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Moving-Horizon Estimation for Linear Dynamic
Networks with Binary Encoding Schemes
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Abstract—This paper is concerned with moving-horizon state that the conventional closed-loop controller design approach
estimation problems for a class of discrete-time linear dynamic ysually adopts the full state-feedback techniques, thereby

networks. The signals are transmitted via noisy network channels i ;
and distortions can be caused by channel noises. As such, the bi-requmng knowledge of the full state. However, owing to the

nary encoding schemes, which take advantages of the robustneséef:h”OIOg'C""l re_strlct|0_ns of the sensing devices, the full state
of the binary data, are exploited during the signal transmission. Might be unavailable in many real-world systems. A proper

More specifically, under such schemes, the original signals are solution is, therefore, to make use of state estimators to extract
encoded into a bit string, transmitted via memoryless binary the system state from the network measurements (usually

symmetric channels with certain crossover probabiliies, and o ia| observations). For this reason, the state estimation
eventually restored by a decoder at the receiver. Novel centralized

and decentralized moving-horizon estimators in the presence of problem for dY”amiC networks has recently gained mu_ch
the binary encoding schemes are constructed by solving the research attention and a great many results have been available
respective global and local least-square optimization problems. in the literature, see, e.g., [7], [9], [12], [27], [30], [32].
Sufficient conditions are obtained through intensive stochastic  Since the pioneering work in [8], the Kalman filter has

analysis to guarantee the stochastically ultimate boundedness Ofbeen serving as one of the most successful technologies
the estimation errors. A simulation example is presented to verify

the effectiveness of the proposed moving-horizon estimators. in areas of signal process_lng and Contrql englne(-?:rlng [14]-
. ) o o [17], [22], [24]. A conventional Kalman filter provides the
Index Terms—Moving-horizon estimation; Kalman filtering; — ima| estimate in the minimum mean-square error sense
remote state estimation; dynamlc networks, communication con- . .
straints; binary encoding schemes. for Imgar Gauss-Markov systems. Nev.ert_heless, ungvmdable
modeling errors (or parameter uncertainties) may hinder the
conventional Kalman filter from being successfully applied.
As such, the robust filtering problems have been investigated
INEAR dynamic networks are composed of a largg the literature, see for example [33], [34], where the model
number of nodes interconnected according to netwopgerturbations are characterized by thdivergence family and
topologies. Many complicated practical systems can be g&he robust Kalman filter is derived by solving a minimax
erally described by dynamic networks in terms of nodegroblem. As the Gaussian noise assumption is necessary for a
edges and interactions [4], [25]. Thanks to their extensiy®od performance of the Kalman filter, the corresponding ap-
applications in diverse real-world systems (e.qg. electrical poplication scope is thus limited because the noise distributions
er systems, manufacturing processes, compartmental systeins,often non-Gaussian or even unknown in many practical
and biological processes), the analysis and synthesis problgpstems. One way to mitigate the aforementioned limitations
of dynamic networks have become a very active research aig@o utilize the so-calleanoving-horizon estimatiostrategy,
in both industry and academia. whose main idea is to reconstruct the system states according
In recent years, considerable research efforts have beem sequence of past measurements in a moving but fixed-size
denoted to stabilization, synchronization and consensus prefindow [1], [2], [6], [19], [20].
lems of dynamic networks, see e.qg. [5], [11], [23], [26]. Note With the rapid development of communication technologies,
. . , _ the remote state estimation has emerged to play an impor-
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coding is one of the most widely employed schemes in digital

communications for the reason that the binary data is both be D, r———=\ DF oLy
robust in transmission and simple for implementation. Under BSC

the binary encoding scheme, signals shall be first encoded into S

a group of binary bits and then forwarded via binary symmetric
channels (BSCs). Nonetheless, the binary bits might sufﬁgr
from random bit errors induced by the channel noises and?'
therefore, some initial efforts have been devoted to the exami-
nation on the binary encoding scheme from the perspective of ) ,
information theory, see e.g. [3]. Unfortunately, when it comd¥is€ of nodei. W and V" are bounded polyhedral sets with
to the state estimation problems, some important yet practiCaf /¥ and0 € V, respectively. The inner coupling strength
issues remain uninvestigated and need adequate attention.[F6rR """ IS @ positive definite diagonal matri¥l; and C;
instance, it is currently unclear 1) how to design a remofé® known matrices of appropriate dimensions.

