
FINAL VERSION 1

Partial-Nodes-Based ScalableH∞-Consensus
Filtering with Censored Measurements over

Sensor Networks
Fei Han,Member, IEEE, Zidong Wang,Fellow, IEEE, Hongli Dong∗, Senior Member, IEEE, and Hongjian Liu

Abstract—This paper deals with the scalable distributedH∞-
consensus filtering problem for a class of discrete time-varying
systems subject to multiplicative noises and censored measure-
ments over sensor networks. For the underlying sensor network,
it is assumed that only the measurement outputs from partial
sensor nodes are available. Also, the phenomenon of censored
measurements is taken into account to reflect the limited ca-
pability in measuring. A new H∞-consensus performance index
is put forward to evaluate the disturbance rejection level of the
filters against the simultaneous presence of external disturbances,
initial conditions as well as censoring effects. By utilizing the
vector dissipativity theory and the recursive matrix inequality
technique, sufficient conditions are established under which the
prescribed H∞-consensus performance index is achieved. The
parameters of the desired distributed filters are calculated via
solving certain matrix inequalities, where such a calculation is
conducted in a local sense so as to preserve the scalability of the
filter design. Finally, a numerical simulation example is provided
to demonstrate the validity and applicability of the proposed
filtering strategy.

Index Terms—Censored measurements, distributed filtering,
H∞-consensus, multiplicative noises, partial-nodes-based mea-
surements.

I. I NTRODUCTION

During the past few years, distributed filtering problem
for sensor networks (SNs) has gained tremendous research
interest from the control and signal processing communities
and found great applications in engineering practice such as
intelligent transportation systems, people-centric networked
systems, public health and environmental monitoring, naviga-
tion and tracking systems, etc., see e.g. [3], [6], [15], [18], [21],
[22], [25], [30], [31], [37], [38]. The core idea of distributed
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filtering algorithm is to estimate the state information of the
target plant in a collaborative manner by deploying a set of
intelligent sensing facilities over the region of interest. Some
commonly used distributed filtering strategies include dis-
tributed Kalman filtering methods, distributed set-membership
filtering schemes, and distributedH∞ filtering approaches, see
[5], [9], [29], [37], [41], [43] for some recent works. Among
them, special attention has been focused on distributedH∞

filtering algorithms due primarily to their capacities of the
disturbance rejection/attenuation against external disturbances,
see e.g. [7], [8], [26], [28], [45]. Very recently, to improve the
performance of the traditional distributedH∞ filters, the so-
called distributedH∞-consensusfiltering (DHCF) algorithm
has been proposed with intention to account for the effects
of the consensus errorsrelated to neighboring nodes. Up to
now, the DHCF issue has become an attractive research topic
receiving considerable research attention, see e.g. [12], [13],
[27], [39].

For a large-scale sensor network, the coupling complexities
caused by mutual interactions among large quantities of sensor
nodes constitute a major challenge for the analysis/synthesis
issues on distributed filters. A commonly employed approach
to coping with such a challenge is to augment the network
states [5], [6], [21], [26], [38], [41], which implies that the
global information of the network is available. In practice,
however, each sensor can only access the local information
from its neighbors and therefore the global information of
the entire network is hardly accessible. As such, it is highly
desirable to develop the so-calledscalablefiltering algorithm
that only utilizes the neighbors’ information of each sensor
node in order tolocally design the filter parameters. Clearly,
such alocal design scheme enjoys the flexibility/adaptability
with respect to the scale/structure changes of the network.
So far, some initial research effort has been made on the
scalability issues for the distributed filter design, see e.g. [12],
[13].

As a kind of typical phenomena encountered in practical
engineering, the measurement censoring caused mainly by
the inevitable data truncation has recently aroused some re-
search attention with applications ranging from biological and
economic systems, computer vision problems, to distributed
detection scenarios. Various models have been utilized in the
literature to characterize the censored measurements, among
which the Tobit model (proposed by economist James Tobin
in the middle of last century) has been recognized to be
the most popular one. In recent years, the Tobit model has
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attracted some initial research interest in the area of signal
processing, and special effort has been directed towards the
Tobit Kalman filtering problems, see e.g. [1], [2], [10], [11],
[16]. It is worth mentioning that most results concerning Tobit
Kalman filtering have been based on the assumption that
the probability density function of the system noises obeys
the Gaussian distribution. Apparently, these existing results
are not applicable to systems suffering from non-Gaussian
noises. Very recently, a set-membership filtering approach has
been proposed in [17] for a class of time-varying nonlinear
systems with censored measurements where the noises reside
within certain ellipsoids. Nevertheless, when it comes to the
DHCF problem subject to censoring effects, the corresponding
results have been very few due to the lack of appropriate
techniques capable of tackling the scalability issue in a large-
scale network environment.

In the practical applications of SNs, it is essentially difficult
to guarantee that system measurements are available from
all sensor nodes due to a variety of physical restrictions.
For example, certain sensor nodes only have the transmission
capability (i.e. without measuring capability) because of the
limited resource that prevents the information collection from
all nodes. The unavailability of measurement outputs could
also due to the sensor failures in certain severe circumstances,
e.g., colliery, nuclear plant, and military battlefield. Therefore,
in reality, instead of requiring the measurement information
from all the sensor nodes, it is more reasonable to assume
that the measurement outputs utilized for the state estima-
tion/filtering tasks are only available from afraction of sensor
nodes, which gives rise to the so-called partial-nodes-based
(PNB) distributed filtering problem. To be more specific, the
main idea of the proposed PNB distributed filtering problem
is to make use of the measurement information frompartial
sensor nodes to achieve the desired estimation performance.
By now, some pioneering work has been reported on the PNB
state estimation topics for complex networks, see e.g. [19],
[20]. Nevertheless, the PNB distributed consensus filtering
issue has not been fully investigated yet and this motivates
us to launch a study on such a problem of clear engineering
insights.

According to above discussions, it can be concluded that,
despite its practical significance, the PNB scalable DHCF
problem has received very little attention for time-varying
systems with censored measurements. This is due mainly
to the following identified challenges: 1) how to design the
distributed filters based on the measurement outputs for partial
sensor nodes? 2) how to examine the impact of the cen-
sored measurements by an appropriate filtering performance
index? and 3) how to achieve and verify the scalability of
the distributed filtering scheme? The purpose of this paper
is, therefore, to handle the aforementioned challenges and
provide a feasible trade-off between the availability (of the
sensor measurements), the robustness (against the censoring
measurements), the scalability (of the computational com-
plexity) and the accuracy (by means of theH∞-consensus).
The main contributions of this paper can be summarized
below: 1) according to our literature review, the censored
measurement phenomenon is, for the first time, investigated

for the distributed filtering problem within a local design
framework; 2) compared with [19], [20], a new partial-nodes-
based distributed filtering strategy is proposed in terms of the
measurement outputs from a fraction of sensor nodes, where
the distributed filtering schemes are designed, respectively, for
nodes with and without measurements, thereby better reflecting
the engineering practice; and 3) in light of the existing results
concerning the DHCFs and the censored measurements, a new
H∞ performance index is established to evaluate the impact
from the censored measurements on the filtering performance.

