk. As discussed in the introduction, measurement outliers do
exist which, if not adequately handled, would deteriorate the estimator
performance or even make the error dynamics unstable. To resolve
such a problem, a so-called outlier-resistant estimator is constructed
as follows:























x̂k+1 = Ex̂k +Dḡ
(

x̂k−dk

)

+B

∞
∑

τ=1

µτ f̄
(

x̂k−τ

)

+Kσ
(

yk −Mx̂k

)

x̂s = 0, s ∈ Z
−

(4)

wherex̂k andx̂s are, respectively, the estimates ofxk andxs, andK
is the estimator gain to be designed. In particular,σ(·) : Rm 7→ R

m

is a saturation function defined as:

σ(z) ,
[

σT
1 (z1) σT

2 (z2) · · · σT
m(zm)

]T

in which σι(zι) , sign(zι)min{zι,max, |zι|} (ι = 1, 2, . . . ,m) with
zι,max being theιth element ofzmax (i.e., the saturation level).

Remark 1:The outliers are understood as a small portion of data
that deviates severely from the trend of most data, and the outliers
are often regarded as “bad values” by data analysts. Outliers might
result from equipment failures, execution errors, cyber-attacks and so
on. Clearly, for our addressed RSE problem, the state estimator to be
designed should be insensitive to the outlier where such insensitivity
should be quantified. As such, the main objective of this paper is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: 
DOI10.1109/TNNLS.2020.2991151, IEEE Transactions on Neural Networks and Learning Systems



FINAL VERSION 3

to establish an effective estimation scheme to weaken the influence
resulting from the measurement outliers.

Remark 2: In the proposed estimator (4), we have purposely
introduced a saturation functionσ(·) : Rm 7→ R

m so as to specify
a certain bound on the innovationyk −Mx̂k. The reason for doing
this is that, ifyk is indeed an outlier that is directly used to calculate
the innovation, then the produced state estimatex̂k+1 could differ
significantly from the estimates at other time points, which means the
resultingx̂k+1 might be unreliable and even lead to the divergence of
the error dynamics. With the introduced saturation functionσ(·), the
innovation value would have specified bounds, thereby alleviating the
risk of unwanted abnormality/divergence. Here, the saturation level
zι,max can be determineda priori according to engineering practice,
that is, our confidence/knowledge on the measurement outputs. In this
sense, the saturation functionσ(·) is said to beconfidence-dependent
and the estimator (4) is calledoutlier-resistant. Note that, when the
saturation level goes to infinite, that is, there is no proposed limit
on the innovation, the estimator (4) will be degenerated into the
traditional one.

Letting ek , xk − x̂k, g(ek) , ḡ(xk) − ḡ(x̂k) and f(ek) ,

f̄(xk)− f̄(x̂k), the EED is obtained from (1) and (4) as follows:

ek+1 = Eek +Dg(ek−dk) +B

∞
∑

τ=1

µτf(ek−τ )

+Hwk −Kσ
(

Mek
)

. (5)

The main objective of this paper is to develop an outlier-resistant
RSE scheme such that the following requirements are met simulta-
neously:

a) for wk = 0, the existence condition is acquired for the desired
estimator (4) ensuring the asymptotic stability of the EEDek;

b) under the zero-initial conditions, for a given disturbance attenu-
ation level~ > 0 and all nonzerowk, the EEDek from (5) satisfies
the followingH∞ performance constraint:

∞
∑

k=0

‖ek‖
2 ≤ ~

2

∞
∑

k=0

‖wk‖
2
. (6)

III. M AIN RESULTS

Lemma 1: [44] Assume that the saturation functionσ(·) belongs
to [U1, U2] with some given diagonal matricesU1, U2, whereU1 ≥ 0,
U2 ≥ 0 andU2 ≥ U1. σ(·) satisfies the following inequality:

[σ
(

Mek
)

− U1Mek]
T [σ
(

Mek
)

− U2Mek] ≤ 0. (7)

By (7), the nonlinear functionσ
(

Mek
)

can be divided into a linear
and a nonlinear part

σ
(

Mek
)

= U1Mek + ψ
(

Mek
)

(8)

and the nonlinear partψ
(

Mek
)

satisfiesψ
(

Mek
)

∈ Ψ, whereΨ is
described as

Ψ , {ψ : ψT
(

Mek
)

[ψ
(

Mek
)

− UMek] ≤ 0}, U , U2 − U1.