estimator that adopts encoded signals with bit errors; and 2)

how to quantify the influence from the encoding scheme on tee Binary encoding schemes

estimation performance. It is, therefore, the main objective of - . .
: o . . As shown in Fig. 1, the binary encoding schemes are taken
this paper to carry out an initial study on the moving-horizon

L . . into consideration during signal transmission. In this case,
estimation problems under binary encoding schemes. L : . - ) .
.the original signals are encoded into a finite-length binary bit

Motivated by_ the ab_ove dls_cuss_lon, n thls paper, we alg%ring, and then transmitted to a remote estimator for further
to develop moving-horizon estimation algorithms for discrete-

) . . . Hrocessing via a memoryless BSC.
time dynamic networks under binary encoding schemes. The . .

. I . o Suppose that the range of the scalar sigpat R at instant
main contributions of this paper can be highlighted as follow. ‘is [~ h, K], whereh € R is an application dependent positive
1) The signal distortions in communication processes under e ar A t;inar encoder is utiFI)iEed to con\f)ert the spi hal
binary encoding scheme are mathematically quantified; 2)into a.binar b)i/t string of lenath.. Therefore. we hav%L
novel framework for centralized/decentralized moving-horizon ints deno)t/ed b Ag{ gi. ! The’se oints are
estimation is established with specific efforts to compensaﬂ . W UL T2, T2k g P

. . N - o . gnlformly spaced, which divide the whole range it — 1
the signal distortions; and 3) sufficient conditions are obtained ments with a uniform interval lenath— " for
for the stochastically ultimate boundedness of the estimatigio L . 9= 71 — 7, |
error 1=1,2,---,2% — 1. Moreover, it can be seen that=

2L —1-
Notations: The superscript’ stands for the transpose.F'rStly’ a stochastic truncation function is utilized to pre-treat
diag{A44,---, A, } represents a block-diagonal matrix with

the signaby by Qy. : by — my (b, L) wheremy (b, L) is the
as theith diagonal block matrixvec{z1,--- ,z,} stacks the truncated output. When; < by, < 741, the outputmy (by, L)
vectorsz, - -+ ,x, into a column vector/ - | denotes the

is generated according to the following probabilistic manner:
Euclidean norm of a vector or the spectral norm of a matrix, P{my(by,L) =7} =1 — g
and|| - || min represents the smallest singular value of a matrix.

I fmin rep ¢ P{mp(bg, L) = Tix1} = 7%

Il. SYSTEM DESCRIPTION wherer, = (by —7;)/0 and0 < r, < 1. Furthermore, the
A. Linear Dynamic networks outputmy (bg, L) can be represented on a basis of binary bits:

The interconnections in dynamic networks can be descripBt (0 L) = —h + ZiL.:l i 2" 16.‘ N_OW’ we have encoded
by a directed graph, denoted By= (V, £, B), with the set of by, into the following binary bit string:
nodesl_) :{Sl,S;, -+ ,8p}, the set of edges =V x V, and Dy 2 {hig ho,+  hok}, hik € {01},
the weighted adjacency matrX = [b;;],,x». The elements;;
in the weighted adjacency matrix is nonnegative and satisfyThe next step is to transmit the binary bit strinBs by
the propertyb;; > 0 < (S;,S;) € &, which means the a memoryless BSC, where every bit might flip with a small
dynamics ofith node can be affected hh node if and only if probability (called crossover probability hereafter) because of
b;; > 0. We assume that the self-loop does not exist throughaitannel noises. Accordingly, the received bit string is defined
this paper, that ish;; = 0, fori = 1,2, --- ,n. The neighbors by
of ith node is denoted byV; £ {j|(S;,S;) € £}.

