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Abstract: Novel aluminium matrix composites reinforced by MoTaNbVW refractory high-entropy
alloy (HEA) particulates have been fabricated by powder metallurgy. The microstructure of the
produced composites has been studied and the corrosion behaviour assessed in 3.5% NaCl solution.
The composites exhibited low porosity, good homogeneity, few defects, and good distribution of the
reinforcing phase in the Al matrix. No secondary intermetallic phases have been formed while the
interface between matrix/reinforcement showed good bonding with no signs of reactivity. Increasing
the volume of the reinforcing phase leads to increased hardness values. AI-HEA composites exhibited
susceptibility to localised forms of corrosion in 3.5% NaCl solution. The microstructure has been
analysed and corrosion mechanisms have been formulated.

Keywords: aluminium matrix composites; particulate reinforcement; high-entropy alloys; MoTaN-
bVW; corrosion; potentiodynamic polarisation

1. Introduction

Metal matrix composites (MMCs) consist of a metallic matrix with a ceramic or a
metallic reinforcement. MMCs exhibit improved properties such as high specific strength,
high modulus, high hardness, and improved tribological properties. MMCs have been
replacing monolithic alloys in various applications in aerospace, transportation, and other
sectors [1-5]. A variety of MMCs has been developed with different matrices such as
aluminium, copper, and stainless steel. Aluminium matrix composites (AMCs) reinforced
with various particulates including Al,O3 [6-9], SiC [10-13], TiC [14-16], and B4C [17-20]
have been studied.

Several studies on the electrochemical properties of AMCs reinforced with various
ceramic reinforcements, including Al,O3/SiC [21], B4C [17], SiC [10,11], and AIN [22], indi-
cate that the composites exhibit decreased corrosion resistance compared to the monolithic
alloy. This is attributed to the breakdown of the continuous passive film on matrix—
reinforcement interface [23], the formation of galvanic couples between Al and reinforce-
ment [17,24], the formation of voids at matrix-reinforcements interfaces [25], interfacial
layers around the reinforcement that may promote the galvanic effect [26], and increase in
the dislocation density around particles clusters [27]. Another possible explanation for the
decreased corrosion resistance of Al-based composites compared to the monolithic alloys
is the pitting corrosion at the interfaces between the reinforcing particulates, secondary
precipitates, and the reduction of oxygen on cathodic particles and precipitates [28]. On
the other hand, several studies indicate that the introduction of the reinforcement in the
Al matrix leads to improved corrosion performance [12,13,29,30]. Various interpretations
may explain the improved corrosion performance, including the formation of reaction
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products that may act as barriers, interrupting the continuity of the matrix channels within
the matrix [12], and matrix/reinforcement decoupling [29]. In other research efforts, AMCs
exhibited comparable corrosion resistance with the monolithic alloy [14,15]. The effect of
the reinforcement on the corrosion performance of AMCs may vary and depends on the
environmental conditions and processing route [31]. Furthermore, other factors that may
modify corrosion behaviour include primary interfacial reaction products between ma-
trix/reinforcement [32], secondary precipitates in the as-cast states [33,34] and heat-treated
states [34], aging kinetics [35], and electrolyte type [36].

High-entropy alloys (HEAs) have attracted a lot of attention. A high-entropy alloy
contains at least five principal elements with concentrations of each element from 5 to 35 at.%,
with exceptional physical and anti-corrosive properties deriving from four core effects: (a) high
entropy, (b) sluggish diffusion, (c) severe lattice distortion, and (d) cocktail effect [37,38].

