

TR/02/87 February 1987

An Investigation of Pricing

Strategies Within Simplex

by

 Gautam Mitra
 Ivonia Rebelo
 Mehrdad Tamiz

z1607313

AN INVESTIGATION OF PRICING STRATEGIES WITHIN SIMPLEX

by

Gautam Mitra*

Ivonia Rebelo**

Mehrdad Tamiz*

 February1 987

*Department of Mathematics and Statistics, Brunel University.

**Economics Department, City of London Polytechnic.

ABSTRACT

The PRICE step within the revised simplex method for the LP problems is

considered in this report. Established strategies which have proven to

be computationally efficient are first reviewed. A method based on the

internal rate of return is then described. The implementation of this

method and the results obtained by experimental investigation are

discussed.

CONTENTS

Abstract

1. Introduction

2. Pricing methods: a survey

2.1 Multiple and partial pricing

2.2 Devex method for pricing

2.3 Steepest-edge algorithm

3. An alternative pricing method

4. Experimental results

5. Conclusion

References

Appendix Zero tolerances for algorithmic steps

1. Introduction

Several approaches have been suggested to improve the pricing step in

the simplex method which involves substantial computational effort. Among

the major developments which have now become accepted industry's

standard are the multiple and partial pricing methods, the devex method

and the steepest-edge algorithm. More recently an alternative method,

which considers the rate of return of each non-basic variable with

negative reduced cost, has been suggested by Dr. Keyzer. The method

has been found to have an efficiency gain of 20 to 60 percent over the

simplex pricing method on some medium to large scale LP problems.

Experimental tests were undertaken using a set of small but

representative industrial test problems to investigate whether this result

held more generally. The purpose of the present paper is to report on

these investigations

The paper is in five parts. The present section includes a definition of

the notation and terminology, and an overview description of the simplex

method. It is followed in section 2 by a survey of three of the major

alternative pricing methods. The partial pricing and multiple pricing

methods are presented in section 2.1. The devex method for pricing and

the steepest-edge algorithms are described in section 2.2 and 2.3,

respectively. These algorithms have proved, in practice, to give a

worthwhile overall gain over the original pricing step of the simplex. The

method recently published by Maros [MARO 86] appears to be promising.

A description and investigation of this work is postponed until more

experimental work is undertaken and the next version of this report.

 Section 3 presents the alternative method developed by Dr. Keyzer at the

Centre for World Food studies. Results of the investigation are presented

page 1

in section 4, and finally some overall conclusions are made in section 5.

Appendix contains a description of zero tolerances which determine logic

tests used in the simplex steps.

Before proceeding to section 2 first the notation and terminology used in

the paper is defined and then the revised simplex method is described in

order to provide the framework within which the subsequent algorithms

are described.

Notation and terminology

A LP coefficient matrix

Ai Matrix of non-basic columns

aij The (i, j)th element of the original A

āij The (i, j)th element of A after one or more linear

 transformations

āij The (i, j)th element after one pivotal transformat ion

 of the above

a.j The jth column of A. For notational simplicity

 this is represented as aj

B Basis matrix

bi The ith value of the original rhs

page 2

ib
−

 The ith value of the rhs after one or more linear

 transformations

ib
−

 The ith value of the rhs after one pivotal

 transformation of the above

BTRAN Backward transformation

C Indices of the non-basic variables forming the

 reference frame (devex)

cj Cost coefficient

−

jc or dj Reduced cost of the jth non -basic variable

COL Set of indices {1,2,........,n}

COL+ Set of indices {l, 2,….,n, 0, n+1, ... , n+m}

Ei The ith transformation matrix (eta-vector)

eta-file The set of eta-vectors

FTRAN Forward transformation

Gi Set of column indices for partial pricing

LP Linear programming

 page 3

MROW, m Number of rows in A (and B)

NCOL, n Number of columns in A

Пp., Пp , П The pth row of the basis inverse. For notational

 simplicity this is represented as Пp. or more simply

 as П

R Pivot positions for basic variables in C (devex)

rhs Right hand side values

ROW Set of indices {1,2,......,m}

ROW+ Set of indices {0,1,2,......,m}

Tj Weight assigned to the column j

XTOLDJ Tolerance used for dj

XTOLIN Tolerance used for pivots during reinversion

XTOLPV Tolerance used for pivots during simplex iterations

XT0LV Tolerance used for rhs values

XTOLZE Tolerance used for zero

 page 4

The revised simplex method

The revised simplex mathod is stated in the following compact form which
takes into account phase 1 and phase 2 (for the definition of phase 1
and phase 2 see [OHAY 68]).

