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Abstract: Friedreich’s ataxia (FRDA) is a comparatively rare autosomal recessive neurological disor-
der primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the
FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein
leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some
cases may be impure with sequence variations called interruptions. It has previously been observed
that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very
rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions
at the 5′ and 3′ ends of the GAA repeat tract through alterations in the electropherogram trace
signal. We found that contrary to large interruptions, small interruptions are more common, with
3′ interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the
patient cohort (n = 101) was stratified into four groups: 5′ interruption, 3′ interruption, both 5′ and
3′ interruptions or lacking interruption. Those patients with 3′ interruptions were associated with
shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by
a group-specific exponential decay model. Based on this modelling, a 3′ interruption is predicted
to delay disease onset by approximately 9 years relative to those lacking 5′ and 3′ interruptions.
This highlights the key role of interruptions at the 3′ end of the GAA repeat tract in modulating the
disease phenotype and its impact on prognosis for the patient.

Keywords: Friedreich’s ataxia; FRDA; ataxia; GAA repeat interruption; triplet repeat primed PCR;
TP PCR; frataxin; FXN

1. Introduction

Friedreich’s ataxia (FRDA) is a comparatively rare autosomal recessive disease pri-
marily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1
of the FXN gene. It is one of the most common inherited ataxias with a prevalence of
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1.8 per 100,000 in the UK [1]. It is characterised by neurological features such as loss of
coordination and balance as well as dysarthria, weakness and deep sensory loss, whilst
non-neurological signs include hypertrophic cardiomyopathy, diabetes myelitis, kyphosco-
liosis and foot deformities [2–5]. The onset of symptoms usually occurs before the age of
20 years, with most cases developing by 25 years [3,6].

In the general population, the FXN GAA repeat tract contains 5–68 repeats, whereas
fully-penetrant expansions can range from 66 to 1700 GAA repeats, with the majority
typically between 600 and 1200 repeats [6–12]. However, an affected individual has been
reported with a 56 GAA repeat allele [13]. A total of 96% of FRDA patients are homozygous
for GAA expansions whilst the remaining patients are compound heterozygous for a GAA
repeat expansion and a second FXN mutation [10,14,15]. Age at disease onset decreases
with increasing GAA repeat length, particularly for the shorter allele (GAA1) [6,11], with
disease onset previously predicted to occur 2.3 years earlier for every 100 GAA repeats
added to GAA1 [2].

The GAA repeat size accounts for only about 36–56% of the variation in age of onset [2,6,11].
This suggests that there are other mechanisms contributing to this variation including,
but not limited to, somatic mosaicism, other modifying genes, environmental factors or
interruptions in the GAA repeat [2,6,11].

Due to the length of the majority of expanded alleles found in FRDA patients, sequenc-
ing of the GAA repeat tract has been limited. Studies where relatively short expansions,
up to about 130 repeats, have been sequenced show that the GAA repeat tract can be
interrupted with sequences such as (GAGGAA)5–9 or (GAAGGA)65 and these are asso-
ciated with either the absence of the FRDA disease phenotype [7,8,16] or atypical mild
late-onset or very late-onset FRDA disease [7,9,12,17–19]. Therefore, interruptions may
stabilise the expansion of the repeat tract as observed through the quite stable transmission
of a 112 repeat tract containing a (GAAAGAA)2 interruption through two generations [7].
Interrupted (ATTCT)n repeats have also been shown to modify the phenotype in spinocere-
bellar ataxia type 10 (SCA10) [20], whilst we have previously shown that interruptions in
the spinocerebellar ataxia type 1 (SCA1) pathogenic (CAG)n repeat alleviate the disease
phenotype [21].

Interestingly, one study found that interruptions were clustered at the 3′-ends of
the expanded repeats, affecting the last 10–15 triplets [22]. Indeed, the (GAAAGAA)2
interruption observed in a stably transmitted 112 repeat tract was located about 20 repeats
from the 3′ end of the tract [7]. It should be noted that these interruptions revolve around
single nucleotide point mutations, insertions or deletions of the basal GAA repeat tract.
Restriction enzyme digestion can be used to identify the presence of specific interruptions,
such as EarI and MnlI [22], whose recognition sequences are GAAGAG and GAGG re-
spectively, or absence of interruptions with MboII [23,24], whose recognition sequence
of GAAGA permits the digestion of uninterrupted GAA repeat stretches. The latter can
identify non-specific interruptions and has been used to show that large interruptions in
the FRDA GAA repeat tract are very rare, with the vast majority (97.8%) of patient samples
lacking significant sequence changes that would alter their MboII digestion profiles [24]. In
that study small interruptions were found at the 3′ end of the repeat tract in three out of
the nine FRDA samples sequenced, with sequences [ . . . (GAA)23A(GAA)5AGAA], [ . . .
(GAA)26A(GAA)4A(GAA)2] and [ . . . (GAA)4GAG(GAA)5] [24].

