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Abstract—This paper deals with the scalable distributedH.- filtering algorithm is to estimate the state information of the
consensus filtering problem for a class of discrete time-varying target plant in a collaborative manner by deploying a set of
?’:ﬁ??géf?ggg?n“;tL\‘Allt(')Fr’ll('gatl':‘(’)er trt:‘;'suerf dgﬂdincegzgrg: r']“e?\i‘lzlﬁlze'intelligent sensing facilities over the region of interest. Some
it is assumed that only the measurement )c/)ut%uts from partial’ cgmmonly used ,d'SFr'bUted f"te””g §trateg|es include d|§-
sensor nodes are available. Also, the phenomenon of censoredributed Kalman filtering methods, distributed set-membership
measurements is taken into account to reflect the limited ca- filtering schemes, and distributédl,, filtering approaches, see
pability in measuring. A new H.-consensus performance index [51, [9], [29], [37], [41], [43] for some recent works. Among
is put forward to evaluate the disturbance rejection level of the them, special attention has been focused on distribéied
filters against the simultaneous presence of external disturbances, ..., .’ . . . - .
initial conditions as well as censoring effects. By utilizing the fll_terlng algorltlhmts due prlmz?\rlly to .thelr capacme_zs of the
vector d|ss|pat|v|ty theory and the recursive matrix inequa”ty dISturbance I‘EJeCtlon/attenuatlon aga|nst external dISturbanceS,
technique, sufficient conditions are established under which the see e.qg. [7], [8], [26], [28], [45]. Very recently, to improve the
prescribed H-consensus performance index is achieved. The performance of the traditional distributeid,, filters, the so-
parameters of the desired distributed filters are calculated via called distributedH...-consensusiltering (DHCF) algorithm

solving certain matrix inequalities, where such a calculation is has b d with intention t t for the effect
conducted in a local sense so as to preserve the scalability of the as been proposed with intention to account for the €efiects

filter design. Finally, a numerical simulation example is provided Of the consensus errorselated to neighboring nodes. Up to
to demonstrate the validity and applicability of the proposed now, the DHCF issue has become an attractive research topic

filtering strategy. receiving considerable research attention, see e.g. [12], [13],
Index Terms—Censored measurements, distributed filtering, [27], [39].
H..-consensus, multiplicative noises, partial-nodes-based mea- For a large-scale sensor network, the coupling complexities
surements. caused by mutual interactions among large quantities of sensor
nodes constitute a major challenge for the analysis/synthesis
issues on distributed filters. A commonly employed approach
to coping with such a challenge is to augment the network
During the past few years, distributed filtering problenstates [5], [6], [21], [26], [38], [41], which implies that the
for sensor networks (SNs) has gained tremendous reseajdbal information of the network is available. In practice,
interest from the control and signal processing communitiggwever, each sensor can only access the local information
and found great applications in engineering practice such fasm its neighbors and therefore the global information of
intelligent transportation systems, people-centric networkege entire network is hardly accessible. As such, it is highly
systems, public health and environmental monitoring, navigdesirable to develop the so-callsdalablefiltering algorithm
tion and tracking systems, etc., see e.g. [3], [6], [15], [18], [21§nat only utilizes the neighbors’ information of each sensor
[22], [25], [30], [31], [37], [38]. The core idea of distributednode in order tdocally design the filter parameters. Clearly,

such alocal design scheme enjoys the flexibility/adaptabilit
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atracted some initial research interest in the area of sigrfat the distributed filtering problem within a local design
processing, and special effort has been directed towards freanework; 2) compared with [19], [20], a new partial-nodes-
Tobit Kalman filtering problems, see e.g. [1], [2], [10], [11]based distributed filtering strategy is proposed in terms of the
[16]. It is worth mentioning that most results concerning Tobineasurement outputs from a fraction of sensor nodes, where
Kalman filtering have been based on the assumption thhe distributed filtering schemes are designed, respectively, for
the probability density function of the system noises obey®des with and without measurements, thereby better reflecting
the Gaussian distribution. Apparently, these existing resutte engineering practice; and 3) in light of the existing results
are not applicable to systems suffering from non-Gaussiaancerning the DHCFs and the censored measurements, a new
noises. Very recently, a set-membership filtering approach hds, performance index is established to evaluate the impact
been proposed in [17] for a class of time-varying nonlinefom the censored measurements on the filtering performance.
systems with censored measurements where the noises residée remainder of this paper is organized as follows. In
within certain ellipsoids. Nevertheless, when it comes to ti&ection I, the target plant described by a discrete time-varying
DHCEF problem subject to censoring effects, the correspondisgstem is introduced and the distributed filtering problem to
results have been very few due to the lack of appropridbe addressed is given. In Section Ill, sufficient conditions
techniques capable of tackling the scalability issue in a largare derived to guarantee the desired filtering performance
scale network environment. index and the filter parameters are calculated by using the
In the practical applications of SNs, it is essentially difficullocal performance analysis method. An illustrative example is
to guarantee that system measurements are available framsented in Section IV to demonstrate the effectiveness of the
all sensor nodes due to a variety of physical restrictiongroposed filtering strategy. Finally, conclusions are drawn in
For example, certain sensor nodes only have the transmissiatction V.
capability (i.e. without measuring capability) because of the Notation: Let R™ and R™*™ be the sets of then-
limited resource that prevents the information collection fromimensional vectors aneh x m real matrices, respective-

