
FINAL VERSION 1

A Novel Randomised Particle Swarm Optimizer
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Abstract—The particle swarm optimization (PSO) algorithm is
a popular evolutionary computation approach that has received
an ever-increasing interest in the past decade owing to its wide
application potential. Despite the many variants of the PSO
algorithm with improved search ability by means of both the
convergence rate and the population diversity, the local optima
problem remains a major obstacle that hinders the global optima
from being found. In this paper, a novel randomized particle
swarm optimizer (RPSO) is proposed where the Gaussian white
noise with adjustable intensity is utilized to randomly perturb
the acceleration coefficients in order for the problem space
to be explored more thoroughly. With this new strategy, the
RPSO algorithm not only maintains the population diversity
but also enhances the possibility of escaping the local optima
trap. Experimental results demonstrate that the proposed RPSO
algorithm outperforms some existing popular variants of PSO
algorithms on a series of widely used optimization benchmark
functions.

Index Terms—Randomized algorithms, evolutionary computa-
tion, particle swarm optimization, Gaussian white noise, acceler-
ation coefficients.

I. I NTRODUCTION

Owing to their practical application insights, the optimiza-
tion problems have drawn considerable research attention
from both industrial and academic societies. The past few
years have witnessed a rapid development of optimization
techniques developed by various research communities in-
cluding computer science, mathematics, control engineering
and signal processing [2], [3], [21], [22]. In particular, as
a powerful group of optimization techniques, the evolution-
ary computation (EC) approaches have proven to be highly
efficient in solving global optimization problems with great
application potentials, and have therefore attracted tremendous
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research interest. Motivated by the biological evolution, many
well-known EC approaches (e.g. particle swarm optimization
(PSO) algorithm, evolution programming strategy, and genetic
algorithm) have been successfully employed to a variety
of real-world applications in the research areas of artificial
intelligence, signal processing and system science [9], [11],
[13], [31], [35], [36], [42]–[45]. Compared with other popular
EC algorithms (e.g. the genetic algorithm, differential evolu-
tion, and simulate annealing), the PSO algorithm proposed in
[17] exhibits competitive or even superior performance and
is thus recognized as an excellent candidate algorithm due
mainly to its technical merits of easy implementation and fast
convergence towards the optimal solution.

Motivated by the mimics of the social interactions (e.g. fish
schooling or birds flocking), the PSO algorithm aims to
explore the search space by adjusting the velocity and position
of particles according to the swarm intelligence. In fact, the
PSO algorithm is capable of discovering the optimal solution
both effectively and efficiently, and has been regarded as
a rather powerful optimization technique. So far, the PSO
algorithm has been successfully applied to solve the optimiza-
tion problems in a wide range of real-world systems such as
power systems [10], genetic regulatory networks [35], medical
systems [42], [43] and path planning systems [32]. In the
execution of a PSO algorithm, by cooperating and competing
with other individual particles, each particle is encouraged
to learn from its own experience and other competitors’
experience to seek the globally optimal solution through the
entire search space. During the evolution process at each
iteration, each individual particle is guided by its historical
personal best position and the global best position discovered
by the entire yet dynamical swarm.

Population-based EC approaches are known to have the
problems of easily getting trapped in the local optima es-
pecially when being used to solve large-scale optimization
problems, and the PSO algorithm is not an exception. As such,
despite the ongoing effort, it is still vitally important to further
develop advanced algorithms in order to enhance global search
capability of the PSO algorithms. Up to now, a great deal of
research attention has been paid to the improvement of the
search capability of the existing PSO algorithms by developing
advanced PSO variants so as to alleviate the phenomenon
of premature convergence. For example, a comprehensive
learning particle swarm optimizer [19] has been developed
to preserve the population diversity of the particles to avoid
trapping in the local optima for complex multimodal problems.
Recently, an adaptive PSO (APSO) algorithm has been intro-
duced in [44] where an adaptive parameter selection scheme
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has been proposed to automatically adjust the accelerationco-
efficients and the inertia weight, by which the search behavior
of the PSO algorithm has been improved. More recently, a
switching PSO (SPSO) algorithm has been put forward in [35]
with the purpose of further improving the convergence rate of
the APSO algorithm. Furthermore, a switching delayed PSO
(SDPSO) algorithm has been proposed in [42] where time
delays are introduced in the velocity updating model in order
to make better use of historical information of the evolution
process, thereby outperforming the SPSO algorithm with a
better exploration of the problem space.