Due to their sluggish diffusion behaviour, less reactive nature, and attractive prop-
erties, HEAs are an outstanding choice for reinforcement in AMCs [39,40]. Various re-
searchers studied these novel MMCs reinforced with HEA particulates using different
types of matrixes, HEA reinforcement, and manufacturing routes [4,40-46]. Al-5083 matrix
composites reinforced with CoCrFeNi and AICoCrFeNi HEAs, have been fabricated by
additive manufacturing and submerged friction stir processing, respectively [39,40]. The
produced composites exhibited improved tensile properties, compressive strength, ultimate
tensile strength, yield strength compared to the monolithic alloys. AICoCrFeNi HEA, in
equiatomic and non-equiatomic compositions, has been employed as the reinforcement in
spark plasma sintered AMCs. The fabricated composites exhibited improved yield strength,
high strength, increased fracture surface energy, but low plasticity [41,42]. Composites
based on Al-7075 and commercially pure Al have been fabricated with the addition of
AlCoCrFeNiTi HEA particulates (equiatomic and non-equiatomic). The produced com-
posites manifested improved strength, plasticity, and extreme improvement in ultimate
tensile strength compared to the monolithic alloys [43,44]. Al-based composites reinforced
by various HEA particulates exhibited improved hardness, Young modulus, and strength
compared to conventional Al alloys [4,45,46].

The aim of the current investigation is to evaluate the feasibility of fabricating novel
AMCs reinforced by MoTaNbVW refractory HEA particulates via a powder metallurgy
route. Furthermore, to study the microstructure and the corrosion behaviour of the com-
posites in 3.5 wt.% NaCl solution. To the best of the authors’ knowledge, this is the first
effort to fabricate and study Al-based composites with the employment of refractory HEA
particulates. Furthermore, works on the corrosion behaviour of AMCs reinforced by HEA
particulates are extremely limited [47]. It should be mentioned that this is a preliminary
study and part of a larger effort to study different AMCs reinforced by various HEA
particulates with different reinforcement volumes. The final goal is to develop AMCs
with improved mechanical, corrosion, and tribological properties, while at the same time,
maintain high ductility and keep production costs low.

2. Materials and Methods
2.1. Fabrication

MoTaNbVW reinforcement has been produced by vacuum arc melting. Details on the
fabrication route and attained microstructures can be found elsewhere [48-51]. Afterwards,
HEA samples were crushed into fine particles using a planetary mill (Fritsch Pulverisette
7 Premium Line, Idar-Oberstein, Germany). The samples were ground in a bowl with
a capacity of 20 mL and 10 grinding balls with 10 mm diameter, the grinding time was
10 min at 850 rpm. The process took place in intervals of 20 s grinding and 80 s of pausing
to prevent the samples from overheating. The achieved fineness of the HEA powder
was approximately 40 pm. Commercial aluminium AA-1050 powder (purity 99.5%) was
used as the matrix and the equiatomic refractory high entropy alloy MoTaNbVW as the
reinforcement in order to produce composites of various compositions (0, 1, 3, and 5 vol%
reinforcement). A powder metallurgy route was followed as the fabrication technique.
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For each configuration, the powder of Al and HEA were weighted and stirred into a
beaker with methanol to avoid agglomeration and left to dry into a hot plate stirrer. The
final powders for the monolithic alloy and AlI-HEA composites were compacted into a
cylindrical pellet of 14 mm in diameter using a hydraulic press at 7.6 tons of force. Each
specimen had a weight of approximately 5 g. Due to the variation of volume and density
of the reinforcement, the height of each pellet ranged from 12 mm for the monolithic
alloy to 11.2 mm for the 5 vol% composition. Then, the pellets were carried into a steel
die with a diameter of 15.3 mm (slightly bigger from the cold press specimens to avoid
a breakdown during the insertion), covered with graphite powder for lubrication, and
sintered into a hot press furnace (manufactured by Termolab, Agueda, Portugal). The
final height for specimens ranged from 10.2 mm for the monolithic alloy to 9.2 mm for the
5 vol% composition. Sintering was executed in three steps. Initially, the temperature was
increasing at a rate of 50 °C/min until it was stabilised at 550 °C under vacuum conditions.
Afterwards, after 1 h, the loading process began gradually at a rate of 1000 N/min until
the press obtained the desired load of 6500 N. The load was applied to the specimens for
30 min. Then, the specimens were left to cool in the furnace.