all nodes. The unavailability of measurement outputs coulyl For column vectorsz = [r1,22,...,2,]T andy =
also due to the sensor failures in certain severe circumstandgs,yo, - . ., yn]’, * > y (respectivelyx < y) represents that
e.g., colliery, nuclear plant, and military battlefield. Therefore;, > y; (z; < v:), Vi = 1,2,...,n. Denote byl a column

in reality, instead of requiring the measurement informatiorector of appropriate dimension with all elements being 1.
from all the sensor nodes, it is more reasonable to assufesquare matrixU = [Uy;] is called column substochastic
that the measurement outputs utilized for the state estinia-17U < 17 and U;; > 0. l2[0,n — 1] means the set of
tion/filtering tasks are only available fromfi@action of sensor summable vectors ovéd, n—1]. For a vectonwy, € 13[0,n—1]
nodes, which gives rise to the so-called partial-nodes-basetl a matrix@;, with compatible dimensions|jwy||,, =
(PNB) distributed filtering problem. To be more specific, the} Q,wy. Given two matricesX and Y, X7Y (s) means
main idea of the proposed PNB distributed filtering problenlY”Y X. A block diagonal matrix is denoted as dfag.},
is to make use of the measurement information fromntial moreover, diag{ A} = diag{4, ..., A}.
sensor nodes to achieve the desired estimation performance. —
By now, some pioneering work has been reported on the PNB
state estimation topics for complex networks, see e.g. [19], Il. PROBLEM FORMULATION
[20]. Nevertheless, the PNB distributed consensus filteringConsider an SN withV nodes scattered in certain area of
issue has not been fully investigated yet and this motivatiséerest. The topology of the SN is characterized by a digraph
us to launch a study on such a problem of clear engineeriig= (V, €, /), whereV = {i | i = 1,2,..., N} is the node
insights. set,& = {(4,4) | (1,7) € V x V} is the edge set, and/ =
According to above discussions, it can be concluded that;;] € RY*N s the adjacency matrix. For different nodes
despite its practical significance, the PNB scalable DHG®dJ, if (4,5) € £, which implies thatj can transmit messages
problem has received very little attention for time-varyingp i, thena;; = 1,; otherwisea;; = 0. The in-degree and
systems with censored measurements. This is due malt’ﬂy out-degree Of node are, respectively, defined as =
to the following identified challenges: 1) how to design théij p aij andg; = Zjv 1 aji- The set of neighbors of node
distributed filters based on the measurement outputs for partiéih in-degreep; is denoted by\; = {ji1, ji2, - - - ; Jip: }-
sensor nodes? 2) how to examine the impact of the cenConsider the dlscrete time-varying stochastic plant over the

T

sored measurements by an appropriate filtering performaricdte time-horizon £ {0,1,...,n — 1}:

index? and 3) how to achieve and verify the scalability of

the distributed filtering scheme? The purpose of this paper Try1 = (Aok + Z¢t,kAt,k)xk + Brwy (1)
is, therefore, to handle the aforementioned challenges and t=1

provide a feasible trade-off between the availability (of thehere z, € R"= is the system statew, € R™ is the
sensor measurements), the robustness (against the cens@ernal disturbance belonging i9[0,n — 1] and ¢, (t =
measurements), the scalability (of the computational com;2,...,r) € R are mutually independent multiplicative
plexity) and the accuracy (by means of the,-consensus). noises with zero means and unity variancésy,, A, , and By,

The main contributions of this paper can be summarizede known time-varying matrices with compatible dimensions.
below: 1) according to our literature review, the censored Without loss of generality, for the sensor network under
measurement phenomenon is, for the first time, investigathsideration, it is assumed that the measurement outputs of
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the firstly (lp < N) nodes are available with the following —Li k(I —pig)(Ti = Ci pxg),
form: i=1,2,.... 1,

f =Cipxr + D&, Vi=1,2,...,1 2 -
Yirk . ik 0 @ i1 =(Aox — Z Kijr)eir + Z¢t,kz4t,kwk

wherey?, £ [y (1) v, (2) .. yi(ny)]T € R™ isthe JEN: t=1
measurement output of nodeand¢; ,, € R™ is the external + Brwy + Z Kijk€ik,
disturbance belonging [0, n—1]. C; , and D, ;, are known JEN:
time-varying matrices with compatible dimensions. i=lo+ 1,00+ 2 N

