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Abstract

In this paper, the maximum-correntropy-based Kalman filtering problem is investigated for a class of linear time-
varying systems in the presence of non-Gaussian noises and randomly occurring uncertainties. The random nature
of the parameter uncertainties is characterized by a stochastic variable conforming to the Bernoulli distribution. In
order to avoid unnecessary data transmission and reduce consumption of limited communication resource, the event-
triggered mechanism is introduced in the sensor-to-filter channel to decide whether the data should be transmitted or
not. A novel performance index is first proposed to reflect the joint effects from the non-Gaussian noises, the event-
triggered mechanism as well as the randomly occurring uncertainties. Under the proposed performance index, an
event-based Kalman filter is then constructed whose gain is calculated based on the maximum correntropy criterion.
Finally, the effectiveness of the proposed filtering scheme is verified via a practical target tracking example.

Index Terms

Kalman filter, maximum correntropy criterion, non-Gaussian noise, event-triggered mechanism, randomly
occurring uncertainties.

. INTRODUCTION

As one of the fundamental issues in system control and signal processing, the state estimation problem
has received considerable research attention over the past decades [6], [8], [17], [18], [25], [34], and a
variety of state estimation schemes have been developed based on different performance indices [19], [26]
[28]. Among different kinds of state estimation schemes, the well-known Kalman filtering (KF) algorithm
has been deemed to be a powerful means to estimate the state of linear systems with Gaussian noises. 1
be more specific, the KF algorithm is, in essence, a least mean-square linear filtering scheme that aims tc
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achieve the optimal estimation by minimizing the estimatgsror covariance in a recursive manner. So
far, the KF problems have attracted a large amount of resesdtention from both academia and industry
with successful applications to various fields such as tdrgeking, fault diagnosis, econometrics, inertial
navigation system, and so on [16]. Furthermore, the ti@akli KF algorithm has been modified to suit
nonlinear systems and a number of KF variants have beermablaiin the literature, see e.g. extended
Kalman filtering [26], unscented Kalman filtering [44], andbature Kalman filtering algorithms [1].

An implicit assumption with traditional KF algorithm (antsivariants) is that the process/measurement
noises are Gaussian-type. Such an assumption is, howéesr,too strict for real scenarios and therefore
inevitably limits the application scope sineg®n-Gaussiamoises (e.g. outliers and impulsive noises)
are not uncommon in practice. The usual minimum mean-sce@oe (MMSE) criterion, which can be
easily achieved with KF algorithms, would be largely vielhtdue to the non-Gaussian noises. In this
case, a natural idea is to seek more appropriate criteriéilfiering problems under the non-Gaussianity
constraints. In this regard, the maximum correntropy kdte(MCC) has been proposed in the literature
with promising applications to robust adaptive filteringlplems in impulsively noisy environments [4].
In particular, the maximum-correntropy-based Kalman riiig (MCKF) problem has recently received
some initial research attention and elegant results hagerb® appear [14]. For example, in [2] and [3],
the MCKF scheme has been verified to perform very well againstGaussian noises.

In system modeling, parameter uncertainties are inewtédnl a variety of reasons such as modeling
errors, exceptional environment disturbance, varyingnggtoy and material properties, change of system
load, random failures and repairs of system components [88{e that, the occurrence of parameter
uncertainties often exhibits a random nature due primdalyhe unpredictable changes, and this gives
rise to the so-called randomly occurring uncertainties RDthat are typically governed by Bernoulli
distributed stochastic variables [32]. The phenomenon@UR if not dedicatedly tackled, would impair
the global optimality of the state estimation problems [3F], thereby leading to undesirable deterio-
ration of estimation performance. An alternative solutionthe ROU-induced problem is to achieve an
acceptable bound (rather than the minimum bound) on themeaince index and, in this regard, a few
Gaussianity-based state estimation strategies have legefoded under the MMSE criterion, see e.g. [39].
Nevertheless, the corresponding MCKF problem has not ba@gnifivestigated yet for the non-Gaussian
systems with ROUs, and this constitutes the main motivatioour current investigation.

The past few decades have seen an ever-lasting enthusiasmi$athe research on networked systems
(NSs) for their outstanding capability in remote operatand resource sharing. In an ideal situation,
the data transmission between all system components @ngoss, controllers, filters and actuators) is
implemented via shared communication networks [37]. Caegbdo traditional point-to-point systems,
NSs are more susceptible to the inherent characteristigstoforks such as limited network bandwidth and
resource constraints. Noting that simultaneous dataaatens between multiple components are likely
to result in data collisions and subsequently system padoce deterioration. As such, it is of vital
importance to utilize certain protocols/mechanisms tchestrate data transmission with aim to reduce
unnecessary data exchange in NSs. Accordingly, specggiteth has been devoted to the analysis/synthesis
problems for NSs under communication protocols/mechasnsmeh as Round-Robin protocol, Try-Once-
Discard protocol, stochastic communication protocol amdnetriggered mechanism (ETM) [5], [27],
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[29], [35], [41].

