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On State Estimation for Discrete Time-Delayed
Memristive Neural Networks under the WTOD
Protocol: A Resilient Set-Membership Approach
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Abstract—In this paper, a resilient set-membership approach is
put forward to deal with the state estimation problem for a sort of
discrete-time memristive neural networks (DMNNs) with hybrid
time-delays under the Weighted Try-Once-Discard protocol(W-
TODP). The WTODP is utilized to mitigate unnecessary network
congestion occurring in the channel between the DMNNs and
the state estimator. In order to ensure resilience against possible
realization errors, the estimator gain is permitted to undergo
some norm-bounded parameter drifts. Our objective is to design
a resilient set-membership estimator (RSME) that is capable of
resisting gain variations and unknown-but-bounded noisesby
confining the estimation error to certain ellipsoidal regions. By
resorting to the recursive matrix inequality technique, sufficient
conditions are acquired for the existence of the expected RSME
and, subsequently, an optimization problem is formalized by
minimizing the constraint ellipsoid (with respect to the estimation
error) under the WTODP. At last, numerical simulation is carried
out to validate the usefulness of the RSME.

Index Terms—Discrete-time memristive neural networks, set-
membership state estimation, hybrid time-delays, resilient state
estimation, weighted try-once-discard protocol.

I. I NTRODUCTION

The past decade has seen a recurring research interest in
memristive neural networks (MNNs) because of their ex-
tensive applications in various subjects, e.g. recognition of
patterns [33], processing of digital images [11], and brain
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emulation [26]. The key feature of MNNs is their strong
dependence of the connection weights (CWs) on the neuron s-
tates, which leads to complicated dynamic behaviors of MNNs
as compared to the conventional recurrent neural networks
(RNNs). Accordingly, the analysis problems (e.g. stability,
convergence and synchronization) of many kinds of dynamics
of MNNs have aroused much interest, and some pioneering
work has been available in [37], [45]. Almost all existing
results, however, have been concerned with the continuous-
time MNNs despite the nowadays popularity of the digitization
of information sequences in engineering practice, and this
gives rise to the necessity of utilizing discrete-time RNNs
when handling sequence-based missions. Up to now, little
attention has been drawn onto the DMNNs simply because of
essential difficulties in dealing with switching behaviorsthat
are inherently state-dependent in the discrete-time setting.

State estimation is a fundamental yet crucial research issue
in engineering applications on neural networks (NNs) [16],
[27], [29], [40], [43], [44]. In fact, for many NN applications,
it is indispensable for the network states to be utilized to
fulfil the requirements for monitoring, approximation and op-
timization [4], [8], [32]. Unfortunately, due mainly to resource
constraints and technical limits, the network states are usually
unavailable to the end user but only the measurement outputs
can be accessible. In addition, when analyzing DMNN-related
dynamics, the frequently adopted analysis techniques (e.g. the
nonsmooth analysis method and differential inclusions theory)
for continuous-time MNNs become futile, and this leads to
an urgent demand for developing new techniques appropri-
ate for DMNNs. As such, much research enthusiasm has
recently been attracted towards the state estimation problems
for DMNNs suffering from hybrid (i.e. both discrete and
distributed) time-delays with some inspiring results published
in the recent literature [18].

In practice, MNNs can be realized via very large scale
integration circuits (VLSICs) where the CWs are executed
via memristors [37]. Basically speaking, VLSICs are easily
susceptible to both device noises (e.g. the flicker, shot and
thermal noises) and ambient noises (e.g. the crosstalk, power
and/or ground bounce, and substrate noises). Particularly, the
ambient noises, if not adequately addressed, could significantly
degrade the VLSIC performance and reliability [31]. From a
practical point of view, we assume the ambient noises to be
deterministic, unknown-but-bounded within certain ellipsoidal
regions (CERs). In this case, the set-membership (ellipsoidal)
filtering method becomes especially suitable to constrain sys-
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tem states in CERs so as to assure satisfactory state estimation
performance [17]. Although a vast body of set-membership
state estimation work has been presented (see e.g. [20], [49]),
relevant results on MNNs have been scattered, let alone the
discrete-time setting is also involved.

It should be pointed out that, even though some attempts
have been initiated on the state estimation issues for MNNs
(see e.g. [18], [19]), little attention has been paid to the issue
of limited communication under resource constraints between
the estimator and the network output [3]. Because of the
large size of MNNs and the high-degree complexity of the
to-do tasks, the volume of the network output data could
become considerably high, which has posed great challenges
(e.g. data collisions and communication congestion) onto the
transmission networks of limited capacity. To handle the
network-induced challenges, an effective measure that has
been favorably taken by industry is to leverage the communi-
cation scheduling protocols in order to regulate the network
traffic, see [5], [28], [34], [50], [51]. Among various protocols
that have been in use so far, the Weighted Try-Once-Discard
protocol (WTODP) has proven to be a particularly attractive
scheduling strategy in allocating network resources because of
its dynamic scheduling behavior based on the significance of
different missions [30]. As such, it is of practical significance
to explore how the WTODP can be leveraged to coordinate
the considerable data transmission between the MNN and the
estimator, and this constitutes one of our motivations in the
present investigation.