As stated in [1], [2], [17], in practical engineering, the . . R
sensors often suffer from the measurement censoring, whictPenotingn; . £ [z e[} ]7, vip £ [wi &7, @ £
can be formulated by the following well-known Tobit tyge [0 I'7]7, 2z, & Fn;r and F £ [0 1], the filtering error

model: system is obtained with the following compact form:
yin(t) = Yie(t), i yp () > Ti(t); 3) Nik+1 =(Aok + Cik — Z ICijk)ni k
o Ii(t), otherwise JEN;
whereT';(t) € R is a known threshold. + (B + DigJvie + %\; K ki
For convenience, we introduce the following indicative , s
variablep; i (1): — & pwi + Z 1AL 1k
1, if i) > Da(t); . =
pik(t) = _ ) i=1,2,...,1, )
0, otherwise
, Nikt1 =(Aokx — Z Kijk )ik + Brvik
Then, according to (3)-(4), the actual measurement output JEN;
yi.x(t) is described as follows: r
. + > A knig + KCij kM5 ks
Yi(t) = pir(OYi(t) + (1= pir@)Tit). (5) 2. ZN pll
Denoting i=1lg+1,lp+2,...,N,
I 2 [0i(1) Ti2) - Tilny)]7, ok =Pk, 1=12, N
yir 2 fia(D) i@ o vy where
pik = diag{pi x(1),pix(2), - ,pik(ng)}, Aok = diag{ Aok, Aok}, Dix = diag(0, —Li kpix Dk},
& = dia O,Li 1—p; N Kii = dia OrK}1 N
one has k o0, Li k(1 = pik)} ik A0, Kij}
U= | Ave 0 B,— | Br 0
Yik = pikyYix + (I = pig)la. 6 " Ay 0] Br 0|
Noticing that the measurement outputs are only available:, | — [ 0 0 } _
from partial nodes, the following PNB distributed filters are Lik(1 = pir)Cin  —LikCip
constructed: In what follows, we are to examine the impact from the

censored measurements on the system performance. Before

Tik+1 = Aokdik + Lik(yik = Cindik) proceeding, the following notations are introduced:

+ Z Kij (&6 — Zik), (7) E Y A
JEN; AA[ZT ZT']T
i=1,2,..., 1, =Bk o ANl
R EWik(1) Wik(2) ... Wigk(ny)l,
Tipr1 = Aopdin + Z Kijr (&0 — Zik), 8 exp(wz) 2 [exp(F (1)) expTi(2)) ... expli(ny))]",
JeN: whereW,; (t) > 0 for t =1,2,...,n,.
1=1lo+1,lo+2,...,N, Definition 1: Let the disturbance attenuation level> 0,

the weighted matrice&,; > 0, U2 > 0, R; 1. > 0, Q1 > 0,
Tiix > 0, Ty > 0 andW, ;. be given. The filtering error
system (9) satisfies the,-consensus performance constraint
over the finite horizor# if the following inequality holds

wherez; ;, € R" is the estimate of;, by nodei, and L; j,
and K;; ;, are the filter parameters to be calculated later.

Settinge; 1 £ x —Z; 1, the filtering error dynamics of node
1 is obtained from (1)-(8) as follows:

n—1 lp n—1
<~? N, ;
eikt1 =(Aox — Li1xCix — Z Kijr)eir + Z¢t kAL RTE E {Z (I)g(zk)} =7 Z ZWZ,kexp(wz)
= k=0 i=1 k=0 (10)

n—1
+ Brwg, — LikpikDikik + Y Kijhejk +7? Z <771 oUini,o + Z vil7., )
JEN;
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where an interval-valued function#,, concerning out-degreg as
N follows:
Dg(zn) £ 3| D Nziw = zllf + Izinlll | P (U~ R R 13)
i=1 \jEN; & (0,1], if ¢;=0.

U; = diag{U; 7U' N Tk = diag{T; k,T' k- .
' A 12_} " . AT, ] _12’ ) Theorem 1:For given the real numbey > 0, the constant
Remark 1:In comparison with the traditionall/o- sequencen; ), € .7, , the matricesR;, > 0, Qip > 0,
consensus performance index, the effect of the measuremgnt ~ o, W, ,, and the filter parameters, , and K
censoring is reflected in inequality (10) by introducing the sege filtering error dynamics (9) is strictly stochastic vector-

ond term on its right-hand side. It is noted that such a termdgsipative over the finite horizof{ regarding the vector-
chargctenzed byawelghted sum with respect to an exponenyé\iued supply rate functio®(zy, v, @) and also satisfies
function of the censoring threshold over the time horizén he 77 -consensus performance constraint (10), if there ex-

which would increase as the censoring threshold grows. Thigs 3 vector-valued storage functid(z;,) (whose element
implies that theH.-consensus performance would becomg v; (. ) = 0 Piknie, Where {Pi .} enun) IS @ se-
) T, s s ’

worse as the censoring phenomena becomes more sevgf@nce of positive definite matrices with the initial condition
which is in agreement with the engineering practice. As sucp, ; < ~2(7,), such that the following conditions hold for
the proposed new performance index (10) accounts for the- 4/ v; — 1,2 ... N:

influence of the measurement censoring very well.

This paper aims to find the filter parametérs;, and K 1 B Ei B
respectively for nodé to guarantee that the dynamics of the Eik = * Ef?k Eﬁ <0, (14a)
system (9) satisfies the desiraldle-consensus performance * * E?i’,’g
index (10).