Among various communication protocols/mechanisms, thil lB&s recently become a rather hot topic
owing to its attractive advantage in improving utilizatiefficiency of communication resources [7],
[23], [33]. Specifically, the communication resource underETM will be occupied only when a certain
triggering event happens, and therefore the unneces$a&uyent data exchanges will be avoided, thereby
leading to considerable reduction of the network burdenthénpast few years, a great many results have
been reported on the applications of the ETM in a variety afesestimation problems [30], [40], [42],
[43]. For example, the remote state estimation problem kas mvestigated in [10] for a class of Gaussian
systems under the energy-dependent ETM and the MMSE estiohdhe energy level has been provided.
In [12], a state estimator has been developed for stochhghbdd systems subject to both ETM and
missing measurements. Despite the rich literature on E@bEd state estimation problems, the MCKF
problem under ETMs has not been adequately examined anddhrepurpose of this paper is therefore
to bridge such a gap.

Motivated by the above discussions, the main objective isfghper is to design an MCKF scheme for
a class of linear time-varying systems under joint effedtthe non-Gaussian noises, the ROUs and the
event-triggered mechanism. This problem appears to beiedlgaifficult as we are facing three essential
challenges as follows: 1) how to construct a reasonableopadnce index for the Kalman filter design
problem within a non-Gaussian environment? 2) how to ddheefilter gain in a recursive manner based
on the MCC? and 3) how to properly compensate for the joirgotsf from the ROUs, the non-Gaussian
noises and the ETM on the design and performance analyskedilter? In the current study, we strive
to overcome above-mentioned challenges.

The main contributions of this paper are highlighted asofed: 1) the event-based MCKF problem is,
for the first time, investigated for the linear time-varyingn-Gaussian systems with the ROUs; 2) a novel
performance index is proposed to account for the joint &féom the non-Gaussian noises, the ROUs
and the ETM; and 3) an MCKF algorithm is developed for thedinBme-varying non-Gaussian system
where the filter gain is obtained by maximizing the perforogimdex via the matrix analysis approach.
The rest of this paper is organized as follows. In Sectiorthg MCKF problem under consideration
is mathematically formulated. The main results are preskem Section Il where the MCKF algorithm
is designed by considering the ETM and the ROUs. Section IMaiestrates the effectiveness of the
developed MCKEF algorithm via a target tracking example aifyn this paper is concluded in Section V.

Notation. The notation used in this paper is fairly standard exceptraviogherwise statedR™ denotes
the n-dimensional Euclidean spacki" is the set of positive integer®r{ X} denotes the occurrence
probability of a discrete evenk. E{«} represents the expectation of a stochastic variablé&/(u, X)
represents the Gaussian probability density function wiiéean« and covariance.. Given a positive
definite matrix)/ € R™" and a real-valued vectgt € R”, the notations|3|| and || 3]s = (BTMB)I/2
stand for, respectively, the Euclidean norm and the wedghtem of 3. For a matrix4, A, A=! and tr(4)
represent, respectively, the transpose, inverse and afate matrixA, and A > 0 means that the matrix
A is positive definitediag([aq, aq, . .., a,]) represents a diagonal matrix with elemeatsas, ..., a, on
the diagonaln-dimensional identity matrix is denoted simply AsandO stands for the zero matrix of
appropriate dimensions.



FINAL 4

[I. PROBLEM FORMULATION

Consider the following class of discrete linear time-vagysystem
{ Tpy1 = (Ap + e AA) T + Wi

(1)
yr = Crxy + vy,

wherez, € R™ andy, € R"™ are, respectively, the system state vector and the measntesntput at
the time stepk; A, and C), are real-valued time-varying but known matrices of appeiprdimensions;
w, € R™ andwv, € R™ stand for, respectively, the process noise and measurenoesd, which are
non-Gaussian variables with covarianégs > 0 and R, > 0. The initial stater, is a stochastic variable
with meanz, and covariance,.

