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Abstract

In this paper, the maximum-correntropy-based Kalman filtering problem is investigated for a class of linear time-

varying systems in the presence of non-Gaussian noises and randomly occurring uncertainties. The random nature

of the parameter uncertainties is characterized by a stochastic variable conforming to the Bernoulli distribution. In

order to avoid unnecessary data transmission and reduce consumption of limited communication resource, the event-

triggered mechanism is introduced in the sensor-to-filter channel to decide whether the data should be transmitted or

not. A novel performance index is first proposed to reflect the joint effects from the non-Gaussian noises, the event-

triggered mechanism as well as the randomly occurring uncertainties. Under the proposed performance index, an

event-based Kalman filter is then constructed whose gain is calculated based on the maximum correntropy criterion.

Finally, the effectiveness of the proposed filtering scheme is verified via a practical target tracking example.

Index Terms

Kalman filter, maximum correntropy criterion, non-Gaussian noise, event-triggered mechanism, randomly

occurring uncertainties.

I. INTRODUCTION

As one of the fundamental issues in system control and signal processing, the state estimation problem

has received considerable research attention over the past decades [6], [8], [17], [18], [25], [34], and a

variety of state estimation schemes have been developed based on different performance indices [19], [26],

[28]. Among different kinds of state estimation schemes, the well-known Kalman filtering (KF) algorithm

has been deemed to be a powerful means to estimate the state of linear systems with Gaussian noises. To

be more specific, the KF algorithm is, in essence, a least mean-square linear filtering scheme that aims to
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achieve the optimal estimation by minimizing the estimation error covariance in a recursive manner. So

far, the KF problems have attracted a large amount of research attention from both academia and industry

with successful applications to various fields such as target tracking, fault diagnosis, econometrics, inertial

navigation system, and so on [16]. Furthermore, the traditional KF algorithm has been modified to suit

nonlinear systems and a number of KF variants have been available in the literature, see e.g. extended

Kalman filtering [26], unscented Kalman filtering [44], and cubature Kalman filtering algorithms [1].

An implicit assumption with traditional KF algorithm (and its variants) is that the process/measurement

noises are Gaussian-type. Such an assumption is, however, often too strict for real scenarios and therefore

inevitably limits the application scope sincenon-Gaussiannoises (e.g. outliers and impulsive noises)

are not uncommon in practice. The usual minimum mean-squareerror (MMSE) criterion, which can be

easily achieved with KF algorithms, would be largely violated due to the non-Gaussian noises. In this

case, a natural idea is to seek more appropriate criteria forfiltering problems under the non-Gaussianity

constraints. In this regard, the maximum correntropy criterion (MCC) has been proposed in the literature

with promising applications to robust adaptive filtering problems in impulsively noisy environments [4].

In particular, the maximum-correntropy-based Kalman filtering (MCKF) problem has recently received

some initial research attention and elegant results have begun to appear [14]. For example, in [2] and [3],

the MCKF scheme has been verified to perform very well againstnon-Gaussian noises.

In system modeling, parameter uncertainties are inevitable for a variety of reasons such as modeling

errors, exceptional environment disturbance, varying geometry and material properties, change of system

load, random failures and repairs of system components [38]. Note that, the occurrence of parameter

uncertainties often exhibits a random nature due primarilyto the unpredictable changes, and this gives

rise to the so-called randomly occurring uncertainties (ROUs) that are typically governed by Bernoulli

distributed stochastic variables [32]. The phenomenon of ROUs, if not dedicatedly tackled, would impair

the global optimality of the state estimation problems [9],[36], thereby leading to undesirable deterio-

ration of estimation performance. An alternative solutionto the ROU-induced problem is to achieve an

acceptable bound (rather than the minimum bound) on the performance index and, in this regard, a few

Gaussianity-based state estimation strategies have been developed under the MMSE criterion, see e.g. [39].

Nevertheless, the corresponding MCKF problem has not been fully investigated yet for the non-Gaussian

systems with ROUs, and this constitutes the main motivationof our current investigation.

The past few decades have seen an ever-lasting enthusiasm towards the research on networked systems

(NSs) for their outstanding capability in remote operationand resource sharing. In an ideal situation,

the data transmission between all system components (e.g. sensors, controllers, filters and actuators) is

implemented via shared communication networks [37]. Compared to traditional point-to-point systems,

NSs are more susceptible to the inherent characteristics ofnetworks such as limited network bandwidth and

resource constraints. Noting that simultaneous data interactions between multiple components are likely

to result in data collisions and subsequently system performance deterioration. As such, it is of vital

importance to utilize certain protocols/mechanisms to orchestrate data transmission with aim to reduce

unnecessary data exchange in NSs. Accordingly, special attention has been devoted to the analysis/synthesis

problems for NSs under communication protocols/mechanisms such as Round-Robin protocol, Try-Once-

Discard protocol, stochastic communication protocol and event-triggered mechanism (ETM) [5], [27],
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[29], [35], [41].

