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Outlier-Resistant Remote State Estimation for Recurrent
Neural Networks with Mixed Time-Delays

Jiahui Li, Zidong Wang, Hongli Dong and Gheorghita Ghinea

Abstract—In this paper, a new outlier-resistant state estimation prob- memory, image processing and optimization calculation [18], [21],
lem is addressed for a class of recurrent neural networks (RNNs) with [32], [38].
mixed time-delays. The mixed time-delays comprise both discrete and Time-delay is a well-known feature with RNNs that often occurs in
distributed delays that occur frequently in signal transmissions among ar- . L . . L
tificial neurons. Measurement outputs are sometimes subject to abnormal Signal transmission among neurons due primarily to limited commu-
disturbances (resulting probably from sensor aging/outages/faults/failures nication time of neurons and finite switching speed of amplifiers. It
and unpredictable environmental changes) leading to measurement out- is generally acknowledged that time-delays, if not appropriately dealt
liers that would deteriorate the estimation performance if directly taken  \vith could cause undesirable dynamical behaviors such as oscillation
into the innovation in the estimator design. We propose to use a certain ' . . . .
confidence-dependent saturation function to mitigate the side-effects from _or even 'nStab'"tY' Over the past decade, t_he discrete time-delays
the measurement outliers on the estimation error dynamics (EED). in RNNs have stirred much research attention and a great deal of
Through using a combination of Lyapunov-Krasovskii functional and literature has been available, see e.g. [46], [47] on the synchronization
inequality manipulations, a delay-dependent criterion is established for problem, [51] on the boundedness/stability analysis, and [10] on

the existence of the outlier-resistant state estimator ensuring that the el :
corresponding EED achieves the asymptotic stability with a prescribed the global stability issue. On the other hand, owing to the usually

Ho performance index. Then, the explicit characterization of the large number of parallel pathways, RNNs would possess both the
estimator gain is obtained by solving a convex optimization problem. temporal and spatial characteristics, and there might be a distribution
Finally, numerical simulation is carried out to demonstrate the usefulness of conduction velocities along these paths as well as a distribution
of the derived theoretical results. of propagation delays over a period of time, which gives rise to the
Index Terms—Recurrent neural networks; outlier-resistant state esti- so-called distributed time-delays, see e.g. [19], [28], [43]. Clearly, it
mation; Hoo performance constraint; measurement outliers; mixed time-  makes practical sense to look into the impact from mixed (i.e. discrete
delays. and distributed) time-delays on RNNs' dynamical behaviors.
For applications of RNNs in achieving certain tasks such as real-
|. INTRODUCTION time target tracking and navigation, it is often imperative to gcquire
o the full states of all neurons of the RNNs but, unfortunately, this turns
In the past several decades, artificial neural networks (ANNg)t to be a rather difficult mission for a variety of reasons including
have been gaining an ever-increasing popularity in various subjeg |arge size of the RNNs, the physical constraints of devices and the
areas such as computer science, brain science as well as cognjfiied resources with the measurements [48], [49]. Accordingly, the
science. According to the ways of connections between neurons aggte estimation problem for RNNs has become a focus of research
the directions of signal flows, ANNs are roughly divided into twQpat attracts considerable attention leading to a great number of results
categories, i.e., feed-forward neural networks (FNNs) and recurrgBhorted in the literature, see e.g. [12], [19], [20], [25], [37], [39],
neural networks (RNNs). In FNNs, only the forward transmissiofo. |n a wider context, the state estimation strategiesgiemeral
of signals is implemented, which means that the output cannot §¢,amical systems can be categorized according to the performance
retur_ned to regulat_e the input for the purpose of establishing dynaﬁH‘aices on the estimation error dynamics such as guarankted
relationship. On this account, most FNN models are actually leamiggtyrbance rejection/attenuation level, the minimized variance con-
systems with successful applications in various domains such @&ints and the set-valued requirements, and the resulting categories
pattern recognition, clustering and classification, and adaptive contgpk generallyH., estimation [17], [20], [25], [27], Kalman-type
[7], [8], [35]. Compared with FNNs, a distinguishing feature withestimation [4], [26], H. estimation [9], [31], set-valued estimation
RNNss is that certain information feedback occurs between the inggly] and set-membership estimation techniques [5], [42], [45].
and output layers, thereby forming the dynamic relationship. So far,RNNs have recently become extremely fashionable especially
much research attention has devoted to the dynamics analysis isg#¢sn applied to the deep learning areas such as speech recognition
for RNNs with examples including synchronization [1], [11], stabilityng machine translation. Due to the large scale of the RNNs and the
[22], state estimation [33], [40], [41], [43], and dissipativity [23],neavy burden of the computation, the implementation (e.g. training
[33], and many available RNN-based algorithms have proven to Bgq prediction) of the RNNs can be carried out on one site, and the
powerful in a variety of practical applications such as associatiygonitoring (e.g. state estimation) can be conducted on another site,
) ) ) ) where the two sites are connected through networks. Such a scenario
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For large-scale RNNs, the measurement outputs are sometimes  |l. PROBLEM FORMULATION AND PRELIMINARIES
supject to abnormal d|_sturbances resul_tlng probably from 1) SENSO g nsider the following:-neuron neural networks with mixed time-
aging/outages/faults/failures; 2) unpredictable/sudden/dramatic e i ys:
ronmental changes; and 3) cyber-attack from adversaries. Such k|nda '
of abnormal outputs are referred to as measurement outliers which, if

