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Abstract
Massive MIMO will improve the performance of future 5G systems in terms of data 
rate and spectral efficiency, while accommodating a large number of users. Furthermore, 
it allows for 3D beamforming in order to provide more degrees of freedom and increase 
the number of high-throughput users. Massive MIMO is expected to provide more advan-
tages compared to other solutions in terms of energy and spectral efficiency. This will be 
achieved by focusing the radiation towards the direction of the intended users, thus imple-
menting simultaneous transmission to many users while keeping interference low. It can 
boost the capacity compared to a conventional antenna solution, resulting in a spectral effi-
ciency up to 50 times greater than that provided by actual 4G technology. However, to take 
full advantage of this technology and to overcome the challenges of implementation in a 
real environment, a complicated radio system is required. The purpose of this work is to 
present the MIMO technology evolution and challenges in a simple introductory way and 
investigate potential system enhancements.
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1 Introduction

The cellular infrastructure evolution has started from 1G analog systems in the 1980s fol-
lowed by 2G digital systems like GSM, where the baseband unit, a digital unit connected 
to the telecom network, was co-located with the analog radio head unit in a shelter at the 
base of the antenna tower. Thick low-loss coaxial cables were used to connect these units 
to the antennas on the top of a tall tower with amplifiers to compensate for the loss of 
power along the coaxial cables. In recent 3G and 4G systems, distributed networks are 
used instead of traditional networks in 1G and 2G. In distributed networks, the radio unit, 
including all transmitting and receiving components with amplifiers, is split from the base-
band unit and is placed on the top of the antenna tower. Long running coaxial cables that 
are lossy at high frequencies are replaced by fiber fronthauls carrying digital data up to the 
tower. This architecture achieves an important link gain because the radio head is placed 
next to the antennas. In 4.5G and 5G systems, the baseband processing unit will be central-
ized [1]. The remote radio unit will be directly integrated with hundreds of antenna ele-
ments, thus forming the massive MIMO scheme (Fig. 1).

The dramatic increase of wireless data traffic across the world puts significant pres-
sure on the existing wireless communication systems. The limitation of spectrum avail-
ability has directed telecom engineers towards mm-Wave frequencies, which require small 
radiating elements [2]. This scaling down of the antenna element size perfectly suits the 
requirement of massive MIMO, and makes these large-scale antenna arrays a promising 
technology [3]. Furthermore, an increased number of antenna elements leads to a better 
performance and an improved signal to interference-plus-noise ratio (SINR). In conven-
tional MIMO systems, the maximum number of antenna elements used is 8 at the transmit-
ter and another 8 elements at the receiver side (8 × 8 MIMO system). However, in massive 
MIMO and depending on the implemented prototype, for 5G new radio, the supporting BS 
antennas will be up to 256 and UE antennas will be up to 32 [4]. By increasing the number 
of elements of the antenna array, significant throughput and coverage improvements in cel-
lular networks can be achieved. Moreover, the higher path loss due to high frequencies can 
be overcome by using multiple antenna elements to combine energy in required directions. 
This introduces beamforming techniques into MIMO and thus radio energy is concentrated 
in smaller angular sectors resulting in significant spectral efficiency improvement. With the 
introduction of massive MIMO, a new promising technique has emerged by additionally 

Fig. 1  Antenna array for mm-Wave frequencies and the cellular infrastructure evolution



Massive MIMO Systems for 5G Communications  

1 3

exploiting the elevation angle. This is called 3D MIMO and it is implemented by deploy-
ing antenna elements in both horizontal and vertical dimensions. To achieve 3D MIMO, 
3D beamforming must be implemented, allowing in this way the base station to adapt and 
dynamically control the transmission directions in both azimuth and elevation. This helps 
improve the system performance and accommodates the increasing capacity demand [5].

In order to identify the requirements and motivations of this advanced MIMO technol-
ogy, this tutorial briefly addresses how massive MIMO evolved and why it is necessary for 
future 5G networks. This will be presented together with the critical technology of massive 
MIMO antenna arrays for evolving 4G into 5G and the challenges facing its deployment 
and measurement. Furthermore, practical issues and implementation based on real devices 
and in different environmental conditions are discussed.