In the system model (1)) A, is a time-varying real-valued matrix representing nornwied parameter

uncertainties with the following structure
AA, = MpULNy (2
where M, and N, are known matrices of appropriate dimensiafig,s an unknown matrix function that
describes the time-varying uncertainties with the comstra
U U < I 3)
In order to characterize the random occurrence of the pdesmecertainties, a Bernoulli-distributed
stochastic variabley, (taking values ord or 1) is employed with the probabilities
Pr{a, =1} =a
Pr{ap =0} =1-a
wherea € [0, 1] is a known scalar that delivers the occurrence probabifitthe parameter uncertainties.
Without loss of generality, in this paper, the process naigethe measurement noise, the stochastic
variablea,, and the initial stater, are assumed to be mutually independent.

(4)

A. The Event-Triggered Mechanism

In order to avert frequent data transmission and reduce dhsuenption of communication resources,
the ETM is introduced in the sensor-to-filter channel to dcife the measurement transmission.

Define the triggering time sequen@®2 {t,,t,,...,t,,...} with 0 < ¢, <ty < ... <t, < ..., which
is determined iteratively based on the following trigggrcondition

tep1 =min {k € NT|k > t,, f (e}, 0) > 0} (5)

where e, = y,, — 1y, reflects the change between the current measurement oytpamd the latest
transmitted measurement., and§ is a predefined threshold. Moreover, the event generatastim
f(-,+) : R™ x R+ R is defined as
fler,d) = eper =0 (6)
and the measurement transmissions will occur only when dneliton f (ex, d) > 0 is fulfilled.
Under the ETM defined above and the zero-order holder (adojmemaintain the last transmitted
measurement signal before the next triggering instang) attiual filter input at the instantis denoted as

gk = yt&.’w{? S [tsa ts-‘,—l) . (7)
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B. Maximum-Correntropy-Based Kalman Filter

As is well known, the Kalman filter is considered as an optiegtimator for the linear systems with
Gaussian noises under the MMSE criterion. In this contédid, minimum trace of the estimation error
covariance can be achieved by designing a suitable filter. gaifortunately, it is often the case in practice
that the systems are subject to the non-Gaussian noisesasuichpulse noise and unexpected outliers.
Statically, thehigher-order momentsf non-Gaussian distributions are crucially important ahduld be
adequately reflected in the corresponding filter desigmited by this idea, the so-called correntropy has
been introduced as an effective design criterion in [20]icWlis effectively a localized similarity measure
between two scalar stochastic variables:

V(X.Y)=E{r(X.V)} = / / w (2.9) Fxy (2, y) dady ®)

whereV (X, Y) is the correntropy between the stochastic variableandY’, fxy (z,y) is the joint density
function, andx(-, -) is a shift-invariant Mercer kernel function.

Without loss of generality, the Gaussian kernel is used is plaper as the kernel function, which is
expressed as

K (2,y) 2 G (o) = exp(— 10 ©
Y

wheree £ z — y reflects the difference between variableandy, and~ is a hyper-parameter related to
the bandwidth of the kernel size. In addition, due to the faet the analytical expression g¢ky (z, y)
is usually unknown, we have to draw samples frém (z, y) to estimate (8), i.e.
N
le:”

1
V(X,Y) ~ N Zexp(— R

1=1

) (10)

wheree; £ z; — y; and {z;, y;}¥, represents théV samples drawn fronfyy (x, 7).

Remark 1:With the expression given in (9), the correntropy would redags maximum if and only if
x = y. Furthermore, as discussed in [2], the correntropy is folande a weighted sum of all the even-
order moments of the difference between the two stochaatiales. By considering the influence of the
higher-order moments, the so-called MCC plays a surpiigieffective role in dealing with non-Gaussian
noises (e.g. impulse noises or undesirable outliers). W@ethe hyper-parameter will also affect the
estimation performance since the valuesoprovides a trade-off between the second- and higher-order
moments the correntropy. When— oo, the correntropy will be dominated by the second-order nrime
The selection of the parametershould be in accordance with the noise distribution.

In this paper, to estimate the state of linear time-varyiygtesm (1), we construct the Kalman filter as
follows:

{ k-1 =Ap—1Tp—1)k—1 1)

Tk =Tpjk—1 + K5 (Jx — CrZijp—1)
where iy, and Z,, are, respectively, the one-step prediction and corredi#e gstimate at the time

stepk. K} is the filter gain that needs to be designed.
To facilitate the subsequent presentation, we denote

5 A I A ~, ~T ~ A A A ~ ~T
Tre—1 =Tk — Trp—1,  Prp—r = E{Trp1Thp1 by Tapp = 06 — Tps P = E{Tpp Ty}
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where ;-1 and Py,—; stand for the one-step prediction error and its covariantele 7, and P
are the estimation error and the corresponding covarianteeaime stept respectively.