Assume that Bk
-1 is the inverse matrix at the kth iteration, that is

 Bk
-1 = EkEk-1 E1 ,

then the steps of the revised simplex algorithm may be stated as:

step 1 :

 a: Compute the form vector e.

 This is a row vector of (m+1) components which takes the

 value 0 or ±1.

 b: Compute the pi-vector.

 Obtain the pi-vector by which the reduced cost coefficient of

 a variable (column) is computed. This is done by performing a

 BTRAN operation on vector e:

 Пk = eBk
-1 = e EkEk-1 E1

step 2 : Pricing operation (PRICE)

 Price out the variables (columns of A) by computing the inner

 product āoj = jc = Пkaj, (in phase 1). Choose a column q for
−

jw

 which qc has the most negat ive value. I f no such column

 exists go to EXIT.

 page 5

step 3 : Column transformation (update)

Update the column q by performing an FTRAN operation on the

 column, that is

 āq = Bk
-1 aq

 or āq = EkEk-1......E1aq

step 4 : Choose a row (CHUZRO)

Choose a row p such that

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<<>>= −−−−

−

−

∈ 0aand0bor0,aand0b
a

b
a
b

iqiiqi

pq

pmin
ROWi

pq

p

if no such a row exists 20 to EXIT

step 5 : Update the solution values and the basis inverse Bk
-1

 The solution vector is updated by the relation:

 −=′ + bEb 1kp

where −b ’ denotes the new solution values .The basis inverse
is updated by the relation

 (Bk+1)-1 =Ek+1BBk
-1

 thus eta-file is augmented by the new eta Ek+1

 go to step 1.

EXIT :

If control is transferred from step 2 and current status is
phase 2 then optimum solution for the LP problem is found,

page 6

else i t i s phase 1 and there cannot be a feasible solut ion to

the problem. I f control is transferred from step 4 (only

possible in phase 2) then the optimum solution is not bounded.

For the computer implementation of this method it is also necessary to
consider the zero tolerances for ij b,c

ja

 and āpq. These tolerances are

described in the appendix A.l.

Within revised simplex, the pricing step involves substantial computational

effort. This is specially true for long thin matrices, since a vector

multiplication operation has to be carried out to obtain the reduced cost

for each variable (column). Based on actual experience, it has long been
recognised that computing the inner product Π for all the columns

aj not in the basis and selecting the most negative reduced cost (dj) is

not always the best computational strategy.

2. Pricing methods: a survey

2.1 Multiple and partial pricing [OHAY 68]

In the multiple pricing method at most p columns (2≤p≤l0) with most

negative dj’s are selected during the price pass. Subsequently this

sub-matrix (m×p) is optimised in explicit tableau format which does not

require further FTRAN and BTRAN operations. To optimise over this (m×p)

sub-matrix, however, requires as many floating point words (work areas)

in the main memory. This strategy has proved very effective in reducing

both the total computational time and the average time per iteration for

solving large scale problems. The steps of the revised simplex method

using the multiple pricing strategy are as follows:

page 7

Step 1 Set up the pi-vector.

Step 2 Select a t most p columns with an ordered set of negat ive

 d j ’ s . I f p=0 go to EXIT.

Step 3 Update the sub-matrix using the FTRAN operation on the p

 Selected columns.

Step 4 Optimise over the sub-matrix:

(i) Select the column with most negative reduced cost. If

none selected go to step 1.

(ii) Perform pivot selection on this column to determine the

leaving basic variable. If none found go to EXIT.

(i i i) Upda te the e ta - f i l e by th i s new e ta , o r upda te the

so lu t ion va lues by the bound va lue i f the re i s a bound

change .

(iv) Update the sub-matrix and rhs values, go to (i).

EXIT If control is transferred from step 2 and current status is

phase 2 the optimum solution for the LP problem is found,

else it is phase 1 and there cannot be a feasible solution to

the problem. If control is transferred from step 4 (ii) (only

possible in phase 2) then the optimum solution is not bounded.

page 8

Another refinement to pricing operation is the partial pricing, where the
columns of the A-matrix are partitioned into k portions, defining k
sets of column indices.

 G1,G2,....., Gk

such that

 = COL tG
k

1t
U
=

In general there are q columns in each of these portions thus

 .q~G~......~G~G~G 3321 −−−−−

Also in practice q is much larger than p.