Among various communication protocols/mechanisms, the ETM has recently become a rather hot topic

owing to its attractive advantage in improving utilizationefficiency of communication resources [7],

[23], [33]. Specifically, the communication resource underan ETM will be occupied only when a certain

triggering event happens, and therefore the unnecessarilyfrequent data exchanges will be avoided, thereby

leading to considerable reduction of the network burden. Inthe past few years, a great many results have

been reported on the applications of the ETM in a variety of state estimation problems [30], [40], [42],

[43]. For example, the remote state estimation problem has been investigated in [10] for a class of Gaussian

systems under the energy-dependent ETM and the MMSE estimate of the energy level has been provided.

In [12], a state estimator has been developed for stochastichybrid systems subject to both ETM and

missing measurements. Despite the rich literature on ETM-based state estimation problems, the MCKF

problem under ETMs has not been adequately examined and the main purpose of this paper is therefore

to bridge such a gap.

Motivated by the above discussions, the main objective of this paper is to design an MCKF scheme for

a class of linear time-varying systems under joint effects of the non-Gaussian noises, the ROUs and the

event-triggered mechanism. This problem appears to be especially difficult as we are facing three essential

challenges as follows: 1) how to construct a reasonable performance index for the Kalman filter design

problem within a non-Gaussian environment? 2) how to derivethe filter gain in a recursive manner based

on the MCC? and 3) how to properly compensate for the joint effects from the ROUs, the non-Gaussian

noises and the ETM on the design and performance analysis of the filter? In the current study, we strive

to overcome above-mentioned challenges.

The main contributions of this paper are highlighted as follows: 1) the event-based MCKF problem is,

for the first time, investigated for the linear time-varyingnon-Gaussian systems with the ROUs; 2) a novel

performance index is proposed to account for the joint effects from the non-Gaussian noises, the ROUs

and the ETM; and 3) an MCKF algorithm is developed for the linear time-varying non-Gaussian system

where the filter gain is obtained by maximizing the performance index via the matrix analysis approach.

The rest of this paper is organized as follows. In Section II,the MCKF problem under consideration

is mathematically formulated. The main results are presented in Section III where the MCKF algorithm

is designed by considering the ETM and the ROUs. Section IV demonstrates the effectiveness of the

developed MCKF algorithm via a target tracking example. Finally, this paper is concluded in Section V.

Notation. The notation used in this paper is fairly standard except where otherwise stated.Rn denotes

the n-dimensional Euclidean space.N+ is the set of positive integers.Pr{X} denotes the occurrence

probability of a discrete eventX. E{α} represents the expectation of a stochastic variableα. N(u,Σ)

represents the Gaussian probability density function withmeanu and covarianceΣ. Given a positive

definite matrixM ∈ R
n×n and a real-valued vectorβ ∈ R

n, the notations‖β‖ and‖β‖M ,
(

βTMβ
)1/2

stand for, respectively, the Euclidean norm and the weighted norm ofβ. For a matrixA, AT , A−1 and tr(A)

represent, respectively, the transpose, inverse and traceof the matrixA, andA > 0 means that the matrix

A is positive definite.diag([a1, a2, . . . , an]) represents a diagonal matrix with elementsa1, a2, . . . , an on

the diagonal.n-dimensional identity matrix is denoted simply asI, and0 stands for the zero matrix of

appropriate dimensions.
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II. PROBLEM FORMULATION

Consider the following class of discrete linear time-varying system
{

xk+1 = (Ak + αk∆Ak)xk + wk

yk = Ckxk + vk
(1)

wherexk ∈ R
nx and yk ∈ R

ny are, respectively, the system state vector and the measurement output at

the time stepk; Ak andCk are real-valued time-varying but known matrices of appropriate dimensions;

wk ∈ R
nx and vk ∈ R

ny stand for, respectively, the process noise and measurementnoise, which are

non-Gaussian variables with covariancesQk > 0 andRk > 0. The initial statex0 is a stochastic variable

with meanx̄0 and covarianceP0.

In the system model (1),∆Ak is a time-varying real-valued matrix representing norm-bounded parameter

uncertainties with the following structure

∆Ak = MkUkNk (2)

whereMk andNk are known matrices of appropriate dimensions,Uk is an unknown matrix function that

describes the time-varying uncertainties with the constraint

UkU
T
k ≤ I. (3)

In order to characterize the random occurrence of the parameter uncertainties, a Bernoulli-distributed

stochastic variableαk (taking values on0 or 1) is employed with the probabilities
{

Pr {αk = 1} = ᾱ

Pr {αk = 0} = 1− ᾱ
(4)

whereᾱ ∈ [0, 1] is a known scalar that delivers the occurrence probability of the parameter uncertainties.

Without loss of generality, in this paper, the process noisewk, the measurement noisevk, the stochastic

variableαk and the initial statex0 are assumed to be mutually independent.

A. The Event-Triggered Mechanism

In order to avert frequent data transmission and reduce the consumption of communication resources,

the ETM is introduced in the sensor-to-filter channel to schedule the measurement transmission.

Define the triggering time sequenceT , {t1, t2, . . . , ts, . . .} with 0 < t1 < t2 < . . . < ts < . . ., which

is determined iteratively based on the following triggering condition

ts+1 = min
{

k ∈ N
+|k > ts, f (ek, δ) > 0

}

(5)

where ek , yts − yk reflects the change between the current measurement outputyk and the latest

transmitted measurementyts, and δ is a predefined threshold. Moreover, the event generator function

f(·, ·) : Rny × R 7→ R is defined as

f (ek, δ) = eTk ek − δ (6)

and the measurement transmissions will occur only when the condition f (ek, δ) > 0 is fulfilled.