(9)

Lemma 2: [36] Let S ∈ R
n×n be a positive semi-definite matrix,

xi ∈ R
n be a vector andµi ≥ 0 (i = 1, 2, . . . ,∞) be a nonnegative

scalar. If the series concerned are convergent, the following inequality
is true:
(

+∞
∑

i=1

µixi

)T

S

(

+∞
∑

i=1

µixi

)

≤

(

+∞
∑

i=1

µi

)(

+∞
∑

i=1

µix
T
i Sxi

)

.

(10)

Lemma 3: [6] Given constant matricesΓ1, Γ2, Γ3 whereΓ1 =
ΓT
1 andΓ2 = ΓT

2 > 0, thenΓ1 + ΓT
3 Γ

−1

2 Γ3 < 0 if and only if
[

Γ1 ΓT
3

Γ3 −Γ2

]

< 0 or

[

−Γ2 Γ3

ΓT
3 Γ1

]

< 0.

Now, we are ready to present a delay-dependent criterion for the
existence of the desired outlier-resistant estimator (4) for ensuring
the asymptotic stability of (5).

Theorem 1:Consider the delayed neural networks (1) and let
the estimator gainK be given. The corresponding EED (5) is
asymptotically stable if there exist positive definite matricesP , R
andZ, and positive constant scalarsλ1 andλ2 satisfying

Π =

















Π11 Π12 Π13 Π14 Π15 Π16

⋆ Π22 0 0 0 0
⋆ ⋆ Π33 0 Π35 Π36

⋆ ⋆ ⋆ Π44 0 0
⋆ ⋆ ⋆ ⋆ Π55 Π56

⋆ ⋆ ⋆ ⋆ ⋆ Π66

















< 0 (11)

where

Π11 ,Ē
T
PĒ − P − λ1L̃1 − λ2T̃1, Π12 , λ1L̃2,

Π13 ,Ē
T
PD, Π14 , λ2T̃2, Π15 , Ē

T
PB,

Π16 ,− Ē
T
PK +

1

2
M

T
U

T
, Π22 , (1 + d− d)R− λ1I,

Π33 ,D
T
PD −R, Π35 , D

T
PB, Π36 , −DT

PK,

Π44 ,µ̄Z − λ2I, Π55 , B
T
PB −

1

µ̄
Z, Π56 , −BT

PK,

Π66 ,K
T
PK − I, Ē , E −KU1M, L̃1 ,

LT
1 L2 + LT

2 L1

2
,

L̃2 ,
(L1 + L2)

T

2
, T̃1 ,

T T
1 T2 + T T

2 T1

2
, T̃2 ,

(T1 + T2)
T

2
.

Proof: In order to analyze the stability of the EED (5) with
wk = 0, we select the following Lyapunov-Krasovskii functional:

V (ek) = V1(ek) + V2(ek) + V3(ek)

where

V1(ek) , e
T
k Pek,

V2(ek) ,
k−1
∑

j=k−dk

g
T (ej)Rg(ej)

+

k−d
∑

q=k−d+1

k−1
∑

j=q

g
T (ej)Rg(ej),

V3(ek) ,
∞
∑

τ=1

µτ

k−1
∑

j=k−τ

f
T (ej)Zf(ej).

Along the trajectories of system (5), we calculate the difference of
V (ek) as follows:

∆V (ek) = ∆V1(ek) + ∆V2(ek) + ∆V3(ek)

where

∆V1(ek) =V1(ek+1)− V1(ek)

=
[

Eek +Dg(ek−dk) +B

∞
∑

τ=1

µτf(ek−τ )

−Kσ
(

Mek
)

]T

P
[

Eek +Dg(ek−dk)

+B

∞
∑

τ=1

µτf(ek−τ )−Kσ
(

Mek
)

]

− e
T
k Pek, (12)
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∆V2(ek) = V2(ek+1)− V2(ek)

=
k
∑

j=k+1−dk+1

g
T (ej)Rg(ej) +

k+1−d
∑

q=k−d̄+2

k
∑

j=q

g
T (ej)Rg(ej)

