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On State Estimation for Discrete Time-Delayed
Memristive Neural Networks under the WTOD
Protocol: A Resilient Set-Membership Approach

Hongijian Liu, Zidong WangFellow, IEEE Weiyin Fei and Hongli Dong

Abstract—In this paper, a resilient set-membership approach is
put forward to deal with the state estimation problem for a sat of
discrete-time memristive neural networks (DMNNSs) with hybrid
time-delays under the Weighted Try-Once-Discard protocol(\W-
TODP). The WTODRP is utilized to mitigate unnecessary netwadk
congestion occurring in the channel between the DMNNs and
the state estimator. In order to ensure resilience againstgssible
realization errors, the estimator gain is permitted to undego
some norm-bounded parameter drifts. Our objective is to deign
a resilient set-membership estimator (RSME) that is capald of
resisting gain variations and unknown-but-bounded noisesby
confining the estimation error to certain ellipsoidal regins. By
resorting to the recursive matrix inequality technique, suficient
conditions are acquired for the existence of the expected R&E
and, subsequently, an optimization problem is formalized
minimizing the constraint ellipsoid (with respect to the esimation
error) under the WTODP. At last, numerical simulation is carried
out to validate the usefulness of the RSME.

Index Terms—Discrete-time memristive neural networks, set-
membership state estimation, hybrid time-delays, resiliet state
estimation, weighted try-once-discard protocol.

|. INTRODUCTION

emulation [26]. The key feature of MNNs is their strong
dependence of the connection weights (CWs) on the neuron s-
tates, which leads to complicated dynamic behaviors of MNNs
as compared to the conventional recurrent neural networks
(RNNSs). Accordingly, the analysis problems (e.g. stapilit
convergence and synchronization) of many kinds of dynamics
of MNNs have aroused much interest, and some pioneering
work has been available in [37], [45]. Almost all existing
results, however, have been concerned with the continuous-
time MNNSs despite the nowadays popularity of the digitiaati
of information sequences in engineering practice, and this
gives rise to the necessity of utilizing discrete-time RNNs
when handling sequence-based missions. Up to now, little
attention has been drawn onto the DMNNs simply because of
essential difficulties in dealing with switching behavidnat
are inherently state-dependent in the discrete-timengetti

State estimation is a fundamental yet crucial researcleissu
in engineering applications on neural networks (NNs) [16],
[27], [29], [40], [43], [44]. In fact, for many NN applicatits,
it is indispensable for the network states to be utilized to
fulfil the requirements for monitoring, approximation angto

The past decade has seen a recurring research interesiniiization [4], [8], [32]. Unfortunately, due mainly to resrce
memristive neural networks (MNNs) because of their exonstraints and technical limits, the network states avallys

tensive applications in various subjects, e.g. recogmitd

unavailable to the end user but only the measurement outputs

patterns [33], processing of digital images [11], and braigan be accessible. In addition, when analyzing DMNN-relate
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dynamics, the frequently adopted analysis techniquestfeeg
nonsmooth analysis method and differential inclusionstyie

for continuous-time MNNs become futile, and this leads to
an urgent demand for developing new techniques appropri-
ate for DMNNs. As such, much research enthusiasm has
recently been attracted towards the state estimation gmubl
for DMNNs suffering from hybrid (i.e. both discrete and
distributed) time-delays with some inspiring results jshed

in the recent literature [18].

In practice, MNNs can be realized via very large scale
integration circuits (VLSICs) where the CWs are executed
via memristors [37]. Basically speaking, VLSICs are easily
susceptible to both device noises (e.g. the flicker, shot and
thermal noises) and ambient noises (e.g. the crosstalkepow
and/or ground bounce, and substrate noises). Particutady
ambient noises, if not adequately addressed, could signific
degrade the VLSIC performance and reliability [31]. From a
practical point of view, we assume the ambient noises to be
deterministic, unknown-but-bounded within certain eltjdal
regions (CERS). In this case, the set-membership (elliadpi
filtering method becomes especially suitable to constrgsa s
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tem states in CERs so as to assure satisfactory state éstimgbossibly small, would undoubtedly impair the correspogdin
performance [17]. Although a vast body of set-membershgontroller/filter performance [13], [38]. As such, a grogin
state estimation work has been presented (see e.g. [20)], [4Body of work has been reported on the design ofrdsilient
relevant results on MNNs have been scattered, let alone #iate estimation algorithms that are of insensitivity t@ th
discrete-time setting is also involved. estimator gain variations [35], [41], [42], [46]. Nevertbss,

