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ABSTRACT

The far scattered field off the axis of symmetry of the disc
is found for a high frequency, harmonic, normally incident,
plane wave. The method used is due to Jones and involves
the solution of a singular integral equation of the first
kind for the field on the disc. This integral equation can
be converted into an integral equation of the second kind
which is of particular value at high frequencies. In the
present work the known function in the equation is written
in the form of a contour integral. A suitable change of
unknown function then produces extensive cancellation and
yields a single function fundamental to the problem. The
detailed calculations of the far field give terms which are
believed to be new. In executing these calculations some
interesting relationships between the terms involved are

demonstrated.



INTRODUCTION

Diffraction by a circular disc has received much attention in the

past due mainly to the fact that it is the simplest diffraction problem
with a finite diffracting edge, and can therefore be used to check
theories applicable to more general shapes. The problem can be solved
exactly in terms of spheroidal functions but the resulting series are
difficult to use, particularly at high frequencies. More recent interest
has been in high frequency work with most approaches being through integral
equations, though Keller's Ray Theory [6,7,8,9] is based upon physical
optics. Levine [10] and Levine and Wu [11] modified the kernel of the
standard integral equation in order to use Wiener-Hopf techniques. Keller's
Theory and the approach used by Levine and Wu are applicable to problems

other than the circular disc but they both involve approximations.

An entirely new approach was made by Jones [1 ]| and it is this which is

used in the present work. The method involves the exact solution of a
certain integral equation, the uniqueness of which has also been demonstrated.
Jones found the high frequency scattering coefficient for a normally incident
plane wave on both the soft [1] and hard [2] circular discs, and later
considered the electromagnetic case [3]. In the present work the far field
off the axis of symmetry is found in detail yielding terms which are believed
to be new. Further terms can easily be calculated if required. The results

are compared with terms calculated by Keller.

In dealing with the known term in the integral equation a different approach
is used to that employed by Jones. This term is expressed as a contour
integal. The form of the contour suggests a change of the unknown function
which might simplify the analysis. A subsequent contour deformation produces
extensive cancellation and yields a mare amenable known function containing
a single term fundamental to the problem. The insight gained by this method
leads to the solution of the obliquely incident plane wave problem, details

of which are not included in the present work.




l. THE INTEGRAL EQUATION

We shall consider the case of a small amplitude harmonic sound
wave falling upon a sound soft circular disc of radius a. Sound
soft is taken to mean that the field on the disc vanishes.

The problem may be normalised by regarding the radius a as the
unit of length. The disc is in the plane z = 0 with its centre
at the origin of a cylindrical polar coordinate system (r, o, z)
and occupies the region 0 < r < 1 after normalisation.

Assume the incident field uo to be independent of @, and to be
represented by ug (r,z) at the point (r,e,z)with time dependence
¢'V' being understood and omitted throughout. The total field
U(R) at the point I} is the sum of the incident field up(R) at R

and the field ug(R ) at R produced by scattering from the disc.

Both u and us are independent of @ since uy is independent of o
and the disc is placed symmetrically on the axis of the system.

Then
uR) =uy (R) +ug(R) (1)
and the field u satisfies the Helmholtz wave equation
(V?+a*)u=0.
The symabol a = ka is a non-dimensional number, being the
product of wavenumber k and disc radius a. This product is
large at high frequencies.

A direct application of Green's Theorem shows that ug(R) is

given by

) L
u R)=-- Jsf() ds, (2)
15_ Rl




where S is the unit circle, centre the origin, in the plane

z = 0. The position vector Ryis a point of S and

au(rl’zl) ar(rljzl)
flr,) = [8—21] [ o, (3)

Zl =0+ Zl =0-

is the discontinuity in the normal derivative of the field

across the disc.

If R is also a point of S, and the boundary condition u =0

on S is applied, the following integral equation for f(r;)

1s obtained,

¢ |R-R,

uo(r,O) = ﬁ Js frp) = ds, (4)
. 1
. . e—laa {2+r12—2rrlcos(¢—¢1)}2

{r2 +r12 —2r1r1cos((1)—(1)1)}2
Jones [1] has shewn that this equation may be converted into

the form

e—i(w( -V) e—iaa( +Vv)

Ié w f(w){ + }dw =G(v), (5)

W=V wW+V

Where

cos{a (1)2 - xz)i}

Yd v
G(v)=2(2n(2* )

1 X X
w2 -x?)?2
1
g e tea-rh2)
rug(r,0)drdx (6)

X_
dx "0 1
(x* -r%)4



I | is the modified Bessel function of order —% . By letting

_1

2
—1a(w V)

[wf(w)—dw = F(v)

Jones showed that the singular integral equation (5) for
f(w) can be written as an integral equation of the second kind

for F(v) of the form

I 1
F(U)=G(u)—l( v j2 —lowjo(l—tj FO oty

wt\l+v t t+v

Inversion of (7) and application of the condition that f(w)

should be bounded at the origin shows that

1 1
whiw) = - (ILJ 2 idw % (1 - oj 2 F(o) -idvg,

n2 v W—V

(7)

(8)

©)



