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Abstract—A recommender system is highly efficient in filtering 

people’s desired information from high-dimensional and sparse 
(HiDS) data. To date, a latent factor (LF)-based approach becomes 
highly popular when implementing a recommender system. 
However, current LF models mostly adopt single distance-oriented 
Loss like an L2 norm-oriented one, which ignores target data’s 
characteristics described by other metrics like an L1 norm-oriented 
one. To investigate this issue, this paper proposes an 
L1-and-L2-norm-oriented Latent Factor (L3F) model. It adopts 
two-fold ideas: a) aggregating L1 norm’s robustness and L2 norm’s 
stability to form its Loss, and b) adaptively adjusting weights of L1 
and L2 norms in its Loss. By doing so, it achieves fine aggregation 
effects with L1 norm-oriented Loss’s robustness and L2 
norm-oriented Loss’s stability to precisely describe HiDS data with 
outliers. Experimental results on nine HiDS datasets generated by 
real systems show that an L3F model significantly outperforms 
state-of-the-art models in prediction accuracy for missing data of an 
HiDS dataset. Its computational efficiency is also comparable with 
the most efficient LF models. Hence, it has good potential for 
addressing HiDS data from real applications.  

Keywords—Recommender System, High-dimensional and 
Sparse Matrix, Latent Factor Analysis, L1 Norm, L2 Norm. 

I. INTRODUCTION 

N this era of information explosion, people are inundated 
by big data [1]. For instance, Google’s data come to PBs 

and Flickr generates TBs every day [2]. How to implement 
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Fig. 1. Differences between L1 and L2 norms: (a) fitness on ten instances with 
two outliers, (b) loss functions with L1 norm and L2 norm respectively when 
the difference between predictions and ground truth is small (less than 1).  

an intelligent system to filter desired information out of such 
big data is highly challenging [1, 3, 4]. Recommender system 
(RS) is highly useful in addressing this issue [5,6]. So far, 
various approaches are proposed to implement an RS, where 
collaborative filtering (CF) is highly popular [7-13]. 

Great efforts have been made to achieve various CF-based 
RSs, where a latent factor (LF) model [14-16] is widely 
adopted owing to its high efficiency and scalability in in-
dustrial applications [17, 18]. Commonly, an LF model is 
developed based on a user-item rating matrix [3, 19], where 
each row denotes a specific user, each column denotes a 
specific item (e.g., movie, electronic product, and music), 
and each entry denotes a user’s preference on an item. Note 
that a user cannot touch all items since the item count can be 
huge in an industrial RS like Amazon [20]. Thus, a user-item 
matrix is commonly high-dimensional and sparse (HiDS).  

Given an HiDS matrix, an LF model maps both users and 
items into the same low-dimensional LF space to train the 
desired LFs based on the observed entries only, and then 
estimate its missing entries relying heavily on these trained 
LFs [9]. An LF model’s objective function commonly has the 
form of Loss+Penalty [18, 21] that should be carefully de-
signed. On an HiDS matrix, the Loss is the sum error between 
its observed entries and corresponding estimates generated 
by an LF model, and the Penalty commonly consists of reg-
ularization terms to prevent an LF model from overfitting.  

Considering the Loss of an LF model, it usually depends 
on L1 or L2 norm defined on the known data of an HiDS ma-
trix. Fig .1 illustrates the differences between L1 
norm-oriented and L2 norm-oriented Losses: 
a) The former is less sensitive to outliers than the latter, 

thereby enhancing the robustness of a resultant model 
[22-25] as shown in Fig. 1(a); and  

b) The latter is smoother than the former when the predictions 
and ground truth data are close, thereby enhancing the 
stability of a resultant model [26] as shown in Fig. 1(b).  
An HiDS matrix generated by real RSs are commonly 

filled with outliers by malicious users (e.g., a user always 
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assigns extremely high or low raring to an item) [27, 28], 
which can greatly impair the performance of an LF model 
relying on L2 norm-oriented Loss only. On the other hand, an 
LF model relying on L1 norm-oriented Loss solely suffers 
from unstable prediction performance, which can greatly 
harm its overall prediction accuracy for a user’s unknown 
rating on an item. From this point of view, an LF model with 
a Loss relying on L1 or L2 norm only fails in well describing 
an HiDS matrix [25, 29].  

To the authors’ best knowledge, an existing LF model’s 
Loss commonly depends solely on L1 norm, L2 norm, or other 
distance metrics like Kullback-Leibler Divergence [26, 27, 
30-35]. Related studies [36-41] also propose to combine both 
L1 and L2 norms in the Penalty rather than Loss of an LF 
model. How will an LF model perform with its Loss relying 
on multiple norms which are efficiently aggregated? What is 
the theoretical evidence behind its performance? Motivated 
by these critical issues, this study proposes an 
L1-and-L2-norm-oriented latent factor (L3F) model. It is sig-
nificantly different from existing LF models owing to its 
L1-and-L2-norm-oriented Loss with an adaptive weighting 
strategy for well aggregating the effects of both L1 and L2 
norms. It achieves both robustness and stability to well 
describe an HiDS matrix from a recommender system. Main 
contributions of this study include:  
a) An L3F model is proposed. It efficiently aggregates L1 

norm-oriented Loss’s robustness and L2 norm-oriented 
Loss’s stability to well describe an HiDS rating matrix. 
Hence, it is robust to outliers in an HiDS rating matrix, as 
well as achieves high prediction accuracy for missing data 
of an HiDS rating matrix; 

b) Theoretical analyses and proofs showing an L3F model’s 
ability to aggregate the effects of L1 and L2 norm-oriented 
Losses are presented; and 

c) Algorithm design and analysis for an L3F model. 
Empirical studies on nine HiDS matrices generated by real 

RSs are carefully conducted to evaluate L3F’s performance. 
Results demonstrate that compared with state-of-the-art LF 
models, an L3F model achieves significant accuracy gain 
when predicting missing data of an HiDS rating matrix. Its 
computational efficiency is also highly competitive when 
compared with the most efficient LF models. 

Note that a recommender system is a learning system 
highly efficient in filtering people’s desired information out 
from big data [3, 5, 6]. The L3F proposed by this study can 
promote the development and applications of related rec-
ommender systems [14-16]. Moreover, this study shows that 
L3F can well represent HiDS data with outliers by aggre-
gating L1 norm-oriented Loss’s robustness and L2 
norm-oriented Loss’s stability [22, 23, 26]. Its principle can 
be adopted to address similar issues raised by neural net-
work-based learning systems [2, 51, 52, 59]. 

Section II gives the preliminaries. Section III proposes an 
L3F model. Section IV presents empirical studies. Finally, 
Section V concludes this paper.  

II. PRELIMINARIES 

A. Symbols and Notations 

Please refer to Table S.I in the Supplementary File. 

B. Related Work 

An LF model is widely adopted to implement an RS [17, 
18]. So far, various sophisticated LF models have been 
proposed, including a bias-based one [18], a nonparametric 
one [31], a non-negativity-constrained one [19], a probabil-
istic one [30], a dual-regularization-based one [33], a poste-
rior-neighborhood-regularized one [42], a randomized one 
[43], a graph regularized one [44], a neighbor-
hood-and-location integrated one [32], a confidence-driven 
one [34], and a data characteristic-aware one [35]. Although 
they are different from each other in objective functions or 
learning algorithms, they all adopt an L2 norm-oriented Loss 
that is highly sensitive to outliers [25, 27, 28]. To make an LF 
model less sensitive to outlier data, Zhu et al. propose to 
adopt an L1-norm-oriented Loss [24]. However, an LF model 
with an L1 norm-oriented Loss has possibly multiple solution 
spaces because L1 norm is less smooth than L2 norm.  

On the other hand, matrix completion [36-39] or feature 
representation [40, 41] models adopt both L1 and L2 norms to 
construct their Penalty, thereby achieving model sparsity [45] 
or generality [38]. Nonetheless, as mentioned before, Penalty 
and Loss are two different and critical components of an LF 
model’s learning objective. Penalty affects a resultant mod-
el’s own characteristics like model sparsity, while Loss 
mostly decides how an achieved model describes target data. 
But different from existing models, an L3F model investi-
gates the effects by multiple norms-oriented Loss. It imple-
ments an L1-and-L2-norm-oriented Loss where the effects of 
L1 and L2 norms are aggregated efficiently via an adaptive 
weighting strategy, thereby achieving both robustness to 
outliers and model stability simultaneously.  