Considering the influence of the non-Gaussian noises, th€ i4Gmployed to formulate the perfor-
mance index for the proposed filter. Inspired by the work ih][Iwo objectives are actually embedded
into the performance index for the filter design, where theiteng matrices contribute to the minimum-
variance estimation, and a maximized correntropy helpsetteb utilize the higher-order moments of
the estimation error distribution. Therefore, we are nole @b propose the following correntropy-based
performance index:

Je =K Uk, Croppr) + K(Thjp, Trpp—1) = Gy (H?Jk - Cki’k|kHR;1) + G, (kauc - «i’k|k—1HEkil) 12)

where =, is the weighted matrix used to adjust the effects of the dep-prediction error. It can
be found from (12) that the correntropy-based performandex 7. is consisted of two parts, where
the first one reflects the estimation performance associaittdthe “correction”, and the second part
describes the estimation performance associated withghegiction”. The matricedz, and Z;,_, are
utilized to account for the weights of “correction part” afptediction part”. Compared with the standard
correntropy-based performance index, the novelty of oappsed performance index lies in the capability
of dealing with the effects induced by the ETM and ROUs. Thsirdd state estimate is achieved by
solving the following optimization problem

Ty = argmaxJe. 13)

Remark 2:In contrast with the conventional Kalman filter which canyoglarantee optimality under
the Gaussian noise assumption and the MMSE criterion, twewuwthy advantages of the proposed
filter (11) can be encapsulated as follows: 1) the non-Ganssbises can be processed by the filter
(11), which is based on the MCC; 2) different from some emgstivorks [13], [14], [31], the filter (11)
provides an effective solution to the filtering problem w#imultaneous existence of the ETM and the
ROUs. It is worth mentioning that the filter (11) is quite danito the conventional Kalman filter. The
main difference between our developed filtering method &edconventional Kalman filtering approach
lies in the performance index given in (12). More specificathe state estimate of the conventional
Kalman filtering scheme is derived byinimizing the trace of the filtering error covariance, while the
state estimate of our proposed maximum-correntropy-b&sdahan filtering is achieved by solving the
maximization problem (13).

Remark 3:In this paper, the ETM is adopted to determine whether theentiimeasurement output
should be transmitted to the filter with the hope to reduce dbmmunication load. Obviously, the
utilization of the ETM would lead to certain ETM-inducedar(i.e.¢,,) in the filtering process and thereby
affecting the filtering result. Hence, a special correngrbpsed performance index (12) is constructed to
account for such ETM-induced error by using the upper boudrtdeone-step prediction error covariance
Sklk—1-

In summary, due to the induced error from the ROUs and ETMpitilal be intractable to parameterize
the exact correntropy dynamics with an analytical expoegssAs an alternative solution, the newly
proposed performance indgk is used for the filter design in this paper, where the mainaibje is to
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first derive an explicit form of the proposed performanceeidand then develop an MCKF algorithm to
attenuate the effects from the ROUs and ETM on the estima@formance.

Il. M AIN RESULTS

In this section, the upper bound of the one-step predictimr eovariance is obtained and the estimation
error covariance is derived to further clarify the expressof .. Afterwards, an explicit form of the
filter gain is also given by maximizing the performance indéxach time step.

According to (1) and (11), the dynamics of the one-step ptexhi error and estimation error can be

expressed as

Trpp—1 =(Ap—1 + 01 AAg_1)Tp—1 + Wi—1 — Ap—1Tp—1jk—1 (14)
=Ap1Tp—1jp—1 + 1 AA 1T + Wiy

and
T =k — (Eppe—1 + K5k — Crdijr—1))

=Zkh—1 — K (Crpp—1 + ex + vk) (15)
= (I = K;;Cy) Tpjp—1 — Kjer — Kjvg.
Consequently, the one-step prediction error covariandelaestimation error covariance can be computed
in a recursive form. It follows from (14) that
Py IE{ (Ap1Zp1jp—1 + a1 DA ey + wi—1) (Ap—1Tp—1jp—1 + 1 AAg_ 131 + wk—l)T }
=Ap1 P Al + @AA E{aymp_JAAL_ + Loy + LE L M + M

+ M1 + %21 + Qr—1
(16)

where . .
Loe1 2B {Gppprmi_g f AAL Ly, Moy = A B A{ G pw_y )

f/%f_l é@AAk_lE {xk_lwg_l} .