−

k−1
∑

j=k−dk

g
T (ej)Rg(ej)−

k−d
∑

q=k−d̄+1

k−1
∑

j=q

g
T (ej)Rg(ej)

=

(

g
T (ek)Rg(ek) +

k−1
∑

j=k+1−dk+1

g
T (ej)Rg(ej)

−
k−1
∑

j=k+1−dk+1

g
T (ej)Rg(ej)− g

T (ek−dk)Rg(ek−dk)

)

+

(

k−1
∑

j=k+1−d

g
T (ej)Rg(ej)−

k−1
∑

j=k+1−d

g
T (ej)Rg(ej)

+ (d− d)gT (ek)Rg(ek)

)

= (1 + d− d)gT (ek)Rg(ek)− g
T (ek−dk)Rg(ek−dk)

−

k−d
∑

j=k+1−d

g
T (ej)Rg(ej)

≤ (1 + d− d)gT (ek)Rg(ek)− g
T (ek−dk)Rg(ek−dk)

(13)

and

∆V3(ek) =V3(ek+1)− V3(ek)

=

∞
∑

τ=1

µτ

k
∑

j=k−τ+1

f
T (ej)Zf(ej)

−
∞
∑

τ=1

µτ

k−1
∑

j=k−τ

f
T (ej)Zf(ej)

=

∞
∑

τ=1

µτf
T (ek)Zf(ek)−

∞
∑

τ=1

µτf
T (ek−τ )Zf(ek−τ )

=µ̄fT (ek)Zf(ek)−
∞
∑

τ=1

µτf
T (ek−τ )Zf (ek−τ ) . (14)

Applying Lemma 2 to (14), one has

∆V3(ek) ≤ µ̄f
T (ek)Zf(ek)−

1

µ̄

(

∞
∑

τ=1

µτf
T (ek−τ )

)

× Z

(

∞
∑

τ=1

µτf(ek−τ )

)

. (15)

According to Assumption 2, one observes from (3) that

− λ1g
T (ek)g(ek)− λ1e

T
k L̃1ek + 2λ1e

T
k L̃2g(ek) ≥ 0,

− λ2f
T (ek)f(ek)− λ2e

T
k T̃1ek + 2λ2e

T
k T̃2f(ek) ≥ 0. (16)

Taking (8)-(9) and (12)-(16) into consideration, we arrive at

∆V (ek) ≤ e
T
k Ē

T
PĒek + 2eTk Ē

T
PDg(ek−dk)

+ 2eTk Ē
T
PB

∞
∑

τ=1

µτf(ek−τ )

− 2eTk Ē
T
PKψ

(

Mek
)

+ g
T (ek−dk)D

T
PDg(ek−dk)

+ 2gT (ek−dk)D
T
PB

∞
∑

τ=1

µτf(ek−τ )

− 2gT (ek−dk)D
T
PKψ

(

Mek
)

+
∞
∑

τ=1

µτf
T (ek−τ )B

T
PB

∞
∑

τ=1

µτf(ek−τ )

− 2

∞
∑

τ=1

µτf
T (ek−τ )B

T
PKψ

(

Mek
)

+ ψ
T
(

Mek
)

K
T
PKψ

(

Mek
)

+ (1 + d− d)gT (ek)Rg(ek)− g
T (ek−dk)

×Rg(ek−dk)− e
T
k Pek + µ̄f

T (ek)Zf(ek)

−
1

µ̄

(

∞
∑

τ=1

µτf
T (ek−τ )

)

Z

(

∞
∑

τ=1

µτf(ek−τ )

)

− λ1g
T (ek)g(ek)− λ1e

T
k L̃1ek + 2λ1e

T
k L̃2g(ek)

− λ2f
T (ek)f(ek)− λ2e

T
k T̃1ek + 2λ2e

T
k T̃2f(ek)

− ψ
T (Mek)

[

ψ(Mek)− UMek
]

= ξ
T
k Πξk (17)

where

ξk ,

[

ξT1k ξT2k

]T

,

ξ1k ,

[

eTk gT (ek) gT (ek−dk)
]T

,

ξ2k ,

[

fT (ek)
∞
∑

τ=1

µτf
T (ek−τ ) ψT (Mek)

]T

.