Recently, deep neural networks (DNN) [46]-based ap-
proaches to an RS attract researchers’ attention [47-50]. 
Zhang et al. conduct a detailed review of DNN-based RSs 
[51]. Sophisticated DNN-based recommender models in-
clude an autoencoder-based one [52], a hybrid autoencod-
er-based one [53], a multitask learning-oriented one [54], a 
neural factorization-based one [55], an attentional factoriza-
tion-based one [56], a deep cooperative neural network 
model [57], and a convolutional matrix factorization model 
[58]. However, when addressing HiDS data, a DNN-based 
model’s performance is achieved with high computation 
burden [59-61], while an L3F model does not suffer from 
such limitations. Note that in Section IV(E), some 
DNN-based models [55-58] mentioned above are not com-
pared since they are defined on different data sources. More 
specifically, models proposed in [55-56] focus on implicit 
feedbacks like log information rather than explicit feedbacks 
like ratings concerned in this study. Models proposed in 
[57-58] rely on additional review information. 

C. Problem Definition 

In our context, an HiDS matrix is defined as in [9, 16, 18]:  
Definition 1. Given a user set U and an item set I, Y|U|×|I| is a 
matrix where each element yu,i describes user u∈U’s prefer-
ence on item i∈I. Let RK and RU denote its known and un-
known entry sets, respectively. Y is HiDS if |RK|≪|RU|. 

Given Y, an LF model is built on RK as defined in [17, 18]: 
Definition 2. Given Y and f, an LF model aims to achieve LF 
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matrices P|U|×f and Q|I|×f for Y’s rank-f approximation Ŷ=PQT 
based on RK only with f≪min{|U|, |I|}. 

Thus, an objective function defined on RK is highly desired 
to achieve P and Q. It commonly has the form of 
Loss+Penalty with P and Q [18], where Loss quantifies dis-
tance between Y and Ŷ and Penalty generalizes the achieved 
model. So the learning objective of an LF model is given as: 

   
,

argmin ( , )  , , , 
P Q

P Q L P Q F P Q                (1) 

where L(P, Q) is the Loss, F(P, Q) is the Penalty, and  is the 
constant adjusting the Penalty effects, respectively. Most 
existing LF models adopt a unique norm-oriented Loss like 
an L2 norm-oriented one with linear bias [18]:   

     
22

2 2

2
ˆ , ,        T

LL
L P Q Y W Y Y W PQ☉ ☉ (2) 

where ⊙  denotes the Hadamard product performing the 
element-wise multiplication between two matrices, W is a 
linear bias matrix consisting of linear bias related with 
∀yu,i∈RK, and  is a |U|×|I| binary indexing matrix given as 

,
,

1    if  ,

0   otherwise.


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

u i K
u i

y R
                          (3) 

Note that L2 norms in (2) can be replaced with L1 norms as:  
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1
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Considering F(P, Q), it often depends on the L2 norm of P 
and Q to enhance an LF model’s generality:  

 
2 2

2 2 , .
L L

F P Q P Q                              (5) 

III. AN L1-AND-L2-NORM-ORIENTED LATENT FACTOR MODEL 

A. Objective Formulation 

As shown above, either L1 or L2 norm-oriented Loss has its 
own advantage in describing HiDS data [25, 29]. To aggregate 
their effects, an L1-and-L2-norm-oriented Loss is built as: 

 
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           (6) 

where α1 and α2 are aggregation weights controlling the ef-
fects of L1 and L2 norms, respectively. Note that we make 
α1+α2=1 and α1, α2 ≥0 to maintain numerical magnitude of 
the Loss. Moreover, due to Y’s extreme sparsity and RK’s 
imbalance (e.g., some users are related with many ratings and 
the others are related with few), it is vital to expand (6) into a 
density-oriented form [17, 19]: 
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(7) 

where p 
u,d and q 

i,d denote specific entries in P and Q, wu,i is 
given by wu,i=μ+bu+bi as μ denotes the global-average of RK, 
bu denotes the observed deviations on user u, and bi denotes 
the observed deviations on item I, respectively. Note that in 
(7), the regularization effect on each LF is specified with its 
relevant known rating count [17, 19], thereby implementing a 
finely-grained control of the regularization effects.  

With (7), an L3F model reasonably aggregates the merits 
of L1 norm-based and L2 norm-oriented Losses, i.e., model 
robustness and stability. Note that when wu,i=0, (7) involves 
no linear bias, which can be considered as a special case of an 
L3F model. Hereafter we mark models with and without 
linear bias as L3Fb̅ and L3Fb. 

B. Model Optimization 

The optimization of (7) with P and Q can be achieved by 
various learning algorithms. As discussed in [17, 19], a sto-
chastic gradient descent (SGD) algorithm is efficient to do so. 
It considers the instant loss on a single rating yu,i in (7) as: 
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   (8) 
Then, in the nth iteration, it moves each single LF along the 
opposite direction of the stochastic gradient of (8) with it as: 
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where n-1 
u,i , pn-1 

u,d , and qn-1 
i,d  denote the states of , p 

u,d, and q 
i,d 

during the (n-1)th iteration, and η denotes the learning rate, 
respectively. Let Δ௨,௜ ൌ 𝑦𝑢,𝑖 െ 𝑤௨,௜ െ ∑ 𝑝𝑢,𝑑𝑞𝑖,𝑑

𝑓
𝑑ൌ1 , then the 

expression of (8) actually depends on the sign of Δu,i: 
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        (10) 

where αn-1 
1 , αn-1 

2  and n-1 
u,i  are the states of α 

1, α
 
2 and Δu,i during 

the (n-1)th iteration, respectively.  
By combining (9) and (10), we have the following scheme:  
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C. Self-adaptive Aggregation and Proof  

To finely aggregate the effects of L1 and L2 norm-oriented 
Losses, we make α1 and α2 adaptive according to the training 
error. Let Ln 

1  and Ln 
2  denote the partial loss depending on L1 

and L2 norms in (7) at the nth iteration, respectively. The 
main idea is to increase α1 and decrease α2 if Ln 

1 < Ln 
2 , and 

decrease α1 and increase α2 otherwise. For theoretically val-
idating the effectiveness of this strategy, we firstly present 
the following definitions: 
Definition 3. Let Ln 

1  and Ln 
2  be the states of partial Losses 

separately depending on L1 and L2 norms in (7) at the nth 
training iteration, then Ln 

1  and Ln 
2  are given as:  
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Definition 4. Let Ln 
12 be the state of L3F’s Loss based on 

aggregating Ln 
1  and Ln 

2  in the nth training iteration, then Ln 
12 is 

formulated as:  
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Definition 5. Given Ln 
1 , Ln 

2 , and Ln 
12, let Cn 

L1, C
n 
L2, and Cn 

L12 be the 
cumulative Loss corresponding to Ln 

1 , Ln 
2 , and Ln 
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Based on Definitions 3–5, we present Theorem 1: 
Theorem 1. Considering an L3F model, assuming that its Ln 

1  
and Ln 

2  lie in the scale of [0,1]. If αn 
1  and αn 

2  fulfill the fol-
lowing condition: 
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1 2 1 2

1 2,  ,

n n
L L

n n n n
L L L L

C C
n n

C C C C

e e

e e e e

 

   
 

 

   

 

   
 

 
       (15) 

then the following equality holds: 

 
12 1 2

ln 2
, .

8




  N N N
L L L

N
C min C C                  (16) 

Note that in Theorem 1, αn 
1  and αn 

2  denote the states of α1 
and α2 in the nth training iteration, and  denotes a hy-
per-parameter controlling their learning rates. More 
specifically, with  ൌ ඥ1/ln𝑁 , the upper bound becomes 
min{CN 

L1, CN 
L2}+ln2√ln𝑁+𝑁/ ሺ8√ln𝑁). Note that the term of 

ln2√ln𝑁 ൅ 𝑁/ ሺ8√ln𝑁) is linearly bounded by the number of 
iterations. Hence, CN 

L12 is comparable to the minimum of CN 
L1 

and CN 
L2 after N training iterations. Based on Theorem 1, we 

present the following proposition:  
Proposition 1. Given that  ൌ ඥ1/ln𝑁, if CN 

L1>CN 
L2, the fol-

lowing inequality holds: 

12 2 1
,N N N

L L LconsC C t nstC co                     (17) 

otherwise if CN 
L1<CN 

L2, the following inequality holds: 

12 1 2
,N N N

L L LconsC C t nstC co                     (18) 

where limN∞const=19.45. 
Remark 1. Proposition 1 states that CN 

L12 is bounded by CN 
L1

+const and C N 
L2 +const with the condition of  ൌ ඥ1/ln𝑁 . 