In a PSO algorithm, the acceleration coefficients are crucial
parameters in achieving the balance between the global ex-
ploration and local searches through the entire problem space
[13], [31], [34]. The selection of the acceleration coefficients
plays an important role in successfully seeking the globally
optimal solution. To enhance the possibility of escaping from
the local optima, a great number of PSO variants have been
developed with focuses on adjusting the acceleration coeffi-
cients, for example, controlling the acceleration coefficients
in a time-varying manner [28]. Intuitively, a properly designed
random perturbation (with adequate intensity) on the velocity
updating model could lead to allowable variation of the
acceleration coefficient that will not affect the convergence of
the PSO algorithm but, rather, enhance the population diversity
at each iteration, thereby further increasing the possibility
of getting rid of local optima. In choosing a candidate for
random perturbations, the well-known Gaussian white noise
(GWN) appears to be an ideal candidate due to its constant
power spectral density and easily tunable intensity at different
frequencies when it comes to the implementation [37], [38].

Inspired by above argument of developing randomized
algorithms [25], a seemingly natural idea is to introduce the
GWNs into the acceleration coefficients of the PSO algorithm
with hope to improve the population diversity and allevi-
ate the premature convergence. The advantages of utilizing
the GWNs are concluded as twofold: 1) the GWNs in the
acceleration coefficients can alter the system dynamics (by
means of iterations) which could contribute to a more thorough
exploration and exploitation through the problem space; and
2) with the GWNs in place, the particles are entitled to exhibit
more complicated dynamical behaviors (than the conventional
PSO algorithms) which would enhance the capability of the
particles escaping from the local optima and also improve the
population diversity of the PSO algorithm.

Note that the randomised PSO algorithms have gained some
research attention in the past few years. To be specific, the
random perturbation on thevelocity updating modelhas been
considered in some variant PSO algorithms in order to reduce
the possibility of getting trapped in local optima [18], [29],
[39]. For example, in [39], a random perturbation has been
added to slightly randomize the personal best position at each
iteration. In [18], [29], a uniformly distributed noise term
has been entered into the velocity updating model so as to
avoid the stagnation problem. Rather than modifying the

velocity updating model, in this paper, we aim to design
a new acceleration coefficient updating strategy by directly
imposing the GWNs onto the acceleration coefficients that play
a vitally important role in ensuring a proper balance between
the global exploration and local exploitation with satisfactory
convergence rate. Comparing with the algorithms developed
in [18], [29], [39], our proposed RPSO algorithm exhibits the
advantage of achieving multiple objectives (e.g. global explo-
ration, local exploitation and convergence) through randomly
yet purposely perturbing the acceleration coefficients.

To conclude the discussions made so far, in this paper, we
endeavor to propose a randomized PSO (RPSO) algorithm
where the GWN with adequately adjusted intensity is utilized
to randomly perturb the acceleration coefficients in order for
the problem space to be explored more thoroughly. The main
contributions can be summarized as follows: 1) a novel RPSO
algorithm is developed where the GWNs are embedded in
the velocity updating model to adjust the acceleration coef-
ficients at each iteration, which helps prevent the undesirable
premature convergence; and 2) the proposed RPSO algorithm
is comprehensively verified on a series of test functions
(including both the unimodal and multimodal cases) and it
is demonstrated that the RPSO algorithm outperforms some
existing popular variants of PSO algorithms on a series of
widely used optimization benchmark functions.

The rest of this paper is organized as follows. The basic
PSO algorithm and its recent developments are introduced in
Section II. In Section III, the proposed RPSO algorithm is ex-
plained in detail. Experimental results, parameter setting and
discussions are presented in Section IV. Finally, conclusions
and future directions are drawn in Section V.

II. D EVELOPMENT OFPSO ALGORITHMS

In the canonical PSO algorithm proposed in [17], the
particles are learning from its own experience and cooperating
with other members to seek the optimal solution of the opti-
mization problem where each particle represents a candidate
solution. All the particles are exploring and exploiting inthe
D-dimensional search space with a certain velocity. At the
kth iteration, the position and velocity of theith particle are
represented byXi(k) = (Xi1(k), Xi2(k), · · · , XiD(k)) and
Vi(k) = (Vi1(k), Vi2(k), · · · , ViD(k)), respectively. Inspired
by the swarm intelligence paradigm, the particles are motivated
to move to their own personal best position (pbest) as well as
the global best position (gbest) found by the entire swarm.
Theoretically, the velocity and position of theith particle are
described as follows

Vi(k + 1) = wVi(k) + c1r1(pbesti(k)−Xi(k))

+ c2r2(gbest(k)−Xi(k))

Xi(k + 1) = Xi(k) + Vi(k + 1)

(1)

wherew represents the inertia weight;k denotes the iteration
number;c1 and c2 are the cognitive acceleration coefficient
and social acceleration coefficient which pull the particle
towards its pbest and the gbest, respectively.pbesti represents
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the pbest of particlei; gbest indicates the gbest discovered by
the entire swarm; andr1 andr2 are two uniformly distributed
random variables taking values on[0, 1].