2. THE KNOWN FUNCTION

In order to continue the analysis the known function, G(v),
and hence the incident field, uo(r,z), must be specified. For

a normally incident plane wave from the negative z direction
ioz

Uo (ra Z) =c ’ (10)

and so

1 X2 I_ 1 (ox )dx (11)
(v? —x2)2 2

1 2_ 42y
G)= 2(2na)7 dil')j(l)l cos{ou(v” —x7)2 }

The function G(v) does not have a uniformly valid asymptotic
expansion. Such an expansion would be necessary in order to
find a satisfactory solution of the integral equation (8).
Some features of G(v) will now be discussed which give an
insight into the problem and suggest a course of investigation.
Using certain identities for Bessel functions (e.g. Watson [12])
we may write in the usual notation

X3/2I 1 (ax) _ e_axn(ax)— eaxn(_ ax), (12)
"2
where
3
n(ax) =lxéeaXK  (ax)= X 1 (13)
T 1 1
2 (27c0c)2

Using this notation and the exponential form of the cosine
G(v) can be written

1
1 _
2 d Uewt{(uz—xz)2 +1x}
GVv)=Q2na) — n(oox)d +
dv |0 1
©%-x%)2
1 1
“io {(v%—x%)2 —ix} o {0?x7)2ix)
V) V) _
+ IO 1 N(ax)dx jO 1 Nox)dx:
(02 _X2)2 (02 _X2)2
1
JUe—ia{(Uz—xz)z +ix} d
Iy n N(—ax)dx ¢,
(0* —x%)2




In the first integral the substitution
1

(v? —Xz)E +ix=-y
is made in order to simplify the exponential.

This integral may then be written

1

J

L2 2y . .
1)eloc{(u —x7) 4 +ix} —iv of Oy (o o
0 " r|(ocx)dx=—1j_U m— (" —07) dy.

y 2y

(0% -x%)2
Similar changes in each of the other integrals are made so
that all or the exponentials are reduced to the form ¢ '*7¥.

All the integrands are then the same, and

1 .
—d —iv v v iv eI Y a2 9
G :222—(—' H[ —if i ) —(y* - dyt, 14
(v) = (2m2 dv{ i, i M, 07 —ohidy ()
The contour in the y-plane is illustrated in figure 1.

There are two paths of integration from -v to +v, one being

above the pole at the origin, and the other below it. The

form of the contour and the exponential nature of the

integrand suggest extending the contour from v to -i”. We

therefore define a new function  (v) by

1 _ _.
. 5 d T Y (g
7 (0) = 2i2no)? - == (y2 —v?) ldy (15)
v y 2y
1
: d OOe_iOL(vz—xz)5 1 2
= -2(2Ma)2 —| —x2K | (ax)dx

dv0 l T —

in the original coordinates. The function Z (v) is defined in
such a way that when added to G(v) it completes the contours
above and below the pole to -iw. This enables a contour

deformation to take place as illustrated in figure 2.
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Hence

1 i -1
) , ,d | e Y fia 5 5
G(v)+ 7 (v) =-i(2m0) “— 2I—v m— (" —Vv7) dy+
dv y 2y

-y (;

e o

+9 n{—(y2 —vz)}dy}, (16)
y 2y

where § is taken to mean a closed line integral round the pole

in a clockwise direction. If we define another function, y(v),
by
1

(v) = ~i(2ra)? %ﬁ?n{%(yz —u%}dy, (17)
then

GO + T = yO) - 7 (),
(18)



3. A NEW KNOWN FUNCTION

The known function G(v) has rather complex contours. The sum of
G(v) and “(v), however, has simpler contours and to introduce

these into the integral equation (8) we define a new unknown
function, 7 (v), by

7v) = F(v) - (GW + T V).
(19)

The integral equation then becomes

7090 e [ e

1+v 0\t t+v

where

1
5 . 1/1_¢\ —i0v
4(v) =7 (1) —%(ﬁjz eTivp [thjz S GO+ )

The new known function is g(v) which can be expected to be more
amenable than G(v) since its contours are simpler.

The substitution of (18) in (21) gives

g(u)=—G(u)—l( v jze—“*”j[lijz f+ (1(t) — G(-0))dt.

n\l+v oLt L

We now consider the various functions involved. From (13) and

(15)
—iow —idx

« (v)=—2ve ™ J-O (x+0)?

dx,

The integral involving © (-t) in (22) can then be written

1 . 1 1
171 4\y a-ict R 1 2.2
I(Llye iaeﬂmzjeﬂxzyillLl—mdx
0 0

ol t t+v (t+v)(x—t)

4

N | =

lt%t%
(_) d

A R Irvesrers

tdx,

(20)

(21)

(22)

(23)

(24)



using a result in the appendix.
Now, evaluation of (17) shows that
y(v) =2nav
and evaluation of the inner integral in (24) gives

L —iat
f@jiye 7 (-dt=

o\t t+v

L t+v

1 . 1
P’y 190 5 —iat
:n(—HUTei“”’C(UHJ‘ (lttjze y(t)dt
0

Substitution of (26) in (22) then produces extensive
cancellation resulting in a simpler expression for the new

known function now given by

1 . ] .
1( v ) 7™ (1=t e™
v)=—| —| e*® —_— t)dt.
9(v) n(1+u) '!. [ t j t+UY()

The function g(v) is therefore a straightforward integral

with limits which yield a simple asymptotic expansion for
large a. y(t) is an integral round a pole, (evaluated in
(25) ), all other contour integrals having vanished. The

cancellations are more extensive than might have been

anticipated, and the relatively simple form of g(v) suggests

that the contour deformations and the resulting function

y(v) may be in some sense fundamental to the problem.