1. The binary encoding schemes

)

[N o o o 0
Consider a discrete-time linear dynamic network consisting R AP g R ) PEe €401
of n linearly coupled heterogeneous nodes as follows: whereh?, = 0; 1 (1 — hig) + (1 — 0; ) hi s, With
Tikt1 = Aiig + ;v bl + wik O , { 1, the ith bit is flipped @)
TN ik = . o .
Yik = Cittip +vig, for i=1,2,--n 0, the ith bit is not flipped

wherez; , € R"™ andy;; € R" are the state vector and Letting the crossover probability be we haveP{Gl-,k =
the measurement output of nodew,, € W C R" and 1} = p. For the convenience of analysis, we assume @hat
vir € V. .C R™ are the system noise and the measuremedare white and mutually independent in this paper. Finally, the
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received bit stringDy can be decoded to restore the originavhere the last equality follows fromwny(by, L) = —h +

signals according to the following equation:

L
mg(be, L) = —h+ Yy _ h¢, 20715, (4)
=1

SF | hik2716. In addition, we have

L . i
p; (1 - 2hi,k)21*15 = p(z 9i=1lg5 _ 22 hi7k21716)

=1 i=1

. - . . . . . L
Owing to cor_lstramed communication bandwidth in practice, _ 2p(h _ Zhi,ky_lé) = —2pmy,(bi, L).
only a finite bit budget can be utilized to encode the signal over —

communication channels, which makes it necessary to pre-

treat the signals by using the truncation function. General
speaking, under the presented binary encoding scheme,

ikherefore, it is straightforward to verify that{ mg (b, L)} =
the 2p)mx (b, L). Moreover, the variance of}, (b, L) can

transmission error stems mainly from two factors: the truncB€ derived as follows:

tion errors and the flipped bit errors.

IIl. PRELIMINARY

Var{mj, (b, L)}

—E { ( —h+ ihgk?—léy} - (E{mz(bkaL)})Q

i=1

In this section, some preliminary knowledge of the trunca- L 2
tion function as well as the memoryless BSC is introduced. — E{ <Z ( O — ]E{hgk})zz‘ﬂ(; i ]E{mz(bk,L)}> }

The output can be rewritten by

my(bg, L) = by + qi %)

i=1

_ (E{mz(bk,L)})2

L 2
where g, = my(by, L) — by represents the truncation error. _ E{ <Z( o _ E{h?k})2i15> }

According to (2), we know thaf;, is a stochastic noise obeying

the Bernoulli distribution taking values a0 or (rx — 1)J,
ie.,

=1
Noting that6; j, for i = 1,2,--- ,n, are mutually indepen-

dent, it can be seen that, are also mutually independent

Plgp = —rid} =1 —rp (6) Which, together with the fact thabix € {0,1}, further
P{gr = (1 = 7%)d} = 7 indicates
L 2
The following lemma presents some statistical properties of E o _Efhe, V)2i"1s
the truncation error. ;( on — E{RE4})

Lemma 1 ([10]):The truncation errog; is with zero mean
and bounded variance, i.€{g;} = 0 andE{q?} < %.

An important property of BSCs is presented as follows.

Lemma 2:Assume that the signahy (by, L) is transmitted
via a memoryless BSC with crossover probabilityThen, the

by
E{mz(bk, L)} = (1 - 2p)mk(bk, L)
and

4n2(22L — 1)

Var{mi(bk, L)} =p(l - p)m

received signain (bx, L) is with the mean and variance givenThe proof is complete now

=2 (E {(r20)*} — (E{hg’k})Q) 52i-252
i=1
4h2 22L 1
e _p’ﬁ'

[ ]

Up to now, we have introduced the binary encoding scheme
and revealed its transmission properties for scalar signals. Fur-
thermore, it should be emphasized that such a scheme is also
applicable to the vector signals in a component-wise manner,
i.e., mk(bk, L) = VeC{mk(bl_’k, L), cee ,mk(bnyk, L)} with
b; 1 being theith entry of the vecto, € R"™. For com-
pactness, the aforementioned notations that define the scalar

where the expectation is taken with respect to the randaignals can be extended to represent the vectors. For example,

variablest; ;.
Proof: Taking mathematical expectation of (b, L)
over the random variables ., we have

L
E{mj (b, L)} = —h+ Y E{h¢,}2"""5
=1

L
= —h+ 3 (P = hig) + (1= p)his )26
1=1

L
=m0 L)+ (1= 2hix)2718

i=1

whenb;, € R”, we havemy(by, L) € R", m{(bx, L) € R
andq, € R"™.

IV. CENTRALIZED MOVING-HORIZON ESTIMATION

In this section, a centralized moving-horizon estimation
approach is considered. The central unit has access to the
information of all the nodes. To be more specific, we assume
that the local measuremenys;, are forwarded to the center
unit using the binary encoding scheme, and then the center
gives an estimate of all the plant states at each time instant.