During the price pass, the best p columns are selected from one
portion beginning with the portion it left off with at the last pricing
pass. Thus not all of the A-matrix need to be scanned in one price pass.
This appears to achieve a direct saving on the total time required to
optimise the problem, however, it is somewhat offset by the fact that
column selections are based on only a portion of the matrix, whereby the
total number of iterations usually increase.

2.2 Devex method for pricing [HARR 73]

In the simplex method, the value of the objective function differs at
every iteration by

 x0 = x0 -
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

pq

p
j a

b
d

which leads to the definition of gain

page 9

 gain =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

pq

p
j a

b
d

The largest gain at any step depends on the reduced cost dj (rate of

objective change) and the resulting value of the entering non-basic

variable. Unfortunatly this value is not known until the basic variables

are interrogated. Substantial computational effort is needed if the

non- basic variable with the greatest gain were to be chosen to enter

the basis. Greenberg [GREE 78] states that, generally, a "best gain

criterion" is effective in keeping the total number of iterations nearest

to minimal in comparison with the strategy of selecting the non-basic

variable with largest (absolute) reduced cost. A procedure for obtaining a

good gain criterion is the devex method which was suggested by Harris

[HARR 73]. This method is based on the concept of the gradient,

 gradient =
||a||

d

j

j ,

which is the rate of change in objective function value as defined using

the norm of the updated column.

Choice of the most negative dj (standard simplex rule) corresponds to

choosing the largest gradient in the space of the current non-basic

variables; a reference frame that changes from iteration to iteration, and

which constantly discounts previous and future decisions. Harris's method

is to maintain a constant reference frame (usually the initial set of

non-basic variables) and compute the radients in this space by means

of a set of (dynamic) weighting or scaling factors applied to the reduced

costs.

page 10

Suppose that the original non-basic variables form the reference frame

and assign unit column weights to all the columns, Tj=l, j∈COL. Let the

set C contain the indices of these non-basic variables, and the set R

contain the pivot positions of these reference variables. Initially R=Φ. The

gradient in the space of these reference variables after a number of

iterations is no longer simply dj but dj/Tj where

 Tj = √ ,)ak(k
ROWi

2
jiij ∑

∈

−+

where kj and ki take the value 1 or 0 depending upon whether the

pivot row i and the column j , respectively, belong to variables of

the reference frame or not.

The Tj factors can be approximated from iteration to iteration by means
of an updating formula which uses only the pivot row and the updated

column at each iteration. Suppose that basic variable in the pt h row

posit ion is to be exchanged with the non-basic variable in the qth

column position then

,aaaa

a/aa

pjiqijpj

pqpjpj

′−=′

=′
 (2.2,1)

suppose further that p∉R and q∈C then

 Rp,)a()a(k)(T 2

pj
2

ij
Ri

j
2

j ∉′+′+= ∑
∈

' (2.2.2)

from (2.2.1) and (2.2.2) it can be shown that

 ∑∑∑

∈∈∈

′−′+′++=′
Ri

iqijpj
2

pj
Ri

2
pjip

Ri

2
ijj

2
j aaa2)a()aa()a(k)T(

 = ∑∑∑
∈∈∈

′−+′++
Ri

iqijpj
Ri

2)
pj

2
pj

Ri

2
ijj aaa2)a((1)a()a(k

page 11

from which we have

]qT)pja(j[TjT 22_2 ′+√=′

which roughly approximates to

.)T|a|,(TmaxjT qpjj ′=′ (2.2.3)

The same approximation is obtained if Rp∈ and Cq∈ and for

the slightly different approximation is given by.

Cq∉

 .])T(1a,[TmaxjT 2

q

'
pjj +√=′ (2.2.4)

The as given by (2.2.3) and (2.2.4) are used to update the weighting

factors at every iteration before the pricing operation. This is
accomplished by using a unit row vector e

jT′

p with unity in the row
position and computing and then

thp
1Bpepe −=− jape

_
pja

_
=′ for COLj∈

Harris reports that the ratio between the calculated and the estimated
value of for the updated column q rarely exceeds 2.0, and its most

usual value lies between 0.7 and 1.3. But if it falls below 0.2 a new

reference frame is set up using the current non-basic variables and the

weighting factors are reset to unity.

qT

Many industry standard LP systems include this pricing strategy, or its

variant, as a system defined algorithmic option.