Under the ETM defined above and the zero-order holder (adopted to maintain the last transmitted

measurement signal before the next triggering instant), the actual filter input at the instantk is denoted as

ȳk = yts, ∀k ∈ [ts, ts+1) . (7)
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B. Maximum-Correntropy-Based Kalman Filter

As is well known, the Kalman filter is considered as an optimalestimator for the linear systems with

Gaussian noises under the MMSE criterion. In this context, the minimum trace of the estimation error

covariance can be achieved by designing a suitable filter gain. Unfortunately, it is often the case in practice

that the systems are subject to the non-Gaussian noises suchas impulse noise and unexpected outliers.

Statically, thehigher-order momentsof non-Gaussian distributions are crucially important andshould be

adequately reflected in the corresponding filter design. Inspired by this idea, the so-called correntropy has

been introduced as an effective design criterion in [20], which is effectively a localized similarity measure

between two scalar stochastic variables:

V (X, Y ) = E {κ (X, Y )} =

∫ ∫

κ (x, y) fXY (x, y)dxdy (8)

whereV (X, Y ) is the correntropy between the stochastic variablesX andY , fXY (x, y) is the joint density

function, andκ(·, ·) is a shift-invariant Mercer kernel function.

Without loss of generality, the Gaussian kernel is used in this paper as the kernel function, which is

expressed as

κ (x, y) , Gγ(ǫ) = exp(−
‖ǫ‖2

2γ2
) (9)

whereǫ , x− y reflects the difference between variablesx andy, andγ is a hyper-parameter related to

the bandwidth of the kernel size. In addition, due to the factthat the analytical expression offXY (x, y)

is usually unknown, we have to draw samples fromfXY (x, y) to estimate (8), i.e.

V (X, Y ) ≈
1

N

N
∑

i=1

exp(−
‖ǫi‖

2

2γ2
) (10)

whereǫi , xi − yi and{xi, yi}
N
i=1 represents theN samples drawn fromfXY (x, y).

Remark 1:With the expression given in (9), the correntropy would reach its maximum if and only if

x = y. Furthermore, as discussed in [2], the correntropy is foundto be a weighted sum of all the even-

order moments of the difference between the two stochastic variables. By considering the influence of the

higher-order moments, the so-called MCC plays a surprisingly effective role in dealing with non-Gaussian

noises (e.g. impulse noises or undesirable outliers). Notethat the hyper-parameterγ will also affect the

estimation performance since the value ofγ provides a trade-off between the second- and higher-order

moments the correntropy. Whenγ → ∞, the correntropy will be dominated by the second-order moment.

The selection of the parameterγ should be in accordance with the noise distribution.

In this paper, to estimate the state of linear time-varying system (1), we construct the Kalman filter as

follows:
{

x̂k|k−1 =Ak−1x̂k−1|k−1

x̂k|k =x̂k|k−1 +K∗
k(ȳk − Ckx̂k|k−1)

(11)

where x̂k|k−1 and x̂k|k are, respectively, the one-step prediction and corrected state estimate at the time

stepk. K∗
k is the filter gain that needs to be designed.

To facilitate the subsequent presentation, we denote

x̃k|k−1 ,xk − x̂k|k−1, Pk|k−1 , E{x̃k|k−1x̃
T
k|k−1}, x̃k|k , xk − x̂k|k, Pk|k , E{x̃k|kx̃

T
k|k}
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where x̃k|k−1 andPk|k−1 stand for the one-step prediction error and its covariance,while x̃k|k andPk|k

are the estimation error and the corresponding covariance at the time stepk respectively.

Considering the influence of the non-Gaussian noises, the MCC is employed to formulate the perfor-

mance index for the proposed filter. Inspired by the work in [11], two objectives are actually embedded

into the performance index for the filter design, where the weighting matrices contribute to the minimum-

variance estimation, and a maximized correntropy helps to better utilize the higher-order moments of

the estimation error distribution. Therefore, we are now able to propose the following correntropy-based

performance index:

JC =κ(ȳk, Ckx̂k|k) + κ(x̂k|k, x̂k|k−1) = Gγ

(

∥

∥ȳk − Ckx̂k|k

∥

∥

R−1

k

)

+Gγ

(

∥

∥x̂k|k − x̂k|k−1

∥

∥

Ξ
−1

k|k−1

)

(12)

whereΞk|k−1 is the weighted matrix used to adjust the effects of the one-step prediction error. It can

be found from (12) that the correntropy-based performance indexJC is consisted of two parts, where

the first one reflects the estimation performance associatedwith the “correction”, and the second part

describes the estimation performance associated with the “prediction”. The matricesRk andΞk|k−1 are

utilized to account for the weights of “correction part” and“prediction part”. Compared with the standard

correntropy-based performance index, the novelty of our proposed performance index lies in the capability

of dealing with the effects induced by the ETM and ROUs. The desired state estimate is achieved by

solving the following optimization problem

x̂k|k = argmaxJC. (13)

Remark 2: In contrast with the conventional Kalman filter which can only guarantee optimality under

the Gaussian noise assumption and the MMSE criterion, two noteworthy advantages of the proposed

filter (11) can be encapsulated as follows: 1) the non-Gaussian noises can be processed by the filter

(11), which is based on the MCC; 2) different from some existing works [13], [14], [31], the filter (11)

provides an effective solution to the filtering problem withsimultaneous existence of the ETM and the

ROUs. It is worth mentioning that the filter (11) is quite similar to the conventional Kalman filter. The

main difference between our developed filtering method and the conventional Kalman filtering approach

lies in the performance index given in (12). More specifically, the state estimate of the conventional

Kalman filtering scheme is derived byminimizing the trace of the filtering error covariance, while the

state estimate of our proposed maximum-correntropy-basedKalman filtering is achieved by solving the

maximization problem (13).