It should be pointed out that, even though some attempits our best knowledge, very few results have been acquired
have been initiated on the state estimation issues for MNNGg far on the resilient SEPs for DMNNs, not to mention the
(see e.g. [18], [19]), little attention has been paid to #mie case where the hybrid time-delays (HTDs) (consisting both
of limited communication under resource constraints betwediscrete and distributed time-delays), unknown-but-lomah
the estimator and the network output [3]. Because of thmwises (UBBNs) and WTODP are all involved.
large size of MNNs and the high-degree complexity of the In this paper, we aim at developing a resilient set-
to-do tasks, the volume of the network output data coutdembership estimator (RSME) for DMNNs with HTDs under
become considerably high, which has posed great challenggs WTODP. The primary contributions we make in this
(e.g. data collisions and communication congestion) onéo tpaper are outlined as threefold. 1) A RSME is developed to
transmission networks of limited capacity. To handle theirror the alleviation of the adverse impact induced by the
network-induced challenges, an effective measure that lrasdom gain variation in the actual estimator implemerdati
been favorably taken by industry is to leverage the commu@} A unified estimation scheme is built to cope with the
cation scheduling protocols in order to regulate the ndtwomathematical complexities resulting from the state-depen
traffic, see [5], [28], [34], [50], [51]. Among various praiols switching behaviors, HTDs, WTODP and gain variations. 3)
that have been in use so far, the Weighted Try-Once-Discardthe designed filtering framework, the filter gain is obtin
protocol (WTODP) has proven to be a particularly attractivgith the help of a bank of recursive matrix inequalities (RMI
scheduling strategy in allocating network resources b&zali whose solutions are provided by standard software packages
its dynamic scheduling behavior based on the significance ofThe rest of this article is highlighted as follows. Section
different missions [30]. As such, it is of practical signéiwe || formulates the concerned filtering problem. Section IlI
to explore how the WTODP can be leveraged to coordingsgesents the design procedure of the filter whose existence
the considerable data transmission between the MNN and t§gyuaranteed by the derivation of some sufficient condstion
estimator, and this constitutes one of our motivations @ ti\n example is given in Section IV to show the feasibility of
present investigation. our RSME, and some remarks are concluded in Section V.

The biological or circuit implementation of NNs is often Notation R™ and R™*™ define, respectively, then-
confronted by various types of time-delays for the reasdns @imensional Euclidean space and the set ofralk m real
finite signal transmission and switching speeds in biolalgicmatrices.N*+ denotes the set of all nonnegative integes.
systems [1], [12], [15], [39], [47]. It has been acknowledgedenotes identity matrices with compatible dimensiohs: B
that time-delays can cause undesirable system performa(meA > B) implies thatA — B is positive-definite (or semi-
including instability and oscillation, and thus plenty @&-r positive-definite) A” represents the transposefdiag{- - - }

search effort has been spent on analyzing the dynamigala plock-diagonal matrixi(-) € {0,1}is the Dirac delta
behaviors of NNs with various time-delays (constant, timggnction.

varying, discrete, distributed, mixed delays) where th@onitst
build themselves on existing techniques such as the déscrip
model transformation [6], integral inequality [14], etcorF Il. PROBLEM FORMULATION
the stability issue of delgyecbntinuous-ti_m_d\/INNs, fruitful A. Memristive Neural Network Model
results have been published by combining the proceeding

techniques and the set-valued mapping theory, see [37]- HowConsider a typical DMNN with HTDs:
ever, when it comes to the delayed DMNNSs, corresponding

results have been rarely reported due typically to the math- 2(t+1) =D(=(t))=(t) + A(=(t) £ (=(1)

ematical challenges embedded in disposing of the coupling + B(2(t)g(z(t — 1))

among the state-dependent parameters, the time-delays, th 2

scheduling protocol, and the estimator. Accordingly, ofie o +C(2(6) Y mwh(2(t — 1)) + Liv(t), (1)
the primary motivations here is to examine the set-memigersh =1

state estimation problem (SEP) for delayed DMNNSs under the y(t) =M=z(t) + Lav(t),

WTODP. 2(¢) =¢o(s), ¢=-1,—7+1,---,—-1,0

When realizing filter/controller algorithms in traditidna
system design, an implicit assumption is that filter/coigro Where
gains areexactlyimplemented. This assumption, unfortunately,
goes against the engineering practice as the actual execu-