Essentially the same known function is derived by Jones [1]

without the use of contour deformations. The present

derivation is perhaps of more interest in that a deeper

insight is given, particularly in respect of the way in which

the various functions are associated with each other.

(25)

(26)

(27)



4. THE FIELD ON THB DISC

The function y(v) may be incorporated in Jones' [1] iteration

scheme thereby enabling the scheme to start one stage earlier.

This illustrates the fundamental nature of y(v). The solution

of (20) may then be expressed by

® o e—ia (wW—v)

W—U
where

) =~ 7w

g (v) = Il ‘I’k(w)dw ,

k+1

w

1 )
l—ico ( w—1 ]2 e 1w
W+ U

o @ v )2 Loy
YW = 4_nIO (E) P (Ve M(v,w)dv ,

And

M (v, w) = —2V

2 2
Ve -w
An expression for the field on the disc, f(w), can be found

{ngz) (00)Jg (o) - wH ()1 (ocw)}.

from equations (9), (18), (19) and the iteration scheme above.

We may write

f = f 3 f
(w) O(W) + kél k(W)

where
00w 1 1 100V
e 1-v\2e
£ (w)=-—F IJO( j (1)~ 7 (~0))dv ,
1 1 -w
thwz(l—w)2
and
1
iow 1 5 -lav ®© —ia(t—v)
e 1-v)2 e e
fo(w) = — 1 lj[ . ] U_W!‘Pk(t) — dt dv .

(34)

(28)

(29)

(30)

(1)

(32)

(33)

10.



The term involving g(-v) in (33) is similar to the left hand
side of (26). A similar analysis, allowing for the pole at
v = w, where 0 <w < 1, then gives

1 1
1 _ P _ 5
[ (—1 sz S (v dv =i (1 W’jze-mw(w) +
w

0 |9) L—W

1 . . 1 .
1= V)2 g™” Hw(l—ojz e
+ . L +1 e L dU ,
'(l]. [ o j Y( )dU _[ v Y( )

W LV—W

where the integral on the left hand side and the first integral

on the right hand side are principal values. Substitution of

© {iv(w}do
VL—W | TT

this result in (33) shows that

£ (w) %{%ﬂw)% 1eww Jl [o;lj

nwi(l - w)i

0| =

1 eiotw
— W)+ v (W),
w2(l—w)?

In considering the expression (34) for f (w) we change the
order of integration.
Since

Il(l—ojz dv _ nz(l—_wjza(t_W)Jrn(t—l]z H(-D
LAY (b=w)(L—1t) w t t—w

0<w<1, t>0,(Jones[1],appendix B),
we can write

1 ei(xw
f,(w) = ;Tk(w) + —— Y (W)

TEWE(I—W)E
The expression for fo(w) and fy(w), k > 1, given by (36)

and (37) are now of the same form, and so

fw) ~ SE (W),

and
1 ¥, (—w)elowv
fi (W) = ;;Tk(w)4— —ki%—————r—

TCWZ(l—W)Z

11.

(35)

(36)

(37)

(33)

(39)



S. THE FAR SCATTERED FIELD.

The scattered field ug(R) is given by equation (2). In general

the integral is complicated. However, if R is assumed to be far

from the disc a useful approximation can be made. Then, using

spherical polar coordinates,

U, (R) LR F(w)j (awsinO)dw +0| —
~ = — WI(W W S1 A% —a
- 2 R0V R2
Let
F(0) = jol wE(w) T, (o w sin 0) dw
so that
—-iaR
Us (R) ~ = — F(6
s (R) = = — “—— F@)

Then, by (38),
F(6) ~ ZFk ©) ,

where

F (0) = .[Olwfk (w) J, (owsin0) dw

= j(l)wk (W)J o (ow sin 0)dw +

1
1 2 .
+1J.( - jZ\PkH(_W)emeO((XWSine)dw
T% 1-w

after substituting for fy(w) from (39).

F(0) can be written in a modified form which is more convenient

to use. To do this it is necessary to return to the iteration scheme.

Equation (31 ) arises from the solution of an integral

equation (Jones [1])

—io(W—v) ia(e+v) .
.[;;V "Pk (W){ c + © } dw = (sz \Pk (U)e_low
W—U

W+ 1+v

[—

(40)

(41)

(42)

(43)

(44)

12.



13.