The biological or circuit implementation of NNs is often
confronted by various types of time-delays for the reasons of
finite signal transmission and switching speeds in biological
systems [1], [12], [15], [39], [47]. It has been acknowledged
that time-delays can cause undesirable system performance
including instability and oscillation, and thus plenty of re-
search effort has been spent on analyzing the dynamical
behaviors of NNs with various time-delays (constant, time-
varying, discrete, distributed, mixed delays) where the majority
build themselves on existing techniques such as the descriptor
model transformation [6], integral inequality [14], etc. For
the stability issue of delayedcontinuous-timeMNNs, fruitful
results have been published by combining the proceeding
techniques and the set-valued mapping theory, see [37]. How-
ever, when it comes to the delayed DMNNs, corresponding
results have been rarely reported due typically to the math-
ematical challenges embedded in disposing of the coupling
among the state-dependent parameters, the time-delays, the
scheduling protocol, and the estimator. Accordingly, one of
the primary motivations here is to examine the set-membership
state estimation problem (SEP) for delayed DMNNs under the
WTODP.

When realizing filter/controller algorithms in traditional
system design, an implicit assumption is that filter/controller
gains areexactlyimplemented. This assumption, unfortunately,
goes against the engineering practice as the actual execu-
tion of the filter/controller gains might undergo parameter
variations induced by many factors including the analogue-
digital conversion, round-off errors, and finite resolution of
instruments [21]. Such kind of gain variations/drifts, though

possibly small, would undoubtedly impair the corresponding
controller/filter performance [13], [38]. As such, a growing
body of work has been reported on the design of theresilient
state estimation algorithms that are of insensitivity to the
estimator gain variations [35], [41], [42], [46]. Nevertheless,
to our best knowledge, very few results have been acquired
so far on the resilient SEPs for DMNNs, not to mention the
case where the hybrid time-delays (HTDs) (consisting both
discrete and distributed time-delays), unknown-but-bounded
noises (UBBNs) and WTODP are all involved.

In this paper, we aim at developing a resilient set-
membership estimator (RSME) for DMNNs with HTDs under
the WTODP. The primary contributions we make in this
paper are outlined as threefold. 1) A RSME is developed to
mirror the alleviation of the adverse impact induced by the
random gain variation in the actual estimator implementation.
2) A unified estimation scheme is built to cope with the
mathematical complexities resulting from the state-dependent
switching behaviors, HTDs, WTODP and gain variations. 3)
In the designed filtering framework, the filter gain is obtained
with the help of a bank of recursive matrix inequalities (RMIs)
whose solutions are provided by standard software packages.

The rest of this article is highlighted as follows. Section
II formulates the concerned filtering problem. Section III
presents the design procedure of the filter whose existence
is guaranteed by the derivation of some sufficient conditions.
An example is given in Section IV to show the feasibility of
our RSME, and some remarks are concluded in Section V.

Notation R
n and R

n×m define, respectively, then-
dimensional Euclidean space and the set of alln × m real
matrices.N+ denotes the set of all nonnegative integers.I
denotes identity matrices with compatible dimensions.A > B
(or A ≥ B) implies thatA − B is positive-definite (or semi-
positive-definite).AT represents the transpose ofA. diag{· · · }
is a block-diagonal matrix.δ(·) ∈ {0, 1}is the Dirac delta
function.

II. PROBLEM FORMULATION

A. Memristive Neural Network Model

Consider a typical DMNN with HTDs:

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

z(t+ 1) =D(z(t))z(t) +A(z(t))f(z(t))

+B(z(t))g(z(t− τ1))

+ C(z(t))

τ2
∑

ι=1

µιh(z(t− ι)) + L1υ(t),

y(t) =Mz(t) + L2υ(t),

z(ς) =φ0(ς), ς = −τ,−τ + 1, · · · ,−1, 0

(1)

where

z(t) =
[

z1(t) z2(t) · · · zn(t)
]T

,

y(t) =
[

y1(t) y2(t) · · · ym(t)
]T

,

υ(t) =
[

υ1(t) υ2(t) · · · υq(t)
]T

D(z(t)) = diag{d1(z1(t)), d2(z2(t)), · · · , dn(zn(t))}
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are the neuron state vector, the measurement output vector,the
exogenous disturbance, and the self-feedback matrix, respec-
tively; A(z(t)) = (aij(zi(t)))n×n

, B(z(t)) = (bij(zi(t)))n×n

andC(z(t)) = (cij(zi(t)))n×n
are CWs; and

f(z(t)) ,
[

f1(z1(t)) f2(z2(t)) · · · fn(zn(t))
]T

,

g(z(t)) ,
[

g1(z1(t)) g2(z2(t)) · · · gn(zn(t))
]T

,

h(z(t)) ,
[

h1(z1(t)) h2(z2(t)) · · · hn(zn(t))
]T

are the nonlinear neuron activation functions (AFs);τ1 andτ2
are the constant discrete and distributed time-delays, respec-
tively; φ0(ς) (ς = −τ,−τ+1, · · · ,−1, 0) are initial conditions
with τ , max{τ1, τ2}; L1, L2 andM are known matrices of
compatible dimensions.

Similar to [18], the state-dependent functionsdi(zi(t)),
aij(zi(t)), bij(zi(t)) andcij(zi(t)) are

di(zi(·)) =
{

d̂i, |zi(·)| > ℓi,

ďi, |zi(·)| ≤ ℓi,

κij(zi(·)) =
{

κ̂ij , |zi(·)| > ℓi,

κ̌ij , |zi(·)| ≤ ℓi,

(2)

whereκ ∈ {a, b, c}, the switching jumps satisfyℓi > 0, |d̂i| <
1, |ďi| < 1, and κ̂ij and κ̌ij are known constants.