Here we screened a cohort of 101 patients with FRDA for interruptions at the 5′ and
3′ ends of the FXN GAA repeat tract using a triplet repeat primed PCR (TP PCR) assay.
Small interruptions detected by this method are more common in our cohort than the
large interruptions previously reported [24]. Furthermore, interruptions at the 3′ end of
the GAA repeat tract are associated with shorter GAA1 repeat tracts and a later age at
disease onset. The decrease in age at disease onset with increasing number of GAA1 repeats
was modelled as an exponential decrease that depended on the location of interruptions
within the GAA repeat tract (absent, 5′ end, 3′ end or both 5′ and 3′ ends). The importance
of accounting for interruptions, and their specific type, is evidenced by the fact that not
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doing so would lead to the predicted age at disease onset for the 3′ interruption subgroup
being, on average, 9 years earlier than observed clinically. This also serves to highlight the
substantial impact interruptions at the 3′ end of the GAA repeat tract have in modulating
the disease phenotype and determining the prognosis for the patient.

2. Results
2.1. GAA Repeat Tract Interruptions Can Be Detected through Alteration of TP PCR
Electropherograms

Previously, Forward TP PCR (FTP) had been developed as a diagnostic tool to detect
the presence of a GAA repeat expansion in the intron 1 of the FXN gene [25]. The funda-
mental principle behind the method is the use of a repeat-specific primer which binds to
the repeat at multiple sites leading to a mixture of products of varying size dependent
on the size of the repeat tract [26]. Smaller repeats are amplified more frequently, giving
rise to a characteristic electropherogram trace consisting of a ladder of peaks with a 3 bp
periodicity that gradually diminishes in signal with increased product size (Figure 1A,C).
The repeat-specific primer used in this assay binds to a stretch of seven GAA repeats.
Interruptions of the GAA repeat tract sequence affect primer binding leading to a drop in
signal, which is observed as a gap in the TP PCR electropherogram ladder (Figure 1B,D).
In addition to the previously published FTP [25], which examines the 3′ end of the repeat
tract, a Reverse TP PCR (RTP) assay was devised to examine the 5′ end of the repeat tract.
Example FTP and RTP electropherograms, without and with interruptions, are shown in
Figure 2. The FTP assay is only sensitive enough to detect interruptions located within
about 100 repeats from the 3′ end of the repeat tract whilst the weaker signal for the RTP
assay limits interruption detection to about 60 repeats from the 5′ end of the repeat tract.
The cohort can be subdivided based on the presence and location of interruptions. Where
interruptions could not be detected by TP PCR assay, small interruptions in the middle of
the repeat could not be ruled out so this group is referred to as Lacking 5′ and 3′ interrup-
tion. The number of individuals in each subgroup of the cohort are shown in Table 1. Out
of the cohort of 101, 72 individuals (71.3%) had an interruption at either end of the repeat
tract. In total, 19 individuals in the cohort had only a 5′ interruption (18.8% of the cohort or
26.4% of individuals with interruptions) whilst 32 individuals only had a 3′ interruption
(31.7% of the cohort or 44.4% of individuals with interruptions). A total of 21 individuals
had interruptions at both 5′ and 3′ ends (20.8% of the cohort or 29.2% of individuals of
interruptions).

Table 1. Summary statistics of the cohort used in this study. Data are median (interquartile range). The modelling coefficient
(Ai) and rate constant (ki) for each subgroup are also shown.

Lacking 5′ and 3′

Interruption
(n = 29)

5′ Interruption
(n = 19)

3′ Interruption
(n = 32)

5′ and 3′ Interruption
(n = 21)

Age at Onset (years) 10 (7–14.0) 16 (10–25) 20 (13–30) 16 (7–28)
Number of FXN GAA repeats

Shorter Allele (GAA1) 782 (656–960) 683 (483–765) 552 (316–758) 696 (349–827)
Longer Allele (GAA2) 1000 (842–1144) 1040 (800–1100) 974 (765–1040) 900 (783–1301)

Ai 24.5 22.9 48.1 25.3
ki 1.2× 10−3 7× 10−4 1.7× 10−3 9× 10−4
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Figure 1. Example Forward and Reverse TP PCR electropherograms showing uninterrupted and
interrupted repeat traces. (A) Uninterrupted FTP electropherogram for an individual with 450 and
720 GAA repeats. (B) FTP electropherogram for an individual with 200 and 1000 GAA repeats,
showing a drop in signal indicating a 3′ interruption (*). (C) Uninterrupted RTP electropherogram
for the same individual as shown in (A). (D) RTP electropherogram for an individual with 1100 and
1200 GAA repeats, showing a drop in signal indicating a 5′ interruption (*).
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2.2. Interruption at the 3′ End of the GAA Repeat Tract Is Associated with a Shorter GAA1 Repeat
Size and a Later Age at Onset

The range of GAA1 repeat sizes differs between subgroups, with 3′ interruption and
5′ and 3′ double interruption groups having more individuals with GAA1 repeats less than
350 repeats compared to those lacking 5′ and 3′ interruption or 5′ interruption alone. The
details of the cohort are summarised in Table 1.

To explore the impact of interruptions, the data were plotted in box-and-whisker
diagrams based on either GAA1 repeat size (Figure 2A) or age at disease onset (Figure 2B).
The Kruskal–Wallis and subsequent Dunn’s multiple comparisons tests showed that the
3′ interruption subgroup is comprised of individuals with significantly smaller GAA1
repeat sizes (adjusted p = 0.0004) than the group lacking 5′ and 3′ interruptions. Both the
3′ interruption (adjusted p < 0.0001) and the 5′ and 3′ interruption subgroups (adjusted
p = 0.0281) had significantly later ages at disease onset than the subgroup lacking either 5′

or 3′ interruptions.