The remainder of this paper is organized as follows. In
Section II, the target plant described by a discrete time-varying
system is introduced and the distributed filtering problem to
be addressed is given. In Section III, sufficient conditions
are derived to guarantee the desired filtering performance
index and the filter parameters are calculated by using the
local performance analysis method. An illustrative example is
presented in Section IV to demonstrate the effectiveness of the
proposed filtering strategy. Finally, conclusions are drawn in
Section V.

Notation: Let R
n and R

n×m be the sets of then-
dimensional vectors andn × m real matrices, respective-
ly. For column vectorsx = [x1, x2, . . . , xn]

T and y =
[y1, y2, . . . , yn]

T , x ≫ y (respectively,x ≪ y) represents that
xi > yi (xi < yi), ∀ i = 1, 2, . . . , n. Denote by1 a column
vector of appropriate dimension with all elements being 1.
A square matrixU = [Uij ] is called column substochastic
if 1

TU ≪ 1
T and Uij ≥ 0. l2[0, n − 1] means the set of

summable vectors over[0, n−1]. For a vectorwk ∈ l2[0, n−1]
and a matrixQk with compatible dimensions,‖wk‖2Qk

=

wT
k Qkwk. Given two matricesX and Y , XTY (•) means

XTY X . A block diagonal matrix is denoted as diag{. . .},
moreover, diagr{A} = diag{A, . . . , A

︸ ︷︷ ︸

r

}.

II . PROBLEM FORMULATION

Consider an SN withN nodes scattered in certain area of
interest. The topology of the SN is characterized by a digraph
G = (V , E ,A ), whereV = {i | i = 1, 2, . . . , N} is the node
set,E = {(i, j) | (i, j) ∈ V × V} is the edge set, andA =
[aij ] ∈ R

N×N is the adjacency matrix. For different nodesi
andj, if (i, j) ∈ E , which implies thatj can transmit messages
to i, then aij = 1,; otherwiseaij = 0. The in-degree and
the out-degree of nodei are, respectively, defined aspi ,
∑N

j=1 aij andqi ,
∑N

j=1 aji. The set of neighbors of nodei
with in-degreepi is denoted byNi = {ji1, ji2, . . . , jipi

}.
Consider the discrete time-varying stochastic plant over the

finite time-horizonH , {0, 1, . . . , n− 1}:

xk+1 = (A0,k +
r∑

t=1

φt,kAt,k)xk +Bkwk (1)

where xk ∈ R
nx is the system state,wk ∈ R

nw is the
external disturbance belonging tol2[0, n − 1] and φt,k (t =
1, 2, . . . , r) ∈ R are mutually independent multiplicative
noises with zero means and unity variances.A0,k, At,k andBk

are known time-varying matrices with compatible dimensions.
Without loss of generality, for the sensor network under

consideration, it is assumed that the measurement outputs of
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the first l0 (l0 < N) nodes are available with the following
form:

y∗i,k = Ci,kxk +Di,kξi,k, ∀i = 1, 2, . . . , l0 (2)

wherey∗i,k , [y∗i,k(1) y∗i,k(2) . . . y∗i,k(ny)]T ∈ R
ny is the

measurement output of nodei andξi,k ∈ R
nϑ is the external

disturbance belonging tol2[0, n−1]. Ci,k andDi,k are known
time-varying matrices with compatible dimensions.

As stated in [1], [2], [17], in practical engineering, the
sensors often suffer from the measurement censoring, which
can be formulated by the following well-known Tobit typeI
model:

yi,k(t) =

{

y∗i,k(t), if y∗i,k(t) > Γi(t);

Γi(t), otherwise,
(3)

whereΓi(t) ∈ R is a known threshold.
For convenience, we introduce the following indicative

variablepi,k(t):

pi,k(t) =

{

1, if y∗i,k(t) > Γi(t);

0, otherwise.
(4)

Then, according to (3)-(4), the actual measurement output
yi,k(t) is described as follows:

yi,k(t) = pi,k(t)y
∗
i,k(t) + (1− pi,k(t))Γi(t). (5)

Denoting

Γi , [Γi(1) Γi(2) · · · Γi(ny)]
T ,

yi,k , [yi,k(1) yi,k(2) · · · yi,k(ny)]
T ,

pi,k , diag{pi,k(1), pi,k(2), · · · , pi,k(ny)},

one has

yi,k = pi,ky
∗
i,k + (I − pi,k)Γi. (6)

Noticing that the measurement outputs are only available
from partial nodes, the following PNB distributed filters are
constructed:

x̂i,k+1 = A0,kx̂i,k + Li,k(yi,k − Ci,kx̂i,k)

+
∑

j∈Ni

Kij,k(x̂j,k − x̂i,k), (7)

i = 1, 2, . . . , l0,

x̂i,k+1 = A0,kx̂i,k +
∑

j∈Ni

Kij,k(x̂j,k − x̂i,k), (8)

i = l0 + 1, l0 + 2, . . . , N,

where x̂i,k ∈ R
nx is the estimate ofxk by nodei, andLi,k

andKij,k are the filter parameters to be calculated later.
Settingei,k , xk−x̂i,k, the filtering error dynamics of node

i is obtained from (1)-(8) as follows:

ei,k+1 =(A0,k − Li,kCi,k −
∑

j∈Ni

Kij,k)ei,k +

r∑

t=1

φt,kAt,kxk

+ Bkwk − Li,kpi,kDi,kξi,k +
∑

j∈Ni

Kij,kej,k

− Li,k(I − pi,k)(Γi − Ci,kxk),

i = 1, 2, . . . , l0,

ei,k+1 =(A0,k −
∑

j∈Ni

Kij,k)ei,k +
r∑

t=1

φt,kAt,kxk

+Bkwk +
∑

j∈Ni

Kij,kej,k,

i = l0 + 1, l0 + 2, . . . , N.