2.3 Steepest-edge algorithm [GORE 77]

The steepest-edge method is based on approximate calculation of the

gradient in the space of a fixed framework by a recurrence relation.

page 12

Let the A-matrix be partitioned into an mxm basis matrix B and a

matrix of the non-basic columns A1 such that A = [B/A1] .

Now consider the matrix N where

I0
AB

N 1=

where I is an identity matrix of order n-m. The inverse of this matrix is

then

I0

ABB
N 1

11
1

−−
− −
=

If (j >m) is the column of Njη thj -1, then the reduced cost of a

non-basic variable is

jd

 . jηTcjd =

Choosing the steepest-edge in the space of all the vriables is equivalent

to minimising the normalised reduced cost

||jη||
jηTc (2.3.1)

Let , then (2.3.1) becomes jη

T
jη||jη||jλ

2 ==

2
1

jλ
jηTc . j>m

Explicit computation of all 2

1

jλ , j>m , at each step of the simplex method

is prohibitively expensive. The recurrence relations derived by Goldfarb

page 13

and Reid calculates this value accurately without an enormous increase in

the computational time per iteration.

Suppose the non-basic variable is to be exchanged with the basic qx

variable , in the pth row position, at the next iteration. Then the

recurrences giving the new values
px

j
_
λ in terms of the old values

are

jλ

21 ||qaB||1qλ

−+= (2.3.2)

 2
q

_
a/qλq

_
λ =

 q2λ)pja
_

(qaBTBTjapja
_

2jj
_

1 ′+−′−λ=λ − . (j ≠ q)

Formula (2.3.2) fives a current non-recursive calculation for the variable

leaving the basis. It may be used to provide a simple check on

round-off errors by comparing it with the recurred value.

Goldfarb and Reid reported that the total number of iterations and the

total time needed to solve their six real-life test problems required 33%

less iterations and 7% less time than the Harris's devex algorithm. They

conclude that the steepest edge and the Harris algorithm show a

worthwhile overall gain over the original simplex algorithm.

3. An alternative pricing method [KEYZ 84]

Recently Keyzer [KEYZ 84] has suggested an approach which considers

the rate of return of each non—basic variable with negative reduced cost

dj (which is the net return). Define the following notations:

page 14

0jc ≥+ The original cost jcjc,jc =+ if −≥jc XTOLDJ. 0jc =+ otherwise

0jc ≥− The original cost)jabs(cjc,jc =− if −<jc XTOLDJ. 0jc =− otherwise

0iΠ ≥+ The positive entry in the row position of the pi-vector,

XTOLZE

thi

−≥+ iΠifiΠiΠ ∈i ROW. 0iΠ =+ otherwise.

0iΠ ≥− The absolute value of the negative entry in the row

position of the pi-vector,

thi

()iΠabs-iΠ = if −<iΠ XTOLZE, ROW.

 otherwise

∈i

0iΠ =−

0ija ≥+ The positive entry in the row position of the column,

XTOLZE,

thi thj

−>=+ ijaifijaija ∈i ROW. 0ija =+ otherwise

0ija ≥− The absolute value of the negative entry in the row position

of the column,

thi

thj −<=− jiaif)ijabs(aija XTOLZE, ∈i ROW.

otherwise

0ija =−

ija,jc and can now be expressed in terms of these notations as iΠ

+∈
∈

⎪
⎭

⎪
⎬

⎫

−−+=
−−+=

−−+=

COLj
ROWi

iΠiΠiΠ
ijaijaija

jcjcjc

For every non-basic variable with jx −<jd XTOLDJ compute

such that

−+ jαandjα

⎪
⎭

⎪
⎬

⎫

+−−+=
∈+−+−+=−
∈−−+++=+

.jcjαjαjdwhereby
ROWiijaiΠijaiΠjα
ROWiijaiΠijaiΠjα

 (3.1)

page 15

Taking into account the economist’s interpretation of the LP model

whereby the internal rate of return is considered, the variable choice

may be stated as: find the variable q such that

 j)xjαj(cmax +++

 δjx)jαj(ctosubject ≤−+− ,

for a given arbitrary finite positive value δ. This can be easily shown to

be equivalent to choosing the variable for which the expression qx

 −+−
+++

qαqc
q αq c ,

takes the maximum value, Thus.

⎭
⎬
⎫

⎩
⎨
⎧

−<−+−
+++

=−+−
+++

XTOLDJjd|
jαjc
jαjc

j
max

qαqc
qαqc (3.2)

If in (3.2), ≤+++≤ jαjc0 XTOLDJ then the numerator is taken as C where

C>XTOLDJ. If ≤−+−≤ jαjc0 XTOLDJ then the denominator is set to 1.