not appropriately tackled, would seriously deteriorate the estimation | x+1 = Eak + Dg(wr-a,) + B Z pir f(z—r) + Huwi

accuracy for the RSE problems for RNNs. To be more specific, if =1 1)
the measurement outliers are directly utilized in estimating the states Yo = May,
of the artificial neurons, the corresponding innovation value would Ts = s, SEL"

become abnormal, thereby leading to the undesirable state estimatﬁs R" ts th | stat ‘ ith the initial

that are out of range. Up to now, in contrast to the rich literatur® edr_e_a:k € - represe;ﬁs. e neur%ns a((j-z vector Vfgn d € inifia

regarding various NIP, the available results on the RSE problems o |t|o|r_15xs =¥ 8 € ¢ ’ g.(m’“) € Rna.” r{(xg') € b en_ote

RNNSs subject to measurement outliers have been very few, and thi honinear actlvat'lon ”“C,}J‘?”ﬂ’k € IS the disturbance |nput.

constitutes the main motivation of our current investigation. € 2“9.'”9 t0l2[0, 00); Y G.R Is the output of .the neural ngtwoArks,
E = diag{ei,e2,...,e,} is a real constant diagonal matrixy =

(dij)nxn is the time-varying delayed connection weight matrix and
B = (bij)nxn denotes the distributively delayed connection weight

It should be noticed that the measurement outlier problem h&®triX; di is a positive integer representing the discrete time-varying
received some initial research attention in the general area of std@ays that satisf < di, < d, in whichd andd are constant positive
estimation or filtering. For example, in [15], a new type of Kalma#tegers denoting, respectively, the lower and upper bounds ;of
filter has been constructed which is insensitive to measureméi@scribes the infinitely distributed delays; aihfland /' are known
outliers. Moreover, a modified maximum likelihood estimator hagonstant matrices with compatible dimensions.
been designed in [2] which is robust to the possible outliers. RecentlyAssumption 1:The constantg.r > 0 (7 = 1,2,...,00) satisfy
a novel observer has been constructed in [3] with a saturated outfig following convergence condition:

injection to attenuate the impact of measurement outliers on the oo oo
state estimation problems. Unfortunately, when it comes to the RSE = Z“T < oo and fig = ZT}LT < 00. (2)
problems for RNNs, the relevant literature has been very little, not r=1 r=1

to mention the case when thH., disturbance attention/rejection . . . — L .
. . : . . Assumption 2:The nonlinear activation functiong(-) and f(-)
requirement is also a concern. Itis, therefore, our main purpose of this : . o - \
. . . . are continuous which satisfy(0) = 0, f(0) = 0 and the following
paper to deal with the outlier-resistant RSE problem by employin oo
) ) : . L ctor-bounded constraints:
a certain confidence-dependent saturation function to mitigate the
_ T ,—
(x) —g9(y) — Li(z —y))" (9(x) —

side-effects from the measurement outliers on the estimation error( (y) — La(z — y))
(fz) = fy) = Ti(@ — )" (f(z)