Hence, an L3F model’s cumulative prediction error is always 

comparable to (or not larger than) that of an LF model solely 
built on an L1 or L2 norm-oriented Loss during the training 
process.  

Note that to enable an L3F model’s practicability, the 
balancing coefficient γ is set self-adaptive as follows: 

1 2

1
, 


n

n n
L LC C

                           (19) 

where n indicates the state of  in the nth training iteration. 
The next section gives the sketch proofs of Theorem 1 and 

Proposition 1 for conciseness. Note that their complete 
proofs are provided in the Supplementary File of this paper. 

1) Proof of Theorem 1 

Firstly, recall the Hoeffding Inequality [62]: 
Lemma 1. Let X be a random variable fulfilling aXb, 

∀s∈ the following inequality holds: 

 22

ln .   
8

 sX s b a
e s X


                      (20) 

Note that the detailed proof of Lemma 1 is given in [63].□ 
Then note that CN 

L1 and CN 
L2 are bounded by: 

1 2 ,
  

n n
L LC C

nA e e
 

                              (21) 

and A0=1+1=2 since there is no Loss when n=0. Based on 
(21), we have the following inference: 

 
1 2

0

ln min , ln 2.  N NN
L L

A
C C

A
              (22) 

Besides, ∀n∈{1, …, N}, based on (15) and (21), we have: 

 1 2
1 2

1

ln ln .   



 
n nL Ln nn

n

A
e e

A
               (23) 

Let s=-  and X∈{Ln 
1 , Ln 

2 } with Ln 
1  and Ln 

2  in the scale of [0,1]. 
Note that n 

1  and n 
2  are interpreted as the probabilities for Ln 

1  
and Ln 

2 , respectively. Thus, we have: 

 1 1 2 2E .       n n n ns X L L                      (24) 

Then based on Lemma 1, (13), (23), and (24), we have  

 
2 2

1 1 2 2 12
1

ln .
8 8

      n n n n nn

n

A
L L L

A

             (25) 

Considering the accumulation of (25) as n increases from 1 to 
N, we have the following inferences: 

12

2

0

ln .
8

  NN
L

A
C N

A

                     

(26) 

By combining (22) and (26), the following inequality is 
achieved: 

 
12 1 2

ln 2
min , .

8




  N N N
L L L

N
C C C                  (27) 

Based on (27), Theorem 1 holds.□ 

2) Proof of Proposition 1 

Firstly, recall the Bernstein Inequality [63]: 
Lemma 2. Let X be a random variable in the scale of [0,1], 

then ∀s∈ the following inequality holds: 

 ln 1 .E E    
sX se e X                          (28) 

Note that the detailed proof of Lemma 2 is given in [63].□ 
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When CN 
L1>CN 

L2, we reduce (22) into: 

2

0

ln ln 2.  NN
L

A
C

A
                           (29) 

By combining Lemma 2, (13), (23), and (24), the following 
inequality is achieved: 

  12
1

ln 1 .



  nn

n

A
e L

A
                            (30) 

Considering the accumulation of (30) according to (27) as n 
increases from 1 to N, we have the following inferences: 

 
12

0

ln 1 .  NN
L

A
e C

A

     

                    (31) 

By combining formulas (29) and (31), we achieve:  

12 2

ln 2
.

1 1 


  

 
N N
L LC C

e e
                  (32) 

Let ψ=/(1-e-) and =ln2/(1-e-), then we rewrite (32) as CN 
L12

ψCN 
L2+. With  ൌ ඥ1/ln𝑁, we have limN∞ψ=1 following 

L’Hopital’s Rule [64]. Moreover, considering the partial 
derivative of Φ with N, we have the inference that 
limN∞(d/dN)0. Thus,  becomes a constant (i.e., 19.45 
according to its curve) when N∞. Finally, (32) can be 
reduced to: 

 
12 2 2 19.45

19.45 + . 
 


    

N N N
L L LC C C const              (33) 

Hence, we obtain that CN 
L12CN 

L1+const<CN 
L2+const under the 

condition of setting  ൌ ඥ1/ln𝑁 when CN 
L1>CN 

L2. 
Analogously, when CN 

L1<CN 
L2, the following result can be 

also achieved: CN 
L12CN 

L1+const<CN 
L2+const under the condition 

of setting  ൌ ඥ1/ln𝑁. Hence, Proposition 1 holds.□ 

D. Algorithm Design and Analysis 

Based on the above inferences, we design the algorithm of 
L3F as in Algorithm 1. As shown in Algorithm 1, its com-
putational and storage costs are respectively Θ(N×|RK|×f) and 
Θ(f×max{|RK|/f, |U|, |I|}), where the detailed complexity 
analyses are given in the Supplementary File of this paper. 
Note that both N and f are positive constants. Hence, an L3F 

model’s computational and storage costs are both linear with 
|RK| and easy to resolve in real applications.  
Algorithm1. L3F  

Input: RK  

Operation Cost 

Initializing f, , η, α1=0.5, α2=0.5, N=1000  Θ(1) 
Initializing P randomly Θ(|U|×f) 
Initializing Q randomly Θ(|I|×f) 
while n≤N && not converge  ×N 
  for each rating yu,i in RK  ×|RK| 
    for d=1 to f ×f 
      update pn 

u,d according to (11) Θ(1) 
      update qn 

i,d according to (11) Θ(1) 
    end for -- 
  end for -- 
  update αn 

1  according to (15) and (19) Θ(1) 
update αn 

2  according to (15) and (19) Θ(1) 
n=n+1 Θ(1) 

end while -- 

Output: P, Q 

IV. EXPERIMENTS AND RESULTS 

A. General Settings 

1) Datasets 

Nine HiDS datasets are adopted in the experiments [17, 
65], whose details are summarized in Table I. 

TABLE I 
SUMMARY OF EXPERIMENTAL DATASETS 

No. Name |U| |I| |RK| Density

D1 Dating [66] 135,359 168,791 17,359,346 0.08% 

D2 Douban [17] 129,490 58,541 16,830,839 0.22% 

D3 Eachmovie [3] 72,916 1,628 2,811,718 2.37% 

D4 Epinion [65] 755,760 120,492 13,668,321 0.02% 

D5 Flixter [67] 147,612 48,794 8,196,077 0.11% 

D6 Jester [67] 24,983 100 1,186,324 47.49%

D7 MovieLens_10M [68] 71,567 65,133 10,000,054 0.21% 

D8 MovieLens_20M [68] 138,493 26,744 20,000,263 0.54% 

D9 *Yahoo-R2 [69] 200,000 136,736 76,344,627 0.28% 
*We select its first 200,000 users with more than 76 million ratings to build 
D9 for conducting the experiments. 

2) Evaluation Metrics 

In an RS, missing data prediction and ranking prediction 
(top-K recommendation) are commonly adopted to evaluate 
its performance [51]. Considering missing data prediction, 
mean absolute error (MAE) and root mean squared error 
(RMSE) are widely adopted as the evaluation metrics [9, 19]: 

,
( , )

, ,ˆ


 
  
 

 u i abs
u i

u iMAE y y  

 2

,
( , )

, ,ˆ


 
  

 
 u i

u i
u iRMSE y y  

where  denotes the testing set and |ꞏ|abs calculates the abso-
lute value of a given number. Note that a model’s low MAE 
and RMSE indicate its high prediction accuracy.  

On the other hand, the task of ranking prediction produces 
a ranked list with K items recommended to each user, where 
K is a cutoff parameter. Precision and normalized discounted 
cumulative gain (NDCG) is adopted to evaluate the ranking 
prediction accuracy [51, 70] of a model. The precision of a 
tested model is given as: 

( )1
@ ,




  K

u U

u
Precision K

U K
 

where ΛK(u) denotes the intersection between the top-K set 
generated by the model and the testing set by user u. NDCG 
of a tested model is given as:  

              

,

,

ˆ

1 2

1 2

2 1ˆ@ ( , ) ,
log ( 1)
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@ ( , ) ,

log ( 1)

ˆ1 @ ( , )
@ .