Afterwards, specimens have been subject to standards metallographic procedures for
further analysis. More specifically, each specimen was cleaned after extraction from the
die to remove impurities. The surface of the samples was ground with SiC sandpapers
with final grit of 1200. Polishing was carried on with the use of a fine polishing cloth and
diamond spray of 1 micron. After polishing, each specimen was rinsed with ethanol to
remove contamination. The final outcome was a mirror-polished surface.

2.2. X-ray Diffraction and Hardness Testing

The phase identification of the composites was performed by a Bruker D-8 Advance
Diffractometer (Bruker, Billerica, MA, USA), Cu K-alpha radiation. An Innovatest IN-700M
(Innovatest, Europe BV, Maastricht, Netherlands) tester was employed to perform the
hardness testing (average of five measurements per sample, two samples per configuration).

2.3. Scanning Electron Microscopy

The microstructure of the produced materials was studied with a Zeiss Supra 35VP
(Carl Zeiss Microscopy, Jena, Germany) field emission gun scanning electron microscope
and an LEO 1455VP (Carl Zeiss Microscopy, Jena, Germany) scanning electron microscope.
Both were equipped with EDAX EDX detectors (Ametek, Berwyn, PA, USA). After poten-
tiodynamic polarisation, the surface of Al and the composites were studied by scanning
electron microscopy.

2.4. Corrosion Testing

Potentiodynamic polarisation testing was performed by a Gamry Reference 600
(Gamry Instruments, Warminster, PA, USA) potentiostat/galvanostat with the employment
of a standard three-electrode cell (saturated calomel as the reference electrode (SCE) and a
graphite gauge used as the counter electrode). Corrosion behaviour was studied in aerated
3.5% NaCl solution (pH 7). Open-circuit potential (Eocp) was determined after 1 h of
immersion in the solution. The scan rate for the polarisation testing was 10 mV/ min. Four
measurements were performed for each composition.

3. Results and Discussion
3.1. Microstructural Analysis-Hardness

Figure 1 presents a panoramic view of the HEA particulates after the milling process,
through SEM examination. It also presents the mean actual composition of the powder
particles in at.% after energy dispersive X-ray spectroscopy (EDS) analysis at various
particle areas. It can be observed that most of the particles show an angular morphology.
The first estimation of their size shows that it lays within the range of 1 pm to 30 pm.
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Figure 1. Microstructure and composition (average of six different measurements) of MoTaNbVW
powder under SEM (Secondary electron mode). (a,b) represent two different areas where point
analysis has been performed in 6 points in total.

Figure 2 presents the X-ray diffractograms for the different materials produced in the
present effort. It can be seen that in all cases, two different phases can be distinguished- an
FCC phase of the higher intensities that dominates, corresponding to Al, and a BCC phase
of significantly lower peak intensities that corresponds to the HEA-reinforcing particles.
These significantly lower peak intensities of the reinforcing phase particles are expected
since their overall content is relatively small (up to 5 vol.%). MoTaNbVW produced in the
form of bulk material consists of two BCC solid solutions- one rich in MoTaW and one
rich in NbV. This is the result of a low-extend segregation of these two phases during the
solidification process. It is well understood that the segregation of phases is inevitable, and
it is acceptable as long as these phases are solid solutions rather than brittle intermetallic
phases. It should be mentioned that MoTaNbVW was one of the pioneering refractory
HEAs that has been developed and it meets the prerequisites of simple solid solutions
formation. A thorough evaluation of the microstructure of MoTaNbVW can be found in
previous efforts [50,51].
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Figure 2. X-ray diffractograms of AI-HEA composites.