(t) )
tion of the filter/controller gains might undergo parameter y(t) = [n(t) y2(t) - ym(t)]T,
variations induced by many factors including the analogue- . T
digital conversion, round-off errors, and finite resolutiof v(t) = [?l(t) va(?) v(®)]
instruments [21]. Such kind of gain variations/drifts, tigt D(z(t)) = diag{d1(21(t)), d2(22(t)), - -~ dn(2n(t))}
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are the neuron state vector, the measurement output veeor, AA(z(t) & Ha9*(2()E,,
te_xolgerjlélo(u?t;i)istuzbar(lce(,t )a;gld theBs(elgl-f;?edt()?clg rr(lgt)r;xecesp AB(2(t)) 2 Hy9((t)) Ep,
vely; z = (@52 nxn? z = (0ij (2 nxn A c
and C(=()) = (ci;(z(1))), ... are CWs; and - AC(2(t)) £ Hed(2(1)) Ee
FE®) 2 [ha®) fa@) - o). ",
. r Ho 2 [ther - tinel o fmen o thaen]
9(z(1) = [g1(21(1))  g2(22(t)) -+ galza(®)] T A . . .
H oo & T . ) , , . - E! [tllel R 1 ce thiep e tnnen}
(Z( )) [ 1(21( )) 2(22( )) n(Zn( )ﬂ ﬁr( ( )) dlag{ﬁll(zl( )) . J%n(zl(t))v"' ’
are the nonlinear neuron activation functions (ARs)and I (zn(t), -, 00, (20 (t)},
are the constant discrete and distributed time-delaypenes N 1
tively; ¢o(s) (¢ = —7,—7+1,---,—1,0) are initial conditions tiy = (7 — 451/2)%,
with 7 £ max{r,72}; L1, Ly and M are known matrices of » ¢ {d,a,b,c}, ande; € R" is a column vector withl
compatible dimensions. being its theith entry and) being others. Apparently)” (z(t))
Similar to [18], the state-dependent functiodg z;(t)), satisfies?” (z(t))9" (z(t)) < I.
aij(2i(t)), bij(2i(t)) andc;(2i(t)) are Remark 1:In case of computer-based calculations, exper-
i 15:0)] > 6 iments and simulations, continuous-time networks arenofte
di(zi (1)) =" ‘ v required to be discretized in the implementation procesd, a
{di, 2 ()| < ¢, @) this merits the necessity of studying the DMNNSs. Note that
R |z > G, available results on dynamics analysis problems of DMNNs
rij(zi() =4 " < have been really scattered. Additionally, owing to theestat
Fig, 1m0 < &, dependent feature of the memristive CWs, it is mathemégical
wherex € {a,b, ¢}, the switching jumps satisf§; > 0, |d;| < difficult to analyze the dynamics of MNNs, and conventional
1, |d;| < 1, and#,; and,; are known constants. methods cannot be directly employed to investigate thalistab
Based on (2), we first define following switching functiondy @nd estimation issues for DMNNSs. Thanks to the novel SFs
(SFs): (3), we are able to convert the MNN (1) into an equivalent
., R 1 12:()] > £ one with parametric uncertainties, on which some tradiion
95 (i) = 1’ 12:()] < [’ robust analysis approaches could be ideally applied.
’ ’ 3)
UACHOE { Lo w0 > & B. The WTOD Protocol
-1, la() <4,
and9¢,;(z;(t)) £ 0 for i # j. | |
benote M| s 1 L, e |0,
d; £ min{d;, d;}, T :
71 £ max{aAli, Ji}, I I
Kij £ min{#i;, &)} Fig. 1. SEP for an MNN under the WTOD protocol.
Kij 4 max{f%ij, IVQU}
As shown in Fig. 1, the measurementg) (as the output
In addition, we introduce the following matrices: of the MNN) are sent to the remote estimator via constrained
D 2 diag{d,, d,, } transmission channels. To prevent the data from colliseonts
5 2 dinelds. d - maximize the efficiency of data utilization, the WTODP is
D = diag{di,da, -+ ,dn}, applied to schedule the data transmission between the MNN
Dy £ (D + D)/2, and estimator. Under the WTODP, each entryydf) has
sa (K5 )nxns the priority that is directly proportional to the norm of the
7 error between the current measurement and the last storing
S= (Rij)nxn measurement. At each time instant, only the entry with the
S £ (S+9)/2 highest priority is allowed to be updated. If there are more

than one entry being assigned with the highest priority, we
can choose an arbitrary one for updating.
Define