Since the process noise,_; is independent of botky;_;,—, and x;_;, it is quite straightforward
to see that the terms#,_, and .4;_, are both zero. However, the expectation of another cross ter
E {ik_uk_wf_l} is obviously non-zero, which deserves special attentioa had a simplified expression
for Py, is then given as

Pijpo1 = A1 Pooap1 Ap_ + Loy + L1+ Qo + @A A E{ayyxf_ JAAT . (17)
Similarly, the recursion of the estimation error covariamng obtained as follows
Pu :]E{ ((I = K;C) vy — Kiex — Koy (I = KiCy) xpes — Kiex — Kjvg) " }
= (I = KjCy) Pupp1 (I — KiCy)" + KiE {egel } (K;)" + KRy (K;)" (18)
— 9 — 9L + % + B — S — S

where
92,2 (I - K;C)E et } (K", % & KE{ew}l } (K7)T,

i 2 (I = K;Cy) E{aprvf } (KT
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Among the above three cross termg), is zero since the measurement noise is independent of the
prediction error. Therefore, the estimation error covar@l} ;. is further simplified as
Py = (I = K;Cy) Par (I — KjC)" + Ki Ry (K;)" + KGE {eel } ()"
— 92, —Q,{-F%k —Fe@g

Remark 4:It should be pointed out that the maximum-correntropy-dasalman filtering has already
been studied in the literature. In a standard maximum-otopy-based Kalman filtering, the correntropy-
based performance index is constructed based on the qmestéiction error covariance. Due to the co-
existence of the ROUs and the ETM, some terms in the one-ségfiction error covariance matrik;
become unknown, and this further enhances the imposgibilicomputing the exact value df,;_,. As
such, the general weighted correntropy-based performades is not applicable to the problem addressed
in this paper. To get over such a difficulty, we take the itit&to search for an upper bound of the
one-step prediction error covariance and apply the obdaipger bound in the expression of performance
index ¢ (as an alternative performance index). Owing to the fadt titia computation procedures of the
one-step prediction error covariance and the estimatioor @ovariance are in a coupled and recursive
form, the corresponding upper bound of the estimation exovariance is also required.

Lemma 1:For given positive scalars;(i = 1,2, 3,4) and filter gaink;, assume that the following two
coupled equations are solvable with the positive definitatems =, and =y

(19)

Sipo1 = (L4 aB) A Siopa1 A + Qrer + (@ + aB ) tr {Nyo1 PN} My M, (20)
and
= 1 ) (1 = K20 S (1 = KGO + K (1480 Bt 8 (14 557+ 67 1) (60"
(21)
with the initial conditionZ, = Fyo, Where
Pr—1 L (1+ Bo) Epmrp—r + (14 857) ik—1|k—1!ﬁ;;r_1\k_1-

Then, the one-step prediction error covariarfg,_; and estimation error covariandg,; in (17) and
(19) satisfy
Prje—1 < Zpp—1, Prppe < Zgppe-

Proof: To begin with, let us deal with the unknown terms in the exgi@s of P ;,_;. In virtue of
the elementary inequalityr(n” + nm” < gmm?” + p~'nn” wherem andn are vectors of compatible
dimensions ang’ is a scalar), we have

Lo+ L5 < aB A Prap Ap_y + By T AAE {M-ﬂg_l} AAL, (22)
and
E {118t 151} + B {Er 1@t yjpor } < BoProtipot + By Erotpo1®hy ooy
On the other hand, it is easily derived that
E {z) 1z} =E { (Ze—1jk—1 + Zo-1jp—1) (To-1je—1 + !i“k_1\k_1)T
<1+ Ba) Pecippm1 + (1 + 851) Ermippm1®h gy = Prr.

(23)
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Together with (2), (3) and (23), we are now in a position tokladhe uncertainty-related term as

follows:
AAk_1E {«Tk—lxg—l } AA%—I

=M1 U1 Ny E {zpzp_y } N UL M
<My Uy 1 Njo1 P N U M
<tr {Nj_1 Pp_ 1Ny } My M.

