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ABSTRACT 

The PRICE step within the revised simplex method for the LP problems is 

considered in this report. Established strategies which have proven to 

be computationally efficient are first reviewed. A method based on the 

internal rate of return is then described. The implementation of this 

method  and  the results obtained by experimental investigation are 

discussed. 
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1. Introduction 

 

Several approaches have been suggested to improve the pricing step in 

the simplex method which involves substantial computational effort. Among 

the major developments which have now become accepted industry's 

standard are the multiple and partial pricing methods, the devex method 

and the steepest-edge algorithm. More recently an alternative method, 

which considers the rate of return of each non-basic variable with 

negative reduced cost, has been suggested by Dr. Keyzer. The method 

has been found to have an efficiency gain of 20 to 60 percent over the 

simplex pricing method on some medium to large scale LP problems. 

 

Experimental tests were undertaken using a set of small but 

representative industrial test problems to investigate whether this result 

held more generally. The purpose of the present paper is to report on 

these investigations 

 

The paper is in five parts. The present section includes a definition of 

the notation and terminology, and an overview description of the simplex 

method. It is followed in section 2 by a survey of three of the major 

alternative pricing methods. The partial pricing and multiple pricing 

methods are presented in section 2.1. The devex method for pricing and 

the steepest-edge algorithms are described in section 2.2 and 2.3, 

respectively. These algorithms have proved, in practice, to give a 

worthwhile overall gain over the original pricing step of the simplex. The 

method recently published by Maros [MARO 86] appears to be promising. 

A description and investigation of this work is postponed until more 

experimental work is undertaken and the next version of this report. 

 Section 3 presents the alternative method developed by Dr. Keyzer at the 

Centre for World Food studies. Results of the investigation are presented 
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in section 4, and finally some overall conclusions are made in section 5. 

Appendix contains a description of zero tolerances which determine logic 

tests  used  in  the  simplex  steps. 

 

Before proceeding to section 2 first the notation and terminology used in 

the paper is defined and then the revised simplex method is described in 

order to provide the framework within which the subsequent algorithms 

are described. 

Notation and terminology 

A LP coefficient matrix 

Ai  Matrix of non-basic columns 

aij  The (i, j)th  element of the original A 

āij  The (i, j)th element of A after one or more linear 

 transformations 

 

āij  The (i, j)th element after one pivotal transformat ion 

 of the above 

 

a.j  The jth  column of A.  For notational simplicity 

 this is represented as aj 

B Basis matrix 

bi  The ith  value of the original rhs 
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ib
−

 The ith value of the rhs after one or more linear 

 transformations 

ib
−

  The ith value of the rhs after one pivotal 

 transformation of the above 

BTRAN Backward transformation 

C Indices of the non-basic variables forming the 

 reference frame (devex) 

cj  Cost coefficient 

−

jc or dj Reduced cost of the jth non -basic variable 

COL Set of indices {1,2,........,n} 

COL+  Set of indices {l, 2,….,n, 0, n+1, ... , n+m} 

Ei  The ith transformation matrix (eta-vector) 

eta-file The set of eta-vectors 

FTRAN Forward transformation 

Gi  Set of column indices for partial pricing 

LP Linear programming 
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MROW, m Number of rows in A (and B) 

NCOL, n Number of columns in A 

Пp., Пp , П  The pth row of the basis inverse. For notational 

 simplicity this is represented as Пp. or more simply 

 as П

R Pivot positions for basic variables in C (devex) 

rhs Right hand side values 

ROW Set of indices {1,2,......,m} 

ROW+  Set of indices {0,1,2,......,m} 

Tj Weight assigned to the column j 

XTOLDJ Tolerance used for dj 

XTOLIN Tolerance used for pivots during reinversion 

XTOLPV Tolerance used for pivots during simplex iterations 

XT0LV Tolerance used for rhs values 

XTOLZE  Tolerance used for zero 
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The  revised   simplex  method 

The revised simplex mathod is stated in the following compact form which 
takes into account phase 1 and phase 2 (for the definition of phase 1 
and phase 2 see [OHAY 68]). 

Assume that Bk
-1 is the inverse matrix at the kth iteration, that is 

 Bk
-1 = EkEk-1 . . . . E1 , 

then the steps of the revised simplex algorithm may be stated as: 

step 1 : 

 a: Compute the form vector e. 

     This is a row vector of (m+1) components which takes the 

      value  0  or   ±1. 

      b: Compute   the   pi-vector. 

