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A Novel Randomised Particle Swarm Optimizer

Weibo Liu, Zidong Wang, Nianyin Zeng, Yuan Yuan, Fuad E. Alsaadi and Xiaohui Liu

Abstract—The particle swarm optimization (PSO) algorithm is  research interest. Motivated by the biological evolution, many
a popular evolutionary computation approach that has received well-known EC approaches (e.g. particle swarm optimization
an ever-increasing interest in the past decade owing to its wide (PSO) algorithm, evolution programming strategy, and genetic

application potential. Despite the many variants of the PSO lgorith h b full | d t ot
algorithm with improved search ability by means of both the algorithm) have been successfully employed to a variety

convergence rate and the popu|ation diversity’ the local Optima Of real'World applications in the research areas Of al’tifiCial
problem remains a major obstacle that hinders the global optima intelligence, signal processing and system science [9], [11],

from being fpund. In this_ paper, a novel randomized _particlt_e [13], [31], [35], [36], [42]-[45]. Compared with other popular
swarm optimizer (RPSO) is proposed where the Gaussian white £ g150rithms (e.g. the genetic algorithm, differential evolu-

noise with adjustable intensity is utilized to randomly perturb . . . . .
the acceleration coefficients in order for the problem space tion, and simulate annealing), the PSO algorithm proposed in

to be explored more thoroughly. With this new strategy, the [17] exhibits competitive or even superior performance and
RPSO algorithm not only maintains the population diversity is thus recognized as an excellent candidate algorithm due
but also enhances the possibility of escaping the local optima mainly to its technical merits of easy implementation and fast
trap. Experimental results demonstrate that the proposed RPSO convergence towards the optimal solution

algorithm outperforms some existing popular variants of PSO . - N . )
algorithms on a series of widely used optimization benchmark Motivated by the mimics of the social interactions (e.g. fish

functions. schooling or birds flocking), the PSO algorithm aims to

Index Terms—Randomized algorithms, evolutionary computa- explore the search space by adjusting the velocity and position