Based on (2), we first define following switching functions
(SFs):

ϑd
ii(zi(·)) ,

{

1, |zi(·)| > ℓi,

−1, |zi(·)| ≤ ℓi,

ϑκ
ij(zi(·)) ,

{

1, |zi(·)| > ℓi,

−1, |zi(·)| ≤ ℓi,

(3)

andϑd
ij(zi(t)) , 0 for i 6= j.

Denote

di , min{d̂i, ďi},
d̄i , max{d̂i, ďi},
κij , min{κ̂ij , κ̌ij},
κ̄ij , max{κ̂ij , κ̌ij}.

In addition, we introduce the following matrices:

D , diag{d1, d2, · · · , dn},
D̄ , diag{d̄1, d̄2, · · · , d̄n},
D0 , (D + D̄)/2,

S, (κij)n×n,

S̄, (κ̄ij)n×n,

S0 , (S+ S̄)/2

whereS ∈ {A,B,C}. Thus,D(z(t)), A(z(t)), B(z(t)) and
C(z(t)) are rewritten as

D(z(t)) = D0 +∆D(t), A(z(t)) = A0 +∆A(t),

B(z(t)) = B0 +∆B(t), C(z(t)) = C0 +∆C(t)
(4)

with

∆D(z(t)) , Hdϑ
d(z(t))Ed,

∆A(z(t)) , Haϑ
a(z(t))Ea,

∆B(z(t)) , Hbϑ
b(z(t))Eb,

∆C(z(t)) , Hcϑ
c(z(t))Ec

where

Hr ,
[

tr11e1 · · · tr1ne1 · · · trn1en · · · trnnen
]

ET
r ,

[

tr11e1 · · · tr1nen · · · trn1e1 · · · trnnen
]

ϑr(z(t)) , diag{ϑr
11(z1(t)), · · · , ϑr

1n(z1(t)), · · · ,
ϑr
n1(zn(t)), · · · , ϑr

nn(zn(t))},
trij , (|r̄ij − rij |/2)

1
2 ,

r ∈ {d, a, b, c}, and ei ∈ R
n is a column vector with1

being its theith entry and0 being others. Apparently,ϑr(z(t))
satisfiesϑrT (z(t))ϑr(z(t)) ≤ I.

Remark 1: In case of computer-based calculations, exper-
iments and simulations, continuous-time networks are often
required to be discretized in the implementation process, and
this merits the necessity of studying the DMNNs. Note that
available results on dynamics analysis problems of DMNNs
have been really scattered. Additionally, owing to the state-
dependent feature of the memristive CWs, it is mathematically
difficult to analyze the dynamics of MNNs, and conventional
methods cannot be directly employed to investigate the stabili-
ty and estimation issues for DMNNs. Thanks to the novel SFs
(3), we are able to convert the MNN (1) into an equivalent
one with parametric uncertainties, on which some traditional
robust analysis approaches could be ideally applied.

B. The WTOD Protocol

 ! 
y t

 !y t !v t Communication Channel

(with Weighted Try-Once-

Discard protocol)

 !m
y t

 !"#$%&$'!(

)!*#+,(

)!&-.#/

0!".&!(1&+&!(

2%&$"+&.#

 !3z t

Fig. 1. SEP for an MNN under the WTOD protocol.

As shown in Fig. 1, the measurementsy(t) (as the output
of the MNN) are sent to the remote estimator via constrained
transmission channels. To prevent the data from collisionsand
maximize the efficiency of data utilization, the WTODP is
applied to schedule the data transmission between the MNN
and estimator. Under the WTODP, each entry ofy(t) has
the priority that is directly proportional to the norm of the
error between the current measurement and the last storing
measurement. At each time instant, only the entry with the
highest priority is allowed to be updated. If there are more
than one entry being assigned with the highest priority, we
can choose an arbitrary one for updating.

Define

ȳ(t) ,
[

ȳ1(t) ȳ2(t) . . . ȳm(t)
]T

as the received measurement output by the estimator, where
ȳs(t) (s = 1, 2, . . . ,m) is thesth entry of ȳ(t). Let σs be the
known weight of thesth component, and~(t) ∈ {1, 2, . . . ,m}
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be the entry activated at timet. Then,~(t) can be determined
by

~(t) = arg max
1≤s≤m

(y(t)− ȳ(t− 1))T Q̄s(y(t)− ȳ(t− 1)) (5)

where Q̄s , QΨs, Q , diag{σ1, σ2, . . . , σm} and Ψs ,

diag{δ(s− 1), δ(s− 2), . . . , δ(s−m)}.
Denote

z̃(t) ,
[

zT (t) ȳT (t− 1)
]T

,

f̃(z̃(t)) ,
[

fT (z(t)) 0
]T

,

g̃(z̃(t− τ1)) ,
[

gT (z(t− τ1)) 0
]T

,

h̃(z̃(t− ι)) ,
[

hT (z(t− ι)) 0
]t
,

φ2(ς) ,
[

φT
0 (ς) φT

1

]

,

ṽ(t) ,
[

vT (t) vT (t)
]T

.