@ ( , )











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

 
  
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




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k
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k
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DCG K u Y
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DCG K u Y
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where ŷu,k denotes the kth prediction in ΛK(u) in descending 
order and yu,i denotes the actual kth rating by user u in  in 
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descending order. Note that both Precision and NDCG lie in 
the scale of [0, 1], where high Precision and NDCG of a 
tested model indicate its high ranking prediction accuracy. 

3) Baselines 

We compare L3F with nine related models with different 
characteristics, including six LF-based models (L1-LFb̅, 
L1-LFb, L2-LFb̅, L2-LFb, NLF, and FNLF) and three 
DNN-based models (AutoRec, NRT, and DCCR). Note that 
we also test two versions of L3F, i.e., L3Fb̅ (without linear bias) 
and L3Fb (with linear bias). Table II gives their summary. 

4) Experimental Designs 
In the next experiments, we aim at answering the 

following research questions (RQs): 
a) RQ.1. Will L3F achieve balanced aggregation effects with 

its L1-and-L2 norm-oriented Loss? 
b) RQ.2. How do outlier data affect L3F? 
c) RQ.3. How do hyper-parameters affect L3F? 
d) RQ.4. Can L3F outperform its peers? 

In detail, we adopt 80%–20% train-test settings. The 
training process of a tested model terminates if the number of 
consumed iterations reaches a preset threshold (i.e., 1000) or 
the error difference between two consecutive iterations is 
smaller than 10-6. All experiments are run on a PC with 3.4 
GHz i7 CPU and 64 GB RAM. The source code of this paper 
is available on: 
https://github.com/Wuziqiao/Resource-code.git. 

TABLE II 
SUMMARY OF COMPARED MODELS. 

Model Description 

L1-LFb̅ 
L1-LF is a basic LF model built on an L1-norm-oriented Loss. 
L1-LFb̅ stands for an L1-LF model without linear biases.

L1-LFb An L1-LF model with linear biases. 

L2-LFb̅ 
A sohposticated LF model proposed in 2009 [18]. It is built on 
an L2-norm-oriented Loss solely. L2-LFb̅ stands for an L2-LF 
model without linear biases..  

L2-LFb An L2-LF model with linear biases. 

NLF 
A sophisticated LF model proposed in 2016 [19]. It improves 
an L2-LF model by introducing the non-negative constraints 
into it for efficiently describing non-negative data.

FNLF 
A fast non-negative LF model based on a generalized mo-
mentum method [9]. It is proposed in 2018 [9] and also relies 
on an L2-norm-oriented Loss solely. 

AutoRec 
A autoencoder-based model proposed in 2015 [52]. It is a 
representative DNN-based recommender model.

NRT 
A DNN-based model proposed in 2017 [54]. It adopts a 
multi-task learning-incorporated framework based on multi-
layered perceptron and recurrent neural networks.

DCCR 
A DNN-based model proposed in 2019 [53]. It improves 
AutoRec with the consideration of two different networks.

L3Fb̅ A proposed L3F model without linear biases.  
L3Fb A proposed L3F model with linear biases. 

 

B. L3F’s Aggregation Effects (RQ.1) 

In this section, we empirically study that how L3F achieve 
balanced aggregation effects between L1 and L2 
norm-oriented Losses during its training process from two 
aspects, i.e., monitoring the changes of α1 and α2 and testing 
L3F’s rating prediction accuracy.  

Monitoring the changes of α1 and α2. The results on D1 
are presented in Fig. 2. The complete results on all the da-
tasets are recorded in Figs. S1 and S2 in the Supplementary 

File. From them, we find that during the training process of 
L3Fb̅/L

3Fb, both α1 and α2 adaptively change first and then 
converge to the different constants on different datasets. This 
phenomenon indicates that L3F adaptively controls the 
aggregation effects of L1 and L2 norm-oriented Losses ac-
cording to the data characteristics during the training process.  

Testing L3F’s rating prediction accuracy. We compare 
L3F with LF models built on an L1 or L2 norm-oriented Loss 
solely. Specifically, we conduct two sets of experiments: a) 
comparing L3Fb̅ with L1-LFb̅ and L2-LFb̅ in MAE and RMSE, 
and b) comparing L3Fb with L1-LFb and L2-LFb in MAE and 
RMSE. Fig. 3 presents the comparison results of models 
without linear biases on D1. The complete results on all the 
datasets are recorded in Figs. S3‒S6 in the Supplementary 
File. Considering models without linear biases, from Figs 3, 
S3, and S4, we see that a) when evaluated by MAE, L3Fb̅ and 
L1-LFb̅ achieve very close results and they both outperform 
L2-LFb̅ greatly, and b) when evaluated by RMSE, L3Fb̅ and 
L2-LFb̅ achieve very close results and they both outperform 
L1-LFb̅ greatly. Considering models with linear biases, we 
arrive at highly similar results from Figs S5 and S6 that L3Fb 
and L1-LFb achieve much lower MAE than L2-LFb does, 
while L3Fb and L2-LFb achieve much lower RMSE than 
L1-LFb does. 

Summary. Based on the above results, we see that by se-
lecting α1 and α2 with (15), L3F adaptively controls the 
aggregation effects of L1 and L2 norm-oriented Losses during 
its training process, making it achieve low MAE and RMSE 
simultaneously than LF models built on an L1 or L2 
norm-oriented Loss solely. Hence, we conclude that L3F 
finely aggregates the effects of L1 and L2 norm-oriented 
Losses to achieve such balanced performance.  

 
(a) L3Fb̅                                                 (b) L3Fb 

Fig. 2. The changes of α1 and α2 of L3F during the training process on D1. 

 
(a)MAE                                                (b)RMSE 

Fig. 3. The training process of L3Fb̅, L1-LFb̅ , and L2-LFb̅ on D1. 

C. L3F’s Robustness to Outlier Data (RQ.3) 

Artificial dataset. To test L3F’s sensitivity to outlier data, 
we create an artificial HiDS matrix with the following char-
acteristics: a) it has 5000 users (rows) and 1000 items 
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(columns), b) its known entries take 2% of the whole entry 
set only, which are generated at random in the range of [0, 1]. 
Afterwards, outlier users who randomly pick a subset of 
items to assign them with the same maximum or minimum 
rating are gradually added into this dataset. The percentage of 
outlier users increases from 0% to 200% with an interval of 
10% to test L3F’s sensitivity to outlier data.  

Note that the outlier users are added to the training set only, 
since in real applications we do not want a recommender to 
fit malicious users’ attacks. Fig. S7 in the Supplementary File 
provides an example to further illustrate this set of experi-
ments. The generated artificial dataset is available on 
https://github.com/Wuziqiao/Resource-code.git. 

Analysis. We compare L3Fb̅/L
3Fb with L1-LFb̅/L1-LFb and 

L2-LFb̅/L2-LFb. Fig. 4 depicts the comparison results of 
models without linear biases. Figs. S8 in the Supplementary 
File depicts the comparison results of models with linear 
biases. From them, we find that outlier data have different 
impacts on compared models. In general, L3Fb̅/L

3Fb and 
L2-LFb̅/L2-LFb outperform L1-LFb̅/L1-LFb at initial steps. 
However, since L1 norm is less sensitive to outlier data than 
L2 norm, L2-LFb̅/L2-LFb has the lowest prediction accuracy 
while L1-LFb̅/L1-LFb has the highest when the percentage of 
outlier users grows over 100%.  

Note that in several testing cases, L3Fb̅/L
3Fb outperforms 

L1-LFb̅/L1-LFb in MAE and L2-LFb̅/L2-LFb in RMSE. The 
reason is that L3Fb̅/L

3Fb aggregates the merits of both L1 and 
L2 norm-oriented Losses with a carefully-designed 
self-adaptive weighting strategy, which is consistent with the 
proof given in Section III(C). In detail, with few outlier users, 
L3Fb̅/L

3Fb increases the weight of L2 norm, making it better 
describe such an HiDS matrix. Hence, L3Fb̅/L

3Fb’s MAE is 
lower than that of L1-LFb̅/L1-LFb. On the other hand, since L1 

norm is more robust to outlier data, L3Fb̅/L
3Fb increases the 

weight of L1 norm as outlier data increase, thereby achieving 
lower RMSE than L2-LFb̅/L2-LFb does. For example, MAE of 
L3Fb̅/L

3Fb (0.1725/0.1718) is lower than that of 
L1-LFb̅/L1-LFb (0.1762/0.1737) when there are no outlier 
users. RMSE of L3Fb̅/L

3Fb (0.2328/0.2304) is also lower than 
that of L2-LFb̅/L2-LFb (0.2466/0.2698) when the percentage 
of outlier users is 50%.  