(y) = Ti(z —y))

Q|
Q|
IN

0,
dynamics (EED). 0

k'sl
*hl
IN

®)

. ) ) . ) for all z,y € R™, whereL;, Ly, T1 andT: are real-valued matrices
Inspired by the above discussions, the main aim of this work With appropriate dimensions

to look into the outlier-resistant RSE problem for a class of RNNs 1 objective of this paper is to design an effective estimator

subject to ml_xe_d tlme_-delays. This ap_pears_ to _be a rather cha.LIIeng{:Bg estimating the neurons’ statés through available measurement
resgarch topic |nvc_)IV|ng _tWO substar_n_|a| objectives as follows: 1) t tputsyx. As discussed in the introduction, measurement outliers do
design of an efieciive estimator to mitigate the effects of measuremag., which, if not adequately handled, would deteriorate the estimator

outliers on the RSE issue; and 2) the determination of the estimafl t,mance or even make the error dynamics unstable. To resolve
parameters such that the EED is asymptotically stable with a speciflggly, 5 problem, a so-called outlier-resistant estimator is constructed
H., performance index. Accordingly, the main contribution of OUL< follows:

investigation is outlined as threefold) a new outlier-resistant state
estimation problem is, for the first time, put forward for a class

of RNNs subject to mixed time-delays; 2) a confidence-dependent Bry1 = Big + Dg(tr-a,) + B Y pr f(2r-r)

saturation function is introduced into the estimator structure so as + Ko (e — May) ! (4)
to attenuate the side-effects from the measurement outliers on the
EED; and 3) a delay-dependent criterion is derived to guarantee the s =0, seZ
asymptotic stability qf the corresponding EED with guarantééd wherei, andz, are, respectively, the estimatesaof andzz;, and K
performance constraint. is the estimator gain to be designed. In particuter,) : R™ — R™
is a saturation function defined as:
o(z) 2 [ of (1) of(z) -+ om(zm) ]

Notation: The notation utilized here is quite normative except
where otherwise declareR™ represents the-dimensional Euclidean in which o, (2,) £ sign(z,)min{z. max, |2.|} (¢ = 1,2,...,m) with
space andR™*™ is the set of all real matrices of dimensiaxm. Z~ 2. max being thecth element ofzmax (i.€., the saturation level).
denotes the set of all negative integers. The occurrence probability oRemark 1: The outliers are understood as a small portion of data
the event.” is denoted by Prop}. E{z} means the expectation of athat deviates severely from the trend of most data, and the outliers
random variablec. For a vectow, ||y|| stands for its Euclidean norm. are often regarded as “bad values” by data analysts. Outliers might
The symbolx indicates an ellipsis for symmetry-induced terms. Faresult from equipment failures, execution errors, cyber-attacks and so
a square matrixX/, Amax(M) means the maximum eigenvalue &f.  on. Clearly, for our addressed RSE problem, the state estimator to be
12]0, 00) denotes the space of square-integrable vector functions odesigned should be insensitive to the outlier where such insensitivity
[0, 00). should be quantified. As such, the main objective of this paper is
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to establish an effective estimation scheme to weaken the influencd.emma 3: [6] Given constant matriceB, I'z, I's wherel'; =

resulting from the measurement outliers. I'T andTy =17 > 0, thenTy + I'IT5 T3 < 0 if and only if
Remark 2:In the proposed estimator (4), we have purposely I T T
introduced a saturation function(-) : R™ s R™ so as to specify { Fl P } <0 or { FTZ FS ] <0.
3 —1l2 3 1

a certain bound on the innovatign. — M. The reason for doing
this is that, ify; is indeed an outlier that is directly used to calculate Now, we are ready to present a delay-dependent criterion for the
the innovation, then the produced state estimatge: could differ existence of the desired outlier-resistant estimator (4) for ensuring
significantly from the estimates at other time points, which means ttige asymptotic stability of (5).