tion, particle swarm optimization, Gaussian white noise, acceler- of particle§ accprding to the Swarm iptelligence: In fact, t.he
ation coefficients. PSO algorithm is capable of discovering the optimal solution
both effectively and efficiently, and has been regarded as
a rather powerful optimization technique. So far, the PSO
algorithm has been successfully applied to solve the optimiza-
Owing to their practical application insights, the optimization problems in a wide range of real-world systems such as
tion problems have drawn considerable research attentjppwer systems [10], genetic regulatory networks [35], medical
from both industrial and academic societies. The past feaystems [42], [43] and path planning systems [32]. In the
years have witnessed a rapid development of optimizatierecution of a PSO algorithm, by cooperating and competing
techniques developed by various research communities with other individual particles, each particle is encouraged
cluding computer science, mathematics, control engineerittg learn from its own experience and other competitors’
and signal processing [2], [3], [21], [22]. In particular, agxperience to seek the globally optimal solution through the
a powerful group of optimization techniques, the evolutiorentire search space. During the evolution process at each
ary computation (EC) approaches have proven to be highlgration, each individual particle is guided by its historical
efficient in solving global optimization problems with greapersonal best position and the global best position discovered
application potentials, and have therefore attracted tremendbysthe entire yet dynamical swarm.
Population-based EC approaches are known to have the
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has been proposed to automatically adjust the acceleration velocity updating model, in this paper, we aim to design
efficients and the inertia weight, by which the search badravia new acceleration coefficient updating strategy by diyectl
of the PSO algorithm has been improved. More recently,imposing the GWNSs onto the acceleration coefficients tha pl
switching PSO (SPSO) algorithm has been put forward in [38]vitally important role in ensuring a proper balance betwee
with the purpose of further improving the convergence rdite the global exploration and local exploitation with satetay
the APSO algorithm. Furthermore, a switching delayed PSnvergence rate. Comparing with the algorithms developed
(SDPSO) algorithm has been proposed in [42] where tinire [18], [29], [39], our proposed RPSO algorithm exhibitg th
delays are introduced in the velocity updating model in ordadvantage of achieving multiple objectives (e.g. globgllex
to make better use of historical information of the evolntioration, local exploitation and convergence) through ranigo
process, thereby outperforming the SPSO algorithm withyat purposely perturbing the acceleration coefficients.
better exploration of the problem space. To conclude the discussions made so far, in this paper, we
In a PSO algorithm, the acceleration coefficients are ctucendeavor to propose a randomized PSO (RPSO) algorithm
parameters in achieving the balance between the global were the GWN with adequately adjusted intensity is utilize
ploration and local searches through the entire problernespdo randomly perturb the acceleration coefficients in oraer f
[13], [31], [34]. The selection of the acceleration coeéfitis the problem space to be explored more thoroughly. The main
plays an important role in successfully seeking the glgbaltontributions can be summarized as follows: 1) a novel RPSO
optimal solution. To enhance the possibility of escapimgrfr algorithm is developed where the GWNs are embedded in
the local optima, a great number of PSO variants have be#e velocity updating model to adjust the acceleration -coef
developed with focuses on adjusting the acceleration eoefitients at each iteration, which helps prevent the undelsira
cients, for example, controlling the acceleration coedfies premature convergence; and 2) the proposed RPSO algorithm
in a time-varying manner [28]. Intuitively, a properly dgsed is comprehensively verified on a series of test functions
random perturbation (with adequate intensity) on the \sfoc (including both the unimodal and multimodal cases) and it
updating model could lead to allowable variation of thés demonstrated that the RPSO algorithm outperforms some
acceleration coefficient that will not affect the convergeof existing popular variants of PSO algorithms on a series of
the PSO algorithm but, rather, enhance the populationsiiyer widely used optimization benchmark functions.
at each iteration, thereby further increasing the possibil The rest of this paper is organized as follows. The basic
of getting rid of local optima. In choosing a candidate foPSO algorithm and its recent developments are introduced in
random perturbations, the well-known Gaussian white noi§ction Il. In Section Ill, the proposed RPSO algorithm is ex
(GWN) appears to be an ideal candidate due to its const@ttined in detail. Experimental results, parameter sgttind
power spectral density and easily tunable intensity aedifit discussions are presented in Section IV. Finally, conchssi
frequencies when it comes to the implementation [37], [38]and future directions are drawn in Section V.
Inspired by above argument of developing randomized
algorithms [25], a seemingly natural idea is to introduce th Il. DEVELOPMENT OFPSO ALGORITHMS
GWNss into the acceleration coefficients of the PSO algorithm In the canonical PSO algorithm proposed in [17], the
with hope to improve the population diversity and alleviparticles are learning from its own experience and coojreyat
ate the premature convergence. The advantages of utilizingh other members to seek the optimal solution of the opti-
the GWNs are concluded as twofold: 1) the GWNs in thmization problem where each particle represents a cardidat
acceleration coefficients can alter the system dynamics (bglution. All the particles are exploring and exploitingthre
means of iterations) which could contribute to a more thghou D-dimensional search space with a certain velocity. At the
exploration and exploitation through the problem spacel aith iteration, the position and velocity of théh particle are
2) with the GWNSs in place, the particles are entitled to eithibrepresented byX;(k) = (X1 (k), Xi2(k), -+, Xip(k)) and
more complicated dynamical behaviors (than the conveatioV; (k) = (Vi1 (k), Via(k),-- -, Vip(k)), respectively. Inspired
PSO algorithms) which would enhance the capability of they the swarm intelligence paradigm, the particles are ratgiy
particles escaping from the local optima and also improee tito move to their own personal best position (pbest) as well as
population diversity of the PSO algorithm. the global best position (gbest) found by the entire swarm.
Note that the randomised PSO algorithms have gained soffeeoretically, the velocity and position of thith particle are
research attention in the past few years. To be specific, tihescribed as follows
random perturbation on theelocity updating modétas been Vi(k + 1) = wV;(k) 4 11 (pbest; (k) — Xi(k))
con5|der§q in some vf's\nant PSO qlgorlthms in order to reduce + eora(gbest(k) — X(k)) @
the possibility of getting trapped in local optima [18], [29
[39]. For example, in [39], a random perturbation has been Xi(k +1) = Xi(k) + Vi(k +1)
added to slightly randomize the personal best position et eavherew represents the inertia weighit;denotes the iteration
iteration. In [18], [29], a uniformly distributed noise ter number;c; and ¢, are the cognitive acceleration coefficient
has been entered into the velocity updating model so asaod social acceleration coefficient which pull the particle
avoid the stagnation problem. Rather than modifying thewards its pbest and the gbest, respectiyglyst; represents
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the pbest of particlg; gbest indicates the gbest discovered bythe velocity updating equation has been adjusted based on
the entire swarm; and; andr, are two uniformly distributed the state evolution governed by a Markov chain [27]. It is
random variables taking values ¢ 1]. worth pointing out that the impact of different communioati