The particle distribution within the Al matrix for all the different composite systems is
shown in Figure 3. As a first observation, it can be noticed that the actual particle content
is in agreement with the nominal compositions: the higher the nominal composition, the
more increased the actual reinforcing particle content. This observation refers to all the
different particle sizes—as the particle content increases, the number of both the bulk and
the sub-micron particles increases. As far as the particle distribution is concerned, it can
be observed from Figure 3 that the distribution appears to be almost homogeneous for all
the different particle sizes. Such a homogeneous distribution is expected since powder
metallurgy processing route, due to the primary powder mixing process, ensures this type
of microstructural homogeneity at the final sintered products. Another important observa-
tion that rises from Figure 3 is related to the quality of the actual sintering process. It can
be noticed that in all cases there is no significant evidence of pores or other defects (flaws,
micro-cracks, micro-voids) which implies that the sintering process was fully developed
and concluded, leading to fully dense and rigid composite systems.

Figure 3. Microstructure of the produced composites (Back scattered electron mode): (a) Al-1 vol%
HEA, (b) Al-3 vol% HEA, and (c) AL-5 vol% HEA.
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Figure 4 illustrates an EDS mapping on a selected region around a bulk reinforcing
particle in order to reveal the elemental distribution. It can be observed that the reinforcing
particle consists of the elements related to the refractory HEA system adopted in the
present effort. Figure 4 also reveals useful information on the nature and integrity of the
matrix-reinforcement interfacial area. Indeed, no signs of pores or interfacial detachment
can be observed. Additionally, there is no significant evidence- at least at the observed
magnification of severe reactivity between the Al matrix and the HEA system elements
at the interfacial areas. This observation is very important because it indicates a lack of
potential brittle intermetallic phase formation. The presence of intermetallic phases at
the interfacial area would cause deteriorating effects on the properties of final composite
systems [52]. EDX analysis revealed no significant traces of oxide phases (especially
associated with Al). This may be attributed to the use of elemental Al powder that was
protected in the supply container and used at the very last moment of the overall process.
This handling reduced the exposure time to the atmosphere that could result in potential
oxygen absorption. Furthermore, graphite powder was employed as a lubricant during the
mechanical processing stage. The presence of graphite creates a reduction atmosphere at
the following stage of hot pressing, ensuring intensive oxygen removal from the powders.
The hot-pressing stage was performed under vacuum reducing further the potential for
oxygen contamination.

10 pm

Figure 4. Microstructure and elemental map of MoTaNbVW particulate in higher magnification
(BE mode).
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Figure 5 presents the hardness measurements for the different systems produced in
the present effort. The increase of the HEA particle content results in an increase of the
overall composite hardness, indicating the reinforcing action of the hard and strong HEA
phase. It should be noticed here that the selected HEA system possesses a hardness of
97 + 4 HRB (Rockwell B) [50]. Another interesting observation is the consistency of the
values and the deviation of hardness measurements. This may be explained by the good
microstructural homogeneity and the good particle distribution of the reinforcement in
the matrix.

47
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Al Al-1 vol% HEA Al-3 vol% HEA Al-5 vol% HEA

Figure 5. Hardness values for monolithic Al and AI-HEA composites.

3.2. Corrosion Performance

Figure 6 illustrates the potentiodynamic polarisation curves for monolithic Al and the
produced composites in aerated 3.5% NaCl solution (pH 7). Polarisation curves for the
composites with the lower HEA particulate content appear to be similar to the polarisation
curve of Al. However, Al-5 vol% HEA exhibits somewhat different polarisation behaviour.
More specifically, corrosion potential (Ecorr) appear to be slightly increased while the
cathodic current densities correspond to higher values compared to Al and lower HEA
containing composites. The increased cathodic current density values can be explained
by the increased volume of the cathodic HEA particulates [15]. Nonetheless, the curves
exhibit typical polarisation behaviour for Al and Al alloys in NaCl solutions; pitting
potentials (Epit) are a few decades of mV higher than the corrosion potentials (Ecorr). The
anodic part of the polarisation curves is divided into areas with a decreased rate of current
density increase and areas with a sustained flat gradient; in the sustained flat gradient
current density increases by several orders of magnitude, an indication of susceptibility to
localised forms of corrosion [52-54]. It is thus concluded that the corrosion behaviour of
the composites in 3.5% NaCl solution appears to be mainly controlled by the corrosion of
matrix, in agreement with other studies [14,28].
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Figure 6. Potentiodynamic polarisation curves for Al and AI-HEA composites in aerated 3.5%
NaCl solution.