resultingz1 might be unreliable and even lead to the divergence of Theorem 1:Consider the delayed neural networks (1) and let
the error dynamics. With the introduced saturation functign), the the estimator gaink be given. The corresponding EED (5) is
innovation value would have specified bounds, thereby alleviating theymptotically stable if there exist positive definite matridesR

risk of unwanted abnormality/divergence. Here, the saturation levgid Z, and positive constant scalaks and \, satisfying

z,,max Can be determined priori according to engineering practice,

that is, our confidence/knowledge on the measurement outputs. In this Iy Ihe Ihs Ihs Ihs ke

sense, the saturation functiett-) is said to beconfidence-dependent * Iz 0 0 0 0
and the estimator (4) is callealitlier-resistant Note that, when the I = * * sz 0 s Tlss | (11)
saturation level goes to infinite, that is, there is no proposed limit * * *x a0 0
on the innovation, the estimator (4) will be degenerated into the * * * x IIss Ilse
traditional one. * * * * *x  Ilgs
_Letting e, £ ), — @k, glex) = glax) — g(#x) and f(er) = where
f(xr) — f(Zx), the EED is obtained from (1) and (4) as follows: o - - -

144 éE‘ PE—P—)\lLl—)\QTh H12éA1L27

ex+1 = Fer + Dg(ex—a,) + B Zqu(ek,T) 3 2ETPD, My 2 \oTo, s 2 ETPB,
T=1 A nil 1 T T A 5
His 2 — ETPK + MUY, My 2 (1+d—d)R— M1,
+ Hwy — Ko (Mey). (5) 10 *3 2= (1+d—d) !

Hss 2DTPD — R, Hss 2 DTPB, s £ —DT PK,
The main objective of this paper is to develop an outlier-resistant N R 1 N ’
RSE scheme such that the following requirements are met simultdlas =pZ — A2l, 1lls5 = B™ PB — EZ’ lIs¢ = —B" PK,

neously:
. o . . T _ - LTr,+LTL,
a) for wy, = 0, the existence condition is acquired for the desiredllgs 2K" PK — I, E2F— KU M, [, 2=t~

. . . - 2 ’
estimator (4) ensuring the asymptotic stability of the EED T T T T
b) under the zero-initial conditions, for a given disturbance attenu- ., éM, T 2 w7 Ty 2 M
ation level > 0 and all nonzerawy, the EEDey, from (5) satisfies 2 2 2
the following H.. performance constraint: Proof: In order to analyze the stability of the EED (5) with
- - wr = 0, we select the following Lyapunov-Krasovskii functional:
2 2 2
D llenll* < B flwel®. (6) V(ew) = Va(ex) + Valer) + Va(er)
k=0 k=0
where
I1l. MAIN RESULTS Vi(er) 2 ef Pey,
Lemma 1: [44] Assume that the saturation functier{-) belongs k-1
to Uy, Uz] with some given diagonal matricég, U», whereU; > 0, Va(er) & D g"(e;)Rgle;)
U > 0 andU; > Us. o(-) satisfies the following inequality: J=k—dy,
k—d k-1
[o0(Mer) — UrMey]"[0(Mex) — UaMey] < 0. @) + Y S (e)Rale),

g=k—d+17=49

oo k—1
Vz(ex) éZNT Z fT(ej)Zf(ej)«
T=1 j=k—

J

By (7), the nonlinear functiow (Mey) can be divided into a linear
and a nonlinear part