_ _ _ _ T
@) gt 2 ) 50t . ()]
as the received measurement output by the estimator, where
7s(t) (s =1,2,...,m) is thesth entry ofy(¢). Let o5 be the
AD(z(t)) £ Ha0(2(t))Ea, known weight of thesth component, and(¢) € {1,2,...,m}

whereS € {A, B,C}. Thus, D(z(t)), A(z(t)), B(z(t)) and
C(z(t)) are rewritten as

D(z(t)) = Do+ AD(t), A(z(t)) = Ag + AA(1),
B(z(t)) = Bo+ AB(t), C(z(t)) = Co + AC(t)
with
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be the entry activated at time Then,A(t) can be determined
by

h(t) = arg max (y(t) = 5(t = 1)) Qs(y(t)

1<s<m

—y(t—1)) (5

where Q, £ QV,, Q £ diag{o1,09,..., om} and ¥, £
diag{é(s —1),d(s —2),..., d(s —m)}.

Here, 2(t) € R**™ is the estimate of(t),

C = diag{Cy, 0},

K@) 2 KI(t) Kj(t) ],

AK(t) £ [ AKT(t) AK[L(t) ]

K.(t) € Rnxm

Denote andK,(t) € R™*™ are parameters to be determingdx (¢)

o(t) 2 [oT(t) oT()]".

According to the WTODP and the zero order-holders strat-
egy, the actually received measurement can be expressed by

y(t) = Vnyy(t) + (Im — Yre)y(t — 1), (6)

andy(t) = ¢ for t < 0 whereg; is known. On the basis of
(5), the DMNN in (1) is rewritten as:

Z(t+1) =D()Z(1) + A)f(Z(1) + B(1)(2(t — 1))

T2

+C(1) D ph(E(t — 1)) + Lab(t),

where

dlag{B( (t)),O},

C(t) = diag{C(z(t)), 0},

£1 £ diag{Ll, ﬁg},

Lo 2 Wy Lo,

ME [UpiyM Ly — Vp] .
Based on (7), the following RSME is constructed:
Z(t+1) =Dz(t) + Af((1))

+ Bg(Z(t — ) —I—CZ;LL zZ(t—1)) ®)
+ (K(t) + AK(1))(y ( ) — MZ(t)),

where

‘I’h(t)M Im—‘l’h(t) ’ where

and AK,(t) are parameter variations satisfying
AK,(t) = HF.(t)T,, AK,(t) = H F,(t)T),

T where H,, H,, T. and T, are known matrices, and the
unknown matricest, and F, satisfy FZ (t)F,(t) < I and
El(t)Fy(t) <.

G =) - 53— )
H(e(t — 1)) 2 h(3(t — o)) — h(3(t — 1)),

Then, the estimation error system with respect to (7) and (8)

e(t+1)

= (D — K(t)M)e(t) + AD(t)z(t) + AF(e(t))

+ AA()f(2(t)) + BG(e(t — 1))

L ABWFEE - ) + > mCH(elt — 1)

=1
+ZuLAC Z(t— 1)) + LE(F)

)

AD(t) & {AD(OZ@) 8}
AA(t) £ {AA(OZ“)) 8]
AB(t) £ [AB(OZ@) 8]
AC(t) & [AC(OZ@) 8}

L2[Lr —K(t)Le]

In what follows, we define vectors

() 2 [Z7(1) eT(t)}T,

(1) 2 [o7(t) €7(1)",

(v(8) £ [FT () FT(e()]

(v(t — 1)) 2 [~ (Z(t—n)) G (e(t—m))]",
A(y(t—0) 2 [RT(E(t - o)) HT(e(t —0))]" .