Denotingηi,k , [xT
k eTi,k]

T , νi,k , [wT
k ξTi,k]

T , ̟i ,

[0 ΓT
i ]

T , zi,k , Fηi,k andF , [0 I], the filtering error
system is obtained with the following compact form:







ηi,k+1 =(A0,k + Ci,k −
∑

j∈Ni

Kij,k)ηi,k

+ (Bk +Di,k)νi,k +
∑

j∈Ni

Kij,kηj,k,

− Ei,k̟i +
r∑

t=1

φt,kAt,kηi,k

i = 1, 2, . . . , l0,

ηi,k+1 =(A0,k −
∑

j∈Ni

Kij,k)ηi,k + Bkνi,k

+

r∑

t=1

φt,kAt,kηi,k +
∑

j∈Ni

Kij,kηj,k,

i = l0 + 1, l0 + 2, . . . , N,

zi,k =Fηi,k, i = 1, 2, . . . , N

(9)

where

A0,k = diag{A0,k, A0,k}, Di,k = diag{0,−Li,kpi,kDi,k},

Ei,k = diag{0, Li,k(1 − pi,k)}, Kij,k = diag{0,Kij,k},

At,k =

[
At,k 0
At,k 0

]

, Bk =

[
Bk 0
Bk 0

]

,

Ci,k =

[
0 0

Li,k(1− pi,k)Ci,k −Li,kCi,k

]

.

In what follows, we are to examine the impact from the
censored measurements on the system performance. Before
proceeding, the following notations are introduced:

νk , [νT1,k . . . νTN,k]
T ,

zk , [zT1,k . . . zTN,k]
T ,

W̄i,k , [Wi,k(1) Wi,k(2) . . . Wi,k(ny)],

exp(̟i) , [exp(Γi(1)) exp(Γi(2)) . . . exp(Γi(ny))]
T ,

whereWi,k(t) > 0 for t = 1, 2, . . . , ny.
Definition 1: Let the disturbance attenuation levelγ > 0,

the weighted matricesUi1 > 0, Ui2 > 0, Ri,k > 0, Qi,k > 0,
Ti1,k > 0, Ti2,k > 0 and W̄i,k be given. The filtering error
system (9) satisfies theH∞-consensus performance constraint
over the finite horizonH if the following inequality holds

E

{
n−1∑

k=0

ΦG(zk)

}

≤γ2
l0∑

i=1

n−1∑

k=0

W̄i,kexp(̟i)

+γ2
N∑

i=1

(

ηTi,0Uiηi,0 +
n−1∑

k=0

‖νi,k‖
2
Ti,k

)

,

(10)
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where

ΦG(zk) ,
N∑

i=1




∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

+ ‖zi,k‖
2
Qi,k



 ,

Ui = diag{Ui1, Ui2}, Ti,k = diag{Ti1,k, Ti2,k}.

Remark 1: In comparison with the traditionalH∞-
consensus performance index, the effect of the measurement
censoring is reflected in inequality (10) by introducing the sec-
ond term on its right-hand side. It is noted that such a term is
characterized by a weighted sum with respect to an exponential
function of the censoring threshold over the time horizonH,
which would increase as the censoring threshold grows. This
implies that theH∞-consensus performance would become
worse as the censoring phenomena becomes more severe,
which is in agreement with the engineering practice. As such,
the proposed new performance index (10) accounts for the
influence of the measurement censoring very well.

This paper aims to find the filter parametersLi,k andKij,k

respectively for nodei to guarantee that the dynamics of the
system (9) satisfies the desirableH∞-consensus performance
index (10).

III. M AIN RESULTS

In this section, by resorting to the vector dissipativity
theory, the analysis and design problems of the distributed
H∞-consensus filter (7) will be discussed. To facilitate the
subsequent development, we give the following notations

̟ , [̟T
1 ̟T

2 · · · ̟T
l0
]T ,

Si(zk, νi,k, ̟i) , γ2(‖νi,k‖
2
Ti,k

+ W̄i,kexp(̟i))

−
∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

− ‖zi,k‖
2
Qi,k

,

i = 1, 2, . . . , l0,

Si(zk, νi,k) , γ2‖νi,k‖
2
Ti,k

− ‖zi,k‖
2
Qi,k

−
∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

,

i = l0 + 1, l0 + 2, . . . , N.

(11)

Definition 2: The filtering error dynamics (9) is strictly s-
tochastic vector-dissipative over the finite horizonH regarding
the vector-valued supply rate function

S(zk, νk, ̟) ,[S1(zk, ν1,k, ̟1), . . . , Sl0(zk, νl0,k, ̟l0),

Sl0+1(zk, νl0+1,k) . . . , SN (zk, νN,k)]
T ,

if there exist a vector-valued storage functionV(ηk) ,

[V1(η1,k), . . . , VN (ηN,k)]
T (with V(0) = 0 andVi(ηi,k) ≥ 0,

i = 1, 2, . . .N ) and a dissipation matrix ( [12], [13]) sequence
Uk ∈ R

N×N such that the following inequality holds for any
k ∈ H:

E{V(ηk+1)} ≪ UkE{V(ηk)}+ E{S(zk, νk, ̟)}. (12)

In the following, sufficient conditions are provided to guar-
antee that the filtering error dynamics (9) is strictly stochas-
tic vector-dissipative over the finite horizonH. In order to
construct a desirable dissipation matrixUk, we first define

an interval-valued functionIqi concerning out-degreeqi as
follows:

Iqi =

{ (
0, 1+qi

2qi

)
, if qi 6= 0;

(0, 1], if qi = 0.
(13)

Theorem 1:For given the real numberγ > 0, the constant
sequenceαi,k ∈ Iqi , the matricesRi,k > 0, Qi,k > 0,
Ti,k > 0, W̄i,k, and the filter parametersLi,k and Kij,k,
the filtering error dynamics (9) is strictly stochastic vector-
dissipative over the finite horizonH regarding the vector-
valued supply rate functionS(zk, νk, ̟) and also satisfies
the H∞-consensus performance constraint (10), if there ex-
ists a vector-valued storage functionV(ηk) (whose element
is Vi(ηi,k) = ηTi,kPi,kηi,k, where {Pi,k}k∈H∪{n} is a se-
quence of positive definite matrices with the initial condition
Pi,0 ≤ γ2Ui), such that the following conditions hold for
k ∈ H, ∀i = 1, 2, . . . , N :







Ξi,k ,





Ξ11
i,k Ξ12

i,k Ξ13
i,k

∗ Ξ22
i,k Ξ23

i,k

∗ ∗ Ξ33
i,k



 < 0, (14a)

Ψi,k , −
1

γ2
(Bk +Di,k)T

−1
i,k (Bk +Di,k)

T

+P−1
i,k+1 > 0, (14b)

∀i = 1, 2, . . . , l0,

and






Υi,k ,

[
Υ11

i,k Υ12
i,k

∗ Υ22
i,k

]

< 0, (15a)