According to the WTODP and the zero order-holders strat-
egy, the actually received measurement can be expressed by

ȳ(t) = Ψ~(t)y(t) + (Im −Ψ~(t))ȳ(t− 1), (6)

and ȳ(t) = φ1 for t < 0 whereφ1 is known. On the basis of
(5), the DMNN in (1) is rewritten as:

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z̃(t+ 1) =D(t)z̃(t) +A(t)f̃ (z̃(t)) + B(t)g̃(z̃(t− τ1))

+ C(t)
τ2
∑

ι=1

µιh̃(z̃(t− ι)) + L1ṽ(t),

ȳ(t) =Mz̃(t) + L2v(t),

z̃(ς) =φ2(ς), ς = −τ,−τ + 1, . . . ,−1, 0
(7)

where

D(t) ,

[

D(z(t)) 0
Ψ~(t)M Im −Ψ~(t)

]

,

A(t) , diag{A(z(t)), 0},
B(t) , diag{B(z(t)), 0},
C(t) , diag{C(z(t)), 0},
L1 , diag{L1,L2},
L2 , Ψ~(t)L2,

M ,
[

Ψ~(t)M Im −Ψ~(t)

]

.

Based on (7), the following RSME is constructed:

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


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




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

ˆ̃z(t+ 1) =D̄ ˆ̃z(t) + Āf̃(ˆ̃z(t))

+ B̄g̃(ˆ̃z(t− τ1)) + C̄
τ2
∑

ι=1

µιh̃(ˆ̃z(t− ι))

+ (K(t) + ∆K(t))(ȳ(t)−Mˆ̃z(t)),

ˆ̃z(ς) =0, ς = −τ,−τ + 1, . . . ,−1, 0

(8)

where

ˆ̃z(t) ,

[

ẑ(t)
ˆ̄y(t− 1)

]

,

D̄ ,

[

D0 0
Ψ~(t)M Im −Ψ~(t)

]

,

Ā , diag{A0, 0},

B̄ , diag{B0, 0},
C̄ , diag{C0, 0},
K(t) , [ KT

z (t) KT
y (t) ]T ,

∆K(t) , [ ∆KT
z (t) ∆KT

y (t) ]T .

Here, ˆ̃z(t) ∈ R
n+m is the estimate of̃z(t), Kz(t) ∈ R

n×m

andKy(t) ∈ R
m×m are parameters to be determined.∆Kz(t)

and∆Ky(t) are parameter variations satisfying

∆Kz(t) = HzFz(t)Tz , ∆Ky(t) = HyFy(t)Ty

where Hz , Hy, Tz and Ty are known matrices, and the
unknown matricesFz and Fy satisfy FT

z (t)Fz(t) ≤ I and
FT
y (t)Fy(t) ≤ I.
Let

e(t) , z̃(t)− ˆ̃z(t),

ξ(t) ,
[

ṽT (t) vT (t)
]T

,

F (e(t)) , f̃(z̃(t)) − f̃(ˆ̃z(t)),

G(e(t− τ1)) , g̃(z̃(t− τ1))− g̃(ˆ̃z(t− τ1))

H(e(t− ι)) , h̃(z̃(t− ι))− h̃(ˆ̃z(t− ι)).

Then, the estimation error system with respect to (7) and (8)
is

e(t+ 1)

= (D̄ − K̃(t)M)e(t) + ∆D(t)z̃(t) + ĀF (e(t))

+ ∆A(t)f̃ (z̃(t)) + B̄G(e(t− τ1))

+ ∆B(t)g̃(z̃(t− τ1)) +

τ2
∑

ι=1

µιC̄H(e(t− ι))

+

τ2
∑

ι=1

µι∆C(t)h̃(z̃(t− ι)) + Lξ(t)

(9)

where

∆D(t) ,

[

∆D(z(t)) 0
0 0

]

,

∆A(t) ,

[

∆A(z(t)) 0
0 0

]

,

∆B(t) ,
[

∆B(z(t)) 0
0 0

]

,

∆C(t) ,
[

∆C(z(t)) 0
0 0

]

,

L ,
[

L1 −K̃(t)L2

]

,

K̃(t) , K(t) + ∆K(t).

In what follows, we define vectors

γ(t) ,
[

z̃T (t) eT (t)
]T

,

ξ̃(t) ,
[

ṽT (t) ξT (t)
]T

,

F̃ (γ(t)) ,
[

f̃T (z̃(t)) FT (e(t))
]T

,

G̃(γ(t− τ1)) ,
[

g̃T (z̃(t− τ1)) GT (e(t− τ1))
]T

,

H̃(γ(t− ι)) ,
[

h̃T (z̃(t− ι)) HT (e(t− ι))
]T

,

and then have the augmented system

γ(t+ 1) = D̃(t)γ(t) + Ã(t)F̃ (γ(t)) + B̃(t)G̃(γ(t− τ1))
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+ C̃(t)
τ2
∑

ι=1

µιH̃(γ(t− ι)) + L̃ξ̃(t) (10)

where

D̃(t) , D̄γ +∆Dγ(t),

Ã(t) , Āγ +∆Aγ(t),

B̃(t) , B̄γ +∆Bγ(t),

C̃(t) , C̄γ +∆Cγ(t),
L̃ , L̄γ +∆Lγ ,

D̄γ , diag{D̄, D̄ − K(t)M},
Āγ , diag{Ā, Ā},
B̄γ , diag{B̄, B̄},
C̄γ , diag{C̄, C̄},
L̄ ,

[

L1 −K(t)L2

]

,

L̄γ , diag{L1, L̄},
∆Lγ , diag{0,∆L̄},
∆L̄ ,

[

0 −∆K(t)L2

]

,

∆Dγ(t) ,

[

∆D(t) 0
∆D(t) −∆K(t)M

]

,

∆Cγ(t) ,
[

∆C(t) 0
∆C(t) 0

]

,

∆Aγ(t) ,

[

∆A(t) 0
∆A(t) 0

]

,

∆Bγ(t) ,

[

∆B(t) 0
∆B(t) 0

]

.