Summary. This set of experiments shows that L3F finely 
aggregates the merits of L1 and L2 norm-oriented Losses to 
well balance the model robustness (depending on L1 norm) 
and stability (depending on L2 norm). Hence, it achieves 
robustness to outlier data as well as precisely describes the 
known data of an HiDS matrix.  

 
(a)MAE                                             (b)RMSE 

Fig. 4. The outlier data sensitivity tests of L3Fb̅, L1-LFb̅ , and L2-LFb̅ on the 
artificial dataset.  

D. L3F’s Sensitivity to its Hyper-parameters (RQ.3) 

In this section, we analyze L3F’s behaviors with f, , and η.  

1) With f 

According to prior research [18], a large f enables an LF 
model to better describe an HiDS matrix unless f increases 
over its actual rank, which is reflexed by the increasing pre-
diction accuracy of an LF model as f increases. Considering 
L3Fb̅/L

3Fb, this conclusion is also true. Fig.5 shows the pre-
diction error of L3Fb̅ on D1 as f increases. The complete 
results of L3Fb̅/ L

3Fb on all the datasets are drawn in Figs. S9–
S12 in the Supplementary File. From these results, we see 
that in most testing cases, L3Fb̅/L

3Fb’s RMSE and MAE 
decrease as f increases (besides the testing cases on D4 where 
L3Fb̅/L

3Fb’s MAE increases as f increases). However, this 
accuracy gain becomes less significant as f increases over a 
certain threshold, e.g., 20 on most testing cases. Besides, 
according to Section III(D) we see that L3Fb̅/L

3Fb’s time cost 
increases linearly with f. Hence, f should be appropriately 
chosen to carefully balance prediction accuracy and compu-
tational cost. Commonly, it is chosen from the scale of [10, 
20] [18, 19, 35]. 

 
(a)MAE                                            (b)RMSE 

Fig. 5. The prediction error of L3Fb̅ on D1 as f increases. 

2) With λ and η  

In this set of experiments, we perform a grid-based search 
to test the performance of L3Fb̅/ L

3Fb when  increases from 
0.01 to 0.1 and η increases from 0.0001 to 0.01. Fig.6 pre-
sents the results of L3Fb̅ on D1. The complete results of L3Fb̅/ 
L3Fb on all the datasets are recorded in Figs. S13–S16 in the 
Supplementary File. From them, we see that:  
a) Both  and η affect the rating prediction accuracy of L3Fb̅/ 

L3Fb. As  and η increase, MAE/RMSE decreases till  
and η reach their optimal thresholds, and then increase 
again. For example, on D8, the RMSE of L3Fb̅ decreases 
from 0.7866 to 0.7745 initially, and then it increases to 
0.8285 as  and η keep increasing.  

b) Generally speaking, η should be set relatively small to well 
balance the prediction accuracy and convergence rate, and 
 should be tuned carefully since it is domain-specific [18, 
31]. Similar results are also achieved by L3Fb̅/L

3Fb: On 
different datasets, optimal values of η are close while op-
timal values of  are different. More specifically, the op-
timal η is around 0.001 on each dataset, while the optimal 
 lies in the range of [0.02, 0.09] on D1-9 for L3Fb̅/ L

3Fb.  
Summary. We see that L3F’s performance is closely con-

nected with f, , and η. Empirically, it is suggested to set 
f=10–20 and η=0.001 in real applications. For , it should be 
carefully tuned on the target dataset. 
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TABLE III 
THE COMPARISON RESULTS ON RATING PREDICTION ACCURACY, INCLUDING WIN/TIE/LOSS COUNTS STATISTIC AND FRIEDMAN TEST, WHERE ○ AND • INDICATE 

THAT THE RATING PREDICTION ACCURACY OF L3Fb̅ AND L3Fb IS HIGHER THAN OR SAME TO THAT OF COMPARISON MODELS RESPECTIVELY. 

Dataset Metric L1-LFb̅ L1-LFb L2-LFb̅ L2-LFb NLF FNLF AutoRec NRT DCCR L3Fb̅ L3Fb 

D1 
MAE 1.1606 1.1492  1.2392○● 1.2328○● 1.2617○● 1.2588○● 1.2610○● 1.2303○● 1.2574○● 1.1740 1.1781 

RMSE 1.8672○● 1.8025○● 1.8066○● 1.7809● 1.8245○● 1.8215○● 1.8027○● 1.8101○● 1.8013○● 1.7987 1.7704 

D2 
MAE 0.5394● 0.5245 0.5537○● 0.5516○● 0.5590○● 0.5592○● 0.5606○● 0.5675○● 0.5581○● 0.5412 0.5347 

RMSE 0.7344○● 0.7222○●  0.7139● 0.6993 0.7150○● 0.7139● 0.7080● 0.7106○● 0.7074● 0.7145 0.7000 

D3 
MAE 0.1713○● 0.1705○● 0.1732○● 0.1730○● 0.1767○● 0.1763○● 0.1784○● 0.1774○● 0.1775○● 0.1700 0.1698 

RMSE 0.2290○● 0.2278○● 0.2251○ 0.2262○● 0.2264○● 0.2259○● 0.2305○● 0.2301○● 0.2289○● 0.2249 0.2256 

D4 
MAE 0.2517○● 0.2223 0.3011○● 0.2938○● 0.3047○● 0.3036○● 0.3014○● 0.3002○● 0.3036○● 0.2512 0.2422 

RMSE 0.6100○● 0.4875●  0.5958● 0.4821● 0.5994○● 0.5977○● 0.5946● 0.5926● 0.5952● 0.5969 0.4775 

D5 
MAE 0.6319○● 0.6042 0.6447○● 0.6207● 0.6550○● 0.6520○● 0.6295● 0.6337○● 0.6308● 0.6318 0.6050 

RMSE 0.9098○● 0.8450● 0.8961○● 0.8383●  0.9056○● 0.9038○● 0.8682● 0.8677● 0.8792● 0.8960 0.8326 

D6 
MAE 0.7580○● 0.7600○● 0.7664○● 0.7676○● 0.7769○● 0.7778○● 0.7905○● 0.7878○● 0.7883○● 0.7562 0.7578 

RMSE 1.0206○● 1.0177○● 0.9957● 0.9982○● 1.0049○● 1.0003○● 1.0078○● 1.0056○● 1.0042○● 0.9978 0.9935 

D7 
MAE 0.5986○● 0.6038○● 0.5999○● 0.6067○● 0.6080○● 0.6068○● 0.6048○● 0.6035○● 0.6002○● 0.5956 0.5981 

RMSE 0.7953○● 0.8048○● 0.7819 0.7936○● 0.7893○ 0.7881○ 0.7865○ 0.7834○ 0.7847○ 0.7821 0.7899 

D8 
MAE 0.5877○● 0.5927○●  0.5886○● 0.5955○● 0.5977○● 0.5961○● 0.5947○● 0.6018○● 0.5902○● 0.5848 0.5863 

RMSE 0.7873○● 0.7960○● 0.7737 0.7848○● 0.7819○● 0.7798○ 0.7802○ 0.7798○ 0.7789○ 0.7743 0.7806 

D9 
MAE 0.7661 0.7916○● 0.8037○● 0.8475○● 0.8342○● 0.8228○● 0.8029○● 0.8221○● 0.8058○● 0.7742 0.7840 

RMSE 1.1129○● 1.1460○● 1.0596 1.0968○● 1.0746○ 1.0704○ 1.0629○ 1.1150○● 1.0931○● 1.0601 1.0776 

Statistical 
Analysis 

○win/tie/loss 15/0/3 12/0/6 12/0/6 13/0/5 18/0/0 17/0/1 14/0/4 16/0/2 14/0/4 — — 
●win/tie/loss 16/0/2 14/0/4 14/0/4 17/0/1 16/0/2 15/0/3 15/0/3 16/0/2 16/0/2 — — 

F-rank* 6.83  5.50  4.97  5.56  8.83  7.64  7.11  7.19  6.31  3.28  2.78  
* The smaller F-rank value denotes a higher rating prediction accuracy.  