It can be seen from Lemmas 1-2 that, compared with
the original signalsy; 1., the received ones{(y;x,L) are
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inevitably subject to certain degree of distortions. In order wata, the parameteiis actually utilized to weight the influence
compensate the distortions, we adopt the recovered measofethe most recenfV step measured data and that of all the

ments previous ones.
S Y Remark 2:As stated previously, the moving-horizon estima-
Gik = M (yin, L) tion problems have been widely studied for linear discrete-time

where~, £ 1 — 2p, such that the means of the recovereglystems. Nevertheless, we should emphasize that the classical

signals are equal to the original ones, iB{; »} = vi.r. As a moving-horizon estimation strategies are no longer applicable
consequence, the equivalent noise stemming from the bit erf@ithe underlying system in this paper since the signals suffer
in BSCs can be denoted by; . £ §; x —m(yix, L). Similar from signal truncation errors and stochastic bit errors induced

to (5), we denote the truncation errgn. 2 my (yix, L) — yix by communication processes. These errors might dramatically

and then have degrade the estimation accuracy and, therefore, there is an
A ~ urgent need to develop a novel moving-horizon estimation
Yik = Yik + Mk + i k- (7)  strategy for practical applications.
H 4 A A
In what follows, we will consider the moving-horizon Before proceeding further, denote = A+ B®T, A =
estimation for linear dynamic networks with binary encodingiag{41,- -, A}, €' = diag{C1,---, Cy} and
schemes. The fundamental methodology of moving-horizon 0 0 .0 0
estimation is to solve an optimization problem over a mov- c C 0 e 0 0
ing but fixed-size horizon. Mgre specifically, at gach stag A cA Hy 2 CA C e 0 0
k= N,N+1,---, our purpose is to generate an estimate of all ol )
the target plants; x—n, -, 2% (i = 1,2,--- ,n), denoted C AN K K _
bY &; k— Nk, -+ &ikk based on the history measurements CAN-t cAN=2 ... CA C
Yik-nN,- - Yk as well as the prediction; ;v of the state ytilizing these notations, we are in a position to present the
Tig-n (i =1,2,---,n). A natural way of developing the f|iowing theorem.

prediction is to make use of the dynamical equation (1) while Theorem 1: At any time &, for given information
replacing the unknown states by the corresponding rea"“r(‘ﬁk_N,g’,z,N), Problem 1 has a unique optimal solution as

estimates, i.e., follows
Tig-N =A% p_N_1|k—1 T Z bij T2 k—n_1j—1- (8) Fhonpp = (el + FNFn) " HNeTpon + Fagr_y). (1)
JEN;
. L N B
To make the formulas more compact, we introduce ne%oreo"?r' the corresponding estimation ewpry = zx-N
notations to stack a set of vectorsy, (i = 1,2,---,n) in  Thk=Nlk is given by
the following analysis, that is;, = vec{v1 k, Vo, , Unic } ex_n = (eI + FliyFy)~!
andvf_ £ vec{vp_n, Vk—n41," -+ , U, }. Here, is generic _ ) 1
that could bez, v, 4, q, M, v, w, T O &. X (eAekafl +ewp-N-1 = FNHyw, "y
Now, we can state the centralized moving-horizon estima- /o /o~ k /K )
. ! - F — - F . 12
tion problem as follows. NY-N — ENT—N ~ “N9k-N (12)
Problem 1: At each time instantk, for given infor- Proof: The necessary condition on the minimum of the
mation (Z,_n,J5_y). derive the optimal state estimatecost function (9) is
Zp_N|k, - > Tre DY Minimizing a least-square cost function A B
defined as follows: Vi v (k) = 26(@p— Nk — Ti—n)

n _ ! (~k _ S _
B . B 9 2FN(yk7N FN:Eka\k) =0.
Jr=€> |Eik-npk — Tik-nl| . . .
P Moreover, it is easy to show that the Hessian matrix of the
E o on cost function is positive definite, and hence the cost function
+ 0> e — Ganl? (9) can be minimized by choosing the estimate as follows:
t=k—N i=1

. . . Fenik = (el + FyFN) " (eBrn + FNTi_n)-
subject to the following constraints:

Furthermore, subtracting (11) from (1) gives

n
jiﬂf"rl\k = Aiiiaﬂk + Z bijrijvt\k 10 ex—N =Tp—N — (el + F]/VFN)_I(G.CZ'k_N + Fjvg’,ij)
j=1 (10) (13)
0 = Ci&; 1k, _
Yirlk ik Based on (7), the measurements can be rewritten as
fort =k— N,---  k, wheree is a positive scalar. " . . .
Remark 1:In Problem 1, the term|@; x_ njr — @i k—n |2 Yr-N = Mp-N T YNt @-N- (14)
is the initial penalty representing our beliefs in the One'StepSubstituting the one-step prediction (8) and the measure-
prediction, and the terihy; . — ¥; t‘k||2 penalties the difference : :
. ’ i ments (14) into (13) yields
between the estimates and the measurements. As the one-step
prediction is made on a basis of all the previous measured ey = (eI + F]’\,FN)‘1
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X (eAek_N_l +ewp-nN_1+ FyEnTi_nN Obviously, ||(e] + FLFy)7Y| = €+}2_ . Thanks to the
fact that | Fy Hywt =L | < fhwv/nN and ||[Fyof || <

— Pl (i + vk + b)), e
N (i Yoy + i) foy/n(N + 1), the following result can be derived:

Noting thatyf_ = Fyar-n + Hywi_y + vf_y, we

1
: N < (ea
have the dynamics of the estimation error as follows: E{llex—nl} et 2 (mE{”ek’N’lH}

eron = (eI + FleFy) ! + ev/nw + fhwvnN + fo/n(N +1)
- 7 = 7 k
X (EAek,Nfl + €Wp_N—1 — F]/VHNw]]::]lV + fE{”mk—N”} + fE{qu—NH}) (16)

In the light of Lemmas 1-2, we can obtain that
E{[|mixl?} < nyA% and E{[|g;x[|*} < 0.25n,6%. More-
which completes the proof. m over, as the square root function is concave, one has from the

The procedure of the proposed centralized moving-horizdgnNsen’s inequality that

estimation is outlined in Algorithm 1. ~ -
E{|lmg_nl} < \/E{|\m’,§7NH2} < Ay/nny(N +1). (17)

!k /! ~k !/ k
— Fyvg_n — Fnmy_ny — FNQk—N)

Algorithm 1 Centalized Moving-Horizon Estimation Similarly, the following inequality

Input: Z,—n, gy_ . Output: &, nx .

for k=N to T do E{llgr_nlI} < 0.561/nny(N +1). (18)
Ee-nik = (eI + FNFn) "' (eZr-n + FNT-n), holds. Substituting (17) and (18) in (16) results in
Th—N4+1 = Ai‘k,]\”k. E{Hek_NH} < ClE{Hek—N—IH} + c2, Wherecy = coo /(€ +

endfor 2:n)- Itis not difficult to prove thaff{||ex—~]|} is bounded

above by¢,_ n, which is the solution to the following dynam-

Different from the standard moving-horizon estimation proICaI equationtyy = 1 n—1 +¢p With the initial condition

c— i — ok ko t—1
posal in [2], the stochastic behaviors of the truncation err(§r0 —(;E{.HGOLE- I?y”noyng.thatgk I_t ciéo + 3¢ 2, We
and the flipped bit error make the estimation error (12) Gn derive the Toflowing Ihequality
stochastic sequence. As a result, we need to examine thE{Hek—N”} < c’f*NE{||e0||}+ C2 (1 _cllch) (19)
statistical properties of the error sequenfe,}. For this l-ca

k—N <

purpose, the following definition is introduced. Moreover, sincé) < ¢; < 1, one has—<2 (1 — ¢

Definition 1: The error dynamics governed by (12) is said ., Theefore, it can be seen that théigrlror dynamics (12) is

go <b/e;t201h 2?::;332”&“;?}?3?% :toundeﬂ there exist scalars sltocéhastically uniformly bounded. Moreover, the bound (15)
can be easily obtained by taking the limit of (19). The proof
E{Hek—N”} < u’f_N]E{Ileoll} + po. is complete now. |
Furthermore, we have the following corollary.
Next, for the sake of clarity, we denote £ ||A|, f Cordlary 1: Suppose that the system and measurement
[EN L fmin = [[Fnllmin, @ £ maxy, ,ew |wikl, © noises are zero-mean random variables) K ¢; < 1, then
and A 2 2hy/p(1—p)(22F 1) the dynamics of the estimation error (12) is asymptotically