As mentioned previously, the individual particle in exetopologies in the PSO algorithm has been investigated in [1]
cuting a PSO algorithm may easily get trapped in the local On the other hand, the hybridization of the standard PSO
optima, and this leads to the so-called premature conveegertlgorithm and other EC algorithms is another well-studied
Under this circumstance, it is of critical significance twelep research forefront. The genetic algorithm has been adopted
advanced approaches to improve the search ability of the P&®Jurther enhance the search ability of the PSO algorithm in
algorithms. Up to now, a variety of PSO variants have be¢h4]. Recently, a switching local evolutionary PSO algmit
introduced with the purpose of improving the search abiity has been developed in [41] which utilities the DE algoritlom t
PSO algorithm, reducing the possibility of trapping intedb further improve the search capability of the PSO algoritimah a
optima and alleviating premature convergence, see in 73], [alleviate the premature convergence. Very recently, aitybr
[30]-[32], [35], [42], [44]. To be specific, three types of ®S PSO algorithm with simulated annealing has been proposed
variants have been introduced by: 1) putting forward novél [26], which could increase the population diversity oé th
strategies to adjust the control parameters; 2) designawg nswarm and improve the possibility of jumping out of the
updating topological structures and 3) hybridizing wittert local optimum. Nevertheless, the above PSO algorithms may
EC algorithms. still get trapped in the local optimal solutions, and some of

A large number of famous PSO variants have been d&em suffer from high computational cost especially for eom
veloped according to the adaption of the control parametdt§Xx and high-dimensional multimodal problems. Therefore
including the inertia weight and acceleration coefficiefitsis it is both theoretically important and practically signéfie
type of PSO variants aims to balance the global exploratié® develop novel approaches that further enhance the search
and local exploitation during the search process by adjgstiPerformance of the optimizer with regard to both diversitga
the control parameters. For example, a time-varying gjyateconvergence rate.
has been designed in the PSO algorithms to alter the control
parameters. For some representative algorithms in thardeg 1. ANEwWRPSO A GORITHM

we refer the readers to PSO algorithm with a linearly de@@as A novel RPSO algorithm is developed in this section where

ingrr]tig weight .(PSO'LDI|W).[30]. [3#_] and the PSO algorithmy, o 5\y/Ns are entered into the updating model for velocity for
with time-varying acceleration coefficients (PSO-TVACE]2 randomly perturbing (with adequate intensity) the acegien

Moreover, an advanced variant PSO algorithm with ConStriEbefﬁcients with hope to decrease the trapping possitiiity
tion factor (PSO-CK) has been developed in [12] to furthe[\ﬁe local optima and also seek the optimal solution more

improve .the converglen.ce performance of the PSO algorith%‘oroughly. The motivation and framework of the proposed
In addition to modifying the control parameters, some pog;pgo algorithm are illustrated in details.
ular PSO variants with new topological structures have been
developed during the past few decades. Notably, the intediu o
velocity updating model of the PSO algorithms could enhanée Motivation
the swarm diversity and alleviate premature convergenice. T To control the PSO algorithm in an effective way, the control
APSO algorithm proposed in [44] aims to adapt the contrpbhrameters (such as the inertia weight, the social actielera
parameters based on the evolutionary state determined dogfficient and the cognitive acceleration coefficient)dom-
the evolutionary factor. Recently, time-delay terms hagerb inantly crucial during the evolution process. The inertigight
entered into the velocity updating model which not onlis a significant parameter in controlling the exploratiortiod
alters the system dynamics but also makes better usesefrch space which is commonly set to be a constant or a
historical information through the evolution process, #éimgs dynamically changing value [31]. Similarly, the accelaat
improves the convergence behaviors of PSO algorithms armkfficients (composed of the cognitive component and the
reduces the trapping possibility into the local optima, [823, social component) are used to control the movement of the
[33], [42]. Additionally, the PSO algorithm with a dynamica particles towards their personal best position and theajlob
diversity coefficient has been proposed in [15] where a renddest position discovered by the entire swarm, respectively
velocity controlled by a diversity coefficient has been takegeneral, the parameter setting of the acceleration caaffiei
into consideration to further improve the PSO algorithm bplays an adequate role in achieving the balance between-he |
enhancing the search ability. With the purpose to improee tleal search and the global exploration through the optinurat
diversity and avoiding the premature convergence probleprocess. As such, an appropriate selection of the acdelerat
an augmented PSO algorithm in combination with multipleoefficients is of vital importance to seek the global optimu
adaptive methods has been put forward in [16] where a&ffectively and accurately. Unfortunately, some existiPg§O
intelligent selection mechanism has been developed tetselalgorithms which focus on adjusting the control parameters
an appropriate search approach. Very recently, a noveaté-st(such as the PSO-TVAC algorithm) may still easily get trappe
Markovian jumping PSO algorithm has been developed wherethe local optima. Therefore, it is of crucial importance t
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investigate an advanced parameter selection mechanism so a
to reduce the possibility of trapping into local optima and
further enhance the search capability of the PSO algorithms