Remark 3: In this paper, the ETM is adopted to determine whether the current measurement output

should be transmitted to the filter with the hope to reduce thecommunication load. Obviously, the

utilization of the ETM would lead to certain ETM-induced error (i.e.ek) in the filtering process and thereby

affecting the filtering result. Hence, a special correntropy-based performance index (12) is constructed to

account for such ETM-induced error by using the upper bound of the one-step prediction error covariance

Ξk|k−1.

In summary, due to the induced error from the ROUs and ETM, it would be intractable to parameterize

the exact correntropy dynamics with an analytical expression. As an alternative solution, the newly

proposed performance indexJC is used for the filter design in this paper, where the main objective is to
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first derive an explicit form of the proposed performance index, and then develop an MCKF algorithm to

attenuate the effects from the ROUs and ETM on the estimationperformance.

III. M AIN RESULTS

In this section, the upper bound of the one-step prediction error covariance is obtained and the estimation

error covariance is derived to further clarify the expression of JC. Afterwards, an explicit form of the

filter gain is also given by maximizing the performance indexat each time step.

According to (1) and (11), the dynamics of the one-step prediction error and estimation error can be

expressed as
x̃k|k−1 =(Ak−1 + αk−1∆Ak−1)xk−1 + wk−1 −Ak−1x̂k−1|k−1

=Ak−1x̃k−1|k−1 + αk−1∆Ak−1xk−1 + wk−1

(14)

and
x̃k|k =xk −

(

x̂k|k−1 +K∗
k(ȳk − Ckx̂k|k−1)

)

=x̃k|k−1 −K∗
k

(

Ckx̃k|k−1 + ek + vk
)

= (I −K∗
kCk) x̃k|k−1 −K∗

kek −K∗
kvk.

(15)

Consequently, the one-step prediction error covariance and the estimation error covariance can be computed

in a recursive form. It follows from (14) that

Pk|k−1 =E

{

(

Ak−1x̃k−1|k−1 + αk−1∆Ak−1xk−1 + wk−1

) (

Ak−1x̃k−1|k−1 + αk−1∆Ak−1xk−1 + wk−1

)T
}

=Ak−1Pk−1|k−1A
T
k−1 + ᾱ∆Ak−1E{xk−1x

T
k−1}∆AT

k−1 + Lk−1 + L
T
k−1 + Mk−1 + M

T
k−1

+ Nk−1 + N
T

k−1 +Qk−1

(16)

where
Lk−1 ,ᾱAk−1E

{

x̃k−1|k−1x
T
k−1

}

∆AT
k−1, Mk−1 , Ak−1E

{

x̃k−1|k−1w
T
k−1

}

Nk−1 ,ᾱ∆Ak−1E
{

xk−1w
T
k−1

}

.

Since the process noisewk−1 is independent of both̃xk−1|k−1 and xk−1, it is quite straightforward

to see that the termsMk−1 and Nk−1 are both zero. However, the expectation of another cross term

E
{

x̃k−1|k−1x
T
k−1

}

is obviously non-zero, which deserves special attention here and a simplified expression

for Pk|k−1 is then given as

Pk|k−1 =Ak−1Pk−1|k−1A
T
k−1 + Lk−1 + L

T
k−1 +Qk−1 + ᾱ∆Ak−1E{xk−1x

T
k−1}∆AT

k−1. (17)

Similarly, the recursion of the estimation error covariance is obtained as follows

Pk|k =E

{

(

(I −K∗
kCk) x̃k|k−1 −K∗

kek −K∗
kvk

) (

(I −K∗
kCk) x̃k|k−1 −K∗

kek −K∗
kvk

)T
}

= (I −K∗
kCk)Pk|k−1 (I −K∗

kCk)
T +K∗

kE
{

eke
T
k

}

(K∗
k)

T +K∗
kRk (K

∗
k)

T

− Qk − Q
T
k + Rk + R

T
k − Sk − S

T
k

(18)

where
Qk , (I −K∗

kCk)E
{

x̃k|k−1e
T
k

}

(K∗
k)

T
, Rk , K∗

kE
{

ekv
T
k

}

(K∗
k)

T
,

Sk , (I −K∗
kCk)E

{

x̃k|k−1v
T
k

}

(K∗
k)

T
.
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Among the above three cross terms,Sk is zero since the measurement noise is independent of the

prediction error. Therefore, the estimation error covariancePk|k is further simplified as

Pk|k = (I −K∗
kCk)Pk|k−1 (I −K∗

kCk)
T +K∗

kRk (K
∗
k)

T +K∗
kE

{

eke
T
k

}

(K∗
k)

T

− Qk − Q
T
k + Rk + R

T
k .