Ψ̄i,k , P−1
i,k+1 −

1

γ2
BkT

−1
i,k BT

k > 0, (15b)

∀i = l0 + 1, l0 + 2, . . . , N,

where

Ξ11
i,k =

r∑

t=1

AT
t,kPi,k+1At,k + FT (Qi,k +Ri,k)F − ρi,kPi,k

+ (A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,k (•),

Ξ12
i,k =

[

(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,kKij1,k −FTRi,kF · · ·

(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,kKijpi ,k
−FTRi,kF

]

,

Ξ22
i,k =[Kij1,k · · · Kijpi ,k

]TΨ−1
i,k

[Kij1,k · · · Kijpi ,k
]

− diag

{
αji1,k

1 + qji1
Pji1,k −FTRi,kF , . . . ,

αjipi ,k

1 + qijpi
Pijpi ,k

−FTRi,kF

}

,

Ξ13
i,k =− (A0,k + Ci,k −

∑

j∈Ni

Kij,k)
TΨ−1

i,kEi,k̟i,

Ξ23
i,k =−

[
(Kij1,kΨ

−1
i,kEi,k̟i)

T · · · (Kijpi ,k
Ψ−1

i,kEi,k̟i)
T
]T

,

Ξ33
i,k =̟T

i E
T
i,kΨ

−1
i,kEi,k̟i − γ2W̄i,kexp(̟i),

Υ11
i,k =

r∑

t=1

AT
t,kPi,k+1At,k + FT (Qi,k +Ri,k)F − ρi,kPi,k
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+ (A0,k −
∑

j∈Ni

Kij,k)
T Ψ̄−1

i,k (A0,k −
∑

j∈Ni

Kij,k),

Υ12
i,k =

[

(A0,k −
∑

j∈Ni

Kij,k)
T Ψ̄−1

i,kKij1,k −FTRi,kF

. . . (A0,k −
∑

j∈Ni

Kij,k)
T Ψ̄−1

i,kKijpi ,k
−FTRi,kF

]

,

Υ22
i,k =[Kij1,k · · · Kijpi ,k

]T Ψ̄−1
i,k [Kij1,k · · · Kijpi ,k

]

− diag
{ αji1,k

1 + qji1
Pji1,k −FTRi,kF , . . . ,

αjipi ,k

1 + qjipi
Pjipi ,k

−FTRi,kF
}

,

ρi,k =
1 + qi(1− αi,k)

1 + qi
.

Proof: For presentation clarity, the proof is divided into
the following four steps.

1) Proof of the stochastic vector-dissipativity for the nodes
i (i = 1, 2, . . . , l0) over the finite-horizonH.

First, for nodei (i = 1, 2, . . . , l0), it follows that

E{Vi(ηi,k+1)|ηi,k}

=E{ηTi,k+1Pi,k+1ηi,k+1|ηi,k}

=E

{(

(A0,k + Ci,k −
∑

j∈Ni

Kij,k)ηi,k +

r∑

t=1

φt,kAt,kηi,k

+ (Bk +Di,k)νi,k +
∑

j∈Ni

Kij,kηj,k − Ei,k̟i

)T

Pi,k+1

×
(

(A0,k + Ci,k −
∑

j∈Ni

Kij,k)ηi,k +
r∑

t=1

φt,kAt,kηi,k

+ (Bk +Di,k)νi,k +
∑

j∈Ni

Kij,kηj,k − Ei,k̟i

)∣
∣
∣ηi,k

}

=ηTi,k

(

A0,k + Ci,k −
∑

j∈Ni

Kij,k

)T

Pi,k+1

(

•
)

ηi,k

+ νTi,k(Bk +Di,k)
TPi,k+1(Bk +Di,k)νi,k

+
( ∑

j∈Ni

ηTj,kK
T
ij,k

)

Pi,k+1

( ∑

j∈Ni

Kij,kηj,k

)

+ 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TPi,k+1(Bk +Di,k)νi,k

+ 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TPi,k+1

∑

j∈Ni

Kij,kηj,k

− 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TPi,k+1Ei,k̟i

+ 2νTi,k(Bk +Di,k)
TPi,k+1

∑

j∈Ni

Kij,kηj,k

− 2νTi,k(Bk +Di,k)
TPi,k+1Ei,k̟i

− 2̟T
i E

T
i,kPi,k+1

∑

j∈Ni

Kij,kηj,k

+ ηTi,k

r∑

t=1

AT
t,kPi,k+1At,kηi,k

+̟T
i E

T
i,kPi,k+1Ei,k̟i

+ γ2νTi,kTi,kνi,k − γ2νTi,kTi,kνi,k. (16)

Next, it is readily obtained from (14c) thatΨi,k > 0. Then,
by applying the Schur Complement Lemma to (15b), one has
Φ−1

i,k , γ2Ti,k − (Bk +Di,k)
TPi,k+1(Bk +Di,k) > 0. On the

other hand, it is easy to see that the following inequality is
true:
(

νi,k − Φi,k(Bk +Di,k)
TPi,k+1(A0,k + Ci,k −

∑

j∈Ni

Kij,k)ηi,k

− Φi,k(Bk +Di,k)
TPi,k+1

∑

j∈Ni

Kij,kηj,k +Φi,k(Bk +Di,k)
T

× Pi,k+1Ei,k̟i

)T

Φ−1
i,k

(

•
)

≥ 0,

and therefore

νTi,k((Bk +Di,k)
TPi,k+1(Bk +Di,k)− γ2Ti,k)νi,k

+ 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TPi,k+1(Bk +Di,k)νi,k

+ 2νTi,k(Bk +Di,k)
TPi,k+1

∑

j∈Ni

Kij,kηj,k

− 2νTi,k(Bk +Di,k)
TPi,k+1Ei,k̟i

≤ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TPi,k+1(Bk +Di,k)

× Φi,k(Bk +Di,k)
TPi,k+1(A0,k + Ci,k −

∑

j∈Ni

Kij,k)ηi,k

+
∑

j∈Ni

ηTj,kK
T
ij,kPi,k+1(Bk +Di,k)Φi,k(Bk +Di,k)

T

× Pi,k+1

∑

j∈Ni

Kij,kηj,k + 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
T

× Pi,k+1(Bk +Di,k)Φi,k(Bk +Di,k)
TPi,k+1

∑

j∈Ni

Kij,kηj,k

+̟T
i E

T
i,kPi,k+1(Bk +Di,k)Φi,k(Bk +Di,k)

TPi,k+1Ei,k̟i

− 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TPi,k+1(Bk +Di,k)

× Φi,k(Bk +Di,k)
TPi,k+1Ei,k̟i − 2

∑

j∈Ni

ηTj,kK
T
ij,kPi,k+1

× (Bk +Di,k)Φi,k(Bk +Di,k)
TPi,k+1Ei,k̟i. (17)

Moreover, with the help of the matrix inverse formula, we
derive that

Pi,k+1(Bk +Di,k)Φi,k(Bk +Di,k)
TPi,k+1 + Pi,k+1

=(P−1
i,k+1 −

1

γ2
(Bk +Di,k)T

−1
i,k (Bk +Di,k)

T )−1

,Ψ−1
i,k .