Thus, based on (17), (22) and (24), we have

(24)

Pyeo1 < (14 aBh) A1 Poip1 Ap_y + Qe + (@ + apy ) tr {Nimt 2 NE } My M. (25)

According to the ETM, the measurement gapvould be automatically reset to zero when the triggering
condition (5) is fulfilled, which implies that!e, < § is always satisfied. By means of the properties of
matrix operations, it is easy to obtain

E{ewer } <E{|lexl’I} =E{efexl} <4, (26)
and it then follows from2, and.%), that
— 2y — 2 <Bs (I = KiCy) Ppr (I = KiCy)" + 085 K (K7)" 27)
B+ R <G R (K7 + 068, K (K7)" (28)
Thus, according to (19), (27) and (28), we have the followmeguality:

Py <(1+ B3) (I = K{C) Pagor (I = KGC0)" + K7 (L4 Ba) Ri+ 0 (14 B3+ B 1) ()5)"
(29)
Next, in virtue of the mathematical induction approach, tipper bound of the one-step prediction
error covariance and the estimation error covariance casebermined as

Prp—1 < Zpp—1, Pre < Sy

which completes the proof. [ |
Based on the performance indgk given in (12), we are now ready to obtain the state estimate by
finding a feasible solution for the following optimizatiomgilem

Ty, = arg maxJe (30)

Taking the partial derivative off; with respect taz;,, we have
0Jec

(%Ek‘k

1

% (Hgk - Ckik\’@H}gf) CrR™ (Gk — Criyge)
1 .
#2356

(Zihs + LCT R CL) e = Sigh s + LCE R (32)

(31)

——1 (A A
=1 Srlp—1 Lkl — Tk k—l) .
~kk1) klk—1 \"VK| \

By letting ‘”C =0, we have
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with the auxiliary gain defined as

I — G, (Hgk - Ckikl’f”R?) . (33)

G'y ( Tl — xk\k—lH:—l )
“k|k—1

Since the iteniy, is not available when computing,, it becomes impossible to obtain the exact value of
the auxiliary gain. Following the widely adopted approxtraa method in Gaussian-kernel-based entropy
filters [11], 2, is substituted bye ., for the calculation ofZ; in this work. Thus, the denominator in
(33) is equal tol, and the new auxiliary gain represented by is given as

Ly =G, <H§kz - Cki'k|k:—1HR;1) : (34)
To derive a recursive expression for the state estimatg,ig32formulated as
(E,;‘;_l + L;C{R,;lck) Thik
=Sk driot + LECE Ry Cridinims + LECE Ry "Gk — LECE Ry Chdipgis (35)
= (Sipy + LiCT R ) gy + LECT R (5 — i)

and we finally obtain
—1
Thik =Trjk—-1 + (EEﬁH + LZCI?RIQICQ LZCICTREI (ﬂk - Ckik\k—l) . (36)

Recalling the filter structure given in (11), it is straigiriivard to acquire the desired filter gain of the
following form X
Ki = (Sgh + LICTR'CL) - LiCE Ry (37)

To facilitate the readers to understand the proposed MCHgerdihm with ROUs under ETM, the
summarized process is listed in Algorithm 1.

Remark 5:Up to now, we have addressed the MCKF problem for a class eafitime-varying systems
with ROUs in non-Gaussian environment, where the data rm&ssons are governed via the predefined
triggering condition. To be more specific, a new correntrbpged performance index has been designed
where the effects of the ROUs and the ETM are fully considebaded on which an MCKF algorithm
has been designed and the explicit form of the filter gain heenhobtained accordingly. It is worth
mentioning that the proposed filter is suitable for onlinatestestimation due to the recursive nature of
the developed algorithm.

Remark 6: The MCKF problem has stirred much attention due mainly toghevalence of the non-
Gaussian noises and a number of excellent results have bpertad in the literature, see e.g. [2], [3].
Compared to existing literature, the main results develdpehis paper exhibit the following distinctive
features: 1) the proposed MCKF algorithm is capable of tiegigthe ROUs under a particularly effective
ETM; 2) the proposed performance index takes the non-Gawsmises, the ROUs and the ETM into
simultaneous account; and 3) the MCKF algorithm is localbyimal in that the performance index is
maximized at each time instant.

Remark 7:0ne of the main advantages of our proposed MCKF scheme isajpebdity to deal with
the non-Gaussian noises (e.g. impulse noise and unexpegtiéels). For such non-Gaussian noises, the
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Algorithm 1 MCKF algorithm with ROUs under ETM
Step 1.Parameter initialization
Initialize the vectorzy, = ro and matrix=,, = F,. Set the maximum recursive time step to
be K.
Step 2.0ne-step prediction
Calculate the one-step prediction according to

Tlk—1 = Akz—lxk—l\k—l

and the upper bound of the one-step prediction error cavegiavith (20).