We are now ready to introduce our novel RPSO algorithm
dedicatedly designed to enhance the search ability of the
particles with the hope to thoroughly explore and exploit
the entire problem space. The major novelty of the newly
proposed RPSO model is to separately introduce the GWNs
into the cognitive acceleration coefficient as well as thaao
acceleration coefficient to effectively and efficiently lseke
optimal solution. By establishing such a new velocity updat
model, the RPSO algorithm consists of the following two
advantages: 1) the GWNs are separately added to the social
and cognitive acceleration coefficients which randomlyyrér
the movement of the particles at each iteration; and 2) the
dynamical behavior of the RPSO algorithm becomes more
complicated than the basic PSO algorithm and the partickes a
therefore allowed to expand their search space, which leads
a more thorough exploration of the problem space with less
trapping possibility into the local optima.

Fig. 1.
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Flowchart of the RPSO algorithm

The velocity and position of théth particle are updated
based on the following equations:

Vilk +1) = wVi(k) + r1(Cp + 61(k)) (pbesti(k) — Xi(k))

+79(Cy + d2(k))(gbest(k) — X;(k))

Xi(k+1) = Xi(k) + Vi(k+1)

)

where k£ denotes the iteration numbefj, and C, indicate
the acceleration coefficients defined in Eqg. (4) and Eq. (5),
respectively;w is inertia weight represented by Eq. (3){k)

B. Framework of the RPSO Algorithm andés (k) represent two independent GWNSs; ancandr; are
two uniformly distributed random numbers @ 1]. Notably,
the GWNSs §, (k) as well asd2(k)) and the random numbers
(r; andry) are mutually independent.

Motivated by the PSO-LDIW [31] and the PSO-TVAC
[28] algorithms, the inertia weightv and the acceleration
coefficientsC,, and C, of the RPSO algorithm are shown as
follows:

For the novel RPSO algorithm, the flowchart is depicted in
Fig. 1.

k
W = Wmax — (wmax - wmin) X . (3)
maxit
maxit — k
Cp = (Cp max Cp min) X + Cp min (4)

maxit
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Cy = (Cymin — Cgmax) X W 4+ Cymax  (5) selected PSO algorithms include the standard PSO algorithm
maztt _ [17], the PSO-LDIW algorithm [30], the PSO-TVAC algorithm
wherewyax, Cpmax @NACy max represent the maximum value[og) the PSO-CK algorithm [8], the SPSO algorithm [35], and
of the inertia weightv, acceleration coefficients), andCy,  the SDPSO algorithm [42]. Among the selected test funcfions
respectively;wmin, Cpmin @nd Cymin denote the minimum ¢ ) (the Sphere function) is a typical unimodal function

value ofw, €, andCy, respectively; andnaxit indicates the \hich is often utilized to justify the convergence rate o &C

maximum iteration. o approachesfs(z) (the Rosenbrock function), referred to as the
_ The p_seudo—code of the proposed RPSO algorithm is sShowgsenbrock’'s banana function, is a widely-used test proble
in Algorithm 1. for optimization algorithms;fs(z) (the Rastrigin function)

- . and f5(x) (the Griewank function) have a large number of
AIgorl-thm 1, ,RI_DSO Algorithm _ _ local optima, which are hard to discover the globally optima
Require: Initialize the swarm size?, the velocity and po- g tion: and other selected test functions are also popula
sition of the_part_lclesV?-, X, the acce_leratlon Coe_ﬁ'c'entsbenchmark functions. It should be pointed out that all tist te
Cp, Cg,' the |rlert|alwe|ghtw, the maximum iteration, the functions are minimization problems and all of them have a
Gaussian white noise§ anddz. global minimum. Letz = (z1,s,--- ,2p) Where D = 30
1. Calculate the fitness of each particle, and updatelibe is the dimension of the problem space. The mathematical

and gbest. o _ , formulations of the test functions are given as follows.
2. Update the inertia weight according to Eq. (3).

3. Adjust the acceleration coefficients based on Egs. (#)-(5
4. Update the velocity and position equations according to
Eqg. (2). 2,

5. Repeat Steps 1 to 4 till the algorithm reaches the  Sphere: fi(z) = sz (6)
maximum iteration number. ;

Rosenbrock : fa(z) (100(zit1 — i) + (2 — 1)?).