1 _
N _?(Bk + Di,kﬂ;kl By + D )"

I1I. M AIN RESULTS +pfkl+1 >0, (14b)
In this section, by resorting to the vector dissipativity Vi = 1,27”',710,
theory, the analysis and design problems of the distributedd
H..-consensus filter (7) will be discussed. To facilitate th@"
subsequent development, we give the following notations Tii  ri2
| P 9 . t2 | Tk Tk | <o (152)
W S [wr’lr wg . w?;]T7 * ik
_ - _ 1 _
Si(zks viks i) 2 V2 ([vik 7, + Wi pexp(ei)) Uip &P — ?B;ﬂ;_’lekT >0, (15b)
= llzik = 2kl B, — lzinld, Vi=lo+1,00+2,...,N,
JEN;
) where
i=1,2,...,1, (11)
Si (2, Vi,k) £ 72||Vi,k||%wk - ||szH2Qm Ezl,lk = -Az:kpi,k—ﬁ-l»At,k + IT(Qqu + Ri,k)]: — ik Pik
— Y 2k — ikl = o
JEN, + (Aok +Cik — Y Kij) W7k (o),
i=1l+1,lo+2,...,N. JEN:
=12 _ o Ny e . TR
Definition 2: The filtering error dynamics (9) is strictly s- =ik _[(onk +Cik Z Kije) Vi 1 Kijy o — F" RiwF
tochastic vector-dissipative over the finite horizigregarding JEN
the vector-valued supply rate function (Aog +Cig — Z ;ciM)T\pi—Ji/cijwk — ]:TRi,k]:},
i ENG
S(2k, Vi, @) 2[S1 (21 V1,1 @1),5 -+ St (25 Vi s P ) . )€ e
T Sk =Kiji -+ Kigp bl Vg Kijie - Kigy, i)
Sto+1(2k Vig41,k) - - - SN (28, VNE)] S ’ i ’ '
; Qjir K T
if there exist a vector-valued storage function(n,) = —d|ag{ j_lpﬂ'ﬂ»k —F RinFs-

[Vi(nk), -, Vv (nv,i)] T (with V(0) = 0 and Vi (i) > 0, .k
i =1,2,...N) and a dissipation matrix ( [12], [13]) sequence T
Ui, € RV*N such that the following inequality holds for any Qijs
ke H: 5113;@ =—(Aor +Cik — Z /Cij,k)T\I’;;i&,kwi,
JEN;

B{V(ne+1)} < URE{V ()} + E{S(zk, v, @)}, (12)  _ _ _ T
In the following, sufficient conditi ided t Zh == [(Kig w g i) o (Kij, w5 Einm) ]
n the following, sufficient conditions are provided to guar—ss __rer g—1c 27 _
antee that the filtering error dynamics (9) is strictly stochas-"* w; Ein¥ip&inm =7 Wirexp(ei),
tic vector-dissipative over the finite horizoH. In order to .11 T T

; o , ' T = i i i, — Pik P,

construct a desirable dissipation matii, we first define ik ;AMP st Ak + P Qg+ Ri) 7 = pinPik

Pijy, b — ]:TRi,k]:}a
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+ (Aok — Z Kijw) 0 (Aok — Z Kijk)s

JEN; JEN;
T3 :[(Aoyk 3 Kigw) T Kijy g — FT R F
JEN;

o (o= Y Kig) U K, 0 — FTRiuF |,

JEN;
T35 =[Kij g - Kijy b Ok Kk -+ Kij,, 4]
. A5k
— duag{ juk po FTR W F.. ..
1+ qj;1 gk .
O,k
Jip; Pjip,7k _ ]:TRi,k‘/—:};
L+ qjiPi '
141 —aig)
Pik —1 T % .

Proof: For presentation clarity, the proof is divided into

the following four steps.

1) Proof of the stochastic vector-dissipativity for the nodes

i (1=1,2,...,1y) over the finite-horizor.
First, for nodei (i = 1,2,...,lp), it follows that
E{Vi(0i 1) |71}

=E{n} s 1P+ 17 ket1 ik}

T

:E{ ((Ao,k +Cik — Z Kijre )ik + Z Otk ALET K

JEN; t=1
T
+ Bk + Dig)vik + Z Kijenj e — gi,kwi) Pik+1
JEN;
T
X ((Ao,k +Cix— Z Kijk )ik + Z Ot At kN5 k
JEN; t=1
+ Bk + Dig)vik + Z Kijenj e — gi,kwi) ni,k}
JEN;
. T
=1 k (Ao,k +Cix — Z Icij,k) Pi kvt ( ° )ni,k
JEN;

+ VE;C(Bk +Di k) Py 1 Br + Dig)vik

+ ( Z n}?klcz;)k)Pi,k+l( Z ICZ-Mnj’k)

JEN; JEN;
+ 2773:k(d40,k +Cir — Z Kijx) ' Pigr1(Bi + Dig)Vik
JEN;
+ 207 (Ao +Cik = Y Kit) " Pigsr D Kiwmjn
JEN; JEN;
T T
— 203 (Ao +Cik — Y Kijn) Pikrr&inmi
JEN;
+ 2VE;C(Bk +Di) P Z Kij ki k
JEN;

- 2ViT,k(Bk + Dy ) Pi g1k

T T
—2w; & 1 Pik+1 E Kij ki ke
JEN;

s
T T
+ ik E Ay 1 Pi k1A ki k
t=1
TeT
+ w; 5i7k7)i,k+lgi,kwi

+72ng7;,kVi,k _'YQVZ]@,E,kVi,k- (16)