This equation, among others, has been considered by Jones

in [4] and [5] Multiply through by Jo(avsinf) and integrate
from 0 to co. Then, after reversing the order of integration
on the left hand side and changing the sign of v in the second
term of the integrand, we have

0 Ciow 2 eiom
fp ¥ (W) eV [

JO(OLU sin 0) dv dw =
W -V

* L 5 —10w .
= IO (Ej ‘I’k (L) e JO((xU sin 0) dv .
If the inner integral is now completed with an indentation
above the pole at v = w its contour may be deformed upwards

without contribution, provided | sin 0 | <I. Hence

I:‘Pk(w) J, (@ wsin 0)dw =

1 ” L 2 —iow .
= — j — | Yy, (v) €], (avsinB) dov . (45)
T % 1+v

(The author is indebted to Professor W.E.Williams for a
shortened proof of this result).

Now, considering the right hand side of (44),
1
fo‘I‘k (w) JO (awsin0) dw =

= J. ¥, (w)J, (aw sin@)dw — I ¥, (W) J, (awsin0) dw
0 0

1

mY \1+v

- L "y (W)],(awsin 0) dw |

after using (45). The second term on the right hand side of (46)



(44) may be written,

L w )2 i .
— |, (—j Vo, (=w) e J ) (awsin0)dw =
w

T

=l 1i00( i jz\VkH (_W) eiaw JO (Otwsine) dw -

1-w
1

1 +ico 2 : .
—— Il (Lj Y., (—w)e™" ], (awsin0) dw
T I-w
1

- _i.[:( - jzwkﬂ(w)eiaw-}o(awsme) dw —
0 \1+w

- 1]””’ [ljz\pkﬂ(—w)emeo(aw sin0) dw 47)
! 1-w

after deforming the contour of the first integral of the

right hand side onto the negative real axis and then changing
the sign of w.

Comparison of (46) with (47) shows the similarity between
the first terms on the right hand side of each equation.
Substitution of these two relationships back into (44), the

expression for Fi(0), shows that cancellation will occur down

the iteration scheme. Hence,

F(0) ~ 3 E (0
(0) kéo . (©)
- IOI‘PO(W) J, (awsin®) dw —

1 1+ 2 i
——[IHOO(LJ \4/1(—W)elowv Jy(awsin0)dw —
e I-w

- ; {Jlooqlk(w)JO(awsinG)dW +
k=1

w

+ f”w(—jz W (—w) €T, (oo sin 0) dw b, 48)

1-w

14.



It is therefore apparent that there is no contribution to the
far field from the centre of the disc, except perhaps from the
first term. However,

II\PO(W)JO (oo wsin0)dw = .2—1J1 (asin®) (49)
0 sin0

there being no contribution from the lower limit. The far field
as a whole is therefore determined entirely from conditions at
the edge of the disc.

The first two integrals in (48) will be called the aero order
contribution to F(0) and subsequent pairs of integrals for each
k will be called the k' order contributions.

The only restriction which applies to F(0) so far is that

| sinf | < 1, (c.f.(45) ). This means that the expression

cannot be used to find the field in the plane of the disc.

In order to proceed to the asymptotic evaluation of the second
and subsequent integrals in (48) it is necessary to consider
three regions in which the field may be required. The first
region is that at or near the axis of symmetry, such that

| @ sin 8] < < 1. An important particular case of this is the

far field along the axis of symmetry, which gives the
scattering cross section of the disc (Jones [1]). The field

in this region may be determined by using the series forms

of the Bessel functions. The second region is that in which

a sin 0 is neither very small nor very large. This requires
special attention as a transition region, and will not be
considered here. The third region is that in which |a sin 6 | > >1,
and at high frequencies this is by far the largest region. In
this region the asymptotic forms of the Bessel functions may be
used in the integrals. This third region is the one considered

in the present work.



6. THE ZERO ORDER CONTRIBTPION TO F( 8).

In order to find the far field it is necessary to calculate
F(6) in. detail. The zero order contribution is given by

J.Ol lPO (W)Jo (aWSIHG) dW _

1
— —.[Hm[ j W, (—w)e ™™ J, (o wsin 0) dw.

At high frequencies, away from the axis of symmetry,
o sinB] > > 1 and an asymptotic form of the Bessel function may
be employed. The particular form used is

Jo(2) ~
1
-1 UE+E © im(o+m——)! ) )
~ Le 3 4 ¥ 2 1 [elz + i(—l)mﬂ)elzj
1 1 1 '
— m=0m!(v-m-—)! m+—
w2 2 (229 2

The first integral of the zero order field has been found
in (49) and 30, using (51),

[ Wy (W), (awsin) dw ~

1 3
~ — (2]20{ 1 )2 {(eiasine _jolasin® ) +
T asin 0
3i (iasine . —iasine)
e + 1e +
8asin®
7
N L(eiasine_ie—iasine) +O(a_2) .
27 2 29
o Sin
The second integral of the zero order field may be written
1
1—io0 - .
lf (sz v (—w) e * VIg(a w sin 0) dw
m 1 1-w

N |—

1—100 . 1+i00 %J ind) -
1 t—1 _ (o0 w sind)
A R e N W 0 e WV dwdt.
Tl t 1 1-w t—w

16.

(50)

(1)

(52)

(53)



17.