V. PERFORMANCEEVALUATION AND DISCUSSION OF @)

THE RPSO A .GORITHM D
In this section, the performance of the proposed RPSO Rastrigin : fs(z) = Y (a7 — 10 cos2ra; + 10). (8)
algorithm is evaluated and discussed by comparing with some i=1
widely-used PSO algorithms. In the simulation, some pdpulg D 9
test functions including both of the unimodal and multimioda chwefel 1.2 : fa(x) = Z(Z z5)" ©)

cases are taken into account to provide a comprehensierevi
of the optimization performance of the developed RPSO algo- 1 ;awank Fola) =1+ 1 Z 22 Hcos(ﬁ)
. 8] 7 \/; .

rithm. In this paper, all the experiments are implemented by 4000 < Py

using MATLAB 20176 on a PC with the Intel Corés — 4590 (10)

3.30 GHz CPU and the Microsoft WindowsEnterprisei4-bit . . o . 9

operating system. Penalized 1: fo(x) = D (10 sin” (7y1) (11)
In our simulation, the swarm size is set 8s= 30 and D-1 ) L

the dimension of the problem spacelis= 30. Furthermore, + > (yi = 1)*(1 + 10sin*(7yi41))

the maximum number of iteration & = 10000 for all the =1

tested PSO algorithms. To strengthen the reliability of the + (b — 1)2) " ().
simulation results, each experiment is repeated indepelyde P !

for 50 times. The pgrameters of the compared PSO algorithms i =1+ 1/4(z; + 1),

are set up according to the literature [8], [17], [28], [30], A

[35], [42]. For the RPSO algorithm, the inertia weight 100(-2; —10)%, 2 < -10,
w is linearly decreased from 0.9 to 0.4. The acceleration u(zi) =49 0, . jzi| < 10,
coefficientsC,, andC, are set in the range ¢6.5, 2.5] where 100(z; — 10)°, v > 10.
Cpmax = Cgmax = 2.5 aNdCp min = Cymin = 0.5. The mean )
value and the variance of the GWNs(k) andd,(k) are set Step : fr(z) = Z(in +0.5])". (12)
to be 0 and 0.07, respectively. =t

D

Penalized 2 : fg(x) = 0.1(sin2(37mcl) (13)
A. Test Functions D-1 , ,
In this paper, eight well-known test functions are selected + Z(Ii — (1 +sin*(372i41))
=1

for evaluating the search ability of the proposed RPSO al- ) L
gorithm by comparing with six popular PSO algorithms. The + (zp — 1)*(1 + sin (QMD)))
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D
+ Zu(wl) © ‘ ‘ Sphere ‘
i=1
100(—$i — 5)4, r; < =5,
u(z;) = (1), ) |lzi| < 5, o‘—**ﬂégiﬁﬁﬁﬁ%{ffft TEE
OO(SEZ — 5) , x; > 5. % V\‘;,;; ﬁft
The detailed information of the test functions is shown i % 50f *
Table | including the name of the test functions, the sear g
range of each optimization problem, the maximum velocity ( E |
the particle for each test function, the threshold, and mimn S s S P o
of the test functions. Notably, the search range of the te < ~ ¥ -~ PSO-TVAC
function which indicates the range of the search space 150 toon
determined by the literature [40]. et
To further verify the validity of the RPSO algorithm on 200 ‘ ‘ ‘ ‘
some currently popular optimization functions, six funos 0 2000 4000 5000 8000 10000

selected from the CEC 2015 competition on learning-bascu lteration Number

real-parameter single objective optimization are empioy%ig. 2
[20]. Among the selected benchmark functiong(z) and
f10(z) are unimodal functionsfi; (z) is a simple multimodal

Algorithm Convergence Characteristics for Spherecfion f1 (z)

function with a large number of local optimgi2(x) is a Rosenbrock

hybrid function. f13(z) and f14(x) are composition functions gl ‘ ‘ [——
which are difficult to discover the globe optimum. The di 8l —¢ —PsoLow| |
mension of the selected CEC 2015 benchmark functions is | Mg
to be 30. The detailed information is displayed in Table II. iy e
Furthermore, the maximum velocity of each particle in PS “\‘\ — ¢ —RPSO

o

approaches is usually limited by a certain value with theeho, I ‘\Q\zaam,,,. coe0000ed

Average Fitness Value

to avoid searching outside the predefined search range. [ Ny ‘e

to empirical investigations on the test functions, the mmaxn T \ \*,

velocity is often set up by0 — 20% of the dynamic range of Al " N o000 0000000
n

each dimension for different test functions [13], [28]. laro
simulation, the maximum velocity is set to be 20% of th
dynamical range.