(18)
In combination of (16)-(18), one finds

E{Vi(ηi,k+1)|ηi,k}

≤ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,k (•)ηi,k

+ 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,k

∑

j∈Ni

Kij,kηj,k

− 2ηTi,k(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,kEi,k̟i
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− 2
∑

j∈Ni

ηTj,kK
T
ij,kΨ

−1
i,kEi,k̟i

+
∑

j∈Ni

ηTj,kK
T
ij,kΨ

−1
i,k

∑

j∈Ni

Kij,kηj,k

+ ηTi,k

r∑

t=1

AT
t,kPi,k+1At,kηi,k

+̟T
i E

T
i,kΨ

−1
i,kEi,k̟i + γ2νTi,kTi,kνi,k

,χT
i,kΠi,kχi,k + γ2νTi,kTi,kνi,k (19)

whereχi,k = [ηTi,k ηTNi,k
1]T , ηNi,k = [ηTj1,k · · · ηTjpi ,k

]T and

Πi,k =





Π11
i,k Π12

i,k Π13
i,k

∗ Π22
i,k Π23

i,k

∗ ∗ Π33
i,k





with

Π11
i,k =(A0,k + Ci,k −

∑

j∈Ni

Kij,k)
TΨ−1

i,k (A0,k + Ci,k

−
∑

j∈Ni

Kij,k) +

r∑

t=1

AT
t,kPi,k+1At,k,

Π12
i,k =

[

(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,kKij1,k · · ·

(A0,k + Ci,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,kKijpi ,k

]

,

Π13
i,k =− (A0,k + Ci,k −

∑

j∈Ni

Kij,k)
TΨ−1

i,kEi,k̟i,

Π22
i,k =

[
Kij1,k . . . Kijpi ,k

]TΨ−1
i,k [Kij1,k . . . Kijpi ,k

]
,

Π23
i,k =−

[
(Kij1,kΨ

−1
i,kEi,k̟i)

T . . . (Kijpi ,k
Ψ−1

i,kEi,k̟i)
T
]T

,

Π33
i,k = ̟T

i E
T
i,kΨ

−1
i,kEi,k̟i.

By some straightforward algebraic manipulations, we can
see that the following inequality is true:

χT
i,kΠi,kχi,k +

∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

− ρi,kη
T
i,kPi,kηi,k

−
∑

j∈Ni

αj,k

1 + qj
ηTj,kPj,kηj,k + ‖zi,k‖

2
Qi,k

− γ2W̄i,kexp(̟i)

=χT
i,kΞi,kχi,k < 0, (20)

which implies

χT
i,kΠi,kχi,k <−

∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

− ‖zi,k‖
2
Qi,k

+
∑

j∈Ni

αj,k

1 + qj
ηTj,kPj,kηj,k + ρi,kη

T
i,kPi,kηi,k

+ γ2W̄i,kexp(̟i).

Recalling the expression ofSi(zk, νi,k, ̟i) and (14a), one
has

E{Vi(ηi,k+1)|ηi,k}

≤χT
i,kΠi,kχi,k + γ2νTi,kTi,kνi,k

<γ2νTi,kTi,kνi,k + γ2W̄i,kexp(̟i)−
∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

− ‖zi,k‖
2
Qi,k

+
∑

j∈Ni

αj,k

1 + qj
ηTj,kPj,kηj,k + ρi,kη

T
i,kPi,kηi,k

=[
ai1α1,k

1 + q1
, . . . , ρi,k, . . . ,

aiNαN,k

1 + qN
]V(ηk) + Si(zk, νi,k, ̟i)

=[UkV(ηk)]i + Si(zk, νi,k, ̟i), (21)

where

Uk =











ρ1,k . . .
a1iαi,k

1+qi
. . .

a1NαN,k

1+qN
...

. . .
... · · ·

...
ai1α1,k

1+q1
. . . ρi,k . . .

aiNαN,k

1+qN
... · · ·

...
. . .

...
aN1α1,k

1+q1
. . .

aNiαi,k

1+qi
. . . ρN,k











. (22)

Since αi,k ∈ Iqi , it is inferred thatUk is nonsingular.
Notice 1

TUk = 1
T and, therefore,Uk is the dissipation

matrix. Moreover, in terms of the property of the conditional
expectation, the following inequality is acquired:

E{Vi(ηi,k+1)}

<E{[UkV(ηk)]i}+ E{Si(zk, νi,k, ̟i)},

i = 1, 2, . . . , l0.

(23)

2) Proof of the stochastic vector-dissipativity for the nodes
i (i = l0 + 1, l0 + 2, . . . , N) over the finite horizonH.

For the nodei (i = l0 + 1, . . . , N), it follows immediately
from the system dynamics (9) that

E{Vi(ηi,k+1)|ηi,k}

=E{ηTi,k+1Pi,k+1ηi,k+1|ηi,k}

=E{
(

(A0,k −
∑

j∈Ni

Kij,k)ηi,k +

r∑

t=1

φt,kAt,kηi,k + Bkνi,k

+
∑

j∈Ni

Kij,kηj,k

)T

Pi,k+1

(

•
)∣
∣
∣ηi,k}

=ηTi,k

(

A0,k −
∑

j∈Ni

Kij,k

)T

Pi,k+1

(

A0,k −
∑

j∈Ni

Kij,k

)

ηi,k

+ ηTi,k

r∑

t=1

AT
t,kPi,k+1At,kηi,k

+ νTi,kB
T
k Pi,k+1Bkνi,k

+
( ∑

j∈Ni

ηTj,kK
T
ij,k

)

Pi,k+1

( ∑

j∈Ni

Kij,kηj,k

)

+ 2ηTi,k

(

A0,k −
∑

j∈Ni

Kij,k

)T

Pi,k+1Bkνi,k

+ 2ηTi,k

(

A0,k −
∑

j∈Ni

Kij,k

)T

Pi,k+1

∑

j∈Ni

Kij,kηj,k

+ 2νTi,kB
T
k Pi,k+1

∑

j∈Ni

Kij,kηj,k

+ γ2νTi,kTi,kνi,k − γ2νTi,kTi,kνi,k. (24)