Use of the asymptotic form of the Bessel function and some
fairly straightforward analysis shows that the inner of
these integrals may be written

”i“’( w ji J,(cowsin@)
1

1-w t—w

eIOth\A/ ~

i i i"(m-1) 1 i i (—nr'n)! (n—1)i" )

;3 & m(-m-1) (2ocsin6)m+é ~ n!(-m-n)

o [—

T
{ Pt +sing) © e (DX
o(1+sinB) xn+ 3
o w —i(t-Dx
+ i(_l)meloct(l sin0) e . dx ’ (54)
a(l-sinf) 05
X
Substitution of this result in (53) and inversion of the
order of integration yields integrals of the form,
IS B % —it (x Fousin 0)
il (—) w(te T dt dx .
a(ltsing) Nt+s t
X
After substituting into these integrals the expression for
¥ (t) from (29) they may be asymptotically evaluated to
complete the evaluation of (53). Hence
1 i W )2 ioow .
—f — | y(=we Jog(owsin®) dw ~
U I-w
1 3
N\ N 1) . SR
-~ (—j of — 1= (1+sini2 bel @510 i) _ (1 _gingi 2y SN0
T asin 6
. 1 . . 1 . .
b2 esingiZye @S0 o1 osingi2ye @S0y
asin @ |8
1 % iasin @ % —i o sin 0
— 1= (esindiZ) e +i {1—-(1-sindiZle ]
i ? 1 _% iasin® _% —iosin @
+ —[ {1-(1+sin 0) “}e —i{l-(1-sinB) “}e ] -
o sin @ 16
-1 . . 1 . .
55 -
S22 L a-(esingi 23S - (1-singy2y e 7 O500
128
+ L[ {1-(+sind)’y €)= i {1 (1-sin6)* Je '] -

+olat) . (55)



18.

It is noted that the terms of (52), the first integral in
the zero order contribution, correspond exactly with those

terms or {55) coining from the first 1 of {1 — (lisine)r%}.
In the zero order contribution as a whole there is complete
cancellation of the first integral with part of the second

integral. The zero order contributions to F(#) is therefore,

j(l)\P(W)JO (o wsin 0) dw -

1 1+ioo =
B ;jl [ljvw'jz\ﬂ(—w) Jo (awsind) dw ~
T 1 1
2 o L
~ (_J26—3 [ (1+sind )2 clasin® _ . (1-sin0)2 e 1(xsm9] N
o 3
(sin ) 2
i | s 1 s I
+ 1 5 g [(1+Sin9)261(151n9+i(1_sine)zela81n9 ] _
o sin
1 3 [
— Z[(1+Sine)2e Losing, i(l—sin@)ze_lasme 1
Y L B
_ (qulneJ E[ (1+5in0) 2elasme—i(l—sin9) 2 lasind 1-
L 1

—% (1+5in0)2e 450 5 (1 _gingy2eiasin® |,

3 3
11 2 3
5 (1+Sin9)2elusme—i(l—sine)ze i0sin 6

5 5

3 S i s = L
= (1+sin9)2e1“m9—i(1—sine)2e iosin®

32

1
+O(a 2] . (56)
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7. AN ASYMPTOTIC FORM OF Wi(w)

The k'" order contribution to F(6) is given by

- Jfo ‘I’k(W) Jo((IWSine)dW —

1 Hof w )2 iow .
- ; Il (mj \llkﬂ(—w) e Jo (@ w sin6) dw .

To evaluate these integrals it is necessary to consider a suitable
form or Wi(w). It is noted that in the first integral w > 1.

In the second integral yx+1(-w) occurs, which may be expressed
as an integral of Wy from 1 to 1- i by (30). In each case the
modulus of the argument of Wy is greater than or equal to unity.
This knowledge may be used to find an asymptotic form of ¥ (w)

From (31)

1

ia’ © L 2 —iav
¥, (W) = 4_75 X [E) v, (v)e M(v,w)dv

Where

M@w) = |

; VH? (aw)jy (aw) — wHE (aw)j, (aw)}
L

The function M(v,w) has poles at v=4 w, and so ¥i(w)

is a principal value. It may be assumed (Jones [1]) that WYi(Vv)
is regular in the region Re(v) > - 1 of the complex v plane
and is bounded as | v |— o in this region. Completion of

the contour of integration with an indentation below the pole

at v = w gives,
1

lou v 2 _i
yr(w) = —[3 (—jzw (v) e '*YM (v,w) dv +
47 1+v

i W % —iow
+ — ( ) y, (w)e ™.

n \1+w



The contour can now be deformed onto the negative imaginary

axis. On changing v to -iv we obtain,

P (W) ~ i(%] Wy (w) e

iﬂ (
w

X ——— VK (@], (aw) — w K (av)], (aw)} dv

1
1 2 i o ——_—'m
~ i( j Wk(w)eﬂaw _ 2(1 e 4 z ( 2 ( 1 %
I+w |

j W (Ve ™ x

x S (_1) " (n) .
Z n! (0) z )m+n+2p+%

20(m+n+2p+2) wr! (m+n+2p++1) w

after asymptotic evaluation of the integral.

Yy (w)is suitable where | w | > 1.

{ (m+n+2+—5)! Jo(ocw) _ (m4n+2p++1) T (ow)

This form of

I

20.