 Obtain the pi-vector by which the reduced cost coefficient of 

 a variable (column) is computed. This is done by performing a 

 BTRAN operation on vector e: 

 Пk  =  eBk
-1  = e EkEk-1 . . . . . E1

step 2 : Pricing operation (PRICE) 

  Price out the variables (columns of A) by computing the inner 

    product āoj = jc = Пkaj, ( in phase 1). Choose a column q for 
−

jw

   which qc has  the most  negat ive value.  I f  no such column 

    exists go to EXIT. 
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step 3 : Column  transformation  (update) 

Update the column q by performing an FTRAN operation on the 

     column, that is 

      āq = Bk
-1 aq

      or              āq = EkEk-1......E1aq 

step 4 : Choose a row (CHUZRO) 

Choose a row p such that 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<<>>= −−−−

−

−

∈ 0aand0bor0,aand0b
a

b
a
b

iqiiqi

pq

pmin  
ROWi

pq

p  

if no such a row exists 20 to EXIT 

step 5 : Update the solution values and the basis inverse Bk
-1

  The solution  vector is updated by the relation: 

 

 −=′ + bEb 1kp  

where −b ’ denotes the new solution values .The basis inverse 
is updated by the relation 

  

  (Bk+1)-1 =Ek+1BBk
-1 

 

     thus eta-file is augmented by the new eta Ek+1 

                go to step 1. 

EXIT : 

If control is transferred from step 2 and current status is 
phase 2 then optimum solution for the LP problem is  found, 
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else  i t  i s  phase  1  and  there  cannot  be  a feasible solut ion to  

the  problem.  I f control is transferred from step 4 (only 

possible in phase 2) then the optimum solution is not bounded. 

For the computer implementation of this method it is also necessary to 
consider the zero tolerances for ij b,c

ja

 and āpq. These tolerances are 

described   in  the  appendix  A.l. 

Within revised simplex, the pricing step involves substantial computational 

effort. This is specially true for long thin matrices, since a vector 

multiplication operation has to be carried out to obtain the reduced cost 

for each variable (column). Based on actual experience, it has long been 
recognised that computing the inner product Π  for all the columns 

aj  not in the basis and selecting the most negative reduced cost (dj) is 

not always the best computational strategy. 

2. Pricing methods: a survey 

2.1 Multiple and partial pricing [OHAY 68] 

In the multiple pricing method at most p columns (2≤p≤l0) with most 

negative dj’s are selected during the price pass. Subsequently this 

sub-matrix (m×p) is optimised in explicit tableau format which does not 

require further FTRAN and BTRAN operations. To optimise over this (m×p) 

sub-matrix, however, requires as many floating point words (work areas) 

in the main memory. This strategy has proved very effective in reducing 

both the total computational time and the average time per iteration for 

solving large scale problems. The steps of the revised simplex method 

using the multiple pricing strategy are as follows: 
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Step 1 Set up the pi-vector. 

Step 2 Select  a t  most  p columns with an ordered set  of  negat ive 

  d j ’ s .  I f  p=0 go to  EXIT.  

Step 3  Update the sub-matrix using the FTRAN operation on the p 

 Selected columns. 

Step 4  Optimise over the sub-matrix: 

(i) Select the column with most negative reduced cost. If 

none selected go to step 1. 

(ii) Perform pivot selection on this column to determine the 

leaving  basic variable. If none found go to EXIT. 

( i i i )  Upda te  the  e ta - f i l e  by  th i s  new e ta ,  o r  upda te  the  

so lu t ion  va lues  by  the  bound  va lue  i f  the re  i s  a  bound  

change .  

(iv) Update the sub-matrix and rhs values, go to (i). 

EXIT If control is transferred from step 2 and current status is 

phase 2 the optimum solution for the LP problem is found, 

else it is phase 1 and there cannot be a feasible solution to  

the problem. If control is transferred from step 4 (ii) (only 

possible in phase 2) then the optimum solution is not bounded. 
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Another refinement to pricing operation is the partial pricing, where the 
columns of the A-matrix are partitioned into k portions, defining k 
sets of column indices. 

 G1,G2,....., Gk

such that 

 

  = COL tG
k

1t
U
=

In general there are q columns in each of these portions thus 

 

 .q~G~......~G~G~G 3321 −−−−−  
 

Also in practice q is much larger than p. 