As mentioned previously, the individual particle in exe-
cuting a PSO algorithm may easily get trapped in the local
optima, and this leads to the so-called premature convergence.
Under this circumstance, it is of critical significance to develop
advanced approaches to improve the search ability of the PSO
algorithms. Up to now, a variety of PSO variants have been
introduced with the purpose of improving the search abilityof
PSO algorithm, reducing the possibility of trapping into local
optima and alleviating premature convergence, see in [4], [7],
[30]–[32], [35], [42], [44]. To be specific, three types of PSO
variants have been introduced by: 1) putting forward novel
strategies to adjust the control parameters; 2) designing new
updating topological structures and 3) hybridizing with other
EC algorithms.

A large number of famous PSO variants have been de-
veloped according to the adaption of the control parameters
including the inertia weight and acceleration coefficients. This
type of PSO variants aims to balance the global exploration
and local exploitation during the search process by adjusting
the control parameters. For example, a time-varying strategy
has been designed in the PSO algorithms to alter the control
parameters. For some representative algorithms in this regard,
we refer the readers to PSO algorithm with a linearly decreased
inertia weight (PSO-LDIW) [30], [31] and the PSO algorithm
with time-varying acceleration coefficients (PSO-TVAC) [28].
Moreover, an advanced variant PSO algorithm with constric-
tion factor (PSO-CK) has been developed in [12] to further
improve the convergence performance of the PSO algorithm.

In addition to modifying the control parameters, some pop-
ular PSO variants with new topological structures have been
developed during the past few decades. Notably, the introduced
velocity updating model of the PSO algorithms could enhance
the swarm diversity and alleviate premature convergence. The
APSO algorithm proposed in [44] aims to adapt the control
parameters based on the evolutionary state determined by
the evolutionary factor. Recently, time-delay terms have been
entered into the velocity updating model which not only
alters the system dynamics but also makes better use of
historical information through the evolution process, andthus
improves the convergence behaviors of PSO algorithms and
reduces the trapping possibility into the local optima, see[32],
[33], [42]. Additionally, the PSO algorithm with a dynamical
diversity coefficient has been proposed in [15] where a random
velocity controlled by a diversity coefficient has been taken
into consideration to further improve the PSO algorithm by
enhancing the search ability. With the purpose to improve the
diversity and avoiding the premature convergence problem,
an augmented PSO algorithm in combination with multiple
adaptive methods has been put forward in [16] where an
intelligent selection mechanism has been developed to select
an appropriate search approach. Very recently, a novel N-state
Markovian jumping PSO algorithm has been developed where

the velocity updating equation has been adjusted based on
the state evolution governed by a Markov chain [27]. It is
worth pointing out that the impact of different communication
topologies in the PSO algorithm has been investigated in [1].

On the other hand, the hybridization of the standard PSO
algorithm and other EC algorithms is another well-studied
research forefront. The genetic algorithm has been adopted
to further enhance the search ability of the PSO algorithm in
[14]. Recently, a switching local evolutionary PSO algorithm
has been developed in [41] which utilities the DE algorithm to
further improve the search capability of the PSO algorithm and
alleviate the premature convergence. Very recently, a hybrid
PSO algorithm with simulated annealing has been proposed
in [26], which could increase the population diversity of the
swarm and improve the possibility of jumping out of the
local optimum. Nevertheless, the above PSO algorithms may
still get trapped in the local optimal solutions, and some of
them suffer from high computational cost especially for com-
plex and high-dimensional multimodal problems. Therefore,
it is both theoretically important and practically significant
to develop novel approaches that further enhance the search
performance of the optimizer with regard to both diversity and
convergence rate.

III. A N EW RPSO ALGORITHM

A novel RPSO algorithm is developed in this section where
the GWNs are entered into the updating model for velocity for
randomly perturbing (with adequate intensity) the acceleration
coefficients with hope to decrease the trapping possibilityinto
the local optima and also seek the optimal solution more
thoroughly. The motivation and framework of the proposed
RPSO algorithm are illustrated in details.