(19)

Remark 4: It should be pointed out that the maximum-correntropy-based Kalman filtering has already

been studied in the literature. In a standard maximum-correntropy-based Kalman filtering, the correntropy-

based performance index is constructed based on the one-step prediction error covariance. Due to the co-

existence of the ROUs and the ETM, some terms in the one-step prediction error covariance matrixPk|k−1

become unknown, and this further enhances the impossibility of computing the exact value ofPk|k−1. As

such, the general weighted correntropy-based performanceindex is not applicable to the problem addressed

in this paper. To get over such a difficulty, we take the initiative to search for an upper bound of the

one-step prediction error covariance and apply the obtained upper bound in the expression of performance

indexJC (as an alternative performance index). Owing to the fact that the computation procedures of the

one-step prediction error covariance and the estimation error covariance are in a coupled and recursive

form, the corresponding upper bound of the estimation errorcovariance is also required.

Lemma 1:For given positive scalarsβi(i = 1, 2, 3, 4) and filter gainK∗
k , assume that the following two

coupled equations are solvable with the positive definite solutionsΞk|k−1 andΞk|k:

Ξk|k−1 =(1 + ᾱβ1)Ak−1Ξk−1|k−1A
T
k−1 +Qk−1 +

(

ᾱ + ᾱβ−1

1

)

tr
{

Nk−1P̄k−1N
T
k−1

}

Mk−1M
T
k−1

(20)

and

Ξk|k = (1 + β3) (I −K∗
kCk) Ξk|k−1 (I −K∗

kCk)
T +K∗

k

(

(1 + β4)Rk + δ
(

1 + β−1

3 + β−1

4

)

I

)

(K∗
k)

T

(21)

with the initial conditionΞ0|0 = P0|0, where

P̄k−1 , (1 + β2) Ξk−1|k−1 +
(

1 + β−1

2

)

x̂k−1|k−1x̂
T
k−1|k−1.

Then, the one-step prediction error covariancePk|k−1 and estimation error covariancePk|k in (17) and

(19) satisfy

Pk|k−1 ≤ Ξk|k−1, Pk|k ≤ Ξk|k.

Proof: To begin with, let us deal with the unknown terms in the expression of Pk|k−1. In virtue of

the elementary inequality (mnT + nmT ≤ βmmT + β−1nnT wherem andn are vectors of compatible

dimensions andβ is a scalar), we have

Lk−1 + L
T
k−1 ≤ ᾱβ1Ak−1Pk−1|k−1A

T
k−1 + ᾱβ−1

1 ∆Ak−1E
{

xk−1x
T
k−1

}

∆AT
k−1

(22)

and

E
{

x̃k−1|k−1x̂
T
k−1|k−1

}

+ E
{

x̂k−1|k−1x̃
T
k−1|k−1

}

≤ β2Pk−1|k−1 + β−1

2 x̂k−1|k−1x̂
T
k−1|k−1.

On the other hand, it is easily derived that

E
{

xk−1x
T
k−1

}

=E

{

(

x̃k−1|k−1 + x̂k−1|k−1

) (

x̃k−1|k−1 + x̂k−1|k−1

)T
}

≤ (1 + β2)Pk−1|k−1 +
(

1 + β−1

2

)

x̂k−1|k−1x̂
T
k−1|k−1 , Pk−1.

(23)
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Together with (2), (3) and (23), we are now in a position to tackle the uncertainty-related term as

follows:
∆Ak−1E

{

xk−1x
T
k−1

}

∆AT
k−1

=Mk−1Uk−1Nk−1E
{

xk−1x
T
k−1

}

NT
k−1U

T
k−1M

T
k−1

≤Mk−1Uk−1Nk−1Pk−1N
T
k−1U

T
k−1M

T
k−1

≤tr
{

Nk−1Pk−1N
T
k−1

}

Mk−1M
T
k−1.

(24)

Thus, based on (17), (22) and (24), we have

Pk|k−1 ≤ (1 + ᾱβ1)Ak−1Pk−1|k−1A
T
k−1 +Qk−1 +

(

ᾱ + ᾱβ−1

1

)

tr
{

Nk−1Pk−1N
T
k−1

}

Mk−1M
T
k−1. (25)

According to the ETM, the measurement gapek would be automatically reset to zero when the triggering

condition (5) is fulfilled, which implies thateTk ek ≤ δ is always satisfied. By means of the properties of

matrix operations, it is easy to obtain

E
{

eke
T
k

}

≤ E
{

‖ek‖
2I
}

= E
{

eTk ekI
}

≤ δI, (26)

and it then follows fromQk andRk that

−Qk − Q
T
k ≤β3 (I −K∗

kCk)Pk|k−1 (I −K∗
kCk)

T + δβ−1

3 K∗
k (K

∗
k)

T (27)

Rk + R
T
k ≤β4K

∗
kRk (K

∗
k)

T + δβ−1

4 K∗
k (K

∗
k)

T
. (28)

Thus, according to (19), (27) and (28), we have the followinginequality:

Pk|k ≤ (1 + β3) (I −K∗
kCk)Pk|k−1 (I −K∗

kCk)
T +K∗

k

(

(1 + β4)Rk + δ
(

1 + β−1

3 + β−1

4

)

I
)

(K∗
k)

T
.