During the price pass, the best p columns are selected from one 
portion beginning with the portion it left off with at the last pricing 
pass. Thus not all of the A-matrix need  to be scanned in one price pass. 
This appears to achieve a direct saving on the total time required to 
optimise the problem, however, it is somewhat offset by the fact that 
column selections are based on only a portion of the matrix, whereby the 
total number of iterations usually increase. 

2.2 Devex method for pricing [HARR 73] 

In the simplex method, the value of the objective function differs at 
every iteration by 

 

 x0 = x0 -
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

pq

p
j a

b
d  

which leads to the definition of gain 
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    gain = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

pq

p
j a

b
d  

The largest gain at any step depends on the reduced cost dj (rate of 

objective change) and the resulting value of the entering non-basic 

variable. Unfortunatly this value is  not known until the basic variables 

are interrogated. Substantial computational effort is needed if the 

non- basic variable with the greatest gain were to be chosen to enter 

the basis. Greenberg [GREE 78] states that, generally, a "best gain 

criterion" is effective in keeping the total number of iterations nearest 

to minimal in comparison with the strategy of selecting the non-basic 

variable with largest (absolute) reduced cost. A procedure for obtaining a 

good gain criterion is the devex method which was suggested by Harris 

[HARR 73]. This method is based on the concept of the gradient, 

 

 gradient =  
||a||

d

j

j   , 

which is the rate of change in objective function value as defined using 

the norm of the updated column. 

Choice of the most negative dj (standard simplex rule) corresponds to 

choosing the largest gradient in the space of the current non-basic 

variables; a reference frame that changes from iteration to iteration, and 

which constantly discounts previous and future decisions. Harris's method 

is to maintain a constant reference frame (usually the initial set of 

non-basic variables) and compute the radients in this space by means 

of a set of (dynamic) weighting or scaling  factors applied to the reduced 

costs. 
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Suppose that the original non-basic variables form the reference frame 

and assign unit column weights to all the columns, Tj=l, j∈COL. Let the 

set C contain the indices of these non-basic variables, and the set R 

contain the pivot positions of these reference variables. Initially R=Φ. The 

gradient in the space of these reference variables after a number of 

iterations is no longer simply dj but dj/Tj where 

  

 Tj = √  ,)ak(k
ROWi

2
jiij ∑

∈

−+

 

where kj and ki take the value 1 or 0 depending upon whether the 

pivot row  i  and the column j , respectively, belong to variables of 

the reference frame or not. 

 

The Tj factors can be approximated from iteration to iteration by means 
of an updating formula which uses only the pivot row and the updated 

column at each iteration. Suppose that basic variable in the pt h  row 

posit ion is  to be exchanged with the non-basic variable in the qth 

column position then 

 
,aaaa

a/aa

pjiqijpj

pqpjpj

′−=′

=′
           (2.2,1) 

 

suppose further that p∉R and   q∈C then 

   
 Rp,)a()a(k)(T 2

pj
2

ij
Ri

j
2

j ∉′+′+= ∑
∈

'                     (2.2.2) 

 

from   (2.2.1)   and   (2.2.2)   it  can   be   shown   that 

 

 
 ∑∑∑

∈∈∈

′−′+′++=′
Ri

iqijpj
2

pj
Ri

2
pjip

Ri

2
ijj

2
j aaa2)a()aa()a(k)T(  

 

          = ∑∑∑
∈∈∈

′−+′++
Ri

iqijpj
Ri

2)
pj

2
pj

Ri

2
ijj aaa2)a((1)a()a(k  
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from which we have 

 
]qT)pja(j[TjT 22_2 ′+√=′  

which  roughly approximates  to 

 
.)T|a|,(TmaxjT qpjj ′=′                        (2.2.3) 

 
The same approximation is obtained if  Rp∈ and Cq∈ and for  

the  slightly  different approximation  is given  by. 

Cq∉

 
   .])T(1a,[TmaxjT 2

q

'
pjj +√=′                        (2.2.4) 

 
The  as given by (2.2.3) and (2.2.4) are used to update the weighting  

factors at every iteration before the pricing operation. This is 
accomplished by using a unit row vector e

jT′

p with unity in the  row 
position and  computing    and  then 

thp
1Bpepe −=− jape

_
pja

_
=′  for COLj∈  

 

Harris reports that the ratio between the calculated and the estimated 
value of  for the updated column q rarely exceeds 2.0, and its most 

usual value lies between 0.7 and 1.3. But if it falls below 0.2 a new 

reference frame is set up using the current non-basic variables and the 

weighting  factors  are reset  to  unity. 

qT

 

Many industry standard LP systems include this pricing strategy, or its 

variant,  as  a system  defined  algorithmic option. 