5

Next, it is readily obtained from (14c) that; , > 0. Then,
by applying the Schur Complement Lemma to (15b), one has
Z_); £ ”yQ'TiJc — (B + Di_,k)TPiykJrﬂBk + Dz‘,k) > 0. On the
other hand, it is easy to see that the following inequality is
true:

(Vi,k —®,; 1. (Bi + D) Pigy1(Aog +Cik — Z ICij )ik
JEN;
— @, . (Br +Di k) Pinia Z Kijxnjn + @in(Br + Dig)”
JEN;
T 1
X Pi,kJrlgi,kwi) (I);k ( .) >0,
and therefore

Vik((Be + Di) " P (Bre + Die) = V> Tie )ik
+ 2] (Ao + Cik — D Kije) " Pikr1(Br + Dig )ik
JEN;
+20] (B + Do) "Piir Y Kijanj
JEN;
- 2ViT,k(Bk + D) Pi k1€ ki
<l Aok +Cik = > Kij) " Pisr (Br + Dik)
JEN;
X ®; 1 (Bi + Dik) Pir (Aok + Cik — Y Kijr )ik
JEN;
+ Z n}ij?j,kPi,k+l(Bk + Dik)®i (B + Dig)”
JEN;

X Pik+1 Z Kijknik + 205 (Ao +Cik — Z Kijr)"

JEN JEN
X Pikt1 (B + Dik)®ik(Bi + Din) Pikr >, Kijwnjx

JEN;
+ @] € Pikt1(Br + Dii) @ik (Br + Dik) " Pips1Ei ki
— 20 (Aok +Cik = Y Kij) " Pikr1 (B + Dik)
JEN;
X ©; (B + Dip) Pipy1Ei s — 2 Z K 1Pk
JEN;

X (Bi + Di) @i By 4 Di ) Pikr1Ei i (17)

Moreover, with the help of the matrix inverse formula, we
derive that

Piks1(Br +Di)®i x(Br + Di) Pigr1 + Pikrn
_ 1 _ _
:(Pi,lcl-i-l - ?(Bk + Diyk)T,kl(Bk + Di.,k)T) !

3

S
(18)

In combination of (16)-(18), one finds

E{V;i (i et1) |73k }
<nix (Ao + Ci — Z /Cij,k)T‘I’Z;i(O)m,k

JEN;
+ 2] (Ao + Cik — Z Kiju) Wiy Z Kij kmj.k
JEN; JEN;

—2n] (Ao + Cip — Z Kije) Vi Ei ki
JEN;
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T T —1
=2 0K YA

JEN;
T T -1
+ Z Mk ¥k Z Kijknjk
JEN; GEN;
s
0 > AL P Ar i
=1
+ wfggk‘l’zli&,sz‘ + Vv Tikvik
éXZkHi,kXi,k + 'yzl/iT’k’E_,kui_,k (19)
wherex; x =[]}, e . U vk =[] 4 - anpwdT and
11 12 13
Gy, 145 1LY
e =| =* 175 M2
A
with
10}, =(Aok + Ci — ZIC”k N Aok +Ci
JEN;
r
- Z Kijk) + ZAZkPi,k+1At,ka
JEN; t=1
Hzl,zk = [(Ao,k +Cik — Z Icij-,k)T\I/i_,;i’Cijl,k .
JEN;
(Ao,k +Cix — Z ’Cijyk)T\IJ;/iICijpi,k},
JEN;
Hz =~ (Aok +Cik — Z /Cijﬁk)T\IJ;Iigiykwi,
JEN;
HZQ;QIC = [’Cljlk tte ICijP»L 7k]T\P;é [Icljlk PR ICijpi 7k:|7
- _ T
7% = = [(Kijy w Vi) o (Kij,, w ¥ Einwi) ]
Hi%;c = wfgfqu;]igi,kwi-

6
—lzikllE,, + D 1 + kT k + Pi kN, Pk ik
JEN;
;1001 k A;NON k
= e Piky ey ———— |V Si(2k, Vi g, W4
T a Pik T IV(nk) + Si(2k, Vi, @)
=[UrV (i)l + Si(2k, Vi, wi), (21)
where
a1i0 & A1NON, Kk
LK Tre e
a; (.1, ' a; (.Jt R
Uk = “Trar Pisk v (22)
aNl.Oll,k aNi.ai,k
T+q T+q: PNk
Since a; , € 7, it is inferred thatU; is nonsingular.
Notice 17U, = 17 and, thereforeU; is the dissipation

matrix. Moreover, in terms of the property of the conditional
expectation, the following inequality is acquired:

]E{Vi(m,kﬂ)}
<E{[UxV (m)]i} +E{Si(zk, vik, i)},
i=1,2,.... 1.
2) Proof of the stochastic vector-dissipativity for the nodes
t(i=1lp+1,lo+2,...,N) over the finite horizorH.
For the node (i =1y + 1,...,N), it follows immediately
from the system dynamics (9) that
E{V; (i k+1) 731 }

=E{n} b1 Pi ket 1M o1 73,1 }

:E{((Ao,k - Z Kijle )ik + Z Ot ALk g + Brvik

JEN; t=1

+ Z Kij,knj,k)TPi,kJrl ( ° )

JEN;

(23)

ik}

By some straightforward algebraic manipulations, we can-/ k(Ao o — Z Ky k)TPi,kJrl (Ao,k B Z Kij,k)ni,k

see that the following inequality is true:

T 2 T
Xeelliexin + 3 zin — 2l — piknikPiknin
JEN:

0]k Pixnin + 1ziklle, . — v Wi rexp(c;)
1+%

=X 1k ZikXik <0, (20)
which implies

Xerllikxin <= > llzj

2 — lzikll?