and then have the augmented system

Y(t+1) = D(t)y(t) + AR F((t) +

B()G(y(t —m))
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5 % A In this paper, we are set to design a RSME that is capable
C(t JH(y(t— LE(t 10 > .
+cl );M (vt =) + ££(0) (10) of confining the estimates of the DMNN (1) to a CER under
the UNBBNs. Such an aim is accomplished in two steps.
where First, for the given matrix sequendeP(t)},y:, we like to
D(t) £ D, + AD, (1), find the sufficient condition that ensures that the RSME sxist
A & A+ AA(t and, subsequently, (10) meets thé¢)-dependent constraint
~( )= i +AA(1), (14). Second, we like to minimize the trace Bft) through
B(t) £ By + AB,(t), appropriately selecting((¢) that satisfies the aforementioned
C(t) 2 C, + AC, (1), sufficient condition.
A A
fi_f + ALy, [1l. M AIN RESULTS
2? jdlag{p D~ KM}, This section aims at establishing sufficient conditiong tha
A, £ diag{A, A}, guarantee that th&@(t)-dependent constraint (14) is satisfied
B, £ diag{B, B}, by system (10). Then, a recursive algorithm is proposed
C, £ diag{C,C), to determine/C(¢) under the WTODP. To start with, we
o present the following useful lemmas to benefit the subsequen
e he foll ful | benefit the sub
L2[Ly —K(t)Lo], derivation.
L., £ diag{L, L}, Lemma 1: [2] Let oo(-),»1(-), -+, pp(-) be quadratic
N functions ofs € R" : ¢,(s) £ sT Zs('=01 ,p) and
AL, 2 diag{0,AL
N ing{0, AL}, Z; = ZT. If there existgl >0,00>0,---,0,>0 such that
AL= [O _A’C(t)‘CQ] ) Zo — Zle szl <0, then
AD(t 0
ADW(t) £ [ADEt; _A]C(t)M:| ’ 901(5) S Oa @Q(S) S 07 U a(pp(s) S 0— (po(S) S 0.
AC.(1) & AC(t) 0 Lemma 2: [2] Given matrices2y, 2,3, Q; = QT and
2(t) = AC(t) 0]’ Q2 > 0, then -
AA (t)é AA(t) 0 Ql—f'QgQQ Q3 <0
! AA(t) 0] iff .
0 Q
AB(t) 0 1 3
AB,(t) & [ABE g O} . {93 _QJ < 0.

T
For presentation convenience, we now introduce the follow--€mma 3: [36] Given matricesN' = N7, H, £ and
ing assumptions and definitions. FIF <1, then

Assumption 1ipo(s) (¢ = —7,—7+1,---,—1,0) satisfy N+ HFE + (HFE)T
03 ()P~ (s)ga(s) <1 (11) holds iff there exists scalgr > 0 such that
where matrice(¢) (¢ = —7,—7+1,---,—1,0) are known N+ pyHHY + T <0

and positive-definite.

_ Assumption 2_:The extg_rnal stochastic disturbange) sat- or N uH  ET
isfies the following condition x —ul 0 < 0.
v (O (Bo(t) <1 (12) *ox ol

where matrix", (¢) is known and positive-definite. For the convenience of presentation, we denote

Assumption 3:The neuron AFsf(-), ¢g(-) andh(-) satisfy 7, £ [}[{ 0}T7 E, 2 [Er o} . P(t) 2 L)L (t).

£(0) = g(0) = h(0) = 0 and following Lipschitz conditions: ) i . .
The following theorem gives a sufficient condition for the