Figure 2. Interruption of the FXN GAA repeat tract is associated with shorter GAA1 repeat sizes and a later age at disease
onset. (A) Box-and-whisker plot showing the distribution of the GAA1 repeat sizes for each interruption subgroup of
the cohort. Kruskal–Wallis and subsequent Dunn’s multiple comparisons tests show that the 3′ interruption subgroup
has significantly smaller GAA1 repeat sizes compared to the subgroup lacking 5′ and 3′ interruptions. Other subgroup
comparisons were not significant. (B) Box-and-whisker plot showing the distribution of ages at disease onset across each
interruption subgroup of the cohort. Kruskal–Wallis and subsequent Dunn’s multiple comparisons tests show that both the
3′ interruption subgroup and the 5′ and 3′ interruption subgroup have significantly later ages at disease onset compared to
the subgroup lacking 5′ and 3′ interruptions. Other subgroup comparisons were not significant. The whiskers indicate the
minimum and maximum values whilst the box shows the 25th to 75th percentiles of the data with a line indicating the
median. * p ≤ 0.05; *** p ≤ 0.001; **** p ≤ 0.0001.

2.3. Modelling the Impact of Interruptions by Subgrouping

We used the cohort data to fit a model to understand how interruptions influence the
age at disease onset. The model fit resulted in an adjusted R2 of 0.342. The actual cohort
data (dots) and the modelled dependence of the age at disease onset on GAA1 repeat size
(lines) for the whole cohort is shown in Figure 3A, with individual interruption subgroups
and their respective models shown in Figure 3B–E. The clinically observed and predicted
ages at disease onset are shown for the whole cohort in Figure 4A, and for each separate
interruption subgroup in Figure 4B–E.



Int. J. Mol. Sci. 2021, 22, 7507 6 of 13

Figure 3. Ages at disease onset with respect to the smaller FXN GAA (GAA1) repeat size. The age at disease onset
monotonically decreased with increasing GAA1 repeat size. This observed relationship was modelled as an exponential
decrease, on a groupwise basis (adjusted R2 = 0.342; F-statistic = 8.43, p = 5.96× 10−8). (A) Actual and modelled dependence
of the age at disease onset on GAA1 repeat size for the whole FRDA cohort (n = 101). The subgroup membership is
colour-coded according to the legend, which also indicates the number of patients per subgroup. (B–E) show the data,
model results and model equation for each subgroup separately.

We then explored the suitability of group-specific modelling. The age at onset ratios
for each interruption subgroup are shown in box-and-whisker plots (Figure 5A). The
dotted line indicates a value of 1, such that the predicted age at onset matches the actual
age at onset. The 3′ interruption group has a median age at onset ratio of 1.623 (1.622
± 0.5544; mean ± S.D.) which is significantly greater than the subgroup lacking 5′ and
3′ interruptions (adjusted p = 0.0061). This corresponds to a later age at disease onset
for individuals with a 3′ interruption than would be predicted if they did not have a 5′

or 3′ interruption. The differences between the actual and predicted ages at onset for
each interruption subgroup are also shown in box-and-whisker diagrams (Figure 5B). The
dotted line indicates a difference of zero, i.e., where the predicted age at onset matches
the actual age at disease onset. The 3′ interruption subgroup had a significantly later
age at disease onset compared to the subgroup lacking 5′ and 3′ interruptions (adjusted
p = 0.0014). The 3′ interruption group has a median difference in age at onset of 8.5 years
(9.4 ± 9.7 years; mean ± S.D.). This data indicates that patients with a 3′ interruption
present with FRDA approximately 9 years later than would be predicted for those lacking
5′ and 3′ interruptions.

Importantly, no such differences were observed when the appropriate groupwise
model was used (adjusted p > 0.9999).
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Figure 4. Predicted versus actual ages at disease onset for a given number of GAA1 repeats. (A) Actual and predicted ages
at disease onset for the whole FRDA cohort (n = 101). The subgroup membership is colour-coded according to the legend,
which also indicates the number of patients per subgroup. (B–E) show the predicted versus actual age at disease onset for
each subgroup separately. In each graph, the solid black line indicates identical predicted and actual ages at disease onset.

Figure 5. Interruption at the 3′ end of the FXN GAA repeat tract is associated with a delayed age at disease onset.
(A) Box-and-whisker plot showing the age at onset ratio (Actual/Predicted) when using the model of the subgroup lacking
interruptions to predict age at onset for all members of the cohort. Kruskal–Wallis and subsequent Dunn’s multiple
comparisons tests show that the 3′ interruption subgroup had significantly greater age at onset ratios compared to the
subgroup lacking 5′ and 3′ interruptions. (B) Box-and-whisker plot showing the differences in actual to predicted ages at
onset for all members of the cohort when using the model lacking interruptions to predict age at onset. Kruskal–Wallis
and subsequent Dunn’s multiple comparisons tests show that the 3′ interruption subgroup has significantly later ages at
disease onset compared to the subgroup lacking 5′ and 3′ interruptions. Patients with a 3′ interruption present with FRDA
approximately 9 years later than predicted on average compared to those lacking interruptions, based on the prediction
model for individuals lacking 5′ and 3′ interruptions. (C) Box-and whisker plot showing the age at onset ratio when
using subgroup-specific models, which shows that these models more accurately predict age at onset. There is no longer a
significant difference between the 3′ interruption subgroup and that lacking 5′ and 3′ interruptions. The whiskers indicate
the minimum and maximum values whilst the box shows the 25th to 75th percentiles of the data with a line indicating the
median. The dotted line indicates an age at onset ratio of 1 or a difference to predicted age at onset of 0. ** p ≤ 0.01.
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3. Discussion