It is obvious that (15b) leads tōΨi,k > 0. Then, by
applying the Schur Complement Lemma again, one obtains
Φ̄−1

i,k = γ2Ti,k − BT
k Pi,k+1Bk > 0. On the basis of the

following inequality
(

νi,k − Φ̄i,kB
T
k Pi,k+1(A0,k −

∑

j∈Ni

Kij,k)ηi,k − Φ̄i,kB
T
k
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× Pi,k+1

∑

j∈Ni

Kij,kηj,k

)T

Φ̄−1
i,k

(

•
)

≥ 0,

we have

νTi,k(B
T
k Pi,k+1Bk − γ2Ti,k)νi,k

+ 2ηTi,k(A0,k −
∑

j∈Ni

Kij,k)
TPi,k+1Bkνi,k

+ 2νTi,kB
T
k Pi,k+1

∑

j∈Ni

Kij,kηj,k

<ηTi,k(A0,k −
∑

j∈Ni

Kij,k)
TPi,k+1BkΦ̄i,kB

T
k Pi,k+1(A0,k

−
∑

j∈Ni

Kij,k)ηi,k + 2ηTi,k(A0,k −
∑

j∈Ni

Kij,k)
TPi,k+1

× BkΦ̄i,kB
T
k Pi,k+1

∑

j∈Ni

Kij,kηj,k +
∑

j∈Ni

ηTj,kK
T
ij,k

× Pi,k+1BkΦ̄i,kB
T
k Pi,k+1

∑

j∈Ni

Kij,kηj,k. (25)

According to the matrix inverse formula, one derives

Pi,k+1BkΦ̄i,kB
T
k Pi,k+1 + Pi,k+1

=(P−1
i,k+1 −

1

γ2
BkT

−1
i,k BT

k )
−1

,Ψ̄−1
i,k . (26)

Then, it is not difficult to verify from (24)-(26) that

E{Vi(ηi,k+1)|ηi,k}

≤
∑

j∈Ni

ηTj,kK
T
ij,kΨ

−1
i,k

∑

j∈Ni

Kij,kηj,k

+ ηTi,k

r∑

t=1

AT
t,kPi,k+1At,kηi,k + γ2νTi,kTi,kνi,k

+ 2ηTi,k(A0,k −
∑

j∈Ni

Kij,k)
T Ψ̄−1

i,k

∑

j∈Ni

Kij,kηj,k

+ ηTi,k(A0,k −
∑

j∈Ni

Kij,k)
T Ψ̄−1

i,k (A0,k −
∑

j∈Ni

Kij,k)ηi,k

,χ̄T
i,kΠ̄i,kχ̄i,k + γ2νTi,kTi,kνi,k, (27)

where

χ̄i,k =[ηTi,k ηTNi,k
]T , ηNi,k = [ηTj1,k · · · ηTjpi ,k

]T ,

Π̄i,k =

[
Π̄11

i,k Π̄12
i,k

∗ Π̄22
i,k

]

,

Π̄11
i,k =(A0,k −

∑

j∈Ni

Kij,k)
T Ψ̄−1

i,k (A0,k −
∑

j∈Ni

Kij,k)

+

r∑

t=1

AT
t,kPi,k+1At,k,

Π̄12
i,k =

[

(A0,k −
∑

j∈Ni

Kij,k)
T Ψ̄−1

i,kKij1,k . . .

(A0,k −
∑

j∈Ni

Kij,k)
TΨ−1

i,kKijpi ,k

]

,

Π̄22
i,k =[Kij1,k . . . Kijpi ,k

]T Ψ̄−1
i,k [Kij1,k . . . Kijpi ,k

].

Moreover, (15a) implies

χ̄T
i,kΠ̄i,kχ̄i,k +

∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

+ ‖zi,k‖
2
Qi,k

−
∑

j∈Ni

αj,k

1 + qj
ηTj,kPj,kηj,k − ρi,kη

T
i,kPi,kηi,k

=ζTi,kΥi,kζi,k < 0, (28)

namely,

χ̄T
i,kΠ̄i,kχ̄i,k <−

∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

− ‖zi,k‖
2
Qi,k

+
∑

j∈Ni

αj,k

1 + qj
ηTj,kPj,kηj,k + ρi,kη

T
i,kPi,kηi,k.

Noticing Si(zk, νi,k) and (14a), we have the following
conclusion:

E{Vi(ηi,k+1)|ηi,k}

≤χ̄T
i,kΠ̄i,kχ̄i,k

<γ2νTi,kTi,kνi,k −
∑

j∈Ni

‖zj,k − zi,k‖
2
Ri,k

− ‖zi,k‖
2
Qi,k

+
∑

j∈Ni

αj,k

1 + qj
ηTj,kPj,kηj,k + ρi,kη

T
i,kPi,kηi,k

=

[
ai1α1,k

1 + q1
, . . . , ρi,k, . . . ,

aiNαN,k

1 + qN

]

V(ηk) + Si(zk, νi,k)

=[UkV(ηk)]i + Si(zk, νi,k).
(29)

By applying the property of the conditional expectation to
(29), we further obtain the following relationship:

E{Vi(ηi,k+1)} < E{[UkV(ηk)]i}+ E{Si(zk, νi,k)},

i = l0 + 1, . . . , N.
(30)

3) Proof of the stochastic vector-dissipativity for the nodes
i = 1, 2, . . . , l0, l0 + 1, . . . , N .

Based on the above results, it is observed from (23) and
(30) that the following vector inequality is satisfied:

E{V(ηk+1)} ≪ UkE{V(ηk)} + E{S(zk, νk, ̟)}. (31)

Consequently, it is readily seen from Definition 2 that the
dynamics (9) is stochastic vector-dissipative over the finite
horizonH.

4) Proof of theH∞-consensus performance index.
In this step, we aim to prove the guaranteedH∞-consensus

performance of the distributed filtering scheme. First, left-
multiplying 1

T on both sides of (31) yields

E{1T
V(ηk+1)} < E{1T

S(zk, νk, ̟)}+ E{1TUkV(ηk)}.
(32)

Denotingv(ηk) , 1
T
V(ηk), (32) is further reformulated as

follows:

E{v(ηk+1)} <

l0∑

i=1

E{Si(zk, νi,k, ̟i)}

+

N∑

i=l0+1

E{Si(zk, νi,k)}+ E{v(ηk)}. (33)
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Keeping the notation ofSi(zk, νi,k, ̟i)(i = 1, 2, . . . , l0)
andSi(zk, νi,k)(i = l0 + 1, . . . , N) in mind, we arrive at

E{v(ηk+1)} − E{v(ηk)}+ΦG(zk)

<

N∑

i=1

γ2νTi,kTi,kνi,k +

l0∑

i=1

γ2W̄i,kexp(̟i). (34)

Summing up both sides of (34) from0 to n−1 with respect
to k yields

E{v(ηn)} − E{v(η0)} +
n−1∑

k=0

ΦG(zk)

<γ2
n−1∑

k=0

N∑

i=1

νTi,kTi,kνi,k +

n−1∑

k=0

l0∑

i=1

γ2W̄i,kexp(̟i). (35)

Taking the factE{v(ηn)} > 0 and the initial condition
Pi,0 ≤ γ2Ui into account, theH∞-consensus performance
index (10) is satisfied. Thus, the proof of this theorem is now
complete.