8. THE k' ORDER CONTRIBUTION TO F(6).

It is now possible to proceed with a detailed calculation

of the k order field which is given by the two integrals

B J.lw ¥, (W), (o wsin Q)dw —

1
w

1 +ioo 2 iow .
- —f [—j Y, (=w)e™J (o wsin 0) dw .
i l-w

In considering the first integral the asymptotic form of Wy (w)
can he employed since w > 1. The resulting integrals may

then be evaluated asymptotically after some straightforward

but tedious analysis to give,

.[lw v, (W) J, (aw sin0) dw ~

. (OH— %) iosin® —io sin®
2(am)? (sind)2 {W“( )L “sin6 1+ sine}
i , 1 giasind | griusin
T -— 1 +1 +
o [ [ V(D) 4Wk():l|: (1—sin6)2 (l+sin6)2}
Wk(l) |: eiasine ] eiasine :|

8sin6| (1-sinf)  (I—sin0)

e 4 io(l+sin@) e—ia(l+sin 0)

- v (0){ : +
2%n%a%(sin6)% ‘ 1+sin®

io(1-sin©) —io(1-sin ©)
48 re }+o("’—‘;]. (59)

1-sin6 o2

3n

The second integral in (58) can also be evaluated

asymptotically though the labour involved is fairly extensive.

(58)
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The final result is

1

. .r+m ( j Vg (W)™ j, (aw sin ) dw ~

e—i(ll+ %) 1 14+ 5sin® % e—iasine
v wevih Bl SO N I :
(na)> (sin®)> | 2 2 1-sin®
. [1—511'16]; e—iasine
+ 1 1- . _
2 1+sin6
i 3 ' 1 1+sin6 % eiasine
RO R <1>j 1_( j .
« 4( k 47 2 (l—sine)2
. [l_snlej; e—iasine
+ 1K1- —| -
2 (1-sin0)
1 14+sin® : glasin® ] 1—sin0 3 oiasin®
Y 1- — + 1+41- — +
3 2 (1-sin6) 2 (1+sin0)

v, (1) l+sin9 2| glesne 1—sin@): | e-isin®
- — i 1= . +
2%sin 0 1-sin® 2 1+sin©

\Vk (O)ela claosin o Tlaosin
+ + 1 1
n(x smO)Ji 1+sm9 (l—sin9)2_
a+3fj L
\Vk(o)e { icasin —laasin
+ p—
5 .
1 | 1+sin® 1—sin®
22n2a2(s1n6)2 -
—ilg—7 1 _
vy (0)e i 14sin0)2 | ¢ 0sin0
133 1 2 I—sinbd
24m4o (s1n6)2
1 ..
_ 1—sin )2 | ¢ iosind
+ 141 -
2 1+ sinb
Y
+ 0 (—ng : (60)
o

When the two integrals of the k'™ order contribution are

combined, the first integral cancels completely with part



of the second in a similar manner to the cancellation which
occurred in the zero order contribution to F(8). An
asymptotic development of the k'™ order contribution is

therefore given by

- J-lw v, (w)J, (awsine)dw -

0=

_jl+i00 w v, 1(—W)eian0(ch sin e) dw ~
! l1-w i
e—i(oﬁ-g) 1 1+sin0 % eiasine
~ 5 v —+
(no): (sin@)> | 2 2 1—sin6
(l_su’lej; e—i(xsine
+1 +
2 1+sin0O
i|3( 1 1+Sin9% picsin®
+—| — | 1 +
3o Mﬂ( sno) e
+i(1_sin6j; g iasin® B
2 (1+si119)2
_l (1+Sin9j§ glosin® +i(1_smejg o iasin® )
3V 2 ) (t-sin®) 2 ) (1+sin0)

_ \I/k(l) 1+sin® % eiasine _i(l_sinej; e—iasine B
2"sin® 2 1-sin® 2 1+sin®
\Vk (O)Gia [ eiasine ) e—iasine ] ~

o +1
27 o (sin 9)%

(l + sin 9)% (1 —sin 9)%
\ljk (O)e_i(a_%) l:(l + Sin elé ei(xsine

3 2 1—sin 0

Z%TEEOL%(Sin 9)%
'(1 —sin eji o losin®
+1 - +
2 1+sin®

(61)
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9. THE FIRST AND SECOMD ORDER CONTRIBUTIONS

An integral form of the far field has been derived in

section 5 and the integrals involved considered in sections 6,
7 and 8. The zero order contribution is given by (56) and the
general k'™ order contribution by (61). This last equation,
however, is in terms of yx and its derivatives and so expansions
of these must be found.

From equation (30) in the iteration scheme

v @ =[Sy aw. (62)
! W W+U

The function y,;(v) therefore involves yo(w) which is known.

Asymptotic evaluation of the integral then gives,
Y e[ 1 [ 1
v)~|—|e ¢ +— - -
Vi (0) (ocj {14—0 20c{(1+o)2 2(l+o)

e {(1 +10)3 B ; o) 80 1+ o)}} )

+oh%) (63)




25.