[f(s) = f@)I < IT1(s =), solvability of the concerned SEP.
lg(s) — g@®)|| < |ITa2(s —b)]], (13) Theorem 1:Consider the DMNN (1) with given estima-
1h(s) — h(B)]| < [Ts(s — 1)] tor (8 and matrices sequencesP(t) > 0}, .. If there
=8 exist K(t), e(t), Ni(t) (i € {1,2,3,4}) and e,(t) (s €
for all s,t € R™, whereI'y, I'; andT's are known constant {1,2,---,m},t € NT) satisfying
matrices. Q) .
Definition 1: Let the matrix (ellipsoid matrices) sequence S
P(t) € Rmtm)x(ntm) (4 ¢ N*) pe given. System (10) is E(%H —e®I * s <0 (15)
said to meet the’(¢)-dependent constraint if 0 —e(t)
h
R(0) 24" (OP (7)< 1 an
~ é — *
holds fort € N'+. () = [cb(t) P(t—i—l)}
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d(t)£[0 DyLE) 0 0 L, A, B, C], Proof: We prove this Theorem by mathematical induc-
A(t) 2 diag{1 — M () — Aa(t) — 5As(t) tion. First, fort = 0, based at Assumption 1, we have
e
MO = AL OFTTLLE), R(0) = 7(0)P~}(0)(0) = 65 (0)P~(0)(0) < 1. (16)
)\2 (t)] A4 (t)LT(t - Tl)FTFQL(t — 7'1)
A (8)Qo(t), /\3(t)FU L), Aa ()T, Ay (), Ay (£) ]} Supposing thaRk(¢) < 1 holds at timet, let us prove that
m R(t+ 1) <1 holds at timet + 1.
+NT(t) Zes(t) (Q(Vy — Wpy)) N(2), As R(t) < 1 and P(t) = L(t)L*(t), we know that there
s=1 exists a vectofy(i) with ||5(¢)|| < 1 such thaty(i) = L(i)%(4)
00000O0O0 0 HLPT(®) T fori € {0,1,---,t} by referring to [7]. Next, we show that the
00 000UO0TUO0O0 7—~L£PT(t) solution P(t 4+ 1) of inequality(15) guaranteeR (¢ + 1) < 1.
H210 000000 0 HLPT(H)| , Denoting
0000000 0 HIPT@) ) -
0000000 0 HLEPT() T 2 [VT(E-1) ATt -2) It -m)] (17
0 EpL(t) 0 0 0 0 0 0 0 A £ AT ATt -n) L) 1)
o 0 00 0 E4 0 0 0 FT(y(t) GT(y(t—m))
E2 |0 0 00 0 0 Eg 0 O0f, o T
O 0 00 0 0 0 FE& 0 ZluLH (vE—0)| , (18)
0O 0 00T 0 0 0 O -
- A [Hy 0 we have
el ], ~
Ha —Hx (t+1) = 2(t)7(1) (19)
Y He O
Ha = [}za 0} ) and thus
Hp 2 [, 0} 7 AP+ )Pt + D)yt +1) -1
s 0 =7(t) (8T (1)P(t + 1)D(t) (20)
He & |He O —diag{1,0,0,0,0,0,0,0})3(t)
| H. O
TR [0 ]7 where
__H’C A ~ ~ ~ ~ ~
ED L diag{Ed,TKjM}, E.A A diag{Ea,O}, (I)(t) = [O D(f)L(t) 0 0 L .A(t) B(t) C(t)} .
o
B = dlag{?b’ 0}, It follows from Assumption 2 and the WTODP (5) that
EC £ diag{Em 0}7
T 2 [17 TT]T 7@ <1,
t70 0 1 ||w—n>||2 <1,
Te2[0 0 Tels, o . .
N2[M -1 0 (y (t) - y(t - 1)) QVs — Vpy)
. ’ t)—gt—1)) <0, s=1,2,...
Ké[LQ 0 0 O O:I’ X(y() y( ))— ’ S ) < , TN
e which, by (17)-(21), is rearranged as follows (in terms 0f)):
H= Z 27%
=1 T
_ y (t)diag{—1,1,0,0,0,0,0,0}3(t) <0,
A
N N [f) ,NL@T? 0 ~f~ 00 0]3T~ T(t)dlag{ 1,0,1,0,0,0,0,0}5(t) <0
?O(Z)d_ﬂdlag{:ulr3r3vﬂ2r3 F37"' auTzr3F3}v T(t)dlag{ 5,0,0 071—\ ( )70,070} ( ) <0, (22)
I'y = diag{l'y, "y, Ty, 1 }, -
o, ettty T ONTOQT. — T
1:‘2 = diag{I's, T, I'2, T2}, xNOFE) <0, s=1,2,...,m
I's £ diag{l's,T'3,T'5, T3},
fv(t) L s @T,(1), Noticing Assumption 3, we have
FT(y(£) F(y(t)) < +" (6T TTun (), (23)
T (y(t — Ayt —
then system (10) satisfie®(¢)-dependent constraints with GOyt = )G Tﬁ)) T
<y (t—m)Ta Tyt —7),  (24)

K(t) (t € N*).
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and

(imﬁﬁ(t—b ) (Zm y(t—1)) )
(ZML) ZMLHT t - L )ﬁ(V(t - L)) (25)

<i Z ey (t — )5 Tay(t — o)

=3 ()2 (17 (1)
Furthermore, (23)—(25) are expressed as
FT(y()F(y(t) < 770t ) (t) <0, (26)
G (y(t — ﬁ))@(v(t —7)) <A (O20()F() <0, (27)

(;_Ziubfl(v(t—b ) (Zm y(t —1)) )

A () ()7(t) <0, (28)
where
0, (t) 2diag{0, —LT(H)I'TT,L(¢),0,0,0,1,0,0},
Qo (t) £diag{0,0, = L7 (t — 7)TTToL(t — 11),0,0,0,1,0},
Q3(t) £diag{0,0,0,Q0(t),0,0,0,I}.
with Q¢ (¢) being defined in (15). Then,