Qik
JEN;
Oé
+ EZJV 1+ kpjknjk+pzknzkplknzk
J

+ 72Wi7kexp(wi).

Recalling the expression o;(zx, vi r, w;) and (14a), one
has

JEN;

T
0l Y ALP 1 Ak

t=1
T BT
+ V1 B Pik+1BrVi k

+ ( > nfklcfj,k)?i,kﬂ( > ’Cij,knj,k)

JEN; JEN;

JEN;

T
+ 2}, (Ao,k - Z /Cij,k) Pik+1Brvik

JEN;
T
+ 2772;C (»AO.,k - Z Kij,k) Pi kst Z Kij kMj,k
JEN; JEN;
+ 20 B Piksa > Kijknj
JEN;

+ VU Tiwvie — VUi T ki (24)

It is obvious that (15b) leads ta;, > 0. Then, by

applymg the Schur Complement Lemma again, one obtains
<I>Z_k = Y2 Tir — BEPig+1Br > 0. On the basis of the
followmg inequality

(Vi,k — @, 1 BLPi ki1 (Ao g — Z Kije)nix —®
JEN;

E{Vi (i k1) 70,1 }
<X kX + YV Tikvik
<Vl Tiwvin + 7> Wi wexp(c; )

2 T
— zikll R ik B,

Z 125,k

JEN;

ik
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T _
X Pik+1 Z Kij=knj’k) ik ( .) =
JEN;

we have
ng(BgPi,k+1Bk —VTir )ik
+ 207 (Ao 1 — Z Kij k)" Pi g1 Brvik

JEN;
+ 2VZ-T,;€B;€T7’¢,1€+1 Z Kij knj k
JEN;
<773:k(~'407/€ - Z Ki,j,k)TPi,kJ,-lBk‘ii,klggpi,k.yl(Aqu
JEN;
- Z Kijo )ik + 20 (Aok — Z Kiji) T Pita
JEN; JEN;
X Be®i kB Piks1 > Kijwnjk + > 1xKip
JEN; JEN;
X Pi ks 1Be®i 1 BF Pik i1 Z Kij kM5 k- (25)

JEN;
According to the matrix inverse formula, one derives
Pi k1181 ;. kBkTPi k1 + Pik+1
:(,Pijlirl BkT leT)
20, (26)
Then, it is not difficult to verify from (24)-(26) that
E{V; (i kor1) 7,1 }

—1
<KL Kijni
JEN; JEN;

T
T T 2 T
+ ik Z Ak Pikrr Acknik + Vi TikVik

t=1
+2n] 3 (Aok = D Kig) " > Kijrnjk
JEN; JEN;
0l Aok = D Kigw) "0 Aok — > Kiju)mik
JEN; JEN:
AL kX + V2V Tk ik, (27)

where
Xi,k :[nfk nff k]Ta NING k= [mle anIJi,k]T

)

3

22
Hz k

M =(Aok — Y Kijr)"

U Aok — Y Kijr)

JEN; JEN;
r
+ D ALP ki Ak,
t=1
Zk_{AM— > Kijw) U K -
JEN;
T -1
(Aok = Y Kij) U 1K, k|
JEN;

35 =[Kij g - Kijy, k) V5 Kigioke - Kig,, 1]

;
Moreover, (15a) implies
Xiw Il kX + Z Izjk = 2kl R, + N20klD,
JEN;
S Pty P
- kMl — Piski ks Pike ik
JEN;
= i,kTi,k<i,k <0, (28)

namely,

XelliXin <= D lzige = ziplR, , — 2kl ,

JEN;

2

JEN;

773 kPJ kNjk + Pi, kT, kpz ki k-
1—|— qj

Noticing S;(zx,v; ) and (14a), we have the following
conclusion:

E{Vi (i kt1) 75,1}

_T _
SXikai,kXi,k

<V Towvin — Y lzik — 2kl — l2ikld,
JEN;
o,

+ Z 1 + kpy,kny,k + pikM;, k,Pz kM5 k

JEN;

;100 k AiNON k
= — . . Pikye,— |V + S (zk, Vs

|:1+CI1 Pi,k 1+CIN :| (nk) z( k z,k)

=[Ux V()]s + Si(2k, Vik)-

(29)

By applying the property of the conditional expectation to
(29), we further obtain the following relationship:

E{Vi(nik+1)} < E{{UxV (nx)li} + E{Si(2k, vix)},

30
i=1lg+1,...,N. (30)

3) Proof of the stochastic vector-dissipativity for the nodes
i=1,2,...

Based on the above results, it is observed from (23) and
(30) that the following vector inequality is satisfied:

E{V(nk+1)} < UkE{V(nk)} + E{S(Zk, Vi, w)} (31)

Consequently, it is readily seen from Definition 2 that the
dynamics (9) is stochastic vector-dissipative over the finite
horizon .