In the following sections, first MIMO basics are introduced and then the advanced 
aspects are presented and analyzed. These aspects include the importance of beamform-
ing, the importance of channel state information feedback, the pattern/polarization antenna 
array model for massive MIMO systems and finally 3D MIMO.

2  Single User‑MIMO & Multiple User‑MIMO

The simplest implementation of MIMO is the single-user MIMO (SU-MIMO) (release 8), 
where both the user equipment (UE) and the base station (BS) use multiple antennas. This 
enables them to support different types of transmission modes depending on channel con-
ditions (Fig.  2). There are two distinct cases: transmit diversity where the same data is 
transmitted by multiple antennas simultaneously to boost SNR, and spatial multiplexing 
where independent data streams are sent on each antenna to increase capacity [6].

SU-MIMO is used today in LTE networks. The complexity of this scheme is based on 
the UE receiver because it needs to separate the different received data streams (interfer-
ence due to multi stream transmission). For example, knowledge of the channel matrix H 
(that is a matrix which is made up of channel path coefficients) is not required at the trans-
mitter side but it is required at the receiver side to decode the received signals. The receiver 
develops the channel knowledge by decoding the preamble or pilot data. This requires a lot 
of computational power to calculate the inverse channel matrix H−1 at the receiver side. 
However, performing all these calculations is not efficient when the receiver is a mobile 
device due to battery constrains. In MU-MIMO part of the complexity is moved to the base 
station, which has more computational power. In this case, a matrix W is applied at the 
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transmitter side and performs a pre-weighting of the data [7]. To compute matrix W, dur-
ing the channel coherence time, all the UEs transmit a number of uplink pilots at the same 
time. All the antennas of the base station receive the transmitted uplink pilots and compute 
the pre-weighting matrix W. The measured magnitude and phase due to the distance from 
each user to each element of the antenna array are used to precode the data streams and to 
distribute data streams to each antenna port. As a result, the receiver does not need to han-
dle the multiuser spatial layer separation and each UE receives the data independently from 
the other UEs with an improved SINR.

3  From MU‑MIMO to Massive MIMO

Given that different SINR requirements are set for different users depending on the appli-
cation (e.g., video downloading, internet browsing, texting, etc.), beamforming is vital to 
the system in order to achieve different SINRs over different users inside the same cell. 
Utilizing beamforming techniques in mm-Wave wireless communication systems aims to 
find the optimal path with a minimum loss to reach users and keep interference as low as 
possible.

Before proceeding to beamforming, we will introduce beamsteering (Fig.  3a), which 
is performed by steering the antenna main lobe towards one of a number of predefined 
directions [8]. To decide which direction has to be used at the transmitter, several methods 
are applied such as transmitting orthogonal pilot signals on each of the predefined direc-
tions. Then, the UE reports back to its serving cell BS on which signal is received with the 
highest power. Using beamsteering helps to improve signal strength levels in omnidirec-
tional antenna cells, because signal strength decreases from the cell center towards the cell 
edge. By directing all the energy in a particular direction, SINR is significantly improved 
at the cell edge, moreover, several independent cells operating in the same region can be 
co-located without any form of co-ordination or cooperation and placed closely together 
(Fig.  3b). In this case, all the transmit antennas are co-located at the same place using 
beamsteering to direct the energy in a particular direction. Although co-locating improves 
the SINR at the cell edge, however, the side lobes are a matter of concern due to potential 
interference. This requires antennas with significantly reduced side lobes [9].

On the other hand, in beamforming, channel estimation is used. Antenna weighting 
compensation is applied in real time to form a beam directed towards the user of concern, 
instead of picking up one of a pre-defined directions as is the case in beamsteering.