 

2.3   Steepest-edge algorithm  [GORE  77] 

 

The steepest-edge method is based on approximate calculation of the 

gradient in the space of a fixed framework by a recurrence relation. 
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Let  the  A-matrix  be  partitioned into an mxm basis matrix B and a 

matrix of the non-basic columns A1 such that A = [B/A1] . 

 

Now consider the matrix N where 

 

I0
AB

N 1=  

 

where  I  is an identity matrix of order  n-m. The inverse of this matrix is 

then 

     
I0

ABB
N 1

11
1

−−
− −
=  

 
If   (j >m) is the  column of  Njη thj -1, then the reduced cost of a 

non-basic  variable  is 

jd

  
    .  jηTcjd =

 

Choosing the steepest-edge in the space of all the vriables is equivalent 

to minimising the normalised reduced cost 

 

||jη||
jηTc                                                           (2.3.1) 

 
Let     ,  then (2.3.1) becomes jη

T
jη||jη||jλ

2 ==

 

2
1

jλ
jηTc              .          j>m 

 
Explicit computation of all  2

1

jλ ,  j>m , at each step of the simplex method 

is prohibitively expensive. The recurrence relations derived by Goldfarb 
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and Reid calculates this value accurately without an enormous increase in 

the  computational  time  per  iteration. 

 
Suppose the non-basic variable  is to  be exchanged with the  basic qx

variable , in  the  pth  row position, at the next iteration. Then the 

recurrences giving the new values 
px

j
_
λ  in terms of the old values  

are 

jλ

 
21 ||qaB||1qλ

−+=                               (2.3.2) 

     2
q

_
a/qλq

_
λ =

 q2λ)pja
_

(qaBTBTjapja
_

2jj
_

1 ′+−′−λ=λ − .           ( j ≠ q) 

 

Formula (2.3.2) fives a current non-recursive calculation for the variable 

leaving the basis. It may be used to provide a simple check on 

round-off errors by comparing it with the recurred value. 

 

Goldfarb and Reid reported that the total number of iterations and the 

total time needed to solve their six real-life test problems required 33% 

less iterations and 7% less time than the Harris's devex algorithm. They 

conclude that the steepest edge and the Harris algorithm show a 

worthwhile overall gain over the original simplex algorithm. 

 

3.  An alternative  pricing  method   [KEYZ  84] 

 

 

Recently Keyzer [KEYZ 84] has suggested an approach which considers 

the rate of return of each non—basic variable with negative reduced cost  

dj (which is the net return).  Define the following  notations: 
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0jc ≥+  The original cost jcjc,jc =+  if −≥jc XTOLDJ. 0jc =+   otherwise 

 

0jc ≥−  The original cost )jabs(cjc,jc =−  if −<jc XTOLDJ. 0jc =−   otherwise 

 

0iΠ ≥+  The positive entry in the  row position of the pi-vector, 

XTOLZE 

thi

−≥+ iΠifiΠiΠ ∈i ROW. 0iΠ =+  otherwise. 

 

0iΠ ≥−  The absolute value of the negative entry in the  row 

position of the pi-vector, 

thi

( )iΠabs-iΠ = if −<iΠ XTOLZE, ROW. 

 otherwise 

∈i

0iΠ =−

0ija ≥+  The positive entry in the  row position of the  column, 

XTOLZE, 

thi thj

−>=+ ijaifijaija ∈i ROW. 0ija =+  otherwise 

 

0ija ≥−  The absolute value of the negative entry in the  row position 

of the  column, 

thi

thj −<=− jiaif)ijabs(aija XTOLZE, ∈i ROW.  

otherwise 

0ija =−

 

ija,jc  and   can  now be expressed in terms of these notations as iΠ

     

   

+∈
∈

⎪
⎭

⎪
⎬

⎫

−−+=
−−+=

−−+=

COLj
ROWi

iΠiΠiΠ
ijaijaija

jcjcjc

For every non-basic variable  with jx −<jd XTOLDJ compute  

such   that 

−+ jαandjα

  
⎪
⎭

⎪
⎬

⎫

+−−+=
∈+−+−+=−
∈−−+++=+

.jcjαjαjdwhereby
ROWiijaiΠijaiΠjα
ROWiijaiΠijaiΠjα

   (3.1) 
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Taking into account the economist’s interpretation of the LP model 

whereby the internal rate of return is considered, the variable choice 

may be stated as: find the variable q such that 

    j)xjαj(cmax +++  

   δjx)jαj(ctosubject ≤−+−   , 

for a given arbitrary finite positive value δ. This can be easily shown to 

be equivalent to choosing the variable    for which the expression qx

     −+−
+++

qαqc
q αq c  , 

takes the maximum value, Thus. 