Sinceλmax(Π) < 0, it is obvious to see from (17) that

△V (ek) ≤ λmax(Π)‖ek‖
2
. (18)

For a given positive integerN , summing both sides of (18) from
1 to N with respect tok yields

V (eN )− V (e0) ≤ λmax(Π)

N
∑

k=1

‖ek‖
2
,

which implies

−λmax(Π)

N
∑

k=1

‖ek‖
2 ≤ V (e0).

LettingN → ∞, we see that the series
∑+∞

k=0
‖ek‖

2 is convergent,
which further implies that the EED (5) is asymptotic stable and the
proof is now complete.

In what follows, a delay-dependent criterion will be established
for the existence of the desired outlier-resistant state estimator for
ensuring theH∞ performance constraint of the EED (5).

Theorem 2:Let the disturbance attenuation level~ > 0 and
estimator parameterK be specified. The EED (5) achieves the
asymptotic stability withH∞ performance constraint (6) if there exist
symmetric positive definite matricesP > 0, R > 0 andZ > 0 as
well as positive scalarsλ1 andλ2 such that the following condition
holds:

Π̃ =





















Π̄11 Π12 Π13 Π14 Π15 Π16 Π17

⋆ Π22 0 0 0 0 0
⋆ ⋆ Π33 0 Π35 Π36 Π37

⋆ ⋆ ⋆ Π44 0 0 0
⋆ ⋆ ⋆ ⋆ Π55 Π56 Π57

⋆ ⋆ ⋆ ⋆ ⋆ Π66 Π67

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Π77





















< 0 (19)

where

Π̄11 ,Π11 + I, Π17 , Ē
T
PH, Π37 , D

T
PH,

Π57 ,B
T
PH, Π67 , −KT

PH, Π77 , H
T
PH − ~

2
I.

Proof: In order to discuss theH∞ disturbance attenuation per-
formance of the estimator, we adopt the same Lyapunov-Krasovskii
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functional as that in proof of Theorem 1 withwk 6= 0. Furthermore,
we assume zero-initial conditions, i.e.{ek}k∈Z− = 0 and establish
the following cost function:

J
∗

k = ‖ek‖
2 − ~

2‖wk‖
2
. (20)

By similar treatment as in Theorem 1, it is easily seen that

∆V (ek) + J
∗

k ≤ ξ̃
T
k Π̃ξ̃k

where

ξ̃k ,
[

ξTk wT
k

]T
.

In terms of (19), one has

∆V (ek) < −J∗

k . (21)

Summing both sides of inequality (21) from0 to ∞ regardingk
results in

V (e∞)− V (e0) ≤

∞
∑

k=0

~
2‖wk‖

2 −

∞
∑

k=0

‖ek‖
2
,

which means
∞
∑

k=0

‖ek‖
2 ≤ ~

2

∞
∑

k=0

‖wk‖
2
.

The proof is now complete.
In the following, we are in a position to determine the gain matrix

of the outlier-resistant state estimator (4).
Theorem 3:Consider the system (1) with mixed time-delays.

Assume that there exist symmetric positive definite matricesP > 0,
R > 0 andZ > 0, a matrixX > 0, and positive scalarsλ1 andλ2

such that the following linear matrix inequality (LMI) is true:
[

Π0 Σ̃T

⋆ −P

]

< 0 (22)

where

Π0 ,





















Π̃11 Π12 0 Π14 0 1

2
MTUT 0

⋆ Π22 0 0 0 0 0
⋆ ⋆ −R 0 0 0 0
⋆ ⋆ ⋆ Π44 0 0 0
⋆ ⋆ ⋆ ⋆ − 1

µ̄
Z 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −~

2I





















,

Σ̃ ,
[

PE −XU1M 0n×n 0n×n PD PB −X PH
]

,

Π̃11 , −P − λ1L̃1 − λ2T̃1 + I.

Then, the EED (5) is asymptotically stable while achieving theH∞

performance constraint (6) and the corresponding estimator gain
matrix is computed asK = P−1X.

Proof: Let us first splitΠ̃ as follows:

Π̃ = Π0 + ΣT
PΣ < 0 (23)

where

Σ ,
[

E −KU1M 0n×n D 0n×n B −K H
]

.