4) Proof of the H,.-consensus performance index.

In this step, we aim to prove the guarantdéd -consensus
performance of the distributed filtering scheme. First, left-
multiplying 17 on both sides of (31) yields

E{1"V (1)} < E{17S(z4, vk, @)} + E{1T ULV (1)}

dodo+1,...,N.

(32)

Denotingv(nx,) = 17V (1), (32) is further reformulated as
follows:

lo

E{o(ner1)} <Y B{Si(zk, vik, @)}

=1 v
+ > E{Si(zk, vin)} + E{o(m)}. (33)

i=lp+1
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Keeping the notation ofS;(zx, v 1, @) (i = 1,2,...,1o) Ying b o = F Rzk]:},
and S;(zx, vig)(i = lo +1,..., N) in mind, we arrive at 1+4qj, "™ ’
33 _ _ A2\ . .
E{v(m41)} — E{(m)} + B 24) Uik = =7 Wosexplws),
Y o ol =( Ao +C Kon) — &l
< UL Tiwvie + Y VWirexp(wi).  (34) ik =\ Aok +Cik — g\; ik | > Uk =E
= = 2 _ric e T B —di 3
Summing up both sides of (34) frofnto n — 1 with respect Qg =Kijue - Kigp " K = d'ag{o’fF””“};’
to k yields O == Pirt1, Wi =Tk, QO =Bx+Dix,
n—1 91176 Z[./ZlT .. ./ZlT ], Qz E = —diag{Pi,k+1},
E{v(nn)} — E{v(no)} + kz g (2k) Ao,k —d|ag{ k+1A0 ks 475, k+1A0 k}
=0 _
n—1 N n-1 lo D; —dlag{O —E;wpikDir}t,
<72ZZV1 kal/zk-i‘ZZV ik€Xp(w;).  (35) A = P k1 Aek 0 B, — Pil,k+1Bk 0
k=0 i=1 k=0 i=1 PR PR A 0] E P} B 0]
Taking the factE{v(n,)} > 0 and the initial conditon  _ | 0 0
Pio < 72U, into account, theH.,-consensus performance Cik = Eix(1—pix)Cix —EixCix
index (10) is satisfied. Thus, the proof of this theorem is now _ r 0 0
complete. m Eik = 0 Esp(l— pis)ws }

Theorem 2:For given the real numbey > 0, the constant L T .
sequenceoz”C € 4, and the matriceRR; , Q; x, 7ir and Azk =F QinF +F  RixF = piPir,

W, . be given. The filtering error system (9) achieves the Al = — [F' R F ... F Ry F], AY =By,
H..-consensus performance index over the finite horizon
H, if there exist a sequence of matric€®; i }repuin = a
diag{P},, P}.} (P}, > 0 and P2, > 0), and matrices?; , ~ A7} = — diag{l_ilil’.Pjﬂ,k —FTR . F,. ..,

J

Pi

and Fj; ;, satisfying the initial condmoriDZ@ < ~U; (Vi = a.q i
L2, .._,N), such t_ha_t the following recursive linear matrix ij% - ]:TRM]:},
inequalities are satisfied for all € H: L+ g5,
T
13 _ (1 _ .. 33 _ _ .
Q Q3 o0 af o0 9f Aik —(AO,k zj\; ’Cw,k> o AT = —Pik,
£ QF 0 QR 00 T
. sl * o+ QB QL 0 0 AT =Kk - Kij, k™, A = —7*Tik,
Lk = * * * Q?i Q;{i 0 A?, k= dia@{Pi7k+1}, Az k= [A,{,k NN A;I‘jk]
¥ ¥ ¥ ¥ Qii 0 Moreover, the desired filter gains are given b
* * * * Q?Gk ' g 9 y
<0, @36a)  Lik =(P}1) 'Eix and Ky = (Ph)” Fije
D,y LA By +Din) Pigi1(Br 4+ Dix) (38)
+72T- L >0 (36h) Proof: Performing congruence  transformation
Vi=1,2,...,1l, diag{],I,I,Pif,jﬂ,l,??;,jﬂ, P } to (36a) leads to
and T
Ak Ak A 0 AL Qo2 o Q4 o
* Al A 000 02 0 0% 0 0
A2+« AT AY 0 .« 0B 0% o
' 44 bk bk <0 (39)
Coor o AL 0 T
* * * * A?ﬁc % % % * _?5;’@ 0
<0, (37a) * * * * x Q88
148 24  pTp, L . i i
;=7 Tik = B Pijk1 B > 0, (37b) and, similarly, using the congruence transformation diag
Vi=1Ilp+1,lp+2,...,N,

LILP L LPo .. P } to (37a), we have
where { k+1 k41 41

QL =FTQinF + FLRi w F — piiPijs

AL ARZAB 0 AR
T T i,k i,k Tk ik
05 =—[F'RixF ... F'RivF], LOAB AR o 0
pi * * A?:’;C AZ} 0 <0, (40)
2 _ Jik T * * * A O
Qi,k — dlag{ﬁpm,k - F RL]C]:, Ceey " " « « ifl)g
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where For given an SN with 5 nodes, its topology is repre-
~ T sented by a digraptg = (V,€,</), where the set of
Oy —<A0,k+ci,k - Z Kij,k) , O =&l nodes isV = {1,2,3,4,5} and the set of edges i§ =