Previously, we have observed that significant sequence changes to the GAA repeat
tract that would alter MboII digestion profiles are rare, suggesting that most FRDA patients
have mainly pure GAA repeat expansion throughout most of the length of the repeat
tract [24]. The main limitation of the MboII restriction digestion method is that it cannot
detect small, localised repeat interruptions. Despite this, it was shown that a significant
number of FRDA samples (3 out of 9), when sequenced, contained small sequence interrup-
tions located at the 3′ end of the GAA repeat tract, which would not be detected by MboII
restriction digestion [24]. Here we present our findings using TP PCR assays examining the
presence of these small sequence interruptions at the 5′ or 3′ ends of the GAA repeat tract.
We found that, contrary to the larger interruptions detected by MboII restriction digestion,
smaller interruptions are very common with 71.3% of the 101 FRDA patients in our cohort
having an interruption at either end of the repeat tract. In the subset of patients with
interruptions, most have 3′ interruptions (44.4%), followed by those with both 5′ and 3′

interruptions (29.2%) and finally those with just 5′ interruptions (26.4%). This is in keeping
with previous sequencing analyses [24] and confirms the observation that interruptions
tend to cluster at the 3′ ends of the repeat tract and affect the last 10–15 triplets [22].

To find out whether GAA interruptions play a role in modifying the disease phenotype
we examined characteristics of the interruption subgroups comprising the cohort. The sub-
groups with either 3′ or both 5′ and 3′ interruptions had significantly later ages at disease
onset when compared to the group lacking interruptions. The 3′ interruption subgroup
also had significantly smaller GAA1 repeat sizes, presumably driving the observed increase
in age at disease onset. Although a causal relationship cannot be guaranteed, this finding
is in keeping with the well-established observation that those with larger GAA1 repeat
sizes have an earlier age at disease onset [2,6,11,24].

The age at disease onset was modelled here as exponentially decreasing with an
increasing length of GAA1 repeat size. Similar models have previously been used in other
repeat disorders [27–31]. A quadratic model has been used to model the age at disease
onset in Friedreich’s ataxia [6,24]. Such a model can be viewed as a second order Taylor
approximation of the exponential model used here. However, such an approximation
is only valid for comparatively small repeat sizes and will therefore predict clinically
unobserved increasing age at disease onset for larger repeat lengths. This is illustrated in
Figure S1 where we use a quadratic model to describe the dependence of the age at disease
onset on GAA1 repeat size for the present cohort. It can be seen, in particular for the 3′

interruption subgroup, that the predicted age at disease onset increases once a sufficiently
high GAA1 repeat size is reached, the inflection point being 1029 GAA1 repeats for the
3′ interruption subgroup (Figure S1D). These erroneous predictions are addressed by the
exponential modelling presented here, which would ultimately plateau with a prediction
of disease onset occurring at birth for sufficiently high numbers of repeats. An exponential
model has previously been used in Huntington’s disease, with an additional offset included
to account for the plateau age at disease onset being potentially later in life [31]. However,
these models have not stratified patients based on interruption type, as done for the first
time in this work.

While there are undoubtedly many factors dictating the age at disease onset, our
findings indicate the importance of stratifying the FRDA cohort based on interruption type
in order to obtain more accurate predictions of the age at disease onset. Not accounting
for the interruption type, using the model parameters derived from the subgroup lacking
interruptions can lead to the predicted age at disease onset being earlier than clinically
observed. In particular for the 3′ interruption subgroup, the predicted age at disease onset
was significantly lower than that observed clinically (both in terms of age at onset ratio and
differences), leading to a median underestimation of the age at disease onset of 8.5 years.
Whereas there was no significant difference in prediction accuracy when the group-specific
models were used (Figure 6).
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Here we have explored the relationship between the shorter repeat allele (GAA1)
and the age at disease onset. However it has previously been observed that there is also
an inverse relationship, although much weaker, between the larger repeat allele (GAA2)
and the age at disease onset [2,6,11]. There was no significant difference between the
GAA2 repeat sizes of the interruption subgroups of our cohort (Figure S3). Indeed, the
relationship between GAA2 and age at disease onset is weaker than that for GAA1, with
the exponential decay model having an adjusted R2 of 0.153 (Figure S4) and the quadratic
model having an adjusted R2 of 0.227 (Figure S5). The quadratic model is particularly poor
with the subgroup lacking interruptions having a maximal age at disease onset (Figure
S5A,B), while the subgroups with interruptions show delayed age at onset for the longest
GAA2 repeat lengths (Figure S5A,C–E). To determine which allele is interrupted, we have
analysed purified GAA1 and GAA2 alleles from a subset of the cohort by TP PCR and have
found that the interruptions are present in the smaller GAA1 allele (data not shown).