Step 3.Estimate correction
Calculate auxiliary gairL, via (34) and the estimator gaifi; with (37). Obtain the corrected
estimate as

. R . .
Tpe = Trfk—1 + Kg (U — Crlpjp—1),

and compute the upper bound of the estimation error covaeiarnth (21).
Step 4.1f k < K, then go to Step 2; otherwise go to Step 5.
Step 5.Stop.

higher-order moments of their distributions would lead igngicant impact on the measurement data,
which makes it difficult to achieve the satisfactory filteyiperformance by using the traditional Kalman
filter. As such, a special correntropy-based performandexns constructed in this work to account for
the influence of the higher-order moments. Obviously, basethe filter gain that is computed according
to the correntropy-based performance index, our devel®We&F approach is capable of dealing with
the effects from non-Gaussian noises.

IV. ILLUSTRATIVE EXAMPLE

In this section, a simulation example of the target trackpngblem is provided to show the validity of
the proposed MCKF approach.

A. Target Tracking Scenario

Consider the target tracking problem described by the tintedsional model with the following
matrices:

1 h oo 0.3 0.1
0100 100 0 0.1 0
A = . Cp = . My = , NI = , U, =sin (3k),
““1oo01n k [0010] "= 02 k 0.2 k= sin (3k)
000 1 0.1 0.1

(38)
whereh stands for the sampling period throughout the simulatiacgss, and the state variable at the time
stepk is defined asy, 2 [if, ott, wt, 03t]", where (.2, 12*) and (92, 9') represent, respectively, the

horizontal and vertical coordinates of the target positon velocity. The constant scalarthat reflects
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the occurrence probability of the parameter uncertaimidisfirst take a fixed value, and the effect from
this parameter on the estimation performance is to be dscukater in Section IV-D. Both the process

T T T T T
L L L L
20 40 60 80 100 1.

20

Value of shot noise

B o kB N ®w & 0 o
T T T T T

o

time, k

Fig. 1: Shot noise in the process noise

noise and measurement noise are chosen to be non-Gausssas. riepecifically, the process noise is
composed of general Gaussian noise plus shot noise, whicdnaomly generated with a total number
of timesn, during the simulation process of the length One example of the shot noise applied to the
process noise is given in Fig. 1. The process noise is exuiess

wy, = N(0,%,,) + shot noise (39)
where the covariance matriX,, is described as
3 2
%2 oo oo
w0 0
Zw - O‘zcc 2 3 2 (40)
0 0 ’3—2 b
0o 0 & p

. stands for the acceleration variance. Different from thecess noise, the measurement noise
adopted here is the Gaussian mixture noise with the follgviamm

whereg?

v = (1—p)N(O,%,,) + pN(0,%,,) (41)

wherep is the glint probability, and the covariance matriéés(: = 1,2) are both with the form ob? I.

After obtaining the position information of the target, thensor utilizes the event generator function
(6) to determine whether the triggering condition (5) idifidd. If f (ex,d) > 0, the sensor will transmit
the obtained measurement to the filter, and the correspgndemasurement gag. will be reset to zero
automatically. As the thresholdlincreases, the transmission instants are expected toaesheoordingly,
and the effect from the threshold value on the estimatiofopmance will be discussed later in Section
IV-D as well.

B. Parameter Settings and Performance Metric

During the simulation process, the actual target trajéetoare simulated with the initial state =
(300, 4, 90, 3]T. To initialize 2oy in the estimation stage, both the position and velocity comemts are
sampled from the respective Gaussian prior distributidnde more specific, the mean value and covari-
ance matrix for the position components 860, 90]” and diag([10, 10]), while a different distribution
is utilized for the velocity components with me&h 3]7 and covariance matridiag([1, 1]).
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For the evaluation purpose/ independent Monte Carlo trials are conducted to testifypdrdormance
of the proposed estimator, and the root mean-square erddSHE} metric is introduced on both position
and velocity estimates averaged over tHetrials, which are respectively expressed as

RMSE, . =\ — Z (( w ) + (gt - zg“)z)

RMSE, 4 :\ — Z (( D — 2)2+ (ﬁz“ - égm)z)

where ( fetyi LZ“) and (19’””,19””) stand for, respectively, the realization of the positioml aelocity

components of the target state within thle Monte Carlo trial, and(Ah“ A”“) <19h“ 19”“) are their
corresponding estimates.
Related parameter settings utilized in the simulation aowiged in TABLE 1.