Figure 7 presents the surface of the monolithic alloy and the composites under SEM
after potentiodynamic polarisation in 3.5% NaCl solution. The surface appears to be
degraded with the formation of pits. A most interesting observation is that Al on the matrix-
reinforcement interface (Figure 7b—d) appears to be subject to preferential dissolution. This
can be attributed to the high nobility of the reinforcing phase compared to the Al matrix.
The galvanic effect between the matrix and the reinforcement can be further postulated by
the presence of high amounts of oxygen on areas of the matrix close to the reinforcement
(Figure 7e). It should be mentioned that the reinforcement appears to be free of any
corrosion signs. The main corrosion mechanism of MoTaNbVW in 3.5% NaCl solution is
uniform corrosion and intergranular corrosion of inter-dendrites at the dendritic/inter-
dendritic boundaries due to the electrochemical potential difference between the dendrites
(rich in Mo, Ta, W) and inter-dendrites (rich in Nb, V). Mo, W, and Nb are beneficial in
decreasing the occurrence of pit corrosion in the MoTaNbVW system [55].

Corrosion behaviour of the composites appears to be the sum of counterbalancing
mechanisms: HEA particulates may improve corrosion performance of the composites
by stabilising the oxide film. Indeed, Wang et al. reported that the introduction of CuZr-
NiAITiW HEA particulates in Al led to improved corrosion performance due to the sta-
bilising effect of Ni and W in the transition layer [47]. In addition, the introduction of
HEA particulates in Al leads to a decrease of the available Al area that may be subject
to degradation. On the other hand, the introduction of HEA particulates might lead to
the formation of discontinuities on the Al oxide film; the interface of Al/reinforcement
may act as a corrosion initiation site. Increasing the volume of the reinforcement might
lead to a more pronounced galvanic effect that may accelerate the dissolution of Al on the
Al/ reinforcement interface. Another consideration is the galvanic effect between areas
richer in HEA particulates and areas with a lower concentration of particulates. However,
the intensity of the galvanic effect might be lessened by the good homogeneity/particle
distribution and the lack of formation of secondary intermetallic phases or layers with
different compositions. Other studies highlighted the importance of the high sintering
quality and relative density on enhancing the corrosion resistance of AMCs reinforced by
HEA particulates in a seawater solution [47].
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Figure 7. Microstructure of the corroded surface (SE mode) after polarisation in aerated 3.5% NaCl solution: (a) Al, (b) Al-1
vol% HEA, (c) Al-3 vol% HEA, and (d,e) Al-5 vol% HEA with elemental map.
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4. Conclusions

e Novel aluminium matrix composites reinforced by MoTaNbVW refractory high-
entropy alloy particulates have been successfully produced by powder metallurgy.

e  The microstructure of the produced AMCs appears to be homogenous, with low
porosity, few defects, and good distribution of the reinforcing phase in the Al matrix.

e No secondary intermetallic phases have been formed while the interface between
matrix and reinforcement showed good bonding without any signs of reactivity.
Increasing the volume of the reinforcing phase leads to increased hardness values.
Al-HEA composites exhibited typical polarization behaviour for Al and Al alloys
in NaCl solutions. All examined materials were susceptible to localised forms of
corrosion in 3.5% NaCl solution, while aluminium matrix on the reinforcement/matrix
interface has been subject to selective dissolution. The corrosion behaviour of the
produced composites appears to be mainly controlled by the corrosion of the matrix.
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