 
(a)MAE                                            (b)RMSE 

Fig. 6. The performance of L3Fb̅ with respect to  and η on D1. 

E. Comparison between L3F and Baselines (RQ.4) 

In the comparisons, we evaluate rating prediction accuracy, 
ranking prediction accuracy, and computational efficiency. 
To draw fair comparisons, we adopt the following settings: a) 
setting f=20 for all the LF-based models, b) adopting 
five-fold cross-validations and report the average results, c) 
tuning the other hyper-parameters on one fold of each dataset 
to achieve the best performance of each model and then 
adopting the same values on the remaining four folds, d) 
adopting same random initialization method for initial solu-
tion of each model, e) adopting SGD to optimize each model 
with same order of training samples, f) on rating prediction 
comparison, respectively tuning hyper-parameters for 
achieving lowest MAE and RSME, g) on ranking prediction 
comparison, hyper-parameters are the same as that set in 
rating prediction comparison with lowest RMSE. 

1) Comparison of rating prediction accuracy 

Table III presents the detailed comparison results, where 
we see that L3Fb̅/L

3Fb and L1-LFb̅/L1-LFb have lower MAE 
than the other models. On RMSE, L3Fb̅/L

3Fb, L2-LFb̅/L2-LFb, 
AutoRec, and DCCR achieve better performance than the 
other models. In particular, we see that L3Fb̅/L

3Fb outper-
forms L1-LFb̅/L1-LFb in MAE and L2-LFb̅/L2-LFb in RMSE 
on some datasets. The reason is same as analyzed in Section 
IV(C), i.e., L3Fb̅/L

3Fb aggregates the merits of both robust-

ness (depending on L1 norm) and stability (depending on L2 
norm) to well describe an HiDS matrix with different situa-
tions of outliers. By comparing L3Fb̅ and L3Fb, we find that 
linear bias can improve L3F’s rating prediction accuracy on 
several cases but not on all. For example, RMSE is reduced 
from 0.5969 to 0.4775 on D4 while increased from 1.0601 to 
1.0776 on D9. 

To check whether L3Fb̅/L
3Fb has a higher rating prediction 

accuracy than the other models, we conduct statistical anal-
ysis on Table III. First, the win/tie/loss counts of L3Fb̅/L

3Fb 
versus other models one by one are summarized in the 
third/second-to-last row of Table III, which indicates that 
L3Fb̅/L

3Fb achieves a higher rating prediction accuracy than 
other models on most datasets. Second, we perform Fried-
man test [71] because it is an effective statistical test method 
in validating the performance of multiple models on multiple 
datasets. Friedman test results on the MAE/RMSE of Table 
III are recorded in the last row of Table III, where it accepts 
the hypothesis that these comparison models have significant 
differences with a significance level of 0.05. Friedman test 
results show that L3Fb̅/L

3Fb has a higher rating prediction 
accuracy than the other models. Further, L3Fb has a smaller 
F-rank value than L3Fb̅, which means that L3Fb outperforms 
L3Fb̅ in general.  

Besides, to check whether L3Fb achieves significantly 
higher rating prediction accuracy than the other models, we 
conduct the Wilcoxon signed-ranks test [72, 73] on the re-
sults of Table III. In detail, we compare MAE/RMSE of L3Fb 
with that of the other models one by one. Wilcoxon 
signed-ranks test is a nonparametric pairwise comparison 
procedure and has three indicators—R+, R-, and p-value. The 
larger R+ value indicates higher performance and the p-value 
indicates the significance level. Table S.II in the Supple-
mentary File record the test results, where we see that L3Fb 
has a significantly higher rating prediction accuracy than all 
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TABLE IV 
THE COMPARISON RESULTS ON NDCG UNDER SITUATION 1, INCLUDING WIN/TIE/LOSS COUNTS STATISTIC AND FRIEDMAN TEST, WHERE ○ AND • INDICATE 

THAT THE NDCG OF L3Fb̅ AND L3Fb IS HIGHER THAN OR SAME TO THAT OF COMPARISON MODELS RESPECTIVELY. 

Dataset Metric L1-LFb̅ L1-LFb L2-LFb̅ L2-LFb NLF FNLF AutoRec NRT DCCR L3Fb̅ L3Fb 

D1 
NDCG@5 0.9030○●  0.9058○● 0.9056○●  0.9040○● 0.9020○● 0.9025○● 0.8963○● 0.8951○●  0.8982○●  0.9068  0.9061  

NDCG @10 0.9110○●  0.9137○● 0.9137○● 0.9123○● 0.9106○● 0.9109○● 0.9052○● 0.9061○●  0.9092○●  0.9148  0.9142  

D2 
NDCG@5 0.8588○●  0.8600○● 0.8701  0.8703 0.8647○● 0.8643○● 0.8608○● 0.8565○●  0.8631○●  0.8696 0.8700  

NDCG @10 0.8777○●  0.8794○● 0.8869○●  0.8879  0.8817○● 0.8822○● 0.8855○● 0.8758○●  0.8862○●  0.8874  0.8877  

D3 
NDCG@5 0.9060○●  0.9062○● 0.9076○●  0.9059○● 0.9088  0.9090  0.9064○● 0.9071○●  0.9081  0.9077  0.9077  

NDCG @10 0.9254○●  0.9251○● 0.9267●  0.9253○● 0.9275  0.9276  0.9273  0.9288  0.9286  0.9268   0.9262  

D4 
NDCG@5 0.9787○  0.9786○● 0.9807  0.9795○ 0.9808  0.9809  0.9731○● 0.9783○●  0.9723○●  0.9800  0.9786  

NDCG @10 0.9825○  0.9821○● 0.9835○  0.9828○ 0.9850  0.9856  0.9776○● 0.9819○●  0.9762○●  0.9835  0.9821  

D5 
NDCG@5 0.8970○●  0.8977○● 0.8985○●  0.8982○● 0.8974○● 0.8976○● 0.8770○● 0.8820○●  0.8792○●  0.8986  0.8993  

NDCG @10 0.9113○●  0.9119○● 0.9124○●  0.9125○● 0.9114○● 0.9116○● 0.8934○● 0.8980○●  0.8952○●  0.9126  0.9132  

D6 
NDCG@5 0.7431○●  0.7433○● 0.7489●  0.7447○● 0.7483○● 0.7482○● 0.7294○● 0.7288○●  0.7311○●  0.7483  0.7494 

NDCG @10 0.8180○●  0.8177○● 0.8217●  0.8204○● 0.8208○● 0.8211○● 0.8071○● 0.7970○●  0.8096○●  0.8214  0.8223  

D7 
NDCG@5 0.8247○  0.8202○● 0.8298○  0.8231○● 0.8288○  0.8290○  0.8167○● 0.8020○●  0.8181○●  0.8299  0.8245  

NDCG @10 0.8586○●  0.8550○● 0.8627○ 0.8577○● 0.8615○  0.8618○  0.8444○● 0.8348○●  0.8502○●  0.8627 0.8588  

D8 
NDCG@5 0.8257○  0.8213○● 0.8299  0.8235○● 0.8287○  0.8290○  0.8110○● 0.8117○●  0.8184○●  0.8297  0.8253  

NDCG @10 0.8596○  0.8561○● 0.86311 0.8582○● 0.8619○  0.8623○  0.8472○● 0.8427○●  0.8487○●  0.8630  0.8593  

D9 
NDCG@5 0.8020○  0.7890○● 0.8193 0.8046○ 0.8103○  0.8116○  0.7785○● 0.7748○●  0.7815○●  0.8154  0.8016  

NDCG @10 0.8217○  0.8106○● 0.8338○  0.8243○ 0.8293○  0.8299○  0.7985○● 0.7997○●  0.8005○●  0.8339  0.8214  

Statistical 
Analysis 

○win/tie/loss 18/0/0 18/0/0 9/2/7 16/0/2 13/1/4 14/0/4 17/0/1 17/0/1 16/0/2 — — 
●win/tie/loss 11/0/7 16/2/0 9/0/9 12/0/6 8/0/10 8/0/10 17/0/1 17/0/1 16/0/2 — — 

F-rank* 5.06  4.75  9.14  6.44  7.31  8.06  1.72  2.67  3.72  9.44  7.69  
* The larger F-rank value denotes better performance on NDCG. 