The model we have used here shows the significant impact 3′ interruptions have on
delaying the age at disease onset in the FRDA patients of our cohort. We have previously
shown that interruptions in SCA1 pathogenic CAG repeat tracts also delay the age at disease
onset [21]. Meanwhile, loss of the CAA interruption at the 3′ end of the Huntington’s
disease CAG repeat tract leads to an earlier age at onset and increased instability of
the repeat, whilst CAACAG duplication delays age at onset [32,33]. There could be
several explanations for the impact of a 3′ interruption in the GAA repeat tract of FXN.
Interruptions introduce base mismatches which could inhibit the formation of sticky DNA
secondary structures and would alleviate transcription inhibition [22]. It has been proposed
that GAA repeat expansion occurs due to template switching during replication, when
a leading strand DNA polymerase accidentally switches its template to continue DNA
synthesis along the nascent lagging strand [34,35]. It is possible that 3′ interruptions act
as an anchor during replication, reducing the number of template-switching events and
in turn slowing down the repeat expansion rate. This may also explain the increasing
occurrence of individuals with smaller GAA1 repeats in the 3′ interruption subgroup.

The main limitation of using TP PCR to detect small interruptions is its diminishing
sensitivity further into the repeat tract, i.e., for larger PCR products. FTP has a detection
limit of about 100 repeats in from the 3′ end of the repeat tract. For RTP, the detection
limit is about 60 repeats in from the 5′ end of the repeat tract due to the reduced signal in
the trace probably caused by the presence of a 16 nucleotide polyA stretch adjacent to the
repeat tract. This means that small interruptions, not detected by MboII digestion, located
further into the GAA repeat may be missed. This is why we refer here to the subgroup
as lacking 5′ and 3′ interruptions rather than uninterrupted or pure GAA repeats as we
cannot be certain that this is not the case.

Sanger sequencing of the interruptions at the 5′ has been hampered by the presence
of a 16 nucleotide polyA stretch immediately 5′ to the GAA repeat tract. Sequencing
of some of the 3′ interrupted FTP products has revealed single nucleotide insertions or
deletions of A or G nucleotides (data not shown). Novel long-read sequencing techniques,
such as single-molecule real-time (SMRT) sequencing (Pacific Biosciences) will permit
direct sequencing of the entire GAA repeat tract to identify both short and long sequence
variation. The ability to identify interruptions both large and small will allow for the further
stratification of FRDA cohorts and potential improvement of the models for predicting age
at disease onset. This would facilitate further understanding of the role of GAA repeat
interruptions in the FRDA phenotype.

4. Materials and Methods
4.1. Patient Cohort and Ethical Statement

A total of 101 peripheral blood genomic DNA samples were obtained from FRDA
patients that had previously undergone GAA repeat expansion size determination. Ethi-
cal approval was obtained within the European Union Seventh Framework Programme
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(FP7/2007–2013) under grant agreement number 242193/EFACTS and from the London—
Queen Square Research Ethics Committee (reference 09/H0716/53).

4.2. Triplet Repeat Primed PCR (TP PCR)

TP PCR was used to examine the 5′ and 3′ ends of the FXN GAA repeat tract inde-
pendently, with a Reverse TP PCR (RTP) or Forward TP PCR (FTP) assay, respectively. TP
PCR was performed using AmpliTaq Gold 360 Master Mix (Applied Biosystems, Waltham,
MA, USA) with 400 ng genomic DNA per reaction. FTP primers were adapted from those
previously described [25], with the tail-specific primer P3 being 6-FAM-labelled and com-
mon between FTP and RTP assays. Figure 6A shows a schematic of the primer binding
locations across the FXN intron 1 region whilst the table in Figure 6B details the primer
sequences. The 20 µL TP PCR reactions contained 1 µL 10 µM P1, 1 µL of a primer mix
(10 µM P3; 1 µM P4) and either 2 µL GC enhancer (Applied Biosystems) (for FTP) or a
final concentration of 0.85 M betaine (Sigma-Aldrich, Dorset, UK) (for RTP). The following
thermocycling conditions were used: 95 ◦C for 10 min; 35 cycles of 95 ◦C for 1 min, 52.2 ◦C
for 1 min, 68 ◦C for 1 min; final extension of 72 ◦C for 7 min. A total of 2 µL of TP PCR
products were then analysed by capillary electrophoresis with 12 µL HiDi Formamide
(Applied Biosystems) and 0.3 µL GeneScan 500 LIZ® Size Standard (Applied Biosystems)
and separated on an ABI 3730xl DNA Analyzer (Applied Biosystems). The resulting output
was analysed using GeneMapper software (version 5.0, Applied Biosystems).

Figure 6. Triplet repeat primed PCR (TP PCR) strategy. (A) Schematic of the primer combinations used for Forward (FTP)
and Reverse (RTP) TP PCRs with the FTP primers shown in magenta and RTP shown in taupe. The P4 primer tails are
shown in red with the 6-FAM-labelled tail-specific primer P3 shown in yellow. (B) Table of primer sequences.
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4.3. Assessing and Modelling the Impact of Interruptions

Non-parametric Kruskal–Wallis and subsequent Dunn’s multiple comparisons tests
were performed using Prism statistical software (version 9.1.0, GraphPad Software, San
Diego, CA, USA) to test for differences in the age at disease onset and GAA1 repeat
sizes between the group lacking interruptions and the three subgroups defined by their
interruption location(s).