For presentation convenience, we now introduce the follow-
ing assumptions and definitions.

Assumption 1:φ2(ς) (ς = −τ,−τ + 1, · · · ,−1, 0) satisfy

φT
2 (ς)P

−1(ς)φ2(ς) ≤ 1 (11)

where matricesP (ς) (ς = −τ,−τ +1, · · · ,−1, 0) are known
and positive-definite.

Assumption 2:The external stochastic disturbancev(t) sat-
isfies the following condition

vT (t)Γ−1
v (t)v(t) ≤ 1 (12)

where matrixΓv(t) is known and positive-definite.
Assumption 3:The neuron AFsf(·), g(·) andh(·) satisfy

f(0) = g(0) = h(0) = 0 and following Lipschitz conditions:

‖f(s)− f(t)‖ ≤ ‖Γ1(s− t)‖,
‖g(s)− g(t)‖ ≤ ‖Γ2(s− t)‖, (13)

‖h(s)− h(t)‖ ≤ ‖Γ3(s− t)‖

for all s, t ∈ R
n, whereΓ1, Γ2 andΓ3 are known constant

matrices.
Definition 1: Let the matrix (ellipsoid matrices) sequence

P (t) ∈ R
(n+m)×(n+m) (t ∈ N

+) be given. System (10) is
said to meet theP (t)-dependent constraint if

R(t) , γT (t)P−1(t)γ(t) ≤ 1 (14)

holds for t ∈ N
+.

In this paper, we are set to design a RSME that is capable
of confining the estimates of the DMNN (1) to a CER under
the UNBBNs. Such an aim is accomplished in two steps.
First, for the given matrix sequence{P (t)}t∈N+ , we like to
find the sufficient condition that ensures that the RSME exists
and, subsequently, (10) meets theP (t)-dependent constraint
(14). Second, we like to minimize the trace ofP (t) through
appropriately selectingK(t) that satisfies the aforementioned
sufficient condition.

III. M AIN RESULTS

This section aims at establishing sufficient conditions that
guarantee that theP (t)-dependent constraint (14) is satisfied
by system (10). Then, a recursive algorithm is proposed
to determineK(t) under the WTODP. To start with, we
present the following useful lemmas to benefit the subsequent
derivation.

Lemma 1: [2] Let ϕ0(·), ϕ1(·), · · · , ϕp(·) be quadratic
functions ofs ∈ R

n : ϕj(s) , s
TZis (i = 0, 1, · · · , p) and

Zj = ZT
j . If there exist̺1 ≥ 0, ̺2 ≥ 0, · · · , ̺p ≥ 0 such that

Z0 −
∑p

i=1 ̺iZi ≤ 0, then

ϕ1(s) ≤ 0, ϕ2(s) ≤ 0, · · · , ϕp(s) ≤ 0 → ϕ0(s) ≤ 0.

Lemma 2: [2] Given matricesΩ1,Ω2,Ω3, Ω1 = ΩT
1 and

Ω2 > 0, then
Ω1 +ΩT

3 Ω
−1
2 Ω3 < 0

iff
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0.

Lemma 3: [36] Given matricesN = N T ,H, E and
FTF ≤ I, then

N +HFE + (HFE)T < 0

holds iff there exists scalarµ > 0 such that

N + µHHT + µ−1ETE < 0

or




N µH ET

∗ −µI 0
∗ ∗ −µI



 < 0.

For the convenience of presentation, we denote

H̃r ,
[

HT
r 0

]T
, Ẽr ,

[

Er 0
]

, P (t) , L(t)LT (t).

The following theorem gives a sufficient condition for the
solvability of the concerned SEP.

Theorem 1:Consider the DMNN (1) with given estima-
tor (8 and matrices sequences{P (t) > 0}t∈N+ . If there
exist K(t), ε(t), λi(t) (i ∈ {1, 2, 3, 4}) and ǫs(t) (s ∈
{1, 2, · · · ,m}, t ∈ N

+) satisfying




Ω̃(t) ∗ ∗
ε(t)H̃T −ε(t)I ∗

Ẽ 0 −ε(t)I



 < 0 (15)

where

Ω̃(t) ,

[

−Λ(t) ∗
Φ̄(t) −P (t+ 1)

]

,
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Φ̄(t) ,
[

0 D̄γL(t) 0 0 L̄γ Āγ B̄γ C̄γ
]

,

Λ(t) , diag{1− λ1(t)− λ2(t)− 5λ3(t),

λ1(t)I − λ4(t)L
T (t)Γ̃T

1 Γ̃1L(t),

λ2(t)I − λ4(t)L
T (t− τ1)Γ̃

T
2 Γ̃2L(t− τ1),

λ4(t)Ω0(t), λ3(t)Γ̃
−1
v (t), λ4(t)I, λ4(t)I, λ4(t)I}

+N T (t)

m
∑

s=1

ǫs(t)
(

Q(Ψs −Ψ~(t))
)

N (t),

H̃ ,













0 0 0 0 0 0 0 0 H̃T
DP

T (t)

0 0 0 0 0 0 0 0 H̃T
AP

T (t)

0 0 0 0 0 0 0 0 H̃T
BP

T (t)

0 0 0 0 0 0 0 0 H̃T
C P

T (t)

0 0 0 0 0 0 0 0 H̃T
LP

T (t)