By employing Lemma 3, we deduce from (23) that
[

Π0 ΣT

⋆ −P−1

]

< 0. (24)

Pre- and post-multiplying inequality (24) bydiag{I, P}, one has
[

Π0 ΣTP

⋆ −P

]

< 0. (25)

LettingX = PK, it is easy to see that (25) is equivalent to (22),
which completes the proof.

In the case the saturation effects are removed from the estimator
(4), the innovation becomes unconstrained and a traditional state
estimator is obtained as follows:























x̂k+1 = Ex̂k +Dḡ
(

x̂k−dk

)

+B

∞
∑

τ=1

µτ f̄
(

x̂k−τ

)

+ K̄
(

yk −Mx̂k

)

x̂s = 0, s ∈ Z
−
.

(26)

In this case, the following corollary is easily accessible from Theorem
3.

Corollary 1: Assume that there exist symmetric positive definite
matricesP̄ > 0, R̄ > 0 and Z̄ > 0, a matrix X̄ > 0, and positive
scalarsλ̄1 and λ̄2 such that the following LMI holds:

[

Ω0 ΩT

⋆ −P̄

]

< 0 (27)

where

Ω0 ,

















Ω11 λ1L̃2 0 λ2T̃2 0 0
⋆ Ω22 0 0 0 0
⋆ ⋆ −R̄ 0 0 0
⋆ ⋆ ⋆ Ω44 0 0
⋆ ⋆ ⋆ ⋆ − 1

µ̄
Z̄ 0

⋆ ⋆ ⋆ ⋆ ⋆ −~
2I

















,

Ω ,
[

P̄E − X̄M 0n×n P̄D 0n×n P̄B P̄H
]

,

Ω11 , −P̄ − λ1L̃1 − λ2T̃1 + I, Ω22 , (1 + d− d)R̄− λ̄1I,

Ω44 , µ̄Z̄ − λ̄2I.

Then, the EED (5) of system (1) is asymptotically stable with the
H∞ performance constraint (6). In addition, the estimator parameter
is computed as̄K = P̄−1X̄.

Remark 3: It is well acknowledged that the research on the SE
problem for RNNs with time delays has been well investigated.
For example, in [24], a sufficient condition has been given to
guarantee the exponential stability of the corresponding estimation
error dynamics. Nevertheless, most existing estimation schemes are
not resistant against the measurement outliers. In other words, once
the measurement suffers from abnormal disturbances, traditional state
estimators for RNNs are no longer effective.

Remark 4: In Theorems 1 and 2, sufficient criteria have been
established for the existence of the desired outlier-resistant state
estimator, under which the EED (5) is asymptotically stable with
a givenH∞ performance level~. In Theorem 3, the gain matrix
K is parameterized with the aid of the feasibility of a convex
optimization problem. It is observed that the main results obtained in
Theorems 1-3 contain all the model information and the performance
specifications. The introduction of the saturation function makes
the designed estimator capable of weakening the effects from the
measurement outliers on the estimation accuracy. .

Remark 5:So far, we have solved the outlier-resistant RSE prob-
lem for a class of RNNs subject to mixed time-delays. Compared to
existing literature, our main results exhibit two distinctive features:
1) the addressed outlier-resistant state estimation problem is new
where a confidence-dependent saturation function is introduced into
the estimator structure so as to attenuate the side-effects from the
measurement outliers on the EED; and 2) a delay-dependent criterion
is derived to guarantee the asymptotic stability of the corresponding
EED with guaranteedH∞ performance constraint in the presence of
the mixed time-delays.

IV. N UMERICAL EXAMPLE

In order to demonstrate the effectiveness of our presented RSE
scheme on mitigating the effects of measurement outliers, an illus-
trative example is provided for the delayed RNNs (1) in this section.
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Consider a class of three-neuron RNNs under discrete and dis-
tributed time-delays with parameters given as follows:

E =diag{−0.8,−0.6,−0.5},

D =





−0.3 0.2 0.3
−0.4 0.1 0.2
0.2 −0.4 0.2



 ,

B =





−0.3 −0.25 0.4
0.1 −0.4 0.2
0.6 0.2 −0.3



 ,

H =





0 0.01 0
−0.1 0.1 0
0.2 0 −0.3



 ,

M =

[

0.8 −0.7 −0.3
0.6 0.4 −0.4

]

.