A. Motivation

To control the PSO algorithm in an effective way, the control
parameters (such as the inertia weight, the social acceleration
coefficient and the cognitive acceleration coefficient) aredom-
inantly crucial during the evolution process. The inertia weight
is a significant parameter in controlling the exploration ofthe
search space which is commonly set to be a constant or a
dynamically changing value [31]. Similarly, the acceleration
coefficients (composed of the cognitive component and the
social component) are used to control the movement of the
particles towards their personal best position and the global
best position discovered by the entire swarm, respectively. In
general, the parameter setting of the acceleration coefficients
plays an adequate role in achieving the balance between the lo-
cal search and the global exploration through the optimization
process. As such, an appropriate selection of the acceleration
coefficients is of vital importance to seek the global optimum
effectively and accurately. Unfortunately, some existingPSO
algorithms which focus on adjusting the control parameters
(such as the PSO-TVAC algorithm) may still easily get trapped
in the local optima. Therefore, it is of crucial importance to
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investigate an advanced parameter selection mechanism so as
to reduce the possibility of trapping into local optima and
further enhance the search capability of the PSO algorithms.

We are now ready to introduce our novel RPSO algorithm
dedicatedly designed to enhance the search ability of the
particles with the hope to thoroughly explore and exploit
the entire problem space. The major novelty of the newly
proposed RPSO model is to separately introduce the GWNs
into the cognitive acceleration coefficient as well as the social
acceleration coefficient to effectively and efficiently seek the
optimal solution. By establishing such a new velocity updating
model, the RPSO algorithm consists of the following two
advantages: 1) the GWNs are separately added to the social
and cognitive acceleration coefficients which randomly perturb
the movement of the particles at each iteration; and 2) the
dynamical behavior of the RPSO algorithm becomes more
complicated than the basic PSO algorithm and the particles are
therefore allowed to expand their search space, which leadsto
a more thorough exploration of the problem space with less
trapping possibility into the local optima.

B. Framework of the RPSO Algorithm

For the novel RPSO algorithm, the flowchart is depicted in
Fig. 1.

Fig. 1. Flowchart of the RPSO algorithm

The velocity and position of theith particle are updated
based on the following equations:

Vi(k + 1) = wVi(k) + r1(Cp + δ1(k))(pbesti(k)−Xi(k))

+ r2(Cg + δ2(k))(gbest(k)−Xi(k))

Xi(k + 1) = Xi(k) + Vi(k + 1)
(2)

where k denotes the iteration number;Cp and Cg indicate
the acceleration coefficients defined in Eq. (4) and Eq. (5),
respectively;w is inertia weight represented by Eq. (3);δ1(k)

andδ2(k) represent two independent GWNs; andr1 andr2 are
two uniformly distributed random numbers on[0, 1]. Notably,
the GWNs (δ1(k) as well asδ2(k)) and the random numbers
(r1 andr2) are mutually independent.

Motivated by the PSO-LDIW [31] and the PSO-TVAC
[28] algorithms, the inertia weightw and the acceleration
coefficientsCp andCg of the RPSO algorithm are shown as
follows:

w = wmax − (wmax − wmin)×
k

maxit
(3)

Cp = (Cpmax − Cpmin)×
maxit− k

maxit
+ Cpmin (4)
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Cg = (Cg min − Cg max)×
maxit− k

maxit
+ Cgmax (5)

wherewmax, Cpmax andCgmax represent the maximum value
of the inertia weightw, acceleration coefficientsCp andCg,
respectively;wmin, Cpmin and Cgmin denote the minimum
value ofw, Cp andCg, respectively; andmaxit indicates the
maximum iteration.

The pseudo-code of the proposed RPSO algorithm is shown
in Algorithm 1.

Algorithm 1 RPSO Algorithm
Require: Initialize the swarm sizeP , the velocity and po-

sition of the particlesVi, Xi, the acceleration coefficients
Cp, Cg, the inertia weightw, the maximum iteration, the
Gaussian white noisesδ1 andδ2.
1. Calculate the fitness of each particle, and update thepbest

andgbest.
2. Update the inertia weight according to Eq. (3).
3. Adjust the acceleration coefficients based on Eqs. (4)-(5).
4. Update the velocity and position equations according to
Eq. (2).
5. Repeat Steps 1 to 4 till the algorithm reaches the
maximum iteration number.