TABLE V 
THE COMPARISON RESULTS ON PRECISION UNDER SITUATION 2, INCLUDING WIN/TIE/LOSS COUNTS STATISTIC AND FRIEDMAN TEST, WHERE ○ AND • INDICATE 

THAT THE PRECISION OF L3Fb̅ AND L3Fb IS HIGHER THAN OR SAME TO THAT OF COMPARISON MODELS RESPECTIVELY. 

Dataset Metric L1-LFb̅ L1-LFb L2-LFb̅ L2-LFb NLF FNLF AutoRec NRT DCCR L3Fb̅ L3Fb 

D1 
Precision@5 0.0044 0.0010○● 0.0030○ 0.0011○  0.0019○ 0.0018○ 0.0019○ 0.0027○ 0.0022○ 0.0042 0.0010 
Precision@10 0.0031 0.0007○● 0.0022○ 0.0007○● 0.0013○ 0.0012○ 0.0016○ 0.0021○ 0.0017○ 0.0029 0.0007 

D2 
Precision@5 0.0217 0.0038○● 0.0187○ 0.0038○● 0.0094○ 0.0102○ 0.0048○ 0.0073○ 0.0046○ 0.0216 0.0038 
Precision@10 0.0155 0.0033○● 0.0134○ 0.0034○● 0.0079○ 0.0082○ 0.0033○● 0.0063○ 0.0031○● 0.0153 0.0034 

D3 
Precision@5 0.1493○ 0.0273○● 0.1526○ 0.0271○● 0.0881○ 0.0974○ 0.0492○ 0.0677○ 0.0523○ 0.1544 0.0273 
Precision@10 0.1220○ 0.0251○ 0.1257○ 0.0220○● 0.0779○ 0.0845○ 0.0310○ 0.0587○ 0.0351○ 0.1260 0.0221 

D4 
Precision@5 0.0036○ 0.0018○● 0.0036○ 0.0018○● 0.0018○● 0.0016○● 0.0011○● 0.0015○● 0.0013○● 0.0036 0.0018 
Precision@10 0.0031○ 0.0018○● 0.0031○ 0.0018○● 0.0018○● 0.0017○● 0.0010○● 0.0012○● 0.0011○● 0.0031 0.0018 

D5 
Precision@5 0.0242○ 0.0057○ 0.0224○ 0.0057○ 0.0116○ 0.0112○ 0.0071○ 0.0186○ 0.0068○ 0.0247 0.0055 
Precision@10 0.0177○ 0.0055○● 0.0174○ 0.0055○● 0.0106○ 0.0102○ 0.0067○ 0.0148○ 0.0065○ 0.0179 0.0057 

D6 
Precision@5 0.9568○ 0.6957○ 0.9272○ 0.6812○● 0.7270○ 0.7150○ 0.8172○ 0.8732○ 0.8241○ 0.9577 0.6906 
Precision@10 0.8824 0.5925○ 0.7683○ 0.5778○● 0.6217○ 0.6450○ 0.7283○ 0.7726○ 0.7369○ 0.8181 0.5812 

D7 
Precision@5 0.0251○ 0.0105○ 0.0238○ 0.0099○● 0.0099○● 0.0104○ 0.0084○● 0.0118○ 0.0092○● 0.0254 0.0099 
Precision@10 0.0167○ 0.0084○ 0.0163○ 0.0074○● 0.0065○● 0.0067○● 0.0055○● 0.0079○ 0.0061○● 0.0168 0.0074 

D8 
Precision@5 0.0403○ 0.0187○ 0.0359○ 0.0187○  0.0118○● 0.0122○● 0.0075○● 0.0174○● 0.0093○● 0.0408 0.0176 
Precision@10 0.0289○ 0.0137○ 0.0264○ 0.0129○● 0.0084○● 0.0096○● 0.0066○● 0.0124○● 0.0075○● 0.0291 0.0130 

D9 
Precision@5 0.0101 0.0006○ 0.0092○ 0.0006○ 0.0014○ 0.0015○ 0.0054○ 0.0067○ 0.0058○ 0.0100 0.0005 
Precision@10 0.0077○ 0.0007○ 0.0068○ 0.0006○● 0.0011○ 0.0011○ 0.0044○ 0.0058○ 0.0042○ 0.0077 0.0006 

Statistical 
Analysis 

○win/tie/loss 9/3/6 18/0/0 16/2/0 18/0/0 18/0/0 18/0/0 18/0/0 18/0/0 18/0/0 — — 
●win/tie/loss 0/0/18 2/6/10 0/0/18 6/8/4 3/3/12 5/0/13 7/0/11 4/0/14 7/0/11 — — 

F-rank* 10.31  4.14  8.22  3.42  5.44  5.47  3.89  6.78  4.33  10.53  3.47  
* The larger F-rank value denotes better performance on Precision. 

the comparison models with a significance level of 0.05 
except for L3Fb̅. However, we see that L3Fb achieves a larger 
R+ when comparing with L3Fb̅, which means that linear bias 
can slightly boost L3F’s rating prediction accuracy in general. 

2) Comparison on ranking prediction accuracy 

We consider two situations. First is to check whether the 
models can correctly rank the items of testing set. Second is 
to simulate a real recommendation scenario. Situation 1: 
predicting ratings for each item of testing set first and then 
calculating NDCG. Note that the Precision of Situation 1 is 1 
because all the items of testing set are predicted and ranked. 
Situation 2: predicting ratings for the items that are not rated 

by the users of training set first and then calculating Precision 
and NDCG. Since it is extremely time-consuming to predict 
and rank all items under Situation 2, we followed the 
common strategy [47] that randomly samples 500 items.  

Situation 1. Table IV presents the detailed comparison 
results. Meanwhile, we also conduct two statistical analyses 
on these comparison results, i.e., win/tie/loss counts of 
L3Fb̅/L

3Fb versus other models and Friedman test among all 
the models. From Table IV, we find that a) L3Fb̅ and L2-LFb̅ 

achieve a much higher NDCG than the other models, b) L3Fb̅ 

has a slightly better performance than L2-LFb̅, and c) L3Fb̅ 
performs better than L3Fb. 
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TABLE VI 
THE COMPARISON RESULTS ON NDCG UNDER SITUATION 2, INCLUDING WIN/TIE/LOSS COUNTS STATISTIC AND FRIEDMAN TEST, WHERE ○ AND • INDICATE 

THAT THE NDCG OF L3Fb̅ AND L3Fb IS HIGHER THAN OR SAME TO THAT OF COMPARISON MODELS RESPECTIVELY. 

Dataset Metric L1-LFb̅ L1-LFb L2-LFb̅ L2-LFb NLF FNLF AutoRec NRT DCCR L3Fb̅ L3Fb 