The observed biological disease process, whereby increased GAA1 repeat size leads to
an ever-decreasing reduction in the age at disease onset, was modelled by a group-specific
exponential decay according to Equation (1):

Age = Ai e−ki .GAA1 (1)

Here i indexes the subgroups, i.e., lacking 5′ and 3′ interruptions, only a 5′ interruption,
only a 3′ interruption, or both 5′ and 3′ interruption. Ai is the age at disease onset, for group
i, prior to modulation via GAA1 repeat size. These ages at disease onset exponentially
reduce with a per-group rate constant ki. The values of Ai and ki for each group are
shown in Table 1. Both the ages at disease onset and the rate constants are modelled as
perturbations about those values for the group lacking interruptions. The eight model
parameters were concurrently estimated via log-linear least squares regression of the entire
dataset using MATLAB (version R2021a, MathWorks, Inc., Natick, MA, USA).

To assess the impact of having group-specific models, the age at disease onset was
calculated for each patient using the model parameters determined for the subgroup
lacking interruptions. The age at onset ratio, defined as the observed age at disease onset
relative to the predicted age at disease onset was computed, as was the difference between
the clinically observed and predicted ages at disease onset. Non-parametric Kruskal–Wallis
and subsequent Dunn’s multiple comparisons tests were then performed to test whether
these measures differed between those lacking interruptions and each of the subgroups
with interruptions.

5. Conclusions

This study shows that TP PCR can be used to quickly and easily screen for small
interruptions towards the ends of the GAA repeat tract. In our cohort we have observed
that individuals with an interruption at the 3′ end of the GAA repeat tract have shorter
GAA1 repeat sizes and later ages at disease onset. An exponential decay model can describe
the impact of the length of the GAA1 repeat tract on the age at disease onset. Doing so in a
group-specific manner, stratifying based on the location of interruptions within the GAA
repeat tract, improves the accuracy of the predicted age at disease onset, particularly for
the subgroup with 3′ interruptions. To our knowledge, this is the first time an exponential
model has been used to describe the relationship between GAA1 repeat size and age at
disease onset in an interruption-stratified manner. The evidence presented here reinforces
the need to account for the presence, and location, of interruptions in the GAA1 repeat
tract and point to 3′ interruptions being a significant disease modifier of the Friedreich’s
ataxia phenotype. Given the impact these findings have on the prognosis for patients, they
are likely to enrich their genetic counselling. Stratification of patients based on interruption
type and location could also benefit intervention therapeutic trials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22147507/s1, Figure S1: Ages at onset with respect to the smaller FXN GAA (GAA1)
repeat size (quadratic dependence), Figure S2: Predicted versus actual age at disease onset for a
given number of GAA1 repeats (quadratic dependence), Figure S3: The larger FXN GAA repeat allele
(GAA2) sizes do not significantly differ between interruption groups, Figure S4: Ages at onset with
respect to the larger FXN GAA (GAA2) repeat size (exponential decay), Figure S5: Ages at onset with
respect to the larger FXN GAA (GAA2) repeat size (quadratic dependence).

Author Contributions: Conceptualization, M.A.P. and P.G.; methodology, S.N., M.K., H.G., R.L.,
J.M.P. and M.F.C.; formal analysis, S.N., M.K., S.I., H.G.-M. and M.F.C.; investigation, S.N., M.K., H.G.,

https://www.mdpi.com/article/10.3390/ijms22147507/s1
https://www.mdpi.com/article/10.3390/ijms22147507/s1


Int. J. Mol. Sci. 2021, 22, 7507 12 of 13

R.L., J.M.P. and F.C.; resources, F.C., M.A.P. and P.G.; writing—original draft preparation, S.N. and
M.K.; writing—review and editing, M.F.C. and P.G.; visualization, S.N.; supervision, P.G.; funding
acquisition, P.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by funding from the European Union Seventh Framework
Programme (FP7/2007–2013) under grant agreement number 242193/EFACTS and the National
Brain Appeal—Small Acorns Fund. The Wellcome Centre for Human Neuroimaging is supported
by core funding from the Wellcome (203147/Z/16/Z). S.N, M.K., H.G., R.L., J.M.P., H.G.-M. and
P.G. work at University College London Hospitals/UCL, which receives a proportion of funding
from the Department of Health’s National Institute for Health Research Biomedical Research Centres
funding scheme. P.G. receives support from the CRN: North Thames, National Institute for Health
Research (NIHR). P.G. received funding to support H.G.M. from the Medical Research Council
(MR/N028767/1).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Central London Research Ethics Committee (reference
10/H0716/51) and the London—Queen Square Research Ethics Committee (reference 09/H0716/53).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Winter, R.M.; Harding, A.E.; Baraitser, M.; Bravery, M.B. Intrafamilial correlation in Friedreich’s ataxia. Clin. Genet. 2008, 20,

419–427. [CrossRef]
2. Reetz, K.; Dogan, I.; Costa, A.S.; Dafotakis, M.; Fedosov, K.; Giunti, P.; Parkinson, M.H.; Sweeney, M.G.; Mariotti, C.; Panzeri, M.;

et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS)
cohort: A cross-sectional analysis of baseline data. Lancet Neurol. 2015, 14, 174–182. [CrossRef]

3. Harding, A.E. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysis of early diagnostic criteria and
intrafamilial clustering of clinical features. Brain 1981, 104, 589–620. [CrossRef]

4. Hewer, R.L.; Robinson, N. Diabetes mellitus in Friedreich’s ataxia. J. Neurol. Neurosurg. Psychiatry 1968, 31, 226–231. [CrossRef]
[PubMed]