In order to achieve beamforming, the number of antennas available at the base station 
must be at least ten times greater than the number of single antenna UEs located inside 
the cell [10]. The new structure of this large-scale MIMO (massive MIMO) is close to the 
case of co-location and enables the transmitters to focus the energy over a very narrow area 
through beamforming. By increasing the number of antennas, the power is better focused 
in a narrower beam and therefore at the receiver side, for any user, there is a higher signal 
level for that user while the other users receive lower signals as shown in Fig. 3c. Beam-
forming results in significantly less wasted power in the coverage area. This, in turn, results 
in less interference and increases the spectral efficiency when using spatial multiplexing. 
This further helps to achieve important power savings [11].

The time required to estimate the channel (also known as channel training) of the 
massive MIMO system depends on the number of base station antennas used. The 
number of pilots received by these antennas is a function of the number of UEs and 
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the base stations are trained in parallel as they measure signals from different UEs. 
Also, the number of user terminals is scaled with coherence time. As coherence time 
increases, more users can be served in a cell.

In the case of channel training of a Time Division Duplex (TDD) system, a channel 
state information (CSI) parameter is used in the communication between the UE and 
the network in order to describe the channel quality and recommend a proper precod-
ing matrix [12]. The CSI of the downlink channel is estimated by performing meas-
urements on the uplink channel by using the transmitted pilots from the users [13]. 
Therefore, the system makes use of channel reciprocity in the case of TDD [14]. In 
a Frequency Division Duplex (FDD) system, the uplink and downlink channels are 
independently trained. As a result, the time required for training the downlink channel 
is proportional to the number of antennas. Therefore, the use of large antenna arrays 
is not likely to work well with FDD. Thus, a viable alternative approach is needed to 
provide CSI estimation in an FDD system [15].
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4  Scheduling and Feedback for Massive MIMO

In an Orthogonal Frequency Division Multiplexing (OFDM) system, reference signals 
(RSs) are used to estimate the channel [16]. In the feedback loop shown in Fig. 4, the 
UE computes a Rank Indication (RI) which expresses the number of streams of informa-
tion that the mobile can handle at the same time and over the same frequency resources 
[17]. If the SNR is low, the mobile will return a low RI parameter value. In this case, 
the same stream will be sent by all the antennas of the base station and this can enhance 
coverage.

The channel quality indicator (CQI) is a parameter used to describe SNR and it is 
reported by the UE to the base station. Then, CQI is translated to an appropriate Modu-
lation and Coding Scheme (MCS) index at the base station. The MCS index indicates 
the modulation order and code rate that should be used to maintain the link quality.

Furthermore a precoding matrix indicator (PMI) is used to report the best precoding 
matrix to the base station [18]. It tells the base station how to precode the information 
prior to transmission to each of the antennas so that the UE can best recover this infor-
mation. Therefore, PMI is an index to a codebook. There are entries in that codebook, 
which describe the process of distributing or interleaving the information between the 
antennas. In this way, the UE is facilitated by avoiding complex channel calculations 
and thus MIMO is implemented in a more reliable way [19]. The UE knows about the 
channel conditions due to transmitted reference signals from the BS antennas. The PMI 
parameter defines the precoding matrix used by the base station for the current trans-
mission for both SU-MIMO and MU-MIMO.

For a more effective estimation of the channel state information, two new reference 
signals have been introduced in LTE release 10 TM9 (eight layer spatial multiplex-
ing) [20]. These are the Channel State Information Reference Signal (CSI-RS), which 
is common to all users in the cell, and the Demodulation Reference Signal (DMRS), 
which is specifically dedicated to each UE. CSI-RSs are used by the UE to calculate and 
report the CSI feedback (CQI/PMI/RI), while the DMRSs are used for signal demodula-
tion and are already used for beamforming in Release 9 (Dual layer beamforming).

The performance of MIMO systems is limited by accurate CSI measurements and 
feedback. Therefore, the key technology enhancements include improving the precoding 

Fig. 4  UE feedback scheme
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matrix feedback accuracy by employing analog CSI feedback and faster CQI feedback 
[21]. This will reflect the real channel quality, when CQI is measured on pre-scheduled 
CSI-RSs.