T

U(Mek) =U1Mey + 'l/}(Mek) (8)
Along the trajectories of system (5), we calculate the difference of
V(ex) as follows:

AV(@k) = AVl(ek) + AVQ(ek) =+ AVg(ek)

and the nonlinear pait(Mey.) satisfiesy)(Mey) € ¥, whereW is
described as

W 2 (0 o7 (Me) [0 (Mex) — UMer] £0), U 20— U,

(9) where
Lemma 2: [36] Let S € R™*" be a positive semi-definite matrix, AVi(ex) =Vi(ex+1) — Vi(er)
x; € R™ be a vector angi; > 0 (¢ =1,2,...,00) be a nonnegative i
scalar. If the series concerned are convergent, the following inequality = [Eek + Dg(ex—a,) + B Z pr f(ex—r)
is true: =1

too T too Lo too — KU(Mek)]TP[Eek + Dg(ex—a,)
<Z Mz‘%) S <Z uim) < <Z,uz> (Z MM?SL') . oo
i=1 i=1 i=1 i=1 (10) + B Z prflen—r) — KU(Mek)] —ei Pey, (12)
T=1
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AV2(ek) = V2(6k+1) - V2(ek) . + Z,u‘r ek 7— B PBZHT Ck— 7')
k +i- =1
= Z (63 Rg(e;) Z Zg ej)Rg(e;)
j=hA 1=diy1 a=k—d+2 =4 —22% (en—r)B" PK4(Mex)
k-1 k
— > g (e)Ryles) Z Zg ej)Ry(e;) +9 (Mek)KTPKw(Mek)
3R k=i 1= (14T~ g (er) Ro(ex) — 6" (ex—a,)
k-1 T _ T
X Rg(er—a, ) — e Per + er)Zf(ex
= <9T(€k)R9(6k)+ > g"(ej)Rgle;) g(en—a,) — ex Pex + if " (ex)Z f(ex)

S . - % <Z ”TfT(ekT)> Z <Z Hrf(ekf)>
B Z 9" (e)Rg(e;) = gT(ekdk)Rg(ekdk)> @ o

j=k+1—dp 1

— AlgT(ek)g(ek) Alezilek + 2)\16{E29( k)

< (1+d—d)g" (ex)Ryg(er) — g (er—a,)Rg(er—ay)
(23) Since Amax(IT) < 0, it is obvious to see from (17) that

k—1 k—1 - )\zf (ex)f(ex) — Aaek Trex + 2Xzef Ta f(ex)

+ < > gT(e)Rgle)) — > g (ej)Ryle)) T (Mex) [p(Mey) — UMey]

e sk =& Hsk (17)
+(d - d)gT(ek)Rg(ek)> where

= (1 47— d)g" (er)Ry(ex) — 9" (en—ay) Rolen—a,) a2 e & ] 7

« T, . 1k £ [ 6 ek) gT(ek*dk) ] )

- Z g (e5)Rg(e;) - "
j=kt1-d bor & [ S (ex) X:: flen—r) o7 (Mex) ]
(

o AV (er) < Amasx (D) [lex]*. (18)

AVs(er) =Va(ex+1) — Va(exr) For a given positive integeN, summing both sides of (18) from
1 to N with respect tok yields

r=1  j=k—7+1 \%4 —V(eo) < Amax(II
) . (en) = V(eo Z llexl|*,
T . .
- zzlur zk: [ (ej)Zf(e;) which implies
T= j=k—1
= T
=5 pr f (@) Zf ex) Zur (eb—r)Zf(en—r) Z”ek” < Vi(eo).
T=1

- Letting N — oo, we see that the seri€s ;> ||ex||* is convergent,
= VZ - )z ). (14
Mf ex)Zf(er) ZM (en-r)Zf (er—r). (14) which further implies that the EED (5) is asymptotlc stable and the