(29)

Next, in virtue of the mathematical induction approach, theupper bound of the one-step prediction

error covariance and the estimation error covariance can bedetermined as

Pk|k−1 ≤ Ξk|k−1, Pk|k ≤ Ξk|k,

which completes the proof.

Based on the performance indexJC given in (12), we are now ready to obtain the state estimate by

finding a feasible solution for the following optimization problem

x̂k|k = argmaxJC (30)

Taking the partial derivative ofJC with respect tôxk|k, we have

∂JC

∂x̂k|k

= −
1

γ2
Gγ

(

∥

∥ȳk − Ckx̂k|k

∥

∥

R−1

k

)

CT
k R

−1

k

(

ȳk − Ckx̂k|k

)

+
1

γ2
Gγ

(

∥

∥x̂k|k − x̂k|k−1

∥

∥

Ξ
−1

k|k−1

)

Ξ−1

k|k−1

(

x̂k|k − x̂k|k−1

)

.

(31)

By letting ∂JC

∂x̂k|k
= 0, we have

(

Ξ−1

k|k−1
+ LkC

T
k R

−1

k Ck

)

x̂k|k = Ξ−1

k|k−1
x̂k|k−1 + LkC

T
k R

−1

k ȳk (32)
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with the auxiliary gain defined as

Lk =
Gγ

(

∥

∥ȳk − Ckx̂k|k

∥

∥

R−1

k

)

Gγ

(

∥

∥x̂k|k − x̂k|k−1

∥

∥

Ξ
−1

k|k−1

) . (33)

Since the item̂xk|k is not available when computingLk, it becomes impossible to obtain the exact value of

the auxiliary gain. Following the widely adopted approximation method in Gaussian-kernel-based entropy

filters [11], x̂k|k is substituted bŷxk|k−1 for the calculation ofLk in this work. Thus, the denominator in

(33) is equal to1, and the new auxiliary gain represented byLa
k is given as

La
k = Gγ

(

∥

∥ȳk − Ckx̂k|k−1

∥

∥

R−1

k

)

. (34)

To derive a recursive expression for the state estimate, (32) is reformulated as
(

Ξ−1

k|k−1
+ La

kC
T
k R

−1

k Ck

)

x̂k|k

=Ξ−1

k|k−1
x̂k|k−1 + La

kC
T
k R

−1

k Ckx̂k|k−1 + La
kC

T
k R

−1

k ȳk − La
kC

T
k R

−1

k Ckx̂k|k−1

=
(

Ξ−1

k|k−1
+ La

kC
T
k R

−1

k Ck

)

x̂k|k−1 + La
kC

T
k R

−1

k

(

ȳk − Ckx̂k|k−1

)

,

(35)

and we finally obtain

x̂k|k =x̂k|k−1 +
(

Ξ−1

k|k−1
+ La

kC
T
k R

−1

k Ck

)−1

La
kC

T
k R

−1

k

(

ȳk − Ckx̂k|k−1

)

. (36)

Recalling the filter structure given in (11), it is straightforward to acquire the desired filter gain of the

following form

K∗
k =

(

Ξ−1

k|k−1
+ La

kC
T
k R

−1

k Ck

)−1

La
kC

T
k R

−1

k (37)

To facilitate the readers to understand the proposed MCKF algorithm with ROUs under ETM, the

summarized process is listed in Algorithm 1.

Remark 5:Up to now, we have addressed the MCKF problem for a class of linear time-varying systems

with ROUs in non-Gaussian environment, where the data transmissions are governed via the predefined

triggering condition. To be more specific, a new correntropy-based performance index has been designed

where the effects of the ROUs and the ETM are fully considered, based on which an MCKF algorithm

has been designed and the explicit form of the filter gain has been obtained accordingly. It is worth

mentioning that the proposed filter is suitable for online state estimation due to the recursive nature of

the developed algorithm.

Remark 6:The MCKF problem has stirred much attention due mainly to theprevalence of the non-

Gaussian noises and a number of excellent results have been reported in the literature, see e.g. [2], [3].

Compared to existing literature, the main results developed in this paper exhibit the following distinctive

features: 1) the proposed MCKF algorithm is capable of resisting the ROUs under a particularly effective

ETM; 2) the proposed performance index takes the non-Gaussian noises, the ROUs and the ETM into

simultaneous account; and 3) the MCKF algorithm is locally optimal in that the performance index is

maximized at each time instant.

Remark 7:One of the main advantages of our proposed MCKF scheme is the capability to deal with

the non-Gaussian noises (e.g. impulse noise and unexpectedoutliers). For such non-Gaussian noises, the
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Algorithm 1 MCKF algorithm with ROUs under ETM

Step 1.Parameter initialization

Initialize the vectorx̂0|0 = x0 and matrixΞ0|0 = P0. Set the maximum recursive time step to

beK.

Step 2.One-step prediction

Calculate the one-step prediction according to

x̂k|k−1 = Ak−1x̂k−1|k−1

and the upper bound of the one-step prediction error covariance with (20).