TABLE |: Parameter settings

Parameters Values Parameters Values

h 1 T 120
a 0.7 D 0.2
s 35 2. 0.1
oo, 10 oo, 50
) 30 M 100
b1 2 Ba 0.5
B3 0.3 Ba 0.5

C. Results Analysis

For the purpose of comparison, the state estimation willnpjglemented via the following two filters:
1) the proposed maximum-correntropy-based filter sube&®®@Us under the ETM (abbreviated as MC-
ET-PU in Figs. 2-5); and 2) the conventional maximum-cain@y-based filter neglecting the influence
caused by the ETM and ROUs (abbreviated as MC in Figs. 2-5).

The estimation results obtained by the above two filters fag pealization of the target trajectory are
shown in Figs. 2-3. It can be seen that the proposed maxinarnestropy-based filter provides a more
accurate result and outperforms the conventional maxiroarrentropy-based filter with less measurement
information and ROUs. The evolution of position RMSEs ankbeity RMSES, calculated based on the es-
timates from the conventional maximum-correntropy-bdéest and the proposed maximum-correntropy-
based filter, are shown in Figs. 4-5, respectively. We olestirat the proposed maximum-correntropy-based
filter provides better performance than that of the conesati maximum-correntropy-based filter, which
demonstrates that we have effectively restrained the indlee from the ETM and ROUSs, and this is due
mainly to the fact that we have considered these influendestie design of the estimator.
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Fig. 2: The position components of the target trajectory tair estimates obtained by MC-ET-PU and
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Fig. 3: The velocity components of the target trajectory #mr estimates obtained by MC-ET-PU and

MC in one trial.

D. Discussion on Parameter Settings

To further investigate the effects from the ROUs and the ETMhe tracking performance, two more
groups of simulations are carried out with different parteneettings. In the first group, the only changing
parameter is the occurrence probability of parameter taicgies, and the others remain unchanged. The
corresponding behaviors of RMSEs on position and veloaiisngonents in the estimation results are
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Fig. 5: Velocity RMSEs of MC-ET-PU and MC.

given in Figs. 6-7, where a more obvious impact is found indbmparison of the velocity RMSEs. Since
the measurement output is right the position componentdetdrget state, the effect of the randomly
occurring uncertainties is not obvious to the positionneates. When it comes to the velocity RMSEs,
we observe as expected that the performance clearly degesdhe occurrence probability increases.
Similarly as above, in the second group of simulations, tienging parameter turns into the triggering
thresholdd. The related simulation results are given in Figs. 8-9. Dughe fact that a larger threshold
leads to much fewer transmissions, the worst performandeusd with § = 50 where the available
measurement information at the filter end is significantjueed. Considering the contradiction between
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Fig. 7: Velocity RMSEs of MC-ET-PU with respect to differemtcurrence probabilities of uncertainties.

the communication resource consumption and the estimpgdiormance, a reasonable trade-off is quite
necessary, especially in the practical applications.

To demonstrate the effect of the ETM to the communicatiort ceduction and the estimation perfor-
mance, the average triggering rate and average RMSEs ebtamder different values of threshold are
compared in TABLE Il. To be more specific, the average triggeratefi is calculated as the mean of the
triggering rate over all thé/ Monte Carlo trials. Furthermore, the average RMSEs on ipos{i: MSE)
and velocity RMSE}) are the mean oRMSE, , andRMSEy ;. over the total simulation period. With the
increase of the triggering threshold, the average triggerate decreases obviously, and the estimation
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performance also degrades simultaneously.

V. CONCLUSIONS

In this paper, the MCKF algorithm has been developed to stileefiltering problem for a class of
non-Gaussian systems with the ROUs under ETM. The measotéraasmission has been modulated by
the ETM and a Bernoulli-distributed stochastic variable baen utilized to regulate the random nature of
parameter uncertainties. A performance index has beeblissitad, which is suitable for reflecting the joint
effects from the non-Gaussian noises, the ETM and the ROUbemestimation performance. Based on
the proposed performance index, an MCKF algorithm has deeel, where the MCC has been introduced
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TABLE II: The effect of the triggering threshold on the avgeatriggering rate and average RMSEs

R RMSE; RMSEj

6=10 90.88%  4.6524 3.8004
6=30 70.45% 9.1136 5.7438
0 =50 5839% 15.1159 8.1338

to facilitate the calculation of filter gain. Finally, a tattgiracking example has been provided to illustrate

the effectiveness of the proposed MCKF algorithm. Futuseaech topics would include the extension

of the correntropy-based criterion to the nonlinear nek&drsystems subject to other communication

protocols (e.g. Round-Robin protocol, Try-Once-Discarot@col, Random Access protocol and dynamic
event-triggered protocol) [15], [24], [45]-[48] and impement of the filtering performance by using
some latest optimization algorithms [21], [22].
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