0 2000 4000 5000 8000 10000

B. Experimental Studies of the RPSO Algorithm Iteration Number

To_evaluate the solution quality O_f the proppsed RPSQQ. 3. Algorithm Convergence Characteristics for Ackleydtion f>(z)
algorithm, three popular performance indicators (inahgdihe

convergence rate, success ratio and population diveraity)

utilized. Note that the success ratio is an important édteto Rastrigin

measure the accuracy of the PSO approaches. The popula z'al ‘ ‘ ‘ TR0

diversity is used to evaluate the solution quality. In théger, 26 v PsoTvAC

the convergence plots of the PSO algorithms are depict \ oo

from Figs. 2-9 to demonstrate the convergence rate of t g 24 J\“ et

PSO algorithms where the vertical coordinate indicates t g ‘\‘(:\:""’HFFGOOOOJJ—«

logarithm value of the average fitness value and the horgon g 22 ey

coordinate denotes the number of iteration. Furthermde, 1 A A »

minimum, mean and standard deviation fithess values of t % I o L

PSO algorithms are employed to demonstrate the soluti E 18l :\" et Tt rrrsaaay

quality of the _adopte(_j F_’SO approaches in Table III. \ L coeeed
From the figures, it is clear that the proposed RPSO ¢ 16} ]

gorithm exhibits competitive performance than other gekkc &m

PSO variants. In Figs. 3-5 and Figs. 7-8, the RPSO algoritF 140 2000 4000’*’;(;;0“’8;)?* 10000