Step 3.Estimate correction

Calculate auxiliary gainLk via (34) and the estimator gainK∗
k with (37). Obtain the corrected

estimate as

x̂k|k = x̂k|k−1 +K∗
k(ȳk − Ckx̂k|k−1),

and compute the upper bound of the estimation error covariance with (21).

Step 4. If k < K, then go to Step 2; otherwise go to Step 5.

Step 5.Stop.

higher-order moments of their distributions would lead to significant impact on the measurement data,

which makes it difficult to achieve the satisfactory filtering performance by using the traditional Kalman

filter. As such, a special correntropy-based performance index is constructed in this work to account for

the influence of the higher-order moments. Obviously, basedon the filter gain that is computed according

to the correntropy-based performance index, our developedMCKF approach is capable of dealing with

the effects from non-Gaussian noises.

IV. I LLUSTRATIVE EXAMPLE

In this section, a simulation example of the target trackingproblem is provided to show the validity of

the proposed MCKF approach.

A. Target Tracking Scenario

Consider the target tracking problem described by the two-dimensional model with the following

matrices:

Ak =











1 h 0 0

0 1 0 0

0 0 1 h

0 0 0 1











, Ck =

[

1 0 0 0

0 0 1 0

]

, Mk =











0.3

0.1

0.2

0.1











, NT
k =











0.1

0

0.2

0.1











, Uk = sin (3k) ,

(38)

whereh stands for the sampling period throughout the simulation process, and the state variable at the time

stepk is defined asxk ,
[

ιhtk , ϑht
k , ιvtk , ϑvt

k

]T
, where

(

ιhtk , ιvtk
)

and
(

ϑht
k , ϑvt

k

)

represent, respectively, the

horizontal and vertical coordinates of the target positionand velocity. The constant scalarᾱ that reflects



FINAL 12

the occurrence probability of the parameter uncertaintieswill first take a fixed value, and the effect from

this parameter on the estimation performance is to be discussed later in Section IV-D. Both the process
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V
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Fig. 1: Shot noise in the process noise

noise and measurement noise are chosen to be non-Gaussian noises. Specifically, the process noise is

composed of general Gaussian noise plus shot noise, which israndomly generated with a total number

of timesns during the simulation process of the lengthT . One example of the shot noise applied to the

process noise is given in Fig. 1. The process noise is expressed as

wk = N(0,Σw) + shot noise (39)

where the covariance matrixΣw is described as

Σw = σ2

acc











h3

3

h2

2
0 0

h2

2
h 0 0

0 0 h3

3

h2

2

0 0 h2

2
h











(40)

whereσ2
acc stands for the acceleration variance. Different from the process noise, the measurement noise

adopted here is the Gaussian mixture noise with the following form

vk = (1− p̄)N(0,Σv1) + p̄N(0,Σv2) (41)

wherep̄ is the glint probability, and the covariance matricesΣvi(i = 1, 2) are both with the form ofσ2
vi
I.

After obtaining the position information of the target, thesensor utilizes the event generator function

(6) to determine whether the triggering condition (5) is fulfilled. If f (ek, δ) > 0, the sensor will transmit

the obtained measurement to the filter, and the corresponding measurement gapek will be reset to zero

automatically. As the thresholdδ increases, the transmission instants are expected to reduce accordingly,

and the effect from the threshold value on the estimation performance will be discussed later in Section

IV-D as well.

B. Parameter Settings and Performance Metric

During the simulation process, the actual target trajectories are simulated with the initial statex0 =

[300, 4, 90, 3]T . To initialize x̂0|0 in the estimation stage, both the position and velocity components are

sampled from the respective Gaussian prior distributions.To be more specific, the mean value and covari-

ance matrix for the position components are[300, 90]T anddiag([10, 10]), while a different distribution

is utilized for the velocity components with mean[4, 3]T and covariance matrixdiag([1, 1]).
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For the evaluation purpose,M independent Monte Carlo trials are conducted to testify theperformance

of the proposed estimator, and the root mean-square error (RMSE) metric is introduced on both position

and velocity estimates averaged over theM trials, which are respectively expressed as

RMSEι,k =

√

√

√

√

1

M

M
∑

i=1

(

(

ι
ht,i
k − ι̂

ht,i
k

)2

+
(

ι
vt,i
k − ι̂

vt,i
k

)2

)

RMSEϑ,k =

√

√

√

√

1

M

M
∑

i=1

(

(

ϑ
ht,i
k − ϑ̂

ht,i
k

)2

+
(

ϑ
vt,i
k − ϑ̂

vt,i
k

)2
)

where
(

ι
ht,i
k , ι

vt,i
k

)

and
(

ϑ
ht,i
k , ϑ

vt,i
k

)

stand for, respectively, the realization of the position and velocity

components of the target state within theith Monte Carlo trial, and
(

ι̂
ht,i
k , ι̂

vt,i
k

)

,
(

ϑ̂
ht,i
k , ϑ̂

vt,i
k

)

are their

corresponding estimates.

Related parameter settings utilized in the simulation are provided in TABLE I.