1> 1>

maxy, ,ev |[vikl, c1 =

+finin V3(1-2p)(2-—1) *  stable in the mean sense, i.e.,
Now, we are ready to state the following results.
Theorem 2:The dynamics of the estimation error (12) is klim IE{ex}|| = 0. (20)
—00

stochastically ultimately bounded f < ¢; < 1. Moreover, _
the upper bound of the expectation of the estimate error can Proof: The proof follows directly from the fact that

be given by ]E{’U}i,]g} =0 and ]E{’Ui’k} =0. | ]
. Remark 3:The @ove corollary reveals that, for the case
lim E{[lex]|} < ———— (15) where the system and measurement noises are zero-mean,
koo (1 —a) + fain the moving-horizon estimate will be asymptotically unbiased,

N thanks to the use of stochastic truncation and our dedicated
wherecs,, = A 0, = hwvnN . ; .
o n(CN—i— 151 2252 _+ ﬁj; 5111 (Ne\_{ﬁll)u +éfrdw 5: t efforts to compensate the signal distortions.
’ - Yy ) -

The proposed centralized moving-horizon estimation prob-

0.5fy/nny(N +1). - .
. . : lem explicitly assumes that the measurements of nodes in the
Proof: Taking norms to the both sides of the error . . . .
. - . : o network should be available in the central unit for solving
dynamics (12) and exploiting triangular inequalities, we hav S . . .
the optimization problem. Unfortunately, since it requires huge

ler—n|| < ||(el + FNFEn)Y| communication and computational capabilities, the centralized
_ , b1 estimation is in general not practical, especially for a large-
X (EHAek—N—lH +ellwp—n—1ll + | Fy EywpZy | scale dynamics network with lots of nodes. To handle such

an issue, we will consider the decentralized moving-horizon

! k Flai k a4 k ) ) ’ . -
N vl + I EN -yl + [P el estimation problem in the next section.
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V. DECENTRALIZED MOVING-HORIZON ESTIMATION 2 p—Nlk—1,""" > Zjk—1jk—1 Within the neighborhood, which

In this section, we will formulate decentralized movingShall be transmitted through BSsz. .
horizon estimation problems. Different from the problem setup FOr @ generic vectow, let vy y = vec{vip-n,- -,

in the previous section, there does not exist a central unitin thex }. Denote Dy = Vec{wl,;l_N, e ,’LUZT,CI_N} and
network. The information exchange is only permitted withim;~} £ vec{vy ;' .-+, v} " \}. Let B; represent theth

the neighborhood associated with the topology of the networkw of the matrixB. The rest of the notations are defined as
The objective of decentralized moving-horizon estimatiofollows

problems is to estimate the local plant statgs_n, - - - , Z; k. I 0 .0 0 0 A
denote(_j by:&i7,?_m,€,-~- , Zi,kk» at each stagé = N,_N + A I 0 0 0 ) A2
1,---, in a distributed manner based on the neighboring, £ , Iy & )
estimatesd; . njx—1, +  &jh-1k—1 (J € J\/l-.), the local I o0 .
history measurementg ., - - - ,¥i.r, and a prior prediction A A AT 0 A
7; ,—n|k—1 Of the stater; . In this paper, the neighboring 0 0 e 0
estimates are transmitted under binary encoding schemes. C; C; 0 o0
Consequently, the available information tith node over a Ci4A; .
.. . . . Foyv 2 H: v 2 C:A; C- . 0
finite horizon[k — N, k] is given by N = : s i N = i i : )
o AN : : o
Iik,ka é(yi,k—Na"' ayi,kamk(xj,thMflaL)a C,LAZ C»L'A£V71 C»L'A£V72 C’L
: amZ(jlj,k—l\k—laL)aj € M) j\\jz]fl;—lN £ Z bij VeC{Fjj’k_N‘k_l, s 7F'ij,k:—1\k—l}7
JEN;