While scheduling in MU-MIMO is based on assigning a set of channel vectors to the 
UEs and depends on the accuracy of CSI, it is recommended for massive MIMO to con-
sider the two-stage UE scheduling and feedback method (Fig.  5a), where the UEs are 
grouped into a number of groups and the channel feedback is reported per group. Figure 5b 
and c show a comparison between the two-stage scheme and other conventional methods, 
such as full CSI (where the base station collects CSIs of all UEs) and partial CSI feed-
back approaches [22]. As shown in these figures, in the partial CSI feedback approach, 
the amount of feedback is relatively small but the downlink transmission performance is 
generally lower than that of the full CSI approach. On the other hand, the two-stage scheme 
results in a lower amount of feedback compared to partial CSI method but achieves a spec-
tral efficiency very close to that of the full CSI feedback approach.

5  Massive MIMO Channel Capacity Improvement

The increase in the degrees of freedom, i.e., the flexibility of the base station antenna 
array to direct the beams when the number of antennas at the base station is much larger 
than the precoding vectors, is important and it will be considered for the antenna array 
model for massive MIMO [23]. The use of pattern/polarization antenna array in future 
massive MIMO system will help improve the spectral efficiency of the system. The 

(b) (c)

(a)

Fig. 5  a The two-stage UE scheduling and feedback b Spectral efficiency comparison c Amount of feed-
back comparison



 S. A. Khwandah et al.

1 3

idea is to benefit from two schemes. The first one is Beam Division Multiple Access 
(BDMA), which creates a number B of sectors through 3D beamforming instead of 
a single sector [24], while the second one is the pattern/polarization scheme. A com-
bined scheme is called Pattern/Polarization Beam Division Multiple Access  (P2BDMA). 
Figure  6a shows four different types (K = 4) of pattern/polarization antenna elements 
denoted by the O, △, □, ◇ symbols. The pattern/polarization antenna array is decom-
posed into K virtual antenna arrays and each one of them produces a beam distributed 
in B sectors. If N is the number of UE antennas, then N by K channels can be realized 
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per sector, and (N, K) symbols can be transmitted at least in the same time/frequency 
resource.

An increase in the possible polarization patterns in future massive MIMO will result 
in even more degrees of freedom [23]. This leads to a higher spectral efficiency which 
in turn improves the channel capacity by exploiting the low correlation characteristics of 
different pattern/polarization antenna channels. Figure 6b presents four different systems: 
the first one is a single 120° sector of the conventional three sector system (N = 4). The 
second is an 8 sector system composed by a single antenna array with vertical polarization 
only (BDMA: K = 1, N = 1). The third one is an 8 sector system composed by two virtual 
antenna arrays, one with vertical polarization, and the other with horizontal polarization 
(BDMA: K = 2, N = 2). Finally, the fourth one is an 8 sector system composed by four vir-
tual antenna arrays with different pattern/polarizations from each other  (P2BDMA: K = 4, 
N = 4).

As mentioned earlier, a large number of antenna elements are used in massive MIMO 
to generate the beam pattern. Due to the increase in the number of antenna elements, there 
is a concern on the amount of feedback that can cause serious overhead to the system. A 
proposed solution to this problem is the antenna grouping scheme (AGS). According to 
this scheme, the CSI is aggregated from groups of antenna elements and it is fed back by 
the UE.

#1
#2

#5
#6

#9
#10

#13
#14

#3
#4

#7
#8

#11
#12

#15
#16

G1

G2

G3

G4

Channel

Aggregated 
channel of G1

Aggregated 
channel of G2

Aggregated 
channel of G3

Aggregated 
channel of G4

Feedback

#1
#2

#5
#6

#9
#10

#13
#14

#3
#4

#7
#8

#11
#12

#15
#16

Channel

Aggregated channel 
of the 1st pa�ern

Aggregated channel 
of the 2nd pa�ern

Aggregated channel 
of the 3rd pa�ern

Aggregated channel 
of the 4th pa�ern

FeedbackSelected

Fig. 7  Antenna grouping (left) and pattern/polarization grouping (right)



 S. A. Khwandah et al.

1 3

The AGS is shown in Fig. 7, where the UE reports only 4 values by aggregating the 
CSI from four groups containing 16 antenna elements in total. To increase the func-
tionality of this scheme, it is important to determine the assigned groups. For example, 
antennas that have the same radiation/polarization pattern are grouped and the appro-
priate pattern/polarization is selected based on the channel information. In this way, 
different pattern/polarization schemes can be exploited over the same time/frequency 
resource [25].