IV. PERFORMANCEEVALUATION AND DISCUSSION OF

THE RPSO ALGORITHM

In this section, the performance of the proposed RPSO
algorithm is evaluated and discussed by comparing with some
widely-used PSO algorithms. In the simulation, some popular
test functions including both of the unimodal and multimodal
cases are taken into account to provide a comprehensive review
of the optimization performance of the developed RPSO algo-
rithm. In this paper, all the experiments are implemented by
using MATLAB 2017b on a PC with the Intel Corei5− 4590

3.30 GHz CPU and the Microsoft Windows7 Enterprise64-bit
operating system.

In our simulation, the swarm size is set asS = 30 and
the dimension of the problem space isD = 30. Furthermore,
the maximum number of iteration isk = 10000 for all the
tested PSO algorithms. To strengthen the reliability of the
simulation results, each experiment is repeated independently
for 50 times. The parameters of the compared PSO algorithms
are set up according to the literature [8], [17], [28], [30],
[35], [42]. For the RPSO algorithm, the inertia weight
w is linearly decreased from 0.9 to 0.4. The acceleration
coefficientsCp andCg are set in the range of[0.5, 2.5] where
Cpmax = Cgmax = 2.5 andCpmin = Cg min = 0.5. The mean
value and the variance of the GWNsδ1(k) andδ2(k) are set
to be 0 and 0.07, respectively.

A. Test Functions

In this paper, eight well-known test functions are selected
for evaluating the search ability of the proposed RPSO al-
gorithm by comparing with six popular PSO algorithms. The

selected PSO algorithms include the standard PSO algorithm
[17], the PSO-LDIW algorithm [30], the PSO-TVAC algorithm
[28], the PSO-CK algorithm [8], the SPSO algorithm [35], and
the SDPSO algorithm [42]. Among the selected test functions,
f1(x) (the Sphere function) is a typical unimodal function
which is often utilized to justify the convergence rate of the EC
approaches;f2(x) (the Rosenbrock function), referred to as the
Rosenbrock’s banana function, is a widely-used test problem
for optimization algorithms;f3(x) (the Rastrigin function)
and f5(x) (the Griewank function) have a large number of
local optima, which are hard to discover the globally optimal
solution; and other selected test functions are also popular
benchmark functions. It should be pointed out that all the test
functions are minimization problems and all of them have a
global minimum. Letx = (x1, x2, · · · , xD) whereD = 30

is the dimension of the problem space. The mathematical
formulations of the test functions are given as follows.

Sphere : f1(x) =

D
∑

i=1

x2
i . (6)

Rosenbrock : f2(x) =

D−1
∑

i=1

(100(xi+1 − xi)
2 + (xi − 1)2).

(7)

Rastrigin : f3(x) =

D
∑

i=1

(x2
i − 10 cos 2πxi + 10). (8)

Schwefel 1.2 : f4(x) =

D
∑

i=1

(

i
∑

j=1

xj)
2. (9)

Griewank : f5(x) = 1 +
1

4000

D
∑

i=1

x2
i −

D
∏

i=1

cos(
xi√
i
).

(10)

Penalized 1 : f6(x) =
π

D

(

10 sin2(πy1) (11)

+
D−1
∑

i=1

(yi − 1)2
(

1 + 10 sin2(πyi+1)
)

+ (yD − 1)2
)

+

D
∑

i=1

u(xi).

yi = 1 + 1/4(xi + 1),

u(xi) =







100(−xi − 10)4, xi < −10,

0, |xi| ≤ 10,

100(xi − 10)4, xi > 10.

Step : f7(x) =
D
∑

i=1

(⌊xi + 0.5⌋)2. (12)

Penalized 2 : f8(x) = 0.1
(

sin2(3πx1) (13)

+

D−1
∑

i=1

(xi − 1)2
(

1 + sin2(3πxi+1)
)

+ (xD − 1)2
(

1 + sin2(2πxD)
)

)
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+

D
∑

i=1

u(xi).

u(xi) =







100(−xi − 5)4, xi < −5,

0, |xi| ≤ 5,

100(xi − 5)4, xi > 5.

The detailed information of the test functions is shown in
Table I including the name of the test functions, the search
range of each optimization problem, the maximum velocity of
the particle for each test function, the threshold, and minimum
of the test functions. Notably, the search range of the test
function which indicates the range of the search space is
determined by the literature [40].