(3.1) is computed for each column during the price pass of the A-matrix.

As it involves processing the two vectors and П. The procedure is

easily implemented using the "price" routine of the simplex method.

ja

4. Experimental results

Five test problems were used to investigate the performance of Keyzer's

alternative pricing procedure, their characteristics are summarized in

table 4.1. The first four problems are representative industrial test

page 16

problems and are taken from the lower end of the collection of bench

mark problems compiled for the validation of the FORTLP system

[MITY 86], [TAMI 86].

TABLE 4.1: CHARACTERISTICS OF TEST PROBLEMS.

NO NAME SOURCE NO OF

ROWS

NO OF

COL.

NO OF

BOUNDS

NO OF

NON-

ZEROS

DENSITY

IN %

NO OF

DISTINCT

NON-ZEROS

1 BEALE LBU* 171 303 38 901 1.7% 19

2 BERGER LBU 65 133 133 415 4.8% 16

3 BASEIN SIA 48 60 28 209 7.3% 116

4 FULLJV29 SIA 201 230 163 864 1.9% 281

5 TESTIN BRUNEL 5 7 0 12 34.3% 5

* Loughborough University.

Three alternative strategies were tried:

Strategy 1:

Use Keyzer in both phase 1 and phase 2 of the simplex replacing a

zero by a small constant C which is assigned a value greater

than the tolerance XTOLDJ. In the present computations C was

assigned the value 10 x XTOLDJ.

)jαj(c +++

jd

Strategy 2:

Use Keyzer in both phase 1 and phase 2 of the simplex bypassing

the non-basic variable ifthj 0)jαj(c =+++ .

page 17

Strategy 3:

Use Keyzer in phase 1 bypassing the non-basic variable if thj

0)jαj(c =+++ . In phase 2, apply the original simplex pricing method.

The experimental results using the alternative strategies are presented in

table 4.2.

TABLE 4.2: EXPERIMENTAL RESULTS

NO OF ITERATIONS

STRATEGIES

NO OBJECTIVE

FUNCTION

OPTIMUM

VALUE SIMPLEX

1 2 3

1 Min 0.0 138 138 >>146 146

2 Min 811.84 81 80 64 104

3 Min 127286.51 35 35 29 35

4 Min NO-FEAS 87 87 82 82

5 Min 23.0 7 5 5 5

The results in table 4.2 indicate that for strategy 1 both the simplex

method and Keyzer perform equally well in most cases. In the case of

strategy 3 Keyzer performs rather poorly, however, in the case of

strategy 2 Keyzer's method performs better for three of the test

problems.

page 18

5. Conclusion

In this paper, alternative pricing methods have been discussed, it is well

accepted that the devex and steepest descent methods are superior to

the standard pricing algorithm which is used by the simplex method.

Experimental tests on Keyzer's approach suggests that its performance

may depend on the problem structure and the choice of strategy.

i) The structure of the problem.

Keyzer [KEYZ 84] states that: the return-over-cost selection rule appears

in practice to function better. In practical medium to large scale LP

applications the change has produced efficiency gain from 20 to 60

percent depending on the problem (seven LP models for the agricultural

sector of developing countries, six of about 100 rows and 150 columns

and one of 1100 rows and 900 columns). The return-over-cost rule may

not always prove to be more efficient.

ii) The strategy employed.

For example, it was found that if, in the case of the fourth test problem,

before optimisation, ZCRASH was used to pivot out the artificial variables

and then Keyzer was applied then in this case, 77 iteration were

required to obtain the non-feasible solution.

page 19

REFERENCES

[APEX 77] APEX III, "Reference Manual, version 1.1", Control Data

Corporation, Minneapolis, USA, (1977) .

[GORE 77] Goldfarb, D., and Reid, J.K., "A practical steepest-edge simplex

algorithm", Maths. Prog., Vol. 12, No. 3, June (1977).

[GREE 78] Greenberg, H.J., "Pivot selection techniques", Design and

implementation of optimisation software, Greenberg, H.J., (ed.), Sijthoff and

Noordhoff, (1978).

[HARR 73] Harris, P.M.J., "Pivot Selection Methods of the Devex LP Code",

Mathematical Programming, vol. 5, pp. 1-28, (1973).

[KEYZ 84] Keyzer, M.A., "Distorted linear programming with applications to

linear economic models", Staff working paper SOW-84-08, Centre for World

Food Studies, Vrije Universiteit, Amsterdam, Holland, (1984) .