5. Thoren, C. Diabetes mellitus in Friedreich’s ataxia. Acta Paediatr. Suppl. 1962, 135, 239–247. [CrossRef] [PubMed]
6. Dürr, A.; Cossee, M.; Agid, Y.; Campuzano, V.; Mignard, C.; Penet, C.; Mandel, J.-L.; Brice, A.; Koenig, M. Clinical and Genetic

Abnormalities in Patients with Friedreich’s Ataxia. N. Engl. J. Med. 1996, 335, 1169–1175. [CrossRef]
7. Cossée, M.; Schmitt, M.; Campuzano, V.; Reutenauer, L.; Moutou, C.; Mandel, J.-L.; Koenig, M. Evolution of the Friedreich’s

ataxia trinucleotide repeat expansion: Founder effect and premutations. Proc. Natl. Acad. Sci. USA 1997, 94, 7452–7457. [CrossRef]
8. Montermini, L.; Andermann, E.; Labuda, M.; Richter, A.; Pandolfo, M.; Cavalcanti, F.; Pianese, L.; Iodice, L.; Farina, G.; Monticelli,

A.; et al. The Friedreich ataxia GAA triplet repeat: Premutation and normal alleles. Hum. Mol. Genet. 1997, 6, 1261–1266.
[CrossRef]

9. Sharma, R.; De Biase, I.; Gómez, M.; Delatycki, M.B.; Ashizawa, T.; Bidichandani, S.I. Friedreich ataxia in carriers of unstable
borderline GAA triplet-repeat alleles. Ann. Neurol. 2004, 56, 898–901. [CrossRef]

10. Campuzano, V.; Montermini, L.; Moltò, M.D.; Pianese, L.; Cossée, M.; Cavalcanti, F.; Monros, E.; Rodius, F.; Duclos, F.; Monticelli,
A.; et al. Friedreich’s Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion. Science 1996,
271, 1423–1427. [CrossRef]

11. Filla, A.; de Michele, G.; Cavalcanti, F.; Pianese, L.; Monticelli, A.; Campanella, G.; Cocozza, S. The Relationship between
Trinucleotide (GAA) Repeat Length and Clinical Features in Friedreich Ataxia. Am. J. Hum. Genet. 1996, 59, 554–560. [CrossRef]

12. Epplen, C.; Frank, G.; Miterski, B.; Santos, E.J.M. Differential stability of the (GAA) n tract in the Friedreich ataxia (STM7) gene.
Qual. Life Res. 1997, 99, 834–836. [CrossRef]

13. Tai, G.; Yiu, E.M.; Corben, L.A.; Delatycki, M.B. A longitudinal study of the Friedreich Ataxia Impact Scale. J. Neurol. Sci. 2015,
352, 53–57. [CrossRef] [PubMed]

14. Monrós, E.; Molto, M.D.; Martínez, F.; Canizares, J.; Blanca, J.; Vílchez, J.J.; Prieto, F.; de Frutos, R.; Palau, F. Phenotype Correlation
and Intergenerational Dynamics of the Friedreich Ataxia GAA Trinucleotide Repeat. Am. J. Hum. Genet. 1997, 61, 101–110.
[CrossRef] [PubMed]

15. Galea, C.A.; Huq, A.; Lockhart, P.; Tai, G.; Corben, L.A.; Yiu, E.M.; Gurrin, L.C.; Lynch, D.R.; Gelbard, S.; Durr, A.; et al.
Compound heterozygousFXNmutations and clinical outcome in friedreich ataxia. Ann. Neurol. 2016, 79, 485–495. [CrossRef]

http://doi.org/10.1111/j.1399-0004.1981.tb01052.x
http://doi.org/10.1016/S1474-4422(14)70321-7
http://doi.org/10.1093/brain/104.3.589
http://doi.org/10.1136/jnnp.31.3.226
http://www.ncbi.nlm.nih.gov/pubmed/5684026
http://doi.org/10.1111/j.1651-2227.1962.tb08680.x
http://www.ncbi.nlm.nih.gov/pubmed/13921008
http://doi.org/10.1056/NEJM199610173351601
http://doi.org/10.1073/pnas.94.14.7452
http://doi.org/10.1093/hmg/6.8.1261
http://doi.org/10.1002/ana.20333
http://doi.org/10.1126/science.271.5254.1423
http://doi.org/10.1016/s0013-4694(97)88573-6
http://doi.org/10.1007/s004390050458
http://doi.org/10.1016/j.jns.2015.03.024
http://www.ncbi.nlm.nih.gov/pubmed/25840637
http://doi.org/10.1086/513887
http://www.ncbi.nlm.nih.gov/pubmed/9245990
http://doi.org/10.1002/ana.24595


Int. J. Mol. Sci. 2021, 22, 7507 13 of 13

16. Ohshima, K.; Sakamoto, N.; Labuda, M.; Poirier, J.; Moseley, M.L.; Montermini, L.; Ranum, L.P.W.; Wells, R.D.; Pandolfo, M.
A nonpathogenic GAAGGA repeat in the Friedreich gene: Implications for pathogenesis. Neurology 1999, 53, 1854. [CrossRef]
[PubMed]

17. Moseley, M.L.; Benzow, K.A.; Schut, L.J.; Bird, T.D.; Gomez, C.M.; Barkhaus, P.E.; Blindauer, K.A.; Labuda, M.; Pandolfo, M.;
Koob, M.D.; et al. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 1998,
51, 1666–1671. [CrossRef]