Equation (62) shows that yy+1(v) is an integral of yy(w)

and the range of integration is such that | w | > 1. The
asymptotic form of yi(w) may therefore be used and so yy+1(0)
becomes a function of yy and its derivatives. Some fairly

straightforward analysis shows that

-il20+%)

iy (0) 1 1Y e M)
‘Vk+1(U)~l§——(l(l+U)2)+ﬁ k +
2

1
a v 22g2 1V

9 1 1 %
+ =5 VO ==y 0 |~ 1-(1+v)* |-
2 o 2 u

1
wk(O)%(1+lu(1+u)2j}+o W—E . (64)
v 2

2
o

Use of this result and the expressions for y; above give

the following expressions for y»,

3 =3ia
@2 -n L -t e -
vy ()~ - noe - +0(a 7) ,
2 ; 3 32
2 0.2
1 =3ia
w2 i@l e -3
Yy (0) ~ - S 3e -~ 5 +0( %)
27 a? ¢

If the expressions for y; , and ', , are now substited into

(61) we have, for the first order contribution to f(4),

2
. w .
_ jfo Y1 (W)l (aw sin 0)dw — hlﬂa (—j Vo (—w)elaWJO (aw sin 0)dw
l-w

. 1 . . 1 —
jo 2108 1 (1+sin0)2 M0 (1 _ging)2 o @50
A +i
naz(sine)z 4 2 1-sin® 2 1+sin
3 . 3 Lo
i| of(1+sin0)2 (5@ 1-sing )2 o iosin®
+—| — 3 +1 7|~
al 32 2 (1-sin ) 2 (1+sin0)
3 . 3 Lo
3| (1+sin0)2 o@sin? 1-sing )2 o SN0
-— — 3 +1 — |t
32 2 (1—sin 0) 2 (1 + sin 0)
1 . . 1 ..
1 1+sin 6 2 elasm@ [ 1-sin6 2 e—l(xsme
+ -1
32sin 0 2 1-sin6 2 1+sin6

iz P T 7
e '+ e i sin 0 ) e io sin O
— +1 —

5 . L . L
Z%n%az(sin 6)% (1 +sin 0)* (I —sin 0)* |

. 1r . . 1 ..
) -
e ¢ 1+sin0 |2 elasm@ 1-sin0 |2 e iosin®
- 1 +1 +
z 2 1-sin® 2 1+sin®

3 1
22 o (sin 6)2

1
+0(a 2. (65)
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Similarly, the second carder contribution is given by

- jloo VoW o (awsin Bdw —

1
fllﬂoo( ks j2W3(—W)elaWJ0(awsin 0)dw ~
l-w
1 2i r .. 0 1 iasin O
_ 22 -1)e “@ (l+sin 6}2 gl sm +i[1+sin 6)2 g tasm
2 1-sin 6 2 1 + sin 6

T

16 mo S (sin 0) 2

+0(0 7). (66)
Subsequent orders may be neglected if the degree of

accuracy is to O(a ?).
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10. AN EXPLICIT FORM OF THE FAR SCATTERED FIELD.

An integral form of the scattered field, us(R) , is given

in (40). It has been shown that this can be written,
1 e—iaR
u(R) ~ ———F(0), 67
4(R) = — S —F(O) (67)

where F(0) is given by (48). The zero, first and second order
contributions to F(0) are given by (56), (65) and (66),

respectively. Combining these expressions shows that,

T
= iy 1 1
( 2 j € {l: . 2 io sin 0 . . 2 —ia sin 9:|
F(o) ~ — — (I +sin 0)~ e —i(l —sin 0)“ e
o (sin 0)2
L 1
i s 2 iasi T i si
+ 2l ssino0) o ¥SMO L Cgin g2 T iesin O )
o sin 6 8

3

w

1 - . . . .
7| @+ sin p)2 i sin 0 L i _ gy g)2 o~ iasin 0 _

1 L

1 1 _ . . . .

7—( )y (—|:(l+sin 0) 20 i _ginog) 2 i 9}
o sin 0 16

1 1
55 . 2 iosin O . . 2 —iasin 0
- T (l+sm 6) e —i(l —sin 0) e +

11 _3 . n 0 1 . T
+—|:(1+sin 9)2elasm — i(l - sin 9)26 oo sm -
32

3 o5 5
3T|:(1+ sin 9) Zelasm 0 — i(l - sin 9)26 o sm e:|J} +

1
. I
e "2 (a4 +sin 0)7 g sin 0
¢
1

1
(1 —sin 0)2

—io sin 0
e

S

N P 1 — sin 0 1 + sin 6
2 qmo  (sin 0)

L 1
9 (I + sin 0)2 (1 —sin 0) 2

i io sin 0 io sin 0
| | T + i S ¢
o 81 (1 —sin 0) (1 + sin 0)
3 3
. . 2
3 (1 + sin 6)2 io sin O (I —sin 6) io sin O
— | ¢ L +
16 1 - sin 0) (1 + sin 0)
i 1
. . 2
1 (1 + sin 6) g io sin O (1 —sin 6) —io sin 6
+ e + e -
8 sin O 1 — sin 6 1 + sin 0
L L
_2ia . ) . )
_ € (1 + sin e) io sin O 1 (1 — Sm e) —io sin O ¥
! ! (I —sin ) (1 +sin 0)

22no *(sin 0)2

7

+ 0(a 7). (68)
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Equations (67) and (68) together give an expression for the

scattered field which is independent or ¢ and is subject to
the restrictions that R>1 and ¢#0 or % These are the

conditions for a far field off the axis of symmetry and

away from the plane of the disc.