Theorem 2:For given the real numberγ > 0, the constant
sequenceαi,k ∈ Iqi , and the matricesRi,k, Qi,k, Ti,k and
W̄i,k be given. The filtering error system (9) achieves the
H∞-consensus performance index over the finite horizon
H, if there exist a sequence of matrices{Pi,k}k∈H∪{n} ,

diag{P 1
i,k, P

2
i,k} (P 1

i,k > 0 andP 2
i,k > 0), and matricesEi,k

andFij,k satisfying the initial conditionPi,0 ≤ γ2Ui (∀i =
1, 2, . . . , N), such that the following recursive linear matrix
inequalities are satisfied for allk ∈ H:







Ωi,k ,











Ω11
i,k Ω12

i,k 0 Ω14
i,k 0 Ω16

i,k

∗ Ω22
i,k 0 Ω24

i,k 0 0

∗ ∗ Ω33
i,k Ω34

i,k 0 0

∗ ∗ ∗ Ω44
i,k Ω45

i,k 0

∗ ∗ ∗ ∗ Ω55
i,k 0

∗ ∗ ∗ ∗ ∗ Ω66
i,k











< 0, (36a)

Φ−1
i,k , −(Bk +Di,k)

TPi,k+1(Bk +Di,k)

+γ2Ti,k > 0, (36b)

∀i = 1, 2, . . . , l0,

and






∆i,k ,









∆11
i,k ∆12

i,k ∆13
i,k 0 ∆15

i,k

∗ ∆22
i,k ∆23

i,k 0 0

∗ ∗ ∆33
i,k ∆34

i,k 0

∗ ∗ ∗ ∆44
i,k 0

∗ ∗ ∗ ∗ ∆55
i,k









< 0, (37a)

Φ̄−1
i,k , γ2Ti,k − BT

k Pi,k+1Bk > 0, (37b)

∀i = l0 + 1, l0 + 2, . . . , N,

where

Ω11
i,k =FTQi,kF + FTRi,kF − ρi,kPi,k,

Ω12
i,k =−

[
FTRi,kF . . . FTRi,kF
︸ ︷︷ ︸

pi

]
,

Ω22
i,k =− diag

{
αji1,k

1 + qji1
Pji1,k −FTRi,kF , . . . ,

αjipi ,k

1 + qjipi
Pjipi ,k

−FTRi,kF

}

,

Ω33
i,k =− γ2W̄i,kexp(̟i),

Ω14
i,k =

(

Ā0,k + C̄i,k −
∑

j∈Ni

K̄ij,k

)T

, Ω34
i,k = ĒT

i,k,

Ω24
i,k =[K̄ij1,k . . . K̄ijpi ,k

]T , K̄ij,k = diag{0, Fij,k},

Ω44
i,k =− Pi,k+1, Ω55

i,k = −γ2Ti,k, Ω45
i,k = B̄k + D̄i,k,

Ω16
i,k =[ĀT

1,k . . . ĀT
r,k], Ω66

i,k = −diagr{Pi,k+1},

Ā0,k =diag{P 1
i,k+1A0,k, P

2
i,k+1A0,k},

D̄i,k =diag{0,−Ei,kpi,kDi,k},

Āt,k =

[
P 1
i,k+1At,k 0

P 2
i,k+1At,k 0

]

, B̄k =

[
P 1
i,k+1Bk 0

P 2
i,k+1Bk 0

]

,

C̄i,k =

[
0 0

Ei,k(1− pi,k)Ci,k −Ei,kCi,k

]

,

Ēi,k =

[
0 0
0 Ei,k(1− pi,k)̟i

]

,

∆11
i,k =FTQi,kF + FTRi,kF − ρi,kPi,k,

∆12
i,k =− [FTRi,kF . . . FTRi,kF

︸ ︷︷ ︸

pi

], ∆34
i,k = B̄k,

∆22
i,k =− diag

{
αji1,k

1 + qji1
Pji1,k −FTRi,kF , . . . ,

αjipi ,k

1 + qjipi
Pjipi ,k

−FTRi,kF

}

,

∆13
i,k =

(

Ā0,k −
∑

j∈Ni

K̄ij,k

)T

, ∆33
i,k = −Pi,k+1,

∆23
i,k =[K̄ij1,k . . . K̄ijpi ,k

]T , ∆44
i,k = −γ2Ti,k,

∆55
i,k =− diagr{Pi,k+1}, ∆15

i,k = [ĀT
1,k . . . ĀT

r,k].

Moreover, the desired filter gains are given by

Li,k =(P 2
i,k+1)

−1Ei,k and Kij,k = (P 2
i,k+1)

−1Fij,k.

(38)

Proof: Performing congruence transformation

diag

{

I, I, I,P−1
i,k+1, I,P

−1
i,k+1, . . . ,P

−1
i,k+1

︸ ︷︷ ︸

r

}

to (36a) leads to











Ω11
i,k Ω12

i,k 0 Ω̄14
i,k 0 Ω̄16

i,k

∗ Ω22
i,k 0 Ω̄24

i,k 0 0

∗ ∗ Ω33
i,k Ω̄34

i,k 0 0

∗ ∗ ∗ Ω̄44
i,k Ω̄45

i,k 0

∗ ∗ ∗ ∗ Ω̄55
i,k 0

∗ ∗ ∗ ∗ ∗ Ω̄66
i,k











< 0, (39)

and, similarly, using the congruence transformation diag{

I, I,P−1
i,k+1, I,P

−1
i,k+1, . . . ,P

−1
i,k+1

︸ ︷︷ ︸

r

}

to (37a), we have









∆11
i,k ∆12

i,k ∆̄13
i,k 0 ∆̄15

i,k

∗ ∆22
i,k ∆̄23

i,k 0 0

∗ ∗ ∆̄33
i,k ∆̄34

i,k 0

∗ ∗ ∗ ∆44
i,k 0

∗ ∗ ∗ ∗ ∆̄55
i,k









< 0, (40)
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where

Ω̄14
i,k =

(

A0,k + Ci,k −
∑

j∈Ni

Kij,k

)T

, Ω̄34
i,k = ET

i,k,

Ω̄24
i,k =[Kij1,k . . . Kijpi ,k

]T , Ω̄44
i,k = −P−1

i,k+1,

Ω̄45
i,k =Bk +Di,k, Ω̄16

i,k = [A1,k A2,k . . . Ar,k],

Ω̄55
i,k =− γ2Ti,k, Ω̄66

i,k = −diagr{P
−1
i,k+1},

∆̄13
i,k =

(

A0,k −
∑

j∈Ni

Kij,k

)T

, ∆̄33
i,k = −P−1

i,k+1,

∆̄23
i,k =[Kij1,k . . . Kijpi ,k

]T , ∆̄34
i,k = Bk,

∆̄15
i,k =[A1,k A2,k . . . Ar,k], ∆̄55

i,k = −diagr{P
−1
i,k+1}.