To further verify the validity of the RPSO algorithm on
some currently popular optimization functions, six functions
selected from the CEC 2015 competition on learning-based
real-parameter single objective optimization are employed
[20]. Among the selected benchmark functions,f9(x) and
f10(x) are unimodal functions.f11(x) is a simple multimodal
function with a large number of local optima.f12(x) is a
hybrid function.f13(x) andf14(x) are composition functions
which are difficult to discover the globe optimum. The di-
mension of the selected CEC 2015 benchmark functions is set
to be 30. The detailed information is displayed in Table II.
Furthermore, the maximum velocity of each particle in PSO
approaches is usually limited by a certain value with the hope
to avoid searching outside the predefined search range. Due
to empirical investigations on the test functions, the maximum
velocity is often set up by10− 20% of the dynamic range of
each dimension for different test functions [13], [28]. In our
simulation, the maximum velocity is set to be 20% of the
dynamical range.

B. Experimental Studies of the RPSO Algorithm

To evaluate the solution quality of the proposed RPSO
algorithm, three popular performance indicators (including the
convergence rate, success ratio and population diversity)are
utilized. Note that the success ratio is an important criterion to
measure the accuracy of the PSO approaches. The population
diversity is used to evaluate the solution quality. In this paper,
the convergence plots of the PSO algorithms are depicted
from Figs. 2-9 to demonstrate the convergence rate of the
PSO algorithms where the vertical coordinate indicates the
logarithm value of the average fitness value and the horizontal
coordinate denotes the number of iteration. Furthermore, the
minimum, mean and standard deviation fitness values of the
PSO algorithms are employed to demonstrate the solution
quality of the adopted PSO approaches in Table III.

From the figures, it is clear that the proposed RPSO al-
gorithm exhibits competitive performance than other selected
PSO variants. In Figs. 3-5 and Figs. 7-8, the RPSO algorithm
obtains the best average fitness value among the selected
PSO algorithms, and the convergence rate is satisfactory.
Additionally, the RPSO algorithm discovers the globally op-
timal solution of function (12). Although the convergence
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TABLE I
TEST FUNCTION CONFIGURATION

Test Functions Dimension Search Range Maximum Velocity Threshold Minimum
f1(x): Sphere 30 [−100, 100] 40 0.01 0
f2(x): Rosenbrock 30 [−30, 30] 12 100 0
f3(x): Rastrigin 30 [−5.12, 5.12] 2.048 50 0
f4(x): Schwefel 1.2 30 [−100, 100] 40 0.01 0
f5(x): Griewank 30 [−600, 600] 240 0.01 0
f6(x): Penalized 1 30 [−50, 50] 20 0.01 0
f7(x): Step 30 [−100, 100] 40 0.01 0
f8(x): Penalized 2 30 [−50, 50] 20 0.01 0

TABLE II
SELECTED CEC 2015BENCHMARK FUNCTIONS

Test Functions Dimension Search Range Minimum
f9(x): Rotated High Conditioned Elliptic Function 30 [−100, 100] 0
f10(x): Rotated Cigar Function 30 [−100, 100] 0
f11(x): Shifted and Rotated Schwefels Function 30 [−100, 100] 0
f12(x): Hybrid Function 3 30 [−100, 100] 0
f13(x): Composition Function 2 30 [−100, 100] 0
f14(x): Composition Function 6 30 [−100, 100] 0
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Fig. 6. Algorithm Convergence Characteristics for Griewank function f5(x)
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Fig. 7. Algorithm Convergence Characteristics for Penalized 1 function
f6(x)
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Fig. 8. Algorithm Convergence Characteristics for Step function f7(x)
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TABLE III
STATISTICAL RESULTS OFPSO ALGORITHMS ON WIDELY-USED BENCHMARK FUNCTIONS

PSO PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO RPSO
f1(x) Minimum 1.44 × 103 2.38× 10−64 3.97× 10−57 6.07× 10−175 3.23× 10−196 3.42 × 10−5 1.78× 10−55

Mean 2.55 × 103 1.81× 10−60 1.62× 10−30 8.00× 102 8.58× 10−183 3.59 × 10−67 1.30× 10−34

Std. Dev. 1.45 × 103 8.82× 10−60 9.45× 10−30 2.74× 103 0.0000 2.88 × 10−2 5.61× 10−34

Ratio 0% 100% 100% 92% 100% 74% 100%
f2(x) Minimum 2.28 × 105 5.75× 10−3 2.31× 10−3 7.67× 10−6 5.33× 10−4 2.77 × 101 3.82× 10−4