T

,

Ẽ ,













0 ẼDL(t) 0 0 0 0 0 0 0

0 0 0 0 0 ẼA 0 0 0

0 0 0 0 0 0 ẼB 0 0

0 0 0 0 0 0 0 ẼC 0
0 0 0 0 TL 0 0 0 0













,

H̃D ,

[

H̃d 0

H̃d −HK

]

,

H̃A ,

[

H̃a 0

H̃a 0

]

,

H̃B ,

[

H̃b 0

H̃b 0

]

,

H̃C ,

[

H̃c 0

H̃c 0

]

,

H̃L ,

[

0
−HK

]

,

ẼD , diag{Ẽd, TKM}, ẼA , diag{Ẽa, 0},
ẼB , diag{Ẽb, 0},
ẼC , diag{Ẽc, 0},
TK ,

[

T T
x T T

y

]T
,

TL ,
[

0 0 TKL2

]

,

HK , diag{Hx, Hy},
N̄ ,

[

M −I 0
]

,

Ľ ,
[

L2 0 0 0 0
]

,

µ̄ ,

τ2
∑

ι=1

µι,

N (t) ,
[

0 N̄L(t) 0 0 Ľ 0 0 0
]

,

Ω0(t) , µ̄diag{µ1Γ̃
T
3 Γ̃3, µ2Γ̃

T
3 Γ̃3, · · · , µτ2Γ̃

T
3 Γ̃3},

Γ̃1 , diag{Γ1,Γ1,Γ1,Γ1},
Γ̃2 , diag{Γ2,Γ2,Γ2,Γ2},
Γ̃3 , diag{Γ3,Γ3,Γ3,Γ3},
Γ̃v(t) , I5 ⊗ Γv(t),

then system (10) satisfiesP (t)-dependent constraints with
K(t) (t ∈ N

+).

Proof: We prove this Theorem by mathematical induc-
tion. First, for t = 0, based at Assumption 1, we have

R(0) = γT (0)P−1(0)γ(0) = φT
2 (0)P

−1(0)φ2(0) ≤ 1. (16)

Supposing thatR(t) ≤ 1 holds at timet, let us prove that
R(t+ 1) ≤ 1 holds at timet+ 1.

As R(t) ≤ 1 andP (t) = L(t)LT (t), we know that there
exists a vector̄γ(i) with ‖γ̄(i)‖ ≤ 1 such thatγ(i) = L(i)γ̄(i)
for i ∈ {0, 1, · · · , t} by referring to [7]. Next, we show that the
solutionP (t+ 1) of inequality(15) guaranteesR(t+ 1) ≤ 1.

Denoting

γ̄τ2 ,
[

γT (t− 1) γT (t− 2) · · · γT (t− τ2)
]T

(17)

γ̃(t) ,
[

1 γ̄T (t) γ̄T (t− τ1) γ̄T
τ2
(t) ξ̃T (t)

F̃T (γ(t)) G̃T (γ(t− τ1))

τ2
∑

ι=1
µιH̃

T (γ(t− ι))

]T

, (18)

we have

γ(t+ 1) = Φ(t)γ̃(t) (19)

and thus

γT (t+ 1)P−1(t+ 1)γ(t+ 1)− 1

=γ̃T (t)
(

ΦT (t)P−1(t+ 1)Φ(t)

−diag{1, 0, 0, 0, 0, 0, 0, 0}) γ̃(t)
(20)

where

Φ(t) ,
[

0 D̃(t)L(t) 0 0 L̃ Ã(t) B̃(t) C̃(t)
]

.

It follows from Assumption 2 and the WTODP (5) that































‖γ̄(t)‖2 ≤ 1,

‖γ̄(t− τ1)‖2 ≤ 1,

ξ̃T (t)Γ̃−1
v (t)ξ̃(t) ≤ 5,

(y(t)− ȳ(t− 1))TQ(Ψs −Ψ~(t))

× (y(t)− ȳ(t− 1)) ≤ 0, s = 1, 2, . . . ,m

(21)

which, by (17)-(21), is rearranged as follows (in terms ofγ̃(t)):































γ̃T (t)diag{−1, I, 0, 0, 0, 0, 0, 0}γ̃(t) ≤ 0,

γ̃T (t)diag{−1, 0, I, 0, 0, 0, 0, 0}γ̃(t) ≤ 0,

γ̃T (t)diag{−5, 0, 0, 0, Γ̃−1
v (t), 0, 0, 0}γ̃(t) ≤ 0,

γ̃T (t)N T (t)Q(Ψs −Ψ~(t))

×N (t)γ̃(t) ≤ 0, s = 1, 2, . . . ,m.

(22)

Noticing Assumption 3, we have

F̃T (γ(t))F̃ (γ(t)) ≤ γT (t)ΓT
1 Γ1γ(t), (23)

G̃T (γ(t− τ1))G̃(γ(t− τ1))

≤ γT (t− τ1)Γ
T
2 Γ2γ(t− τ1), (24)
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and
(

τ2
∑

ι=1

µιH̃(γ(t− ι))
)T(

τ2
∑

ι=1

µιH̃(γ(t− ι))
)

≤
(

τ2
∑

ι=1

µι

)

τ2
∑

ι=1

µιH̃
T (γ(t− ι))H̃(γ(t− ι))

≤µ̄

τ2
∑

ι=1

µιγ
T (t− ι)ΓT

3 Γ3γ(t− ι)

=µ̄γ̄T
τ2
(t)Ω0(t)γ̄τ2(t).