18. McDaniel, D.O.; Keats, B.; Vedanarayanan, V.; Subramony, S. Sequence variation in GAA repeat expansions may cause differential
penotype display in Friedreich’s ataxia. Mov. Disord. 2001, 16, 1153–1158. [CrossRef]

19. Stolle, C.A.; Frackelton, E.C.; McCallum, J.; Farmer, J.M.; Tsou, A.; Wilson, R.B.; Lynch, D.R. Novel, complex interruptions of the
GAA repeat in small, expanded alleles of two affected siblings with late-onset Friedreich ataxia. Mov. Disord. 2008, 23, 1303–1306.
[CrossRef]

20. Matsuura, T.; Fang, P.; Pearson, C.E.; Jayakar, P.; Ashizawa, T.; Roa, B.B.; Nelson, D.L. Interruptions in the Expanded ATTCT
Repeat of Spinocerebellar Ataxia Type 10: Repeat Purity as a Disease Modifier? Am. J. Hum. Genet. 2006, 78, 125–129. [CrossRef]

21. Menon, R.P.; Nethisinghe, S.; Faggiano, S.; Vannocci, T.; Rezaei, H.; Pemble, S.; Sweeney, M.G.; Wood, N.W.; Davis, M.B.; Pastore,
A.; et al. The Role of Interruptions in polyQ in the Pathology of SCA1. PLoS Genet. 2013, 9, e1003648. [CrossRef]

22. Sakamoto, N.; Larson, J.E.; Iyer, R.R.; Montermini, L.; Pandolfo, M.; Wells, R.D. GGA·TCC-interrupted Triplets in Long GAA·TTC
Repeats Inhibit the Formation of Triplex and Sticky DNA Structures, Alleviate Transcription Inhibition, and Reduce Genetic
Instabilities. J. Biol. Chem. 2001, 276, 27178–27187. [CrossRef]

23. Holloway, T.P.; Rowley, S.M.; Delatycki, M.B.; Sarsero, J.P. Detection of interruptions in the GAA trinucleotide repeat expansion
in the FXN gene of Friedreich ataxia. BioTechniques 2011, 50, 182–186. [CrossRef]

24. Al-Mahdawi, S.; Ging, H.; Bayot, A.; Cavalcanti, F.; La Cognata, V.; Cavallaro, S.; Giunti, P.; Pook, M.A. Large Interruptions of
GAA Repeat Expansion Mutations in Friedreich Ataxia Are Very Rare. Front. Cell. Neurosci. 2018, 12, 443. [CrossRef] [PubMed]

25. Ciotti, P.; Di Maria, E.; Bellone, E.; Ajmar, F.; Mandich, P. Triplet Repeat Primed PCR (TP PCR) in Molecular Diagnostic Testing for
Friedreich Ataxia. J. Mol. Diagn. 2004, 6, 285–289. [CrossRef]

26. Warner, J.P.; Barron, L.H.; Goudie, D.; Kelly, K.; Dow, D.; Fitzpatrick, D.R.; Brock, D.J. A general method for the detection of large
CAG repeat expansions by fluorescent PCR. J. Med. Genet. 1996, 33, 1022–1026. [CrossRef]

27. Ranum, L.P.W.; Chung, M.-Y.; Banfi, S.; Bryer, A.; Schut, L.J.; Ramesar, R.; Duvick, L.A.; McCall, A.; Subramony, S.H.; Goldfarb, L.;
et al. Molecular and Clinical Correlations in Spinocerebellar Ataxia Type I: Evidence for Familial Effects on the Age at Onset. Am.
J. Hum. Genet. 1994, 55, 244–252.

28. Goldfarb, L.G.; Vasconcelos, O.; Platonov, F.A.; Lunkes, A.; Kipnis, V.; Kononova, S.; Chabrashvili, T.; Vladimirtsev, V.A.; Alexeev,
V.P.; Gajdusek, D.C. Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann. Neurol. 1996, 39,
500–506. [CrossRef] [PubMed]

29. Pulst, S.-M.; Nechiporuk, A.; Nechiporuk, T.; Gispert, S.; Chen, X.-N.; Lopes-Cendes, I.; Pearlman, S.; Starkman, S.; Orozco-Diaz,
G.; Lunkes, A.; et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet.
1996, 14, 269–276. [CrossRef] [PubMed]

30. Van De Warrenburg, B.P.C.; Hendriks, H.; Dürr, A.; Van Zuijlen, M.C.A.; Stevanin, G.; Camuzat, A.; Sinke, R.J.; Brice, A.; Kremer,
B.P.H. Age at onset variance analysis in spinocerebellar ataxias: A study in a Dutch-French cohort. Ann. Neurol. 2005, 57, 505–512.
[CrossRef] [PubMed]

31. Langbehn, D.R.; Brinkman, R.R.; Falush, D.; Paulsen, J.; Hayden, M.R.; On behalf of an International Huntington’s Disease
Collaborative Group. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG
length. Clin. Genet. 2004, 65, 267–277. [CrossRef] [PubMed]

32. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. CAG Repeat Not Polyglutamine Length Determines Timing
of Huntington’s Disease Onset. Cell 2019, 178, 887–900.e14. [CrossRef]

33. Wright, G.E.; Collins, J.A.; Kay, C.; McDonald, C.; Dolzhenko, E.; Xia, Q.; Bečanović, K.; Drögemöller, B.I.; Semaka, A.; Nguyen,
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