[MARO 86] Maros, I., "A general phase-I method in linear programming",

European Journal of Operations Research, Vol. 23, (1986).

[MIBE 69] Mitra, G.,and Beale, E.M.L., private communications, (1969).

[MITY 85] Mitra, G., Tamiz, M., and Yadegar, J., "FORTLP: A Linear,

Integer and Nonlinear Programming System, Preliminary User Manual",

Brunel University, July 1985.

page 20

[MPSX 71] MPSX, "Mathematical Programming System Extended", Program

number 5734 XM4, IBM Trade Corporation, New York, USA, (1971).

[MUAT 81] Murtagh, B.A., "Advanced Linear Programming: Computation and

Practice", McGraw-Hill, New York, (1981).

[OHAY 68] Orchard-Hays, W., "Advanced Computing Techniques in Linear

Programming", McGraw-Hill, New York, (1968).

[TAMI 86] Tamiz, M., "Design, implementation and testing of a general LP

system exploiting sparsity", PhD Thesis, Brunel University, (1986).

page 21

APPENDIX Zero tolerances for algorithmic steps [OHAY 68]

In this appendix some zero tolerances which determine logic tests used in

the simplex steps of the LP computations are discussed and their

suggested numerical values given.

Zero tolerances are introduced in to LP optimisers in order to control

the degree of accuracy obtained in the numerical computations and to

improve computing time. Their purpose is to eliminate noise that would

otherwise be introduced indefinitely by algebraic operations.

The most basic tolerance is the threshold value, XTOLZE, for the

magnitudes of real numbers. Two real numbers a and b are said to

be equal if their difference is within this tolerance, that is

 -XTOLZE ≤ a-b ≤ XTOLZE .

Similarly a real number c is considered to take zero value if

 -XTOLZE < c < XTOLZE .

This tolerance is normally set to 10-12.

Another important tolerance is the pivot (rejection) tolerance, XTOLPV,

which prevents a coefficient very close to zero from being considered as

a pivot element in a simplex iteration, hence directly affecting the

stability of the computational steps. The value 10-θ is normally used for

this purpose. If this tolerance is increased then it is known to increase

the total run time for a solution [MUAT 81].

page 22

A second pivot tolerance XTOLIN is used during the reinversion of the

basis matrix to test the size of a proposed pivot. The value of this

tolerance is related to the value of XTOLPV. Normally XTOLIN is larger

than XTOLPV to ensure that at the end of the reinversion the basis is

not singular. The value of 10-6 is usually used for this tolerance.

Feasibility tolerances XTOLV (for primal solution values) and XTOLDJ (for

dual solution values) cure designed to check whether or not the values of

the basic variables (rhs values) and the reduced cost coefficients are

feasible, respectively. A larger value is used for the reduced cost

coefficient than for the rhs values since computations with the pie-vector

tend to have more error. The values 10-7 and 10-6 are normally used

for XTOLV and XTOLDJ respectively. Increasing the value of XTOLV may

give a shorter total run time, but increasing the value of XTOLDJ may

cause unnecessary extra iterations.

In general it is well known among computational LP specialists [see for

example MIBE 69] that the following ordered values are used for

tolerances

 XTOLDJ > XTOLV > XTOLIN > XTOLPV > XTOLZE .

In most LP optimisers the value of these tolerances can be altered by

the user to suit the environment. Typical tolerance values used for a 60

bit floating point word giving approximately 15 decimal places accuracy

are:

X T O L D J = 1 0 - 5

X T O L V = 1 0 - 6

X T O L P V = 1 0 - 8

X T O L Z E = 1 0 - 1 0

page 23

Tolerances as used in MPSX [MPSX 71] and APEX [APEX 77] are set out

in table A. 1. Note that IBM uses 64 bit double precision floating point

representation, and CDC uses 60 bit double precision floating point

representation.

TABLE A.1: TOLERANCES IN MPSX AND APEX

 Tolerance variable Identifier Default value

 zero XTOLZE 10-30

 reduced cost XTOLDJ 10-5

rhs value XTOLV 10-6

MPS X
pivot value during XTOLPIV 10-6

 primal iterations

 pivot value during XTOLINV 10-6

 reinversion

 zero RTPACK 10-13

 reduced cost RTDINF 10-5

APEX rhs value RTINFZ 10-6

 pivot value during RTPVMIN 10-8

 primal iterations

 and reinversion

page 24