Mean 3.95 × 105 1.65× 104 1.96× 103 2.09× 103 5.43× 103 3.13 × 102 1.10× 102

Std. Dev. 1.12 × 105 3.48× 104 1.27× 104 1.27× 104 2.16× 104 6.95 × 102 4.32× 102

Ratio 0% 64% 90% 80% 92% 54% 94%
f3(x) Minimum 1.34 × 102 1.29× 101 1.39× 101 4.97× 101 3.18× 101 2.69 × 101 1.29× 101

Mean 1.93 × 102 4.58× 101 2.65× 101 9.96× 101 9.46× 101 6.21 × 101 2.69× 101

Std. Dev. 2.22 × 101 2.18× 101 6.5499 2.96× 101 3.16× 101 2.15 × 101 1.00× 101

Ratio 0% 60% 100% 2% 8% 36% 96%
f4(x) Minimum 4.05 × 103 9.74× 10−4 1.71× 10−8 2.87× 10−24 5.79× 10−14 8.60 × 101 1.13× 10−9

Mean 1.14 × 104 8.10× 103 3.00× 102 3.17× 103 2.77× 103 1.01 × 103 2.00× 102

Std. Dev. 5.67 × 103 7.93× 103 1.20× 103 3.94× 103 4.47× 103 1.81 × 103 9.90× 102

Ratio 0% 10% 92% 54% 62% 0% 92%
f5(x) Minimum 1.45 × 101 0.0000 0.0000 0.0000 0.0000 1.83 × 10−5 0.0000

Mean 2.42 × 101 1.8255 1.86× 10−2 5.4554 1.8216 4.92 × 10−2 2.34× 10−2

Std. Dev. 1.32 × 101 1.28× 101 2.16× 10−2 2.17× 101 1.28× 101 7.86 × 10−2 2.25× 10−2

Ratio 0% 36% 54% 30% 56% 18% 38%
f6(x) Minimum 1.79 × 101 1.57× 10−32 1.57× 10−32 1.57× 10−32 1.57× 10−32 5.07 × 10−5 1.57× 10−32

Mean 3.11 × 101 1.04× 10−2 6.22× 10−3 4.05× 10−1 9.33× 10−2 6.01 × 10−2 4.15× 10−3

Std. Dev. 1.12 × 101 3.14× 10−2 2.49× 10−2 6.66× 10−1 1.44× 10−1 1.88 × 10−1 2.05× 10−2

Ratio 0% 90% 94% 40% 54% 72% 96%
f7(x) Minimum 1.48 × 103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 2.47 × 103 4.00× 102 0.0000 6.13× 102 2.00× 102 1.60 × 10−1 0.0000
Std. Dev. 1.41 × 103 1.98× 103 0.0000 2.40× 103 1.41× 103 5.48 × 10−1 0.0000
Ratio 0% 96% 100% 24% 92% 90% 100%

f8(x) Minimum 1.49 × 104 1.35× 10−32 1.35× 10−32 1.35× 10−32 5.83× 10−31 2.11 × 10−5 1.35× 10−32

Mean 1.06 × 105 8.79× 10−4 1.76× 10−3 1.69× 10−1 1.13× 109 2.58 × 10−2 1.10× 10−3

Std. Dev. 5.98 × 104 3.01× 10−3 4.07× 10−3 7.10× 10−1 3.00× 108 3.78 × 10−2 3.33× 10−3

Ratio 0% 92% 84% 50% 2% 48% 90%
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Fig. 9. Algorithm Convergence Characteristics for Penalized 2 function
f8(x)

characteristics of the RPSO algorithm is not the best among all
the PSO variants for function (6), function (10) and function
(13), the difference between the best minimum value is not
significant. Overall, the convergence behavior of the RPSO
algorithm outperforms other selected PSO algorithms.