obtains the best average fitness value among the selec Iteration Number

PSO algorithms, and the convergence rate is satisfactory.
Additionally, the RPSO algorithm discovers the gIobaIIy— OpFig. 4. Algorithm Convergence Characteristics for Rasiriginction f3(z)
timal solution of function (12). Although the convergence
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TABLE |
TEST FUNCTION CONFIGURATION
Test Functions Dimension Search Range Maximum Velocity e3lhwold Minimum
fi(x): Sphere 30 [—100, 100] 40 0.01 0
f2(x): Rosenbrock 30 [—30, 30] 12 100 0
f3(x): Rastrigin 30 [-5.12,5.12] 2.048 50 0
fa(z): Schwefel 1.2 30 [—100, 100] 40 0.01 0
Js(x): Griewank 30 [—600, 600] 240 0.01 0
fo(x): Penalized 1 30 [—50, 50] 20 0.01 0
f7(z): Step 30 [—100, 100] 40 0.01 0
fs(x): Penalized 2 30 [—50, 50] 20 0.01 0
TABLE Il
SELECTED CEC 20158ENCHMARK FUNCTIONS
Test Functions Dimension  Search Range  Minimum
fo(x): Rotated High Conditioned Elliptic Function 30 [—100, 100] 0
f10(z): Rotated Cigar Function 30 [—100, 100] 0
f11(x): Shifted and Rotated Schwefels Function 30 [-100,100] 0
f12(z): Hybrid Function 3 30 [—100, 100] 0
f13(z): Composition Function 2 30 [—100, 100] 0
f14(z): Composition Function 6 30 [—100, 100] 0
55 ‘ Schwefel l.‘2 ‘ 0 ‘ F"enalized ?I.
— ® —PSO — @ —Pso
— 4 —PSO-LDIW * — 4 —PSO-LDIW
5 — ¥ —PSO-TVAC 81 v —pso-Tvac| |
PSO-CK \ PSO-CK
45 SPSO I SPSO
R 7: SDPSO g 6 ’“\ — ® —SDPSO
< — RPSO & | —¢ -
- A 11“-:14—&&0.00.041 % $ —rpso
R N 000000 34“
E Dt £ N,
[ w N\ i | °
@ 2 N L | \@ ® 000 ,
835 ‘\'-r. § 2 w\bt ®®0eccccces
g .1\"i\1 . ) \x *o Q
< 3 Bl ol O SRR 3; ol '11l ]
\ \( ' L NS
W“V \ .'..1'I1‘I
v
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TABLE I
STATISTICAL RESULTS OFPSO ALGORITHMS ON WIDELY-USED BENCHMARK FUNCTIONS
PSO PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO RPSO
fi(z)  Minimum 144 x 103 238 x 107%%F 397 x 10727  6.07 x 10~ 17 323 x 10~ 19 342 x 10°° 1.78 x 1055
Mean 2.55 x 103 1.81x 10790  1.62x 10730  8.00 x 102 8.58 x 107183 359 x 10767  1.30 x 10—34
Std. Dev. 1.45 x 103 8.82x 10760 945 x 10730  2.74 x 103 0.0000 2.88 x 102 5.61 x 10— 34
Ratio 0% 100% 100% 92% 100% 74% 100%
fo(z) Minimum 228 x 103 575 x 1073 231 x 1073  7.67 x 10~ 5.33 x 1074 2.77 x 10* 3.82 x 1074
Mean 3.95 x 105 1.65 x 10% 1.96 x 103 2.09 x 103 5.43 x 102 3.13 x 102 1.10 x 102
Std. Dev. 1.12 x 10>  3.48 x 10 1.27 x 10% 1.27 x 104 2.16 x 10* 6.95 x 102 4.32 x 102
Ratio 0% 64% 90% 80% 92% 54% 94%
fa(z) Minimum  1.34 x 102 1.29 x 10! 1.39 x 10! 4.97 x 10! 3.18 x 10? 2.69 x 10! 1.29 x 10!
Mean 1.93 x 102 4.58 x 10! 2.65 x 101 9.96 x 101 9.46 x 10t 6.21 x 101 2.69 x 101
Std. Dev. 2.22 x 10} 2.18 x 10! 6.5499 2.96 x 10! 3.16 x 10! 2.15 x 10! 1.00 x 10*
Ratio 0% 60% 100% 2% 8% 36% 96%
fa(z) Minimum  4.05 x 103 9.74 x 10~%  1.71 x 1078  2.87x 10724 579 x 10~!'*  8.60 x 10! 1.13 x 1079
Mean 1.14 x 10*  8.10 x 103 3.00 x 102 3.17 x 103 2.77 x 103 1.01 x 103 2.00 x 102
Std. Dev. 5.67 x 103 7.93 x 103 1.20 x 103 3.94 x 102 4.47 x 103 1.81 x 103 9.90 x 102
Ratio 0% 10% 92% 54% 62% 0% 92%
f5(z)  Minimum  1.45 x 101 0.0000 0.0000 0.0000 0.0000 1.83 x 10~°  0.0000
Mean 2.42 x 101 1.8255 1.86 x 102 5.4554 1.8216 4.92 x 102 2.34 x 1072
Std. Dev. 1.32 x 10%  1.28 x 10! 2.16 x 102 2.17 x 10! 1.28 x 10t 7.86 x 1072 2.25 x 1072
Ratio 0% 36% 54% 30% 56% 18% 38%
fo(z) Minimum 179 x 101 1.57 x 10732 1.57 x 10732 1.57 x 10732 157 x 10732 507 x 107>  1.57 x 10732
Mean 3.11 x 101 1.04 x 102 6.22 x 10~3 4.05 x 10~1 9.33 x 102 6.01 x 10~2 4.15 x 1073
Std. Dev. 1.12 x 10}  3.14 x 10~2 2.49 x 102 6.66 x 10~1 1.44 x 10~ 1 1.88 x 101 2.05 x 10~2
Ratio 0% 90% 94% 40% 54% 72% 96%
fz(z)  Minimum  1.48 x 103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 2.47 x 103 4.00 x 102 0.0000 6.13 x 102 2.00 x 102 1.60 x 10~1 0.0000
Std. Dev. 1.41 x 103 1.98 x 103 0.0000 2.40 x 103 1.41 x 103 5.48 x 10~1 0.0000
Ratio 0% 96% 100% 24% 92% 90% 100%
fs(z) Minimum 149 x 10 1.35x 10732 1.35x 10732 1.35x 10732 583 x 10731 211 x107°  1.35 x 1032
Mean 1.06 x 10°  8.79 x 10~ 1.76 x 103 1.69 x 10—t 1.13 x 10° 2.58 x 1072 1.10 x 103
Std. Dev. 5.98 x 10*  3.01 x 10~3 4.07 x 103 7.10 x 10~1 3.00 x 108 3.78 x 10~2 3.33 x 103
Ratio 0% 92% 84% 50% 2% 48% 90%
_ TABLE IV
10 Penalized 2 STATISTICAL RESULTS OFPSO ALGORITHMS ON SELECTEDCEC 2015
‘P COMPETITION ON LEARNING-BASED REAL-PARAMETER SINGLE
s \ OBJECTIVE OPTIMIZATION PROBLEMS
h PSO RPSO
o 6l fo(z)  Minimum 5.60 x 107  9.57 x 10*
TE ‘\t’\."‘iimo—rrooooaﬂ Mean 1.13 x 108 3.42 x 10°
PRI R ~e-pso || Std. Dev. 3.21x 107 3.12 x 10°
0L e B fio(z)  Minimum  5.27 x 10°  2.01 x 102
< VY * - Mean 8.94 x 10°  8.33 x 10°
o 2p & \‘ PSO-CK
g =} . e Std. Dev. 1.52 x 10°  1.05 x 10°
Eol, ¥tmale Leweo fir(z)  Minimum 658 x 10°  1.60 x 10°
\ 2B Erragy Mean 7.36 x 10°  3.51 x 10°
2t \ . e Std. Dev.  3.05 x 10 1.07 x 10°
*\Ftttt‘*;;;;;w; f12($) Minimum 4.31 x 10° 2.05 x 10?1
4 ‘ ‘ ‘ ‘ Mean 1.04 x 106 1.60 x 10°
0 2000 4000 5000 8000 10000 Std. Dev. 3.71 x 10° 1.04 x 10°
Iteration Number fis(x)  Minimum  3.47 x 10°  7.09 x 10°
_ . o _ . Mean 1.96 x 106 2.09 x 10°
Fig. 9. Algorithm Convergence Characteristics for Pemeali2 function Std. Dev. 8.67 x 10°  1.24 x 10°
fs(@) fus(z)  Minimum  3.28 x 10°  3.10 x 10*
Mean 3.59 x 10*  3.33 x 10*
Std. Dev. 2.37 x 10°  2.17 x 10°