(25)

Furthermore, (23)–(25) are expressed as

F̃T (γ(t))F̃ (γ(t)) ≤ γ̃T (t)Ω1(t)γ̃(t) ≤ 0, (26)

G̃T (γ(t− τ1))G̃(γ(t− τ1)) ≤ γ̃T (t)Ω2(t)γ̃(t) ≤ 0, (27)
(

τ2
∑

ι=1

µιH̃(γ(t− ι))
)T(

τ2
∑

ι=1

µιH̃(γ(t− ι))
)

≤ γ̃T (t)Ω3(t)γ̃(t) ≤ 0, (28)

where

Ω1(t) ,diag{0,−LT (t)ΓT
1 Γ1L(t), 0, 0, 0, I, 0, 0},

Ω2(t) ,diag{0, 0,−LT (t− τ1)Γ
T
2 Γ2L(t− τ1), 0, 0, 0, I, 0},

Ω3(t) ,diag{0, 0, 0,Ω0(t), 0, 0, 0, I}.
with Ω0(t) being defined in (15). Then,

γ̃T (t)Ω(t)γ̃(t) ≤ 0 (29)

where

Ω(t) , diag{0,−LT (t)ΓT
1 Γ1L(t),

− LT (t− τ1)Γ
T
2 Γ2L(t− τ1),Ω0(t), 0, I, I, I}.

Using Lemma 1, if there exist positive scalarsλ1(t), λ2(t),
λ3(t), λ4(t) andǫs(t) (s = 1, 2, · · · ,m) such that

ΦT (t)P−1(t+ 1)Φ(t)

− λ1(t)diag{−1, I, 0, 0, 0, 0, 0, 0}
− λ2(t)diag{−1, 0, I, 0, 0, 0, 0, 0}
− λ3(t)diag{−5, 0, 0, 0, Γ̃−1

v (t), 0, 0, 0}
− λ4(t)Ω(t)− diag{1, 0, 0, 0, 0, 0, 0, 0}

− N T (t)

m
∑

s=1

ǫs(t)
(

Q(Ψs −Ψ~(t))
)

N (t) ≤ 0,

(30)

then inequalityγT (t + 1)P−1(t + 1)γ(t + 1) − 1 ≤ 0 holds
by referring to inequalities (22) and (29).

Let us convert (30) into the compact form below:

ΦT (t)P−1(t+ 1)Φ(t)− Λ(t) ≤ 0. (31)

Then, in view of (31) and Lemma 2, we obtain
[

−Λ(t) ∗
Φ(t) −P (t+ 1)

]

≤ 0. (32)

Furthermore, to eliminate uncertainties embedded in (32),we
rewrite (32) as

[

−Λ(t) ∗
Φ̄(t) −P (t+ 1)

]

+ H̃F̃ Ẽ +
(

H̃F̃ Ẽ
)T

≤ 0 (33)

where

F̃ ,













FD 0 0 0 0
0 ϑa(z(t)) 0 0 0
0 0 ϑb(z(t)) 0 0
0 0 0 ϑc(z(t)) 0
0 0 0 0 FK













,

FD , diag{ϑd(z(t)),FK}
FK , diag{Fz, Fy}.

By resorting to Lemma 3, we observe that (15) is ensured
by (33). Thus, it can be obtained from (15) thatR(t+1) ≤ 1.
This completes the induction. Hence, (14) is guaranteed with
parameterK(t).

Theorem 1 guarantees the existence of a CER that embraces
all possiblez(t + 1), where the state estimate obtained from
(8) serves as the center of ellipsoid.

In the following corollary, by exerting the convex opti-
mization approach, we will present an iterative algorithm to
optimize this ellipsoid and compute the optimal state estimator
gain.

Corollary 1: The constraint matrixP (t) on system (10) is
minimized (in the sense of the matrix trace) if there existK(t),
ε(t), λi(t) (i ∈ {1, 2, 3, 4}) andǫs(t) (s ∈ {1, 2, · · · ,m}, t ∈
N

+) such that the following optimization problem

min
(P (t+1),K(t),ℓ(t))

tr{P (t+ 1)} (34)

is solvable s.t. (15), where

ℓ(t) , {ε(t)} ∪ {λ1(t), λ2(t), λ3(t), λ4(t)}
∪ {ǫ1(t), ǫ2(t), · · · , ǫm(t)}.

Proof: The proof is easily accessible from Theorem 1 and
is therefore omitted for brevity.

It should be mentioned that inequalities (15), are linear to
variablesP (t), K(t), ε(t), λi(t) (i ∈ {1, 2, 3, 4}) and ǫs(t)
(s ∈ {1, 2, · · · ,m}). Actually, it is seen from Corollary 1
that the aforementioned optimization problem can be well
addressed via standard semi-definite programming techniques.
Therefore, by means of Corollary 1, we can summarize
the computational algorithm for the state estimation gains
{K(t) > 0}t∈N+ in Algorithm 1 as follows.

Algorithm 1 Computational Algorithm for{K(t) > 0}
t∈N+

Step 1.Initialization: Sett = 0 and givenN andP (ς).
Step 2.CalculateL(ς) based onP (ς) = L(ς)LT (ς) for ς = t− τ1

and t− τ2 ≤ ς ≤ t.
Step 3.Solve (34) s. t. (15). Then,K(t) andP (t+ 1) are obtained

based on the solution of (34).
Step 4.Set t = t+ 1. If t > N , exit. Otherwise, go to Step2.

Remark 2: In the paper, the set-membership SEP for
DMNNs has been effectively coped with under HTDs and the
WTODP. One can observe from Theorem 1 and Algorithm 1
that, in the pursuit of the RSME, all significant factors (includ-
ing the state-dependent parameters, HTDs, noise information,
estimation accuracy, WTODP) are fully reflected in the above
analysis, and a comprehensive framework is formulated, under
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which the desired estimator gains are derived by taking into
account factors that sophisticate the concerned model.