Then, it is easy to verify the following relationships

Ω14
i,k = Ω̄14

i,kPi,k+1, Ω24
i,k = Ω̄24

i,kPi,k+1,

Ω34
i,k = Ω̄34

i,kPi,k+1, Ω44
i,k = Pi,k+1Ω̄

44
i,kPi,k+1,

Ω45
i,k = Pi,k+1Ω̄

45
i,k, Ω16

i,k = Pi,k+1Ω̄
16
i,k,

Ω66
i,k = diagr{Pi,k+1}Ω̄

66
i,kdiagr{Pi,k+1},

∆13
i,k = ∆̄13

i,kPi,k+1, ∆23
i,k = ∆̄23

i,kPi,k+1,

∆33
i,k = Pi,k+1∆̄

33
i,kPi,k+1, ∆34

i,k = Pi,k+1∆̄
34
i,k,

∆55
i,k = diagr{Pi,k+1}∆̄

55
i,kdiagr{Pi,k+1},

∆15
i,k = ∆̄15

i,kPi,k+1, Ei,k = P 2
i,k+1Li,k,

Fij,k = P 2
i,k+1Kij,k.

In terms of the Schur Complement Lemma, we immediately
draw the conclusion from (39) and (40) that the conditions
(14a) and (15a) are satisfied. In addition, (36b) and (37b) hold
if and only if (14c) and (15b) are true, and the rest of the proof
follows directly from Theorem 1. The proof is thus complete.

Remark 2:This paper investigates the partial-nodes-based
distributed filtering problem for a class of discrete-time sys-
tems with censored measurements. A set of deterministic
indicative variables is introduced to describe the censored
measurements and a newH∞ performance index is proposed
to better reflect the impact of censored measurements on the
filtering performance. With the aid of the local performance
analysis method, sufficient conditions are established for two
kinds of nodes (i.e. having or not having available mea-
surement outputs) such that the prescribedH∞ performance
index is achieved. Compared with the existing results, the
developed filtering scheme has the following distinguished
features: 1) a censored-related term is involved in theH∞

performance index in an exponential function form; 2) the
designed algorithm is shown to be valid, respectively, for
nodes with or without the sensing capabilities, which implies
that our algorithm has the desired flexibility; and 3) a local
design method is applied to deal with the filtering issue in the
distributed sense, which confirms that our algorithm achieves
the scalability.

IV. A N UMERICAL EXAMPLE

In this section, a numerical example is carried out to
illustrate the validity of the proposed distributed filter design
scheme.

For given an SN with 5 nodes, its topology is repre-
sented by a digraphG = (V , E ,A ), where the set of
nodes isV = {1, 2, 3, 4, 5} and the set of edges isE =
{(1, 4), (2, 1), (3, 2), (4, 3), (5, 4), (5, 1), (5, 3)}, as shown in
Fig.1. Obviously, it can be inferred thatp1 = p2 = p3 =
p4 = 1, p5 = 3, and q1 = q3 = q4 = 2, q2 = 1, q5 = 0. In
this example, assume that the measurement output of node5
is not available.

Fig. 1: Topology of a Sensor Network.

The parameters of the target plant is set as:

Ak =

[
−0.80 0.15
0.15 0.21 sin(6k)

]

, Bk =

[
0.1
0.1

]

,

A1,k =

[
−0.80 0.15
0.15 0.21 sin(6k)

]

,

Ci,k =

[
0.8

1.2 sin((i + 1)k)

]T

, Di,k = 1.

In addition, the other parameters are, respectively, set asn =
21, γ2 = 0.16, αi,k ≡ 0.5, Pi,0 = diag{I, 5I}, Ui = 100Pi,0,
Ti,k ≡ diag{1, 1}, Γi = −0.1 andW̄i,k = 1.

By using the YALMIP toolbox in MATLAB software, all
the desired filter gains are recursively calculated according
to Theorem 2. The initial values are set as follows:x0 =
[0.3 − 0.5]T , x̂1,0 = [0.6 − 0.7]T , x̂2,0 = [0.1 − 0.2]T ,
x̂3,0 = [0.8 − 0.5]T , x̂4,0 = [−0.3 − 0.5]T and x̂5,0 =
[0.3 0.5]T . The disturbances are chosen aswk = 0.1 cos(5k)
andξi,k = 0.1 cos(5k), respectively.

The simulation results are shown in Figs. 2-6, where the
state trajectories of the plant and their estimates are displayed
in Figs. 2-3, the censored measurementsyi,k (i = 1, . . . , 4)
are depicted in Fig. 4, the norms of the consensus errors
∑

j∈Ni
‖ej,k − ei,k‖2 are given in Fig. 5 and the norms of

the filtering errors‖ei,k‖2 are plotted in Fig. 6. It is observed
from all the simulation results that the proposed distributed
filtering scheme performs very well.

V. CONCLUSION

In this paper, we have investigated the scalable distribut-
ed H∞-consensus filtering problem for a class of discrete
time-varying systems with multiplicative noises and censored
measurements over sensor networks where only partial n-
odes have the ability to conduct the measurement task. A
set of deterministic indicative variables has been employed
to characterize the censored measurements. A novelH∞-
consensus performance index has been established to reflect
the impacts of the censored measurements on the filtering

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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error dynamics. By using the local performance analysis
method, a sufficient condition has been established so as to
meet the prescribedH∞-consensus performance requirement.
Furthermore, the desired filter gains have been recursively
calculated in a distributed manner. Finally, the effectiveness of
the main results has been illustrated by a simulation example.
The future research topics would include the extension of the
main results of this paper to more complex target plants with
engineering-oriented performance specifications (see e.g. [4],
[14], [32]–[34], [36], [40]) and to the dual distributed control
problems (see [23], [24], [35], [44]).
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