The local predictions‘cwk_l can be determined according n .
to the dynamical equation (1) as follows: Gi=In®(Bi®l), G=vec{Gy,Ga, -+, G},
B R N SNéHN(IN(@(B@F)), ANéGA—]‘—/ HNQFN,
Tigk—1 = Aili—1jk—1 + Z bijUZj ¢ k-1 (21) A iv
JEN; HN = dlag{Hl,Na HQ,Na s 7Hn,N}7 Il = [O IN & I’nm ]7

fort =k—N,--- ,k—landi=1,2,--- ,n, wherez; , ;s Fy &diag{Fin, Bon, o Fant,  Tp = (I, 0],
= ;. 'mQ(&i4—1k-1,L) is utilized to restorei;, jp_1. Wn = FNHNG(Sy +T1) — e(BRT)I.
Accordingly, we can define the equivalent noises; 1|1 =
Tig1g—1 — Mr(®;—15—1,L). By denoting the truncation
errorg; 1—1|k—1 £ — & —1|k—1 + Mk (L5 4—1)k—1, L), we have

The solution to Problem 2 is presented in the following
theorem.
Theorem 3:For given information(z; j— njk—1, 15 _x )

TitApho1 = Tig1jb—1 + Mg 1o + Gir1jp-1-  (22) Problem 2 has a unique solution given by

To this end, the decentralized moving-horizon estimationii’k_mk — (EI+E/,NE.,N)_1
problem can be presented as follows. .

Problem 2: At each instantk, for given informa- X (efi,k—mk—l +F[,N(yf,k_N - Hi,NMi’fk_N))- (25)
tion (Z; x—njk—1,1f_y). derive the optimal state estimate o .
ii,k—N\kv R aji,k\k by m|n|m|z|ng a local |east-square costMoreover, denote the estimation error;tif node byem_N =

function defined as follows: Tikr-N — T k—n|k, then the augmented error vectef v
. - ) satisfies the following dynamical equation
Ji(k) = €l|#; p— Nk — Tig—Njr—1]l

-1
k ) ek—N = (EI + .FJ/V]:N> (ANek_N_l + ewrp_N—_1
+ > Nyie — Gl (23)

— Frn(Hnwp~y + 05 _y) = FNHNGHNw " )

t=k—N
subject to the following constraints +Wn (mz:}v—w@—l + ql;::]lv_l\k—l))' (26)
Ti g1k = Aiign + Z biiT'% 41 The procedure of the proposed decentralized moving-
JEN; (24) horizon estimation is outlined in Algorithm 2.
itk = Cilli gk Remark 5:Theorem 3 gives a local optimal estimate since
. . every node has a locally known and different cost function
fort =k— N,---  k, wheree is a positive scalar.

K 2:1t should b 4 that th in diff 23). Moreover, from the results given in (25), we can see
Remark 4:1t shou e stressed that the main cilferen hat all the exploited information, such as the local measure-

between Problems 1 and 2 lies in that the individual nodes flentsy; 1., neighboring estimates, and the prediction
Problem 2 own computational capabilities, and hence are agl_e o itk 1

) - O “Tin—nNjk—1, are available inth node, and hence the proposed
to generate local estimates of the target plant by minimizing iy teq moving-horizon estimator is indeed applicable.

local least-square cost function (23). In addition, according t0,, 4,0 sequel, we will investigate the stochastically ultimate

the dynamlgal equation (1), we can see that there are COmpliy 1 jedness of the estimation error. First, we denote
cated couplings between neighboring nodes. Consequently, to

calculatet; ,_ y;, we require the exchange of the information f £ || x|, fuin £ [|[Fx||lmin, 22 [|Hnll, 7= |Hy|]
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Algorithm 2 Decentralized Moving-Horizon Estimation

Input: ji,kaUcflv I’L'kjka' Output: i'i,ka\k
for k=N toT do

-1
Tip-NE = (d"‘ ﬂ/,NFi,N)
X (ﬁfi,k—N\k—l + ﬂ/,zv(yf,k—zv - Hi.,NMi]fk—N))-

TNy = ANk T+ E bijUZj )Nk
JEN;

endfor

- o
€+ fI%lin .
Theorem 4:The dynamics of the estimation error is stochas-
tically ultimately bounded i) < ¢; < 1. Moreover, the upper _.
: o . Fig. 2. The topol f th led network.
bound of the expectation of the estimation error can be g|ve'rq © fopology o he cotipled neawor
by

g=6ll, o £ || Axn]l, w = [Wnll, @

kli_)m E{llex]} < H;z%”_o. (27) therefore their Euclidean norms are = 0.04 ando = 0.1.