Remark 3:The state estimation problem for artificial neural
networks has received a large amount of research attention
and a large body of results has been available in the literature.
In comparison with the existing literature, the main results
of this paper exhibits the following distinctive features:1)
the set-membership state estimation problem discussed in this
paper is new in the sense that the random gain variation
and the WTODP are taken into careful consideration; 2) a
novel yet unified estimation scheme is developed to tackle the
mathematical complexities stemming from the state-dependent
switching behaviors and hybrid time-delays; and 3) the design
algorithm of the desired filters is recursive and can be realized
online.

IV. A N ILLUSTRATIVE EXAMPLE

This section provides a demonstrative example to validate
the proposed estimation approach.

Consider (1) with parameters:

d1(z1(·)) =
{

0.990, |z1(·)| > 0.3,

0.930, |z1(·)| ≤ 0.3,

d2(z2(·)) =
{

0.420, |z2(·)| > 0.3,

0.860, |z2(·)| ≤ 0.3,

a11(z1(·)) =
{

0.060, |z1(·)| > 0.3,

0.050, |z1(·)| ≤ 0.3,

a12(z1(·)) =
{

−0.330, |z1(·)| > 0.3,

−0.350, |z1(·)| ≤ 0.3,

a21(z2(·)) =
{

−0.230, |z2(·)| > 0.3,

−0.200, |z2(·)| ≤ 0.3,

a22(z2(·)) =
{

0.060, |z2(·)| > 0.3,

0.040, |z2(·)| ≤ 0.3,

b11(z1(·)) =
{

−0.300, |z1(·)| > 0.3,

0.240, |z1(·)| ≤ 0.3,

b12(z1(·)) =
{

0.005, |z1(·)| > 0.3,

0.015, |z1(·)| ≤ 0.3,

b21(z2(·)) =
{

−0.310, |z2(·)| > 0.3,

0.270, |z2(·)| ≤ 0.3,

b22(z2(·)) =
{

0.020, |z2(·)| > 0.3,

0.060, |z2(·)| ≤ 0.3,

c11(z1(·)) =
{

0.015, |z1(·)| > 0.3,

0.045, |z1(·)| ≤ 0.3,

c12(z1(·)) =
{

0.050, |z1(·)| > 0.3,

0.010, |z1(·)| ≤ 0.3,

c21(z2(·)) =
{

0.260, |z2(·)| > 0.3,

−0.300, |z2(·)| ≤ 0.3,

0 5 10 15 20
0.5

1

1.5

2

2.5

 

 
Selected nodes

Fig. 2. The selected nodes of MNNs

c22(z2(·)) =
{

0.015, |z2(·)| > 0.3,

0.035, |z2(·)| ≤ 0.3,

Γ1 = Γ2 = Γ3 =

[

0.25 0
0 0.36

]

,

τ1 = 1, τ2 = 3.

The weight values in the WTODP areσ1 = 1.0 andσ2 = 0.8.
The bounded noise is set asv(t) =

√
0.02 cos(t), and

thus we haveΓv(t) = 0.02I for t ∈ N
+. Furthermore,

φ2(ς) =
[

3 3 1 1
]T

, P (ς) = diag{9, 9, 1, 1, 9, 9, 1, 1}
(ς = −τ,−τ + 1, . . . , 0).

Using Matlab YALMIP 3.0 Toolbox, the optimization prob-
lem (34) is solved subject to (15), and the corresponding
demonstration results are given in Figs. 2-6. Fig. 2 revealsthe
impact from the neural states on the selected neural nodes,
while Fig. 3 and Fig. 4 plot the actual and estimated trajecto-
ries ofz1(t),z2(t) and their estimation errors, respectively. The
actual and estimated values ofȳ1(t), ȳ2(t) and their estimation
errors are respectively displayed in Fig. 5 and Fig. 6. The
obtained results demonstrates that our proposed estimation
scheme is indeed effective.

V. CONCLUSIONS

The set-membership SEP has been solved in this paper
for DMNNs with HTDS under WTODP. The WTODP has
been utilized to mitigate the unnecessary network congestion
occurred in the channel between the DMNNs and estimator. To
cater for possible execution errors, estimator gains are contam-
inated by bounded parameter fluctuations. A RSME has then
been devised to achieve the estimate of the DMNN susceptible
to the UBBNs and WTOD. By means of the RMIs, sufficient
conditions have been pinned down to ensure the existence of
the desired RSME. Then, an optimization problem has been
formulated by minimizing the CER (with respect to estimation
errors) under the WTODP. Finally, simulation results illustrate
the feasibility of our RSME. Further research topics would
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Fig. 3. The actual and estimated trajectories ofz1(t) andz2(t)
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Fig. 4. The estimation errors ofz1(t) andz2(t)
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Fig. 5. The actual and estimated values ofȳ1(t) and ȳ2(t)
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ȳ1(t)

0

20

t

1510-1 50

Estimation errors

Fig. 6. The estimation errors of̄y1(t) and ȳ2(t)

include the extension of the main results to 1) the partial-
nodes-based set-membership SEP of complex networks under
communication protocols [22], [23], [48]; 2) the recursiveSEP
of DMNN with network-enhanced complexities [9], [10]; and
3) the improvement of the state estimation performance by
using some latest optimization algorithms [24], [25].
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