Keller [7], and Karp and Keller [6], have given the leading
terms of both the singly diffracted field and the doubly
diffracted field. The leading term of the singly diffracted
field agrees with the first term of the zero order field in
the present work, after a change of notation. The leading
term of the doubly diffracted field agrees with the first
term of the first order field. The results of Keller's
approximate theory therefore agree with those of the present
work, which are, however, more extensive and contain terms
not included in Keller's theory.

It should be noted that Jones' iteration scheme gives
iterates which correspond to fields produced by multiple
diffractions. The k'" iterate corresponds to the field
produced after k diffractions across the disc, the zero
order field coming directly from a single diffraction of the

incident field.

The author would like to thank Professor D.S.Jones for many
enlightening discussions during the period in which the work

presented in this report was prepared.



APPENDIX

We here consider the integral,

1 1

1-t)2 t2
2 ELZ (A1)
(t+v)(x—t)
where x is a point on the negative imaginary axis.
On taking a Fourier transform with respect to v we have,
L
. 1-1)2t2
[7 e 2!5Lt2 dtdv =
o (t+v)(x—t)
1 1
022
—2mi sgnplt L7 e gy (A2)
(x=1)
1
Take branch lines from 1 to + o for (1 -t)? and from -
1
to 0 for t?. If § > 0 we extend the contour of integration
above the branch lines. The right hand side of (A2) may
then be written
L L
) © 1—1)2 t2 ) 0 1-1)2t2 .
—-27i I—( ) — e’dt - f—( t z e dt -
s (X1 = (x=1)
L
T(1-t)2t?
( ) . ipt dt —
P(x=t)
L L
T (1+1)2t2 T (t-1)2t2
=-2n] 1+ —e™ dt + 2] %elﬁ‘ dt, (A3)
0 (x+t) 1(x—t)

after the first integral is deformed upwards to +io

without contribution. If f# < 0 we extend the contour

below the "branch lines- The right hand side of (A2)
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is then

11 11
©1_1)2 12 242
—o (x—t)°

11

_T(l—t)EtE

- ePt dt
X —

The first contour may be deformed downwards to - i c. In
doing so it loops round the singularity at t = x on the

negative imaginary axis. Hence we obtain

11
_ e
—2n §(1 )t eMadr —onf YT gy
(x-1) ¢ (x-1)
1
0 —1)2¢2
+2n] =Dt E
bo(x-t)

Combining (A3) and (AA-) we have, for all g,

(A4)

ePt dt .

11
Te—iﬁv o =07 geqy
0 (t+)(x—t)’

—00

l L

1
24 . o 2¢2
=21 .[(t l) 1Bt dt _ ZnI%e—lBt dt +
To(x—t)’ o (x—t)

1

+ H(=B)2n §(1 t))tz ¢ dt (AS)

Taking an inverse Fourier transform gives back the original

integral (Al).Hence
11
J‘ (1- t)2t2 dt
O(t+v)(x—t)°
1 1
(1+U)2
(x +u)’

{H(U) +H(-1-v)} +
(A6)

§ (1—1:)2’[2 dt
(t+v)x—t)*

30.



[9]

[10]

[11]

[12]

31.

REFERENCES

JONES,D.S. Diffraction at high frequencies by a circular disc.
Proc.Camb.Phil.Soc.61 (1965), 223-245.

JONES,D.S. Diffraction of short wavelengths by a rigid circular
disc. Quart. J. Mech.Appl. Math. 18 (1965), 191 - 208.

JONES,D.S. Diffraction of a high frequency electromagnetic wave
by a perfectly conducting circular disc. Proc.Camb.Phil.Soc.
61 (1965), 247 -270,

JONES,D.S. On a certain singular integral equation I.
J.Math.Phys. 43(1964), 27-33.

JONES,D.S. On a certain singular integral equation II
J.Math.Phys. 43(1964), 263-273.

KARP, S.N. and KELLER, J.B. Multiple diffraction by an aperture
in a hard screen. Optica Acta 8 (1961), 61-71.

KELLER,J.B. Diffraction by an aperture 1. J.Appl.Phys. 28 (1957),

426 - 444.
KELLER,J.B. Errata: Diffraction by an aperture. J.Appl.Phys.
29 (1958), 744.

KELLER,J.B., LEWIS,R.M. and SECKLER,B.D. Diffraction by an
aperture II J.Appl.Phys. 28 (1957), 570- 579.

LEVINE, H. Diffraction by a circular aperture at high frequencies.
(N.Y.U. Res.Rep.EM-84(1955) ).

LEVTNE,H and WU,T.T. Diffraction by an aperture at high frequencies.
(Stanford University Technical Report 71 (1957) ).

WATSON,G. N. A treatise on the theory of Bessel functions.
(C.U.P.,, 2nd Ed., (1944)).