> min The coupling strength is chosen to be= 0.1/5. Choose

whereco = 1 + f2A + 30, 1 = ewy/n + hwfv/nN + the size of the windowN = 5, the rangeW = 1.27,
(i+hgﬁw)f\/m, By = W\/m and 3; = the lengthl = 8, the scaling weighte = 0.4 and the

0.5w+/nny, (N + 1). interval 6 = 0.01. The flipping probabilityp can be identified
Furthermore, we have the following corollary. by statistical experiments in practical applications, which is
Corollary 2: Suppose that the system and measuremetfisumed to b@.01 here. The initial estimates of the plants
noises are zero-mean random variables) ¥ ¢; < 1, then are given byz; o = 0, for i = 1,--- ,n. Our objective is to
the dynamics of the estimation error (26) is asymptotical@erive the optimal estimate for centralized and decentralized
stable in the mean sense, i.Bmy, . [|[E{es}|| = 0. moving-horizon estimation, respectively.

Remark 6:Theorems 2-4 establish the sufficient conditions The hardware test-bed consists of a 2.10 GHz Intel Core
for the stochastically ultimate boundedness of the estimatibh processor with 8GB RAM running MATLAB 2016B.
error for both the centralized and the decentralized movingle carry out Ny = 100 repeated simulations of the
horizon estimation strategies. In view of (15) and (27), we c&ptimal centralized moving-horizon estimation (CMHE) based
recognize that the value of such a bound depends explicitly 8A Algorithm 1. An average estimation error is adopted to
the length of the bit string as well as the crossover probabili§valuated the performance of the CMHE as

Nye n
1 1 ) (1)
VI. AN ILLUSTRATIVE EXAMPLE Ecume(k) = Norc Z <ﬁ Z l2ie—n = 2wl | -
In this section, a numerical example is presented to verify r=1 i=1

the effectiveness of the proposed centralized/decentralizege superscript %)” implies that the value is obtained in the
moving-horizon estimation with binary encoding schemes. yth run. The simulation results are depicted in Fig. 3. More-
The discrete-time dynamical network (1) under considergver, we compared the proposed algorithm with the centralized
tion consists ofn (n = 100) linearly coupled nodes, which Kalman filter (CKF) [8], whose initial error covariance is set to
are distributed in a square region bfx 1 unit. Each node is pe Py = %]200_ The corresponding average estimation error
a second-order linear system with parameters given by  Eqx (k) is plotted in Fig. 3, from which it can been seen that
. under the BSCs the proposed CMHE has a better performance.
A; = [0'45 0'1} , C; = { [1 0} , for 1<4<10 As for the decentralized moving-horizon estimation (DMHE)
01 03 [0 0], for 1<i<n problem, according to Algorithm 2, the optimal estimates can

The topology that describes the interconnections of iipg derived and the corresponding average estimation error is

coupled nodes is shown in Fig. 2. The elements of weightS8§oWn in Fig. 3.
adjacency matrixB is set as

, {0.51 exp(—ali,§)) if a(i,j) <1/6 VII. CONCLUSION
ij

0 otherwise In this paper, the moving-horizon state estimation problems
have been investigated for linear dynamic networks subject to
where a(i, j) = \/(zi0 — x;,0) (zi,0 — x;,0). Each compo- binary encoding schemes. A novel model has been introduced
nent of noisesv;, andwv; ; is randomly and uniformly distribut- to quantify the signal errors stemming from the communica-
ed in the respective regioris0.04,0.04] and[—0.1,0.1], and tion processes, and it has been shown that the signal errors can
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Fig. 3. The average estimation error of CMHE, CKF and DMHE.

[13]
0.09 ; ; ; ; ; ; ; ‘

——CMHE

0.08 = = CKF |1

[14]

\
4
\ —-—-DMHE
\

[15]

[16]

[17]

(18]

20 25
Time k

30 35 40 45

[19]

[20]

be characterized by a cascade of a multiplicative and an addi-
tive white noise associated with the original signal. By solving
two specified least-square optimization problems, we have &t
spectively designed the centralized and decentralized moving-
horizon estimators. Furthermore, sufficient criteria have been No. 1, pp. 85-100, Jan. 2018.

established to ensure stochastically ultimate boundednesd2@f Y. Shen, Z. Wang, B. Shen, F. E. Alsaadi and F. E. Alsaadi, Fusion

the proposed estimators with the binary encoding scheme. The
feasibility and effectiveness of the proposed approaches have
been verified via a numerical example.
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