. proof is now complete. u
Applying Lemma 2 to (14), one has In what follows, a delay-dependent criterion will be estdisis
1 for the existence of the desired outlier-resistant state estimator for
AVs(ex) < afT (ex)Zf(ex) — = <Z pr f (er—r ) ensuring theH ., performance constraint of the EED (5).
o Theorem 2:Let the disturbance attenuation levkél > 0 and

7 = 15 estimator parametefX be specified. The EED (5) achieves the
. Z AL (15) asymptotic stability withf7 ., performance constraint (6) if there exist
symmetric positive definite matriceB > 0, R > 0 and Z > 0 as

According to Assumption 2, one observes from (3) that well as positive scalard; and \. such that the following condition
—Mg” (en)g(ex) — Mek Liex + 2\1ek Lag(er) > 0, holds: _ i
—Xaf T (ex) fler) — Aaeq Trer, + 2X2ex Taf(er) > 0. (16) Mo 1he s dha - 1hs - The - Th
* H22 0 0 0 0 0
Taking (8)-(9) and (12)-(16) into consideration, we arrive at ~ * * IIss3 0 TIss Tz Il37
T =T = T =T I = * * * 1144 0 0 0 <0 (19
AV (er) < er E" PEey + 2e;, E- PDg(ek—d,,) N . . v Tlss Tls  Tlsr
T * * * * * H66 H67
+ 2t E PB;/LT er—r) | * * * * * * 77 |
— 2ef ET PK1p(Mey,) where
+g (ek,dk)D PDg(ek,d,c) 1:111 éHu + .[7 1117 £ ET.PI?[7 1137 £ DTIDI‘I7

o 2o T A T 'y T 52
-|-2gT(6kfdk)DTPBZuff(ekﬂ) IIs» =B" PH, lle¢v = —-K PH, ll.v = H PH —h"I.

T=1 Proof: In order to discuss thél., disturbance attenuation per-
— QgT(ek,dk)DTPK w(Mek) formance of the estimator, we adopt the same Lyapunov-Krasovskii
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functional as that in proof of Theorem 1 with, # 0. Furthermore, In the case the saturation effects are removed from the estimat
we assume zero-initial conditions, i.€ex},c;,- = 0 and establish (4), the innovation becomes unconstrained and a traditional state
the following cost function: estimator is obtained as follows:
* 2 2 2 > _
Jie = llexll” = A% |lw . (20) &1 = Bix + Dg(#1-a,) + B> pr f (1)
By similar treatment as in Theorem 1, it is easily seen that =1 (26)

e - + K (yp — My
AV (ex) + Jp < LTI, ( )

zs=0, s€Z .
where In this case, the following corollary is easily accessible from Theorem
&2 el wl ] 3. _ o -
Corollary 1: Assume that there exist symmetric positive definite
In terms of (19), one has matricesP > 0, R > 0 and Z > 0, a matrix X > 0, and positive
AV (er) < —Ji. (21) scalars\; and A, such that the following LMI holds:
T
Summing both sides of inequality (21) frotmto oo regardingk { {2 QP } <0 (27)
results in T
< , & ) where
V(ew) = Vieo) < D> R Jlwel® = llexll?, Q1 MLe 0 ATy 0 0
k=0 k=0 * sz O O 0 0
which means R * * —R 0 0 0
oo ) s ) £ = * * * Quq 0 0 ’
ZH%H <h Z”wkH . * * * * —%Z 0
_ k=0 k=0 * * * * * —h2I
The proof is now complete. N . o m Q2 [ PE—XM Ouxn PD Ouen PB PH ],
In the following, we are in a position to determine the gain matr N - - n _ _
of the outlier-resistant state estimator (4). Qu = —P—-Xli = AT+ 1, Qn=(1+d-dR- I,
Theorem 3:Consider the system (1) with mixed time-delays. Q4 £ iZ — Xo1.

Assume that there exist symmetric positive definite matriees 0,
R >0andZ > 0, a matrixX > 0, and positive scalars; and A,
such that the following linear matrix inequality (LMI) is true:

Then, the EED (5) of system (1) is asymptotically stable with the

H., performance constraint (6). In addition, the estimator parameter

3 is computed ask = P~ X.