TABLE I: Parameter settings

Parameters Values Parameters Values

h 1 T 120

ᾱ 0.7 p̄ 0.2

ns 35 σ2

acc 0.1

σ2

v1
10 σ2

v2
50

δ 30 M 100

β1 2 β2 0.5

β3 0.3 β4 0.5

C. Results Analysis

For the purpose of comparison, the state estimation will be implemented via the following two filters:

1) the proposed maximum-correntropy-based filter subject to ROUs under the ETM (abbreviated as MC-

ET-PU in Figs. 2-5); and 2) the conventional maximum-correntropy-based filter neglecting the influence

caused by the ETM and ROUs (abbreviated as MC in Figs. 2-5).

The estimation results obtained by the above two filters for one realization of the target trajectory are

shown in Figs. 2-3. It can be seen that the proposed maximum-correntropy-based filter provides a more

accurate result and outperforms the conventional maximum-correntropy-based filter with less measurement

information and ROUs. The evolution of position RMSEs and velocity RMSEs, calculated based on the es-

timates from the conventional maximum-correntropy-basedfilter and the proposed maximum-correntropy-

based filter, are shown in Figs. 4-5, respectively. We observe that the proposed maximum-correntropy-based

filter provides better performance than that of the conventional maximum-correntropy-based filter, which

demonstrates that we have effectively restrained the influences from the ETM and ROUs, and this is due

mainly to the fact that we have considered these influences into the design of the estimator.
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Fig. 2: The position components of the target trajectory andtheir estimates obtained by MC-ET-PU and

MC in one trial.
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Fig. 3: The velocity components of the target trajectory andtheir estimates obtained by MC-ET-PU and

MC in one trial.

D. Discussion on Parameter Settings

To further investigate the effects from the ROUs and the ETM on the tracking performance, two more

groups of simulations are carried out with different parameter settings. In the first group, the only changing

parameter is the occurrence probability of parameter uncertainties, and the others remain unchanged. The

corresponding behaviors of RMSEs on position and velocity components in the estimation results are
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Fig. 4: Position RMSEs of MC-ET-PU and MC.

0 20 40 60 80 100 120
Time, k

0

10

20

30

40

50

60

70

R
M

S
E

 o
f V

el
oc

ity

Vel-MC
Vel-MC-ET-PU

Fig. 5: Velocity RMSEs of MC-ET-PU and MC.

given in Figs. 6-7, where a more obvious impact is found in thecomparison of the velocity RMSEs. Since

the measurement output is right the position components of the target state, the effect of the randomly

occurring uncertainties is not obvious to the position estimates. When it comes to the velocity RMSEs,

we observe as expected that the performance clearly degrades as the occurrence probability increases.

Similarly as above, in the second group of simulations, the changing parameter turns into the triggering

thresholdδ. The related simulation results are given in Figs. 8-9. Due to the fact that a larger threshold

leads to much fewer transmissions, the worst performance isfound with δ = 50 where the available

measurement information at the filter end is significantly reduced. Considering the contradiction between
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Fig. 6: Position RMSEs of MC-ET-PU with respect to differentoccurrence probabilities of uncertainties.
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Fig. 7: Velocity RMSEs of MC-ET-PU with respect to differentoccurrence probabilities of uncertainties.

the communication resource consumption and the estimationperformance, a reasonable trade-off is quite

necessary, especially in the practical applications.

To demonstrate the effect of the ETM to the communication cost reduction and the estimation perfor-

mance, the average triggering rate and average RMSEs obtained under different values of threshold are

compared in TABLE II. To be more specific, the average triggering rateR is calculated as the mean of the

triggering rate over all theM Monte Carlo trials. Furthermore, the average RMSEs on position (RMSE∗
ι )

and velocity (RMSE∗
ϑ) are the mean ofRMSEι,k andRMSEϑ,k over the total simulation period. With the

increase of the triggering threshold, the average triggering rate decreases obviously, and the estimation
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Fig. 8: Position RMSEs of MC-ET-PU with respect to differenttriggering thresholds.
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Fig. 9: Velocity RMSEs of MC-ET-PU with respect to differenttriggering thresholds.

performance also degrades simultaneously.

V. CONCLUSIONS

In this paper, the MCKF algorithm has been developed to solvethe filtering problem for a class of

non-Gaussian systems with the ROUs under ETM. The measurement transmission has been modulated by

the ETM and a Bernoulli-distributed stochastic variable has been utilized to regulate the random nature of

parameter uncertainties. A performance index has been established, which is suitable for reflecting the joint

effects from the non-Gaussian noises, the ETM and the ROUs onthe estimation performance. Based on

the proposed performance index, an MCKF algorithm has developed, where the MCC has been introduced



FINAL 18

TABLE II: The effect of the triggering threshold on the average triggering rate and average RMSEs

R RMSE
∗
ι RMSE

∗
ϑ

δ = 10 90.88% 4.6524 3.8004

δ = 30 70.45% 9.1136 5.7438

δ = 50 58.39% 15.1159 8.1338

to facilitate the calculation of filter gain. Finally, a target tracking example has been provided to illustrate

the effectiveness of the proposed MCKF algorithm. Future research topics would include the extension

of the correntropy-based criterion to the nonlinear networked systems subject to other communication

protocols (e.g. Round-Robin protocol, Try-Once-Discard protocol, Random Access protocol and dynamic

event-triggered protocol) [15], [24], [45]–[48] and improvement of the filtering performance by using

some latest optimization algorithms [21], [22].
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