JEN: {(1,4),(2,1),(3,2), (4,3), (5.4),(5,1),(5,3)}, as shown in
Q% =Kiji - ICijpi_,k]T, Q% = —Pifklﬂv Fig.l.lobviougly, itdcan be inferred2th@t1 =1p2 = p03 |:
Q¥ B, + D, 016 _ A, pa =L ps =9 andq =¢3 =qa = 2,¢2= 1, g5 = 0. 1n
,;: k+2 o ,621’“ [A_l’k AQ’Z Arel: this example, assume that the measurement output of hiode
Q3 =—7"Tik: Qi = —diag{P; 1}, is not available.

T
AL3 A 33 -1
Ai,k :<A0,k - ’Cij,k> ) Ai,k = _Pi,k+17
= O—®
A 23 T A 34
Ay =Kk - Kijy 6l A7y = By,

Ay =[Ark A ... Angl, A = —diag {P;,,}.

Then, it is easy to verify the following relationships e ‘ 0
14 N 14 24 24
Qi,k = Qi,kpi,kﬂv Qi,k = Qi,kpi-,kJrla
4 N34 44 44
0% = Q0 Pikt, Uk = Pk QG Pik+r,
45 45 16 16 i :
O =P 8, Q1 =Pl Fig. 1: Topology of a Sensor Network.

0% = diag {Pi x1 )02 diag {P; 11},

_ _ The parameters of the target plant is set as:
Azlzj;c = Azl,?;cpi.,kﬂa Afi = Aﬁpi,kﬂ,

Ak = PirstBiPuss, Al =Pianiik, A = _0(.)1850 0.2105115(6@ ] » Bre= [ 8:1 } ’
AP, = diag {P; k+1} A2 diag {Pi 41}, © 080 0.15
A = ABP w1, Bk =Pl Lig, Ak =1 015  0.21sin(6k) ] ’
Fijr = PkaKijyk- : 0.8 g
In terms of the Schur Complement Lemma, we immediately Cie = | 1.2sin((i + 1)k) ] . Dip=1

draw the conclusion from (39) and (40) that the conditior‘| addition, the other parameters are, respectively, set-as
(14a) and (15a) are satisfied. In addition, (36b) and (37b) hcf' 2 016, oy = e diagl 1.5 If e
if and only if (14c) and (15b) are true, and the rest of the progt’ _ diagll{l'l}l’kl“-_: 0 11721ndvf\/» 2 ! oo
follows directly from Theorem 1. The proof is thus complete.“gy_using the ’YAZLMIP to0lbox irl{kMATI'_AB software. all

B the desired filter gains are recursively calculated according

Remark 2:This paper investigates the partial-nodes-bas?g Theorem 2. The initial values are set as follows: —
distributed filtering problem for a class of discrete-time sys; , 057, 10 = [0.6 — 0.7)T, #20 = [0.1 — 0.2
tems with censored measurements. A set of deterministic’ _ - L0 D0 ot =20 o L L
L . . L . T30 = [08 — 05] , Ly = [—0.3 — 05] and Ty o =
indicative variables is introduced to describe the censorﬁf}"3 0.5]”. The disturbances are chosenas = 0 1coé(5k)
measurements and a ndi,, performance index is proposed rlldg-. _ 0.1 cos(5k), respectively '
to better reflect the impact of censored measurements on %?hgksimu'lation res’,ults are shoWn in Figs. 2-6, where the

flltermg performance._\l_vnh the "’?'9' of the local performancgtate trajectories of the plant and their estimates are displayed
analysis method, sufficient conditions are established for tleﬁ) Figs. 2-3, the censored measurements (i — 1 1)

Kinds of nodes (i.e. having or not h"’?"'”g available Me%re depicted in Fig. 4, the norms of the consensus errors
surement outputs) such that the prescridiéd performance e, 5 — e: |2 are given in Fig. 5 and the norms of
%m Cjk ~ Cik g -
t

index is achieved. Compared with the existing results, t % filtering errors|e, || are plotted in Fig. 6. It is observed

develop?d filtering scheme has the fpllqwmg dls.tmgu'Sh%rom all the simulation results that the proposed distributed
features: 1) a censored-related term is involved in hg filtering scheme performs very well
il .

performance index in an exponential function form; 2) th

designed algorithm is shown to be valid, respectively, for

nodes with or without the sensing capabilities, which implies V. CONCLUSION

that our algorithm has the desired flexibility; and 3) a local In this paper, we have investigated the scalable distribut-

design method is applied to deal with the filtering issue in thel [, -consensus filtering problem for a class of discrete

distributed sense, which confirms that our algorithm achievéme-varying systems with multiplicative noises and censored

the scalability. measurements over sensor networks where only partial n-

odes have the ability to conduct the measurement task. A
IV. A NUMERICAL EXAMPLE set of deterministic indicative variables has been employed
In this section, a numerical example is carried out tm characterize the censored measurements. A nélglh
illustrate the validity of the proposed distributed filter designonsensus performance index has been established to reflect
scheme. the impacts of the censored measurements on the filtering
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