characteristics of the RPSO algorithm is not the best amting a

the PSO variants for function (6), function (10) and funitio

(13), the difference between the best minimum value is not

significant. Overall, the convergence behavior of the RPSRe experimental results of the RPSO algorithm on the chosen

algorithm outperforms other selected PSO algorithms. 30-D optimization problems, the proposed RPSO algorithm
The statistical results of the performance evaluation ef tloutperforms six popular PSO algorithms in terms of both of

selected PSO approaches are shown in Table Ill. By analyzithg success ratio and the population diversity. Althougis it
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tough to find the optimal solution, the algorithm meets the V. CONCLUSION

requirement if the fitness value reaches the specific thtésho | this paper, a RPSO algorithm has been proposed to im-
of each test function. The RPSO algorithm obtains best sscCgrove the search ability of the basic PSO approach. The GWNs
ratio in function (6), function (7), function (9), functiofil) have been added to the social acceleration coefficient and

and function (12). For function (8), function (10) and fubet  the cognitive acceleration coefficient separately to ramigio
(13), the RPSO algorithm also exhibits competitive succegfange the acceleration coefficients. Experimental refalte
ratio than other PSO algorithms. Notably, the success tioghown that the introduced RPSO algorithm outperforms six
each PSO algorithms on function (10) is very low because thgjsting PSO algorithms on eight popular test functionghin
Griewank function consists of a large number of local miniM@ear future, we will further investigate advanced appreach
which is difficult to discover the globally optimal solution g improving the population diversity of the RPSO algorithm
Overall, we can draw the conclusion that the RPSO algorithggy large-scale and complex optimization problems. Addi-

is capable of escaping from the local optima.

tionally, we aim to apply the proposed RPSO algorithm to

other research topics, e.g., the community detection,itte |

In Table Ill, the mean, minimum, and standard deviation &r(_ediction, the robust control of complex networks, system

the fitness values are also presented. Note that the minimy
fitness value represents the optimal solution found by the P
algorithm. It should be mentioned that all the test function
utilized in this paper are minimization problems. In thigaed,
a smaller fitness value indicates a better solution explbyed (1
the PSO algorithm. The RPSO algorithm obtains the smallest
minimum fitness value on function (8) and functions (10) [2]
to (13). In addition, the RPSO algorithm obtains satisfgcto
minimum fitness values on the rest of the test functions. It
is worth mentioning that the RPSO algorithm also gets thel3]
smallest mean and standard deviation of the fitness value on
function (7), function (9), and functions (11) to (13), whic
indicates that the solution quality of the RPSO algorithm is[4]
competitive than other compared PSO algorithms. Further-
more, the RPSO algorithm outperforms the standard PSO
algorithm, the PSO-LDIW algorithm, the PSO-CK algorithm, [5]
the SPSO algorithm and the SDPSO algorithm on the mean,
minimum, and standard deviation of the fithess values as well
as the success ratio for function (8). For function (12), the
success ratio of the RPSO algorithm is 100% which indicated®!
that the globally optimal solution is discovered for all the
repeats. In this case, we can draw the conclusion that the
search ability of the RPSO algorithm is competitive than thel”]
compared PSO algorithms.

(8]

Experiment results on the selected CEC 2015 benchmarl[<g]
functions are shown in Table 1V, where the mean, minimum,
and standard deviation of the fithess values are adopted to
verify the validity of the RPSO algorithm by comparing with
the standard PSO algorithm. It can be seen in Table IV thzyfol
the minimum fitness value of the RPSO algorithm is smaller
than that of the standard PSO algorithm ftg(x) to f14(x),
which indicates that the RPSO algorithm discovers a betté%ll
solution than the standard PSO algorithm. Additionallye th
RPSO algorithm outperforms the standard PSO algorithm dA?]
the mean fithess value fgi(x) to f14(z). To summarize, the
proposed RPSO algorithm demonstrates superior perfornanc
over the compared popular PSO algorithms in terms of th&3l
strong ability to escape from the local optima, the satisigc
convergence performance and population diversity.

gience, and telecommunication [5], [6], [23], [24], [3[38],
é46]—[48].
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