{ o %7 } <0 22) Remark 3:1t is well acknowledged that the research on the SE
* =P problem for RNNs with time delays has been well investigated.

For example, in [24], a sufficient condition has been given to

where F I 0 O 0 Ly TYT 0 guarantee the exponential stability of t_he_ corre_spon_ding estimation
1 12 14 2 error dynamics. Nevertheless, most existing estimation schemes are
* M2 0 0 0 0 0 not resistant against the measurement outliers. In other words, once
. * * —R 0 0 0 0 the measurement suffers from abnormal disturbances, traditional state
Ilo = * * x Mg (1) 0 0 ) estimators for RNNs are no longer effective.
* * * * _ﬁZ 0 0 Remark 4:In Theorems 1 and 2, sufficient criteria have been
* * * * * =1 0 established for the existence of the desired outlier-resistant state
* x k% * * —-h*1 estimator, under which the EED (5) is asymptotically stable with

$Aa [PE—XUiM Onxn Onxn PD PB —-X PH], a given H., performance level. In Theorem 3, the gain matrix
My 2 P MLy — ATy 4 . K .|s.pa(ameter|zed W|Fh the aid of the feaglblllty of a convex
optimization problem. It is observed that the main results obtained in
Then, the EED (5) is asymptotically stable while achieving the = Theorems 1-3 contain all the model information and the performance
performance constraint (6) and the corresponding estimator gajpecifications. The introduction of the saturation function makes
matrix is computed ag€l = 13*1X . the designed estimator capable of weakening the effects from the
Proof: Let us first splitlI as follows: measurement outliers on the estimation accuracy. .
~ T Remark 5:So far, we have solved the outlier-resistant RSE prob-
=T + X" PX <0 (23) lem for a class of RNNs subject to mixed time-delays. Compared to
where existing literature, our main results exhibit two distinctive features:
1) the addressed outlier-resistant state estimation problem is new

A
n= [ E—-KUM Onxn D Opxn B —K H ] : where a confidence-dependent saturation function is introduced into

By employing Lemma 3, we deduce from (23) that the estimator structure so as to attenuate the side-effects from the
- measurement outliers on the EED; and 2) a delay-dependent criterion
{ T = 1 } < 0. (24) s derived to guarantee the asymptotic stability of the corresponding
* —P EED with guaranteedi, performance constraint in the presence of
Pre- and post-multiplying inequality (24) hiiag{I, P}, one has the mixed time-delays.
{ I, x'p ] <o 25) IV. NUMERICAL EXAMPLE
* P In order to demonstrate the effectiveness of our presented RSE

Letting X = PK, it is easy to see that (25) is equivalent to (22)scheme on mitigating the effects of measurement outliers, an illus-
which completes the proof. W trative example is provided for the delayed RNNs (1) in this section.
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Consider a class of three-neuron RNNs under discrete and dis-Case 2: measurement outliers occur
tributed time-delays with parameters given as follows: When the measurement outliers do take place, the simulation
. results are presented in Figs. 3-5, in which the abnormal disturbances
E :dfag{_o'& —0.6,-0.5}, added toy, are characterized in Fig. 3. Obviously, it can be found
-03 02 03 from Fig. 4 that, the traditional estimator is no longer valid in
D=] -04 01 02 |, this case, while the outlier-resistant estimator still works well which
| 02 -04 02 can be easily seen from Fig. 5. In summary, the simulation results
[ —0.3 —-025 04 have verified the necessity of designing the kind of outlier-resistant
B = 0.1 —04 0.2 , estimator for the sake of mitigating the effects of measurement
0.6 0.2 —0.3 outliers on the estimation results.