D1 
NDCG@5 0.0033○  0.0019○● 0.0030○  0.0019○● 0.0016○● 0.0015○● 0.0017○● 0.0023○ 0.0019○● 0.0035  0.0019  

NDCG @10 0.0032○  0.0018○● 0.0029○  0.0018○● 0.0013○● 0.0010○● 0.0020○ 0.0019○ 0.0021○ 0.0033 0.0018  

D2 
NDCG@5 0.0203  0.0048○ 0.0183○  0.0048○ 0.0083○  0.0093○  0.0042○● 0.0085○ 0.0040○● 0.0200  0.0047  

NDCG @10 0.0188  0.0054○● 0.0173○  0.0054○● 0.0076○  0.0088○  0.0030○● 0.0096○ 0.0028○● 0.0180  0.0055  

D3 
NDCG@5 0.1586○  0.0379○● 0.1644○ 0.0378○● 0.0953○  0.1088○  0.0514○ 0.0585○  0.0547○ 0.1662  0.0380 

NDCG @10 0.1569○  0.0442○ 0.1638○  0.0389○● 0.0917○  0.0974○  0.0342○● 0.0696○ 0.0371○● 0.1639  0.0392  

D4 
NDCG@5 0.0028○  0.0001○● 0.0028○  0.0001○● 0.0013○  0.0012○  0.0009○ 0.0013○ 0.0011○ 0.0028  0.0001  

NDCG @10 0.0025○  0.0001○● 0.0024○  0.0002○● 0.0012○  0.0011○  0.0009○ 0.0011○ 0.0010○ 0.0025  0.0002  

D5 
NDCG@5 0.0164○  0.0013○● 0.0149○  0.0013○● 0.0088○  0.0083○  0.0075○ 0.0119○ 0.0071○ 0.0167  0.0014  

NDCG @10 0.0142○  0.0013○● 0.0139○  0.0014○ 0.0076○ 0.0078○  0.0070○ 0.0113○ 0.0068○ 0.0142  0.0013  

D6 
NDCG@5 0.6711 0.5610○ 0.6635○  0.5495○● 0.7449  0.7396  0.7148 0.7196 0.7264 0.6704 0.5581  

NDCG @10 0.6904○  0.5863○ 0.6798○  0.5786○● 0.8199 0.8220  0.7427 0.7620 0.7592  0.6923  0.5804  

D7 
NDCG@5 0.0212○  0.0115○ 0.0213○  0.0109○● 0.0099○● 0.0102○● 0.0094○●  0.0128○  0.0099○● 0.0217  0.0109  

NDCG @10 0.0190○  0.0121○ 0.0191○  0.0107○ 0.0075○● 0.0087○● 0.0085○● 0.0120○ 0.0087○● 0.0195  0.0105 

D8 
NDCG@5 0.0361○  0.0214○ 0.0318○ 0.0215○ 0.0115○● 0.0118○● 0.0063○● 0.0198○● 0.0075○● 0.0375  0.0202  

NDCG @10 0.0336○  0.0206○ 0.0312○  0.0196○● 0.0180○● 0.0182○● 0.0056○● 0.0199○ 0.0063○● 0.0352  0.0196  

D9 
NDCG@5 0.0089  0.0007○● 0.0078○  0.0007○● 0.0014○  0.0016○  0.0066○ 0.0072○ 0.0069○ 0.0088  0.0007  

NDCG @10 0.0088○  0.0011○ 0.0075○  0.0009○● 0.0017○  0.0018○  0.0067○ 0.0071○ 0.0066○ 0.0088  0.0009  

Statistical 
Analysis 

○win/tie/loss 10/4/4 18/0/0 17/1/0 18/0/0 16/0/2 16/0/2 16/0/2 16/0/2 16/0/2 — — 
●win/tie/loss 0/0/18 4/5/9 0/0/18 6/8/4 6/0/12 6/0/12 8/0/10 1/0/17 7/1/10 — — 

F-rank* 9.53  3.97  8.72  3.39  5.39  5.83  3.83  7.28  4.47  10.08  3.50  
* The larger F-rank value denotes better performance on NDCG. 

Situation 2. Tables V and VI present the detailed com-
parison results, where win/tie/loss counts and Friedman test 
results are also recorded. From them, we observe that a) L3Fb̅ 
and L1-LFb̅ achieve a much higher Precision and NDCG than 
the other models, b) L3Fb̅ has a slightly better performance 
than L1-LFb̅, and c) L3Fb̅ performs better than L3Fb.  

Analysis. Under Situation 1, L3Fb̅ and L2-LFb̅ perform 
better than the other models, which coincide with the result 
obtained from rating prediction comparison. While under 
Situation 2, L3Fb̅ and L1-LFb̅ do better. One reason is that 
both rating prediction comparison and Situation 1 are tested 
on each item of testing set, where L2 norm-oriented Loss can 
search for a better solution. Under Situation 2, only a small 
part of randomly sampled 500 items is included in the testing 
set. These randomly sampled items that are not included in 
the testing set maybe like outliers in training a model. As a 
result, L1 norm-oriented Loss can search for a better solution. 
Since L3Fb̅ has the merits of both L1 and L2 norm-oriented 
Loss, it performs well under both situations. Note that L3Fb̅ 
outperforms L3Fb under both situations, which means that 
linear bias tends to degrade instead of improving L3F’s 
ranking prediction accuracy. 

3) Comparison of computational efficiency 

Fig. 7 presents the CPU running time of all the models 
when training for rating prediction, where we observe that a) 
DNN-based models (AutoRec, NRT, and DCCR) cost much 
more CPU running time than the other models, which is 
caused by their DNN-based learning strategy [59], b) L3F 
costs a little more CPU running time than L1-LF and L2-LF 
because it ensembles L1 and L2 norms, and c) L3F cost less or 
more CPU running time than NLF and FNLF on the different 
datasets.  

Note that vanilla SGD-based matrix factorization for RSs 
can be efficiently computed in parallel [74]. Since L3F also 
belongs to the family of SGD-based matrix factorization, we  

Fig. 7. The comparison CPU running time of involved models on D1–D9. 

  
(a) CPU running time                         (b) Speedup 

Fig. 8. The computational efficiency of parallel L3F on D1 as the number of 
threads increases. 

can improve its computational efficiency through parallel-
ization. On this basis, we develop L3F to a parallel version 
according to Hogwild! [74]. Specifically, we randomly 
sample the known ratings from RK first and then employ them 
to respectively update L3F’s each LF through different 
threads simultaneously. Please refer to [74] for details.  

Next, we test the computational efficiency of parallel L3F 
with different numbers of threads. Fig. 8 records the results 
on D1. The complete results on all datasets are recorded in 
Fig. S17 in the Supplementary File. From them, we see that 
L3F’s computational efficiency has been significantly im-
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proved with a nearly linear speedup as the number of threads 
increases. For example, the CPU running time with 16 
threads (137.04 seconds) is much less than that with only one 
thread (1284.69 seconds, original L3F without parallelization) 
on D1. Note that there are no significant differences in pre-
diction accuracy between original L3F and its parallel ver-
sion.  

4) Summary of comparison results 

We compare L3Fb̅/L
3Fb with nine related state-of-the-art 

models on rating prediction, ranking prediction, and com-
putational efficiency. The comparison results verify that a) 
L3Fb has a significantly higher rating prediction accuracy 
than the nine models, b) L3Fb̅ performs best on both situations 
of ranking prediction among all the models, c) linear bias has 
positive effects in improving L3F’s rating prediction accu-
racy, while it can hardly improve L3F’s ranking optimization 
performance, d) L3F’s computational efficiency is higher 
than that of DNN-based models and comparable to that of 
LF-based models, and e) L3F’s computational efficiency can 
be significantly improved through parallelization.  

According to recent LF analysis on an HiDS matrix, a 
linear LF model like L2-LFb̅/ L2-LFb may outperform 
DNN-based models with careful model settings. In this study, 
each involved model’s hyper parameters are carefully tuned 
on D1‒9 to achieve its best performance. Therefore, we find 
that L1-LFb̅/L1-LFb, L2-LFb̅/L2-LFb, NLF, and FNLF out-
perform AutoRec, NRT, and DCCR in terms of prediction 
accuracy for missing data of an HiDS matrix on several 
testing cases. This phenomenon is also highly consistent with 
the study presented in [60-61]. On the other hand, this ac-
curacy gain is also data-dependent since the involved 
DNN-based models can outperform these linear models on 
the other testing cases. However, a proposed L3F outper-
forms its peers in terms of prediction accuracy for missing 
data on most testing cases. 

Note that a DNN-based model costs much time to build, 
while an LF model enjoys its high computational efficiency 
on HiDS data. From this point of view, a proposed L3F 
model can better satisfy the demands of industrial RSs for 
fast and accurate recommendations than its peers do. 

V. CONCLUSIONS 

This study proposes an L3F model for efficiently ad-
dressing HiDS matrices arising from RSs. It adopts two-fold 
ideas: a) Aggregating the robustness depending on L1 norm 
and stability depending on L2 norm to form its 
L1-and-L2-norm-oriented Loss, and b) Adaptively adjusting 
weights of L1 and L2 norms in its Loss. Theoretical and 
empirical studies show that an L3F model obtains fine 
aggregation effects with L1 norm-oriented Loss’s robustness 
and L2 norm-oriented Loss’s stability when handling an 
HiDS matrix with outliers. 

According to Section IV(D), an L3F model’s performance 
is sensitive to its regularization coefficient λ, which is da-
ta-dependent and should be tuned carefully. Therefore, its 
self-adaptation is desired to enhance L3F’s practicability. On 
the other hand, will L3F achieve further performance gain 
with the incorporation of more distance metrics into its Loss, 

e.g., L2,1 norm? Naturally, more complex weighting strate-
gies are needed to do so. We plan to address these open issues 
in the future.  
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