The saturation functionσ
(

Mek
)

is described as follows:

σ
(

Mek
)

=











Mek, if − vmax ≤Mek ≤ vmax,

vmax, if Mek ≥ vmax,

− vmax, if Mek ≤ −vmax

where the saturation values are taken asvmax = 1.
Set the activation functions as

g(xk) =





−0.8(x1k) + tanh(0.5x1k) + 0.4(x2k)
0.9(x2k)− tanh(0.6x2k)
0.6(x3k)− tanh(0.4x3k)



 ,

f(xk) =





0.2(x1k)− tanh(0.1x1k)
0.3(x2k)− tanh(0.2x2k)
0.3(x3k)− tanh(0.2x3k)



 .

In this example, according to the engineering practice and with
reference to [16], we supposeµτ = e−4τ , and the discrete time-
varying delaydk has the lower boundd = 1 and upper boundd = 6.
The disturbance attenuation level is chosen as~ = 0.75. Take the
disturbance signals aswk = [4e−k 3e−k 5e−k]T . The matricesL1,
L2, T1 andT2 in the sector-bounded conditions (3) are given as

L1 =





−0.8 0.4 0
0 0.8 0
0 0 0.6



 , L2 =





−0.3 0.4 0
0 0.2 0
0 0 0.2



 ,

T1 =





0.2 0 0
0 0.3 0
0 0 0.3



 , T2 =





0.1 0 0
0 0.1 0
0 0 0.1



 .

By solving the LMIs (22) and (27) respectively, the estimator gain
matrices are computed as

K =





−0.1916 −0.2144
0.1370 −0.2649
0.1120 0.1970



 ,

K̄ =





1.1673 1.1673
1.0603 1.0603
1.2866 1.2866



 .

Now, let us discuss the effectiveness of the outlier-resistant esti-
mator (4) and the traditional estimator (26) under two cases.

Case 1: no measurement outliers occur
If there are no measurement outliers, the evolutions of the estima-

tion errors are shown in Figs. 1-2, where Fig. 1 displays the estimation
results utilizing the traditional estimator (26) and Fig. 2 shows the
estimation results by using the outlier-resistant estimator (4). The
corresponding estimation errors approach zero asymptotically which
considerably coincide the theoretical results. The simulation results
indicate that both of the two kinds of estimators are effective in
estimating the true states when there are no measurement outliers.

Case 2: measurement outliers occur
When the measurement outliers do take place, the simulation

results are presented in Figs. 3-5, in which the abnormal disturbances
added toyk are characterized in Fig. 3. Obviously, it can be found
from Fig. 4 that, the traditional estimator is no longer valid in
this case, while the outlier-resistant estimator still works well which
can be easily seen from Fig. 5. In summary, the simulation results
have verified the necessity of designing the kind of outlier-resistant
estimator for the sake of mitigating the effects of measurement
outliers on the estimation results.
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Fig. 1. Estimation errorse1k, e2k and e3k with estimator (26)
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Fig. 2. Estimation errorse1k, e2k and e3k with estimator (4)

V. CONCLUSIONS

In this paper, considering the appearance of measurement outliers,
an outlier-resistant state estimator has been designed for a kind of
RNNs subject to mixed time-delays. By introducing a saturation func-
tion, an outlier-resistant RSE scheme has been proposed to mitigate
the effects of measurement outliers on the estimation results. In order
to characterize the actual feature of practical RNNs, the mixed time-
delays have been taken into account in current investigation, and a
delay-dependent criterion has been derived for the underlying system
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Fig. 3. The abnormal disturbance signals.
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Fig. 4. Estimation errorse1k , e2k and e3k with estimator (26)

(1) to achieve the desired asymptotic stability andH∞ performance
constraint. The explicit expression of the estimator gain matrix has
been characterized in terms of the solution to a certain LMI. Finally,
an illustrative example has been shown to highlight the validity of
the outlier-resistant state estimator in estimating the true states of
RNNs in the presence of measurement outliers. Besides, one of the
future research topics is to extend our proposed outlier-resistant RSE
scheme to more complex dynamical networks [13], [14], [52].
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