6  3D MIMO

In order to meet the future demands of massive MIMO, a promising technology is 3D 
MIMO and it aims to solve the fitting problem of a large number of antenna elements (32 
for example with a spacing of 0.5 λ) into the limited space available. In a 3D MIMO sys-
tem (Fig. 8a), the radiation pattern can be controlled with respect to azimuth and elevation 
angles by properly modifying the excitation weights of the antenna array elements.

When the elevation is exploited together with the azimuth, a better average-cell and 
cell-edge performance is obtained compared to the conventional MIMO systems used in 
4G-LTE networks [26]. TDD 3D-MIMO uses channel reciprocity and the gain is higher 
in field trials compared to the traditional 2D-MIMO. However, the above advantages 
require accurate operation in three dimensions and cause new challenges [27].

In order to support elevation beamforming with FD-MIMO and have a more precise 
control of the beamforming direction, transceiver units (TXRUs) are introduced to the 
transmitter to control the amplitude and phase of the excitation weights. However, a 
large number of TXRUs induces a great overhead of CSI-RS and an excessive CSI-RS 
resource consumption [28]. This requires high resolution CSI feedback and CSI report-
ing mechanism with finer granularity of amplitude and phase to further improve the 
performance [29, 30]. The performance and feasibility of elevation beamforming for 3D 
MIMO has been investigated and it has been reported that different schemes (Fig. 8b) 
are beneficial for 3D MIMO and exhibit different throughput gains, while the best choice 
depends on the number of TXRUs [31]. Such schemes are the non-precoded scheme, 
where different CSI-RS ports use the same wide beam, the beamformed scheme, where 
CSI-RS ports use narrow beams that do not cover the entire cell, and the hybrid scheme, 
i.e., non-precoded & beamformed CSI.

In order to achieve the expected gain for 3D-MIMO, future systems must avoid mis-
matches and comply with legacy systems [32]. Therefore, as far as 3D-MIMO is con-
cerned, the specification of the system is still under enhancement and there still exists a 
large margin for improvement [33, 34].

3D MIMO improves the cell spectrum efficiency so that more users can be scheduled 
by eNB. As the number of connected users increases, there is a higher demand for refer-
ence signals by the users and eNBs to estimate the channel. Therefore, the requirement 
for reference signal capacity would become higher, or else the actual supportable users 
would be limited in number [35, 36].

Mobility scenarios were addressed for future MIMO in order to achieve reliable 
transmission schemes. Moreover, issues concerning beam management enhancement, 
beam failure recovery and low-latency as well as highly reliable mm-Wave transmission 
are future research topics for LTE Rel-16 [37, 38].
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7  Conclusions

In this paper, we have presented the background and advantages of future massive 
MIMO systems. The investigation indicates good performance due to the employed 
methods for the downlink channel such as user grouping and group-based feedback 
schemes. Furthermore, the adoption of the pattern/polarization antenna array model for 
massive MIMO shows an increase in the degrees of freedom of MIMO channels and 
thus an improved channel capacity.

The extension of the current technology into 3D MIMO would upgrade the existing 
implementation and allow flexible azimuth and elevation radiation patterns. 3GPP has 
developed specification support for FD-MIMO by enhancing the MIMO relevant refer-
ence signal and CSI reporting mechanism. Finally, the uplink beamforming and channel 
reciprocity utilization at the UE side may be implemented as the number of antennas on 
UE is growing.
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