FTOUF(E) <0 (29)
where
Q(t) £ diag{0, —L” ()11 Ty L(t),
— Lt — 1)TSToL(t — 11),Q0(t),0,1,1,T}.
Using Lemma 1, if there exist positive scalargt), \2(t),
A3(t), A\a(t) andes(t) (s =1,2,---,m) such that
T ()Pt + 1)D(t)
— A (t)diag{—1,1,0,0,0,0,0,0}
— Xo(t)diag{—1,0,1,0,0,0,0,0}
)diag{—5,0,0,0,T;%(t),0,0,0} (30)
)Q(t) — diag{1,0,0,0,0,0,0,0}
- NT(t) Z Es(t) (Q(\Ijs - \I/h(t))) N(t) < 07
s=1
then inequalityy” (¢t + 1)P=(t + 1)y(t + 1) — 1 < 0 holds
by referring to inequalities (22) and (29).
Let us convert (30) into the compact form below:
TPt + 1)®(t) — A(t) < 0. (31)

Then, in view of (31) and Lemma 2, we obtain

—A(t) *
{(I)(t) —P(t—i—l)] =0. (32)

Furthermore, to eliminate uncertainties embedded in (@2),

rewrite (32) as

[_‘PA(IE;) Pt 1)} +HFE+ (“r?fg)T <0 (33)

where
Fp 0 0 0 0
0 9*(=(t)) 0 0 0
F210 0 9°(2(t)) 0 01,
0 0 0 9¢(z(t)) O
0 0 0 0 Fr

Fp £ diag{v?(2(t)), Fic'}
Fic = diag{F,, F,}.

By resorting to Lemma 3, we observe that (15) is ensured
by (33). Thus, it can be obtained from (15) tiatt +1) < 1.
This completes the induction. Hence, (14) is guaranteeld wit
parameterC(t). [ |

Theorem 1 guarantees the existence of a CER that embraces
all possiblez(t + 1), where the state estimate obtained from
(8) serves as the center of ellipsoid.

In the following corollary, by exerting the convex opti-
mization approach, we will present an iterative algoritton t
optimize this ellipsoid and compute the optimal state estim
gain.

Corollary 1: The constraint matrixP(t) on system (10) is
minimized (in the sense of the matrix trace) if there ekist),

e(t), \i(t) (i €{1,2,3,4}) andey(t) (s € {1,2,--- ,m},t €
NT) such that the following optimization problem

tr{P(t+ 1)} (34)

min
(P(t+1),K(t),€(t))

is solvable s.t. (15), where

0(t) = {e(®)} U{Aa(t), Az (t), As(t), Aa(t)}
Ufer(t), e2(t), - em()}-

Proof: The proof is easily accessible from Theorem 1 and

is therefore omitted for brevity. [ |

It should be mentioned that inequalities (15), are linear to
variablesP(t), K(t), (), X\i(t) (¢ € {1,2,3,4}) and es(¢)
(s € {1,2,---,m}). Actually, it is seen from Corollary 1
that the aforementioned optimization problem can be well
addressed via standard semi-definite programming tecasiqu
Therefore, by means of Corollary 1, we can summarize
the computational algorithm for the state estimation gains
{K(t) > 0},cn+ in Algorithm 1 as follows.

Algorithm 1 Computational Algorithm fo{/C(t) > 0}, o+

Step 1.nitialization: Sett = 0 and givenN and P(s).

Step 2.CalculateL(s) based onP(s) = L(s)LT(¢) for ¢ =t — 7
andt —m < ¢ <t.

Step 3.Solve (34) s. t. (15). Then(¢) and P(¢ + 1) are obtained
based on the solution of (34).

Step 4.Sett = ¢+ 1. If ¢ > N, exit. Otherwise, go to Step.

Remark 2:In the paper, the set-membership SEP for
DMNNSs has been effectively coped with under HTDs and the
WTODP. One can observe from Theorem 1 and Algorithm 1
that, in the pursuit of the RSME, all significant factors (ud:
ing the state-dependent parameters, HTDs, noise infoomati
estimation accuracy, WTODP) are fully reflected in the above
analysis, and a comprehensive framework is formulatedeund
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which the desired estimator gains are derived by taking in
account factors that sophisticate the concerned model.

Remark 3: The state estimation problem for artificial neura
networks has received a large amount of research attent
and a large body of results has been available in the litexatu
In comparison with the existing literature, the main resuli
of this paper exhibits the following distinctive features)
the set-membership state estimation problem discussedsin -
paper is new in the sense that the random gain variati
and the WTODP are taken into careful consideration; 2)
novel yet unified estimation scheme is developed to taclde t
mathematical complexities stemming from the state-depend
switching behaviors and hybrid time-delays; and 3) thegtesi
algorithm of the desired filters is recursive and can be zedli
online.