0 001 0
H=| -01 01 0 |, 5 |

02 O —03 — ¢y, without innovation constraint
a4t ey, without innovation constraint | |
08 —07 —03 - ey, without innovation constraint

| 06 04 —04 |

M=

The saturation functiomr (Me,) is described as follows:

Meky if — VUmax S Mek S Umax
U(Mek) = Umax, if Mer > vmax,

— Umax, if Mekr < —VUmax 0 A W

€1k €2y €3k
=
.

where the saturation values are takervasx = 1.
Set the activation functions as |
—0.8(z1) + tanh(0.5z1%) + 0.4(z2k ) 2F, 1
g(l’k) = 0«9($2k) — tanl’(o.6562k) s
0.6(x3x) — tani(0.4x51,) _30 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 80

O.Q(l’lk) — tanf(O.lxlk) Time (k)

f(:ck) = O3(1’2k) — tanf(0.2x2k) . . . . .
0.3(x31) — tanh(0.2z:3; ) Fig. 1. Estimation errorgqy, esr and eg; with estimator (26)

In this example, according to the engineering practice and with
reference to [16], we suppoge. = e %", and the discrete time-
varying delayd;, has the lower bound = 1 and upper bound = 6.
The disturbance attenuation level is chosenias 0.75. Take the . _
disturbance signals ag, = [4¢™* 3e™* 5¢7*]”. The matriced.:, e o with imovaion onstreit
L2, Ty and T3 in the sector-bounded conditions (3) are given as 2t = = cu with innovation constraint

—0.8 04 0 ~03 04 0
L= 0 08 0 |, Lo=| 0 02 0 |, 1 ]
0 0 06 0 0 02
02 0 0 01 0 0
0 03 0 |, To=| 0 01 0
0 0 03 0 0 0.1

By solving the LMIs (22) and (27) respectively, the estimator gai
matrices are computed as 2l i

—0.1916 —0.2144
0.1370  —0.2649 |, 3 s ‘ ‘ ‘ ‘ ‘ ‘
0.1120 0.1970 0 10 20 30 40 50 60 70 80

Time (k)
1.1673 1.1673
1.0603 1.0603 | . Fig. 2. Estimation errorgq;, es;, and esy, with estimator (4)
1.2866 1.2866

Now, let us discuss the effectiveness of the outlier-resistant esti-
mator (4) and the traditional estimator (26) under two cases.

Case 1: no measurement outliers occur

If there are no measurement outliers, the evolutions of the estimain this paper, considering the appearance of measurement outliers,
tion errors are shown in Figs. 1-2, where Fig. 1 displays the estimatian outlier-resistant state estimator has been designed for a kind of
results utilizing the traditional estimator (26) and Fig. 2 shows tHeNNSs subject to mixed time-delays. By introducing a saturation func-
estimation results by using the outlier-resistant estimator (4). Thkien, an outlier-resistant RSE scheme has been proposed to mitigate
corresponding estimation errors approach zero asymptotically whitte effects of measurement outliers on the estimation results. In order
considerably coincide the theoretical results. The simulation resultscharacterize the actual feature of practical RNNs, the mixed time-
indicate that both of the two kinds of estimators are effective idelays have been taken into account in current investigation, and a
estimating the true states when there are no measurement outliedelay-dependent criterion has been derived for the underlying system

€1k €2y €3k
o

T

K

K

V. CONCLUSIONS
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Fig. 3. The abnormal disturbance signals.
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I T
-10 7
& 20 i
g 1 '
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I
-50 - ' ey, without innovation constraint [|
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0 10 20 30 40 50 60 70 80
Time (k)

Fig. 4. Estimation errorgqy, esr and ez, with estimator (26)

(1) to achieve the desired asymptotic stability aiid, performance

22k €3k

Fig. 5.

(6]

(7]

(8]

[9

—

[10]

(11]

[12]

13]

constraint. The explicit expression of the estimator gain matrix has
been characterized in terms of the solution to a certain LMI. Finally,

an illustrative example has been shown to highlight the validity ¢£4]
the outlier-resistant state estimator in estimating the true states of

RNNs in the presence of measurement outliers. Besides, one of

future research topics is to extend our proposed outlier-resistant R%

scheme to more complex dynamical networks [13], [14], [52].
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