The statistical results of the performance evaluation of the
selected PSO approaches are shown in Table III. By analyzing

TABLE IV
STATISTICAL RESULTS OFPSO ALGORITHMS ON SELECTEDCEC 2015

COMPETITION ON LEARNING-BASED REAL-PARAMETER SINGLE

OBJECTIVE OPTIMIZATION PROBLEMS

PSO RPSO
f9(x) Minimum 5.60 × 107 9.57× 104

Mean 1.13 × 108 3.42× 106

Std. Dev. 3.21 × 107 3.12× 106

f10(x) Minimum 5.27 × 109 2.01× 102

Mean 8.94 × 109 8.33× 103

Std. Dev. 1.52 × 109 1.05× 106

f11(x) Minimum 6.58 × 103 1.60× 103

Mean 7.36 × 103 3.51× 103

Std. Dev. 3.05 × 102 1.07× 103

f12(x) Minimum 4.31 × 105 2.05× 104

Mean 1.04 × 106 1.60× 105

Std. Dev. 3.71 × 105 1.04× 105

f13(x) Minimum 3.47 × 105 7.09× 103

Mean 1.96 × 106 2.09× 105

Std. Dev. 8.67 × 105 1.24× 105

f14(x) Minimum 3.28 × 104 3.10× 104

Mean 3.59 × 104 3.33× 104

Std. Dev. 2.37 × 103 2.17× 103

the experimental results of the RPSO algorithm on the chosen
30-D optimization problems, the proposed RPSO algorithm
outperforms six popular PSO algorithms in terms of both of
the success ratio and the population diversity. Although itis
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tough to find the optimal solution, the algorithm meets the
requirement if the fitness value reaches the specific threshold
of each test function. The RPSO algorithm obtains best success
ratio in function (6), function (7), function (9), function(11)
and function (12). For function (8), function (10) and function
(13), the RPSO algorithm also exhibits competitive success
ratio than other PSO algorithms. Notably, the success ratioof
each PSO algorithms on function (10) is very low because the
Griewank function consists of a large number of local minima,
which is difficult to discover the globally optimal solution.
Overall, we can draw the conclusion that the RPSO algorithm
is capable of escaping from the local optima.

In Table III, the mean, minimum, and standard deviation of
the fitness values are also presented. Note that the minimum
fitness value represents the optimal solution found by the PSO
algorithm. It should be mentioned that all the test functions
utilized in this paper are minimization problems. In this regard,
a smaller fitness value indicates a better solution exploredby
the PSO algorithm. The RPSO algorithm obtains the smallest
minimum fitness value on function (8) and functions (10)
to (13). In addition, the RPSO algorithm obtains satisfactory
minimum fitness values on the rest of the test functions. It
is worth mentioning that the RPSO algorithm also gets the
smallest mean and standard deviation of the fitness value on
function (7), function (9), and functions (11) to (13), which
indicates that the solution quality of the RPSO algorithm is
competitive than other compared PSO algorithms. Further-
more, the RPSO algorithm outperforms the standard PSO
algorithm, the PSO-LDIW algorithm, the PSO-CK algorithm,
the SPSO algorithm and the SDPSO algorithm on the mean,
minimum, and standard deviation of the fitness values as well
as the success ratio for function (8). For function (12), the
success ratio of the RPSO algorithm is 100% which indicates
that the globally optimal solution is discovered for all the
repeats. In this case, we can draw the conclusion that the
search ability of the RPSO algorithm is competitive than the
compared PSO algorithms.

Experiment results on the selected CEC 2015 benchmark
functions are shown in Table IV, where the mean, minimum,
and standard deviation of the fitness values are adopted to
verify the validity of the RPSO algorithm by comparing with
the standard PSO algorithm. It can be seen in Table IV that
the minimum fitness value of the RPSO algorithm is smaller
than that of the standard PSO algorithm forf9(x) to f14(x),
which indicates that the RPSO algorithm discovers a better
solution than the standard PSO algorithm. Additionally, the
RPSO algorithm outperforms the standard PSO algorithm on
the mean fitness value forf9(x) to f14(x). To summarize, the
proposed RPSO algorithm demonstrates superior performance
over the compared popular PSO algorithms in terms of the
strong ability to escape from the local optima, the satisfactory
convergence performance and population diversity.

V. CONCLUSION

In this paper, a RPSO algorithm has been proposed to im-
prove the search ability of the basic PSO approach. The GWNs
have been added to the social acceleration coefficient and
the cognitive acceleration coefficient separately to randomly
change the acceleration coefficients. Experimental results have
shown that the introduced RPSO algorithm outperforms six
existing PSO algorithms on eight popular test functions. Inthe
near future, we will further investigate advanced approaches
to improving the population diversity of the RPSO algorithm
for large-scale and complex optimization problems. Addi-
tionally, we aim to apply the proposed RPSO algorithm to
other research topics, e.g., the community detection, the link
prediction, the robust control of complex networks, system
science, and telecommunication [5], [6], [23], [24], [37],[38],
[46]–[48].
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