IV. AN ILLUSTRATIVE EXAMPLE

This section provides a demonstrative example to validate
the proposed estimation approach.
Consider (1) with parameters:

0.990, |z1(-)] > 0.3, 1025 0
di(z1(-)) :{ 0.930, :218: <03, i=T2=Ils= [ 0 0.36] ’
] {0420, [z()] > 03, nehmes
2(22()) = 0.860, [22(-)] < 0.3, The weight values in the WTODP ate = 1.0 andos = 0.8.
The bounded noise is set aft) = +/0.02cos(t), and
a11(z1(+)) :{ 0.060, [z1(-)] > 0.3, thus we havel',(t) = 0.02] for ¢t € NT. Furthermore,
0.050,  [z1()] < 0.3, $o(c) = [3 3 1 1", Pc) = diag{9,9,1,1,9,9,1,1}
—0.330, |z1(-)] > 0.3, (C=-7-7+1,...,0),
a12(z1(+) = 0350, |21(9] < 0.3 Using Matlab YALMIP 3.0 Toolbox, the optimization prob-
O L= e lem (34) is solved subject to (15), and the corresponding
] -0.230, [22(-)] > 0.3, demonstration results are given in Figs. 2-6. Fig. 2 revibas
azi(z2(-) = —0.200, |z2(-)] < 0.3, impact from the neural states on the selected neural nodes,
while Fig. 3 and Fig. 4 plot the actual and estimated trajecto
ags(z2(+)) = 0.060,  |22(-)| > 0.3, ries of z1(t),z2(t) and their estimation errors, respectively. The
0.040, |z2(-)| < 0.3, actual and estimated valuesif(), 7(t) and their estimation
~0.300, | errors are respectively displayed in Fig. 5 and Fig. 6. The
300,  |z1(+)] > 0.3, . S
bi1(21(7)) = { obtained results demonstrates that our proposed estimatio
0.240, |21(-)] = 0.3, scheme is indeed effective.
b B 0.005, |z1(-)] > 0.3,
12l ()) = 0.015, |z1()] 0.3, V. CONCLUSIONS
bo1(z2(-)) = {_0'310’ |22()[ > 0.3, The set-membership SEP has been solved in this paper
0.270, |22(+)] <0.3, for DMNNs with HTDS under WTODP. The WTODP has
0.020, |2(-) > 0.3 been utilized to mitigate the unnecessary network congesti
baa(22(-)) = DU b occurred in the channel between the DMNNs and estimator. To
{ 0.060, |22(-)] < 0.3, cater for possible execution errors, estimator gains aneaoo-
0.015, |z1(-)] > 0.3, inated by bounded parameter fluctuations. A RSME has then
cn(z1()) = 0.045, |21(-)] < 0.3 been devised to achieve the estimate of the DMNN susceptible
R BE = to the UBBNs and WTOD. By means of the RMls, sufficient
0.050, |z1(-)| > 0.3, conditions have been pinned down to ensure the existence of
cz(21() = { 0.010, |z1(-)] < 0.3, the desired RSME. Then, an optimization problem has been
B formulated by minimizing the CER (with respect to estimatio
co1(z2(-)) = { 0.260,  [z2()] > 0.3, errors) under the WTODP. Finally, simulation results iliate
—0.300, |z2(-)] < 0.3, the feasibility of our RSME. Further research topics would

25

151
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10 15 20
Fig. 2. The selected nodes of MNNs
0.015, |z2(-)] > 0.3,
022(2,2(.)): | 2()|
0.035, |22(-)] < 0.3,
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15 # Neuron states
= Center of estimated ellipsoids

2(t)

Fig. 3. The actual and estimated trajectorieszpft) and z2(¢)

1 = Estimation errors

Fig. 4. The estimation errors af (¢) and z2(t)

0.5 # Received measurements
= Center of estimated ellipsoids

Fig. 5. The actual and estimated valuesgoft) and g2 (t)

0.5

= [lstimation errors

Fig. 6. The estimation errors af; (t) andg2(t)

include the extension of the main results to 1) the partial-
nodes-based set-membership SEP of complex networks under

communication protocols [22], [23], [48]; 2) the recursBEP
of DMNN with network-enhanced complexities [9], [10]; and

3) the improvement of the state estimation performance by

using some latest optimization algorithms [24], [25].
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