 
⎭
⎬
⎫

⎩
⎨
⎧

−<−+−
+++

=−+−
+++

XTOLDJjd|
jαjc
jαjc

j
max

qαqc
qαqc  (3.2) 

If in (3.2), ≤+++≤ jαjc0 XTOLDJ then the numerator is taken as C where 

C>XTOLDJ. If ≤−+−≤ jαjc0 XTOLDJ then the denominator is set to 1. 

(3.1) is computed for each column during the price pass of the A-matrix. 

As it involves processing the two vectors  and П. The procedure is 

easily implemented using the "price" routine of the simplex method. 

ja

 

 

4. Experimental results 

Five test problems were used to investigate the performance of Keyzer's 

alternative pricing procedure, their characteristics are summarized in 

table 4.1. The first four problems are representative industrial test  
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problems and are taken from the lower end of the collection of bench 

mark problems compiled for the validation of the FORTLP system 

[MITY 86], [TAMI 86]. 

  

TABLE 4.1: CHARACTERISTICS OF TEST PROBLEMS. 

 
NO NAME SOURCE NO OF 

ROWS 

NO OF 

COL. 

NO OF 

BOUNDS 

NO OF 

NON- 

ZEROS 

DENSITY 

IN  % 

NO  OF 

DISTINCT 

NON-ZEROS 

1 BEALE LBU* 171 303 38 901 1.7% 19 

2 BERGER LBU 65 133 133 415 4.8% 16 

3 BASEIN SIA 48 60 28 209 7.3% 116 

4 FULLJV29 SIA 201 230 163 864 1.9% 281 

5 TESTIN BRUNEL 5 7 0 12 34.3% 5 

 

* Loughborough University. 

 

Three alternative strategies were tried: 

 

Strategy 1: 

 

Use Keyzer in both phase 1 and phase 2 of the simplex replacing a 

zero  by a small constant C which is assigned a value   greater 

than the  tolerance XTOLDJ. In the present computations C was 

assigned the value 10 x XTOLDJ. 

)jαj(c +++

jd

 

Strategy 2: 

Use Keyzer in both phase 1 and phase 2 of the simplex bypassing 

the non-basic variable ifthj 0)jαj(c =+++ . 
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Strategy 3: 

 

Use Keyzer in phase 1 bypassing the  non-basic variable if thj

0)jαj(c =+++ . In phase 2, apply the original simplex pricing method. 

 

The experimental results using the alternative strategies are presented in 

table 4.2. 

 

TABLE 4.2: EXPERIMENTAL RESULTS 

 

NO OF ITERATIONS 

STRATEGIES 

NO OBJECTIVE 

FUNCTION 

OPTIMUM

VALUE SIMPLEX

1 2 3 

1 Min 0.0 138 138 >>146 146 

2 Min 811.84 81 80 64 104 

3 Min 127286.51 35 35 29 35 

4 Min NO-FEAS 87 87 82 82 

5 Min 23.0 7 5 5 5 

 

The results in table 4.2 indicate that for strategy 1 both the simplex 

method and Keyzer perform equally well in most cases. In the case of 

strategy 3 Keyzer performs rather poorly, however, in the case of 

strategy 2 Keyzer's method performs better for three of the test 

problems. 
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5. Conclusion 
 

In this paper, alternative pricing methods have been discussed, it is well 

accepted that the devex and steepest descent methods are superior to 

the standard pricing algorithm which is used by the simplex method. 

Experimental tests on Keyzer's approach suggests that its performance 

may depend on the problem structure and the choice of strategy. 

 

i) The structure of the problem. 

 

Keyzer [KEYZ 84] states that: the return-over-cost selection rule appears 

in practice to function better. In practical medium to large scale LP 

applications the change has produced efficiency gain from 20 to 60 

percent depending on the problem (seven LP models for the agricultural 

sector of developing countries, six of about 100 rows and 150 columns 

and one of 1100 rows and 900 columns). The return-over-cost rule may 

not always prove to be more efficient. 

 

ii) The strategy employed. 

For example, it was found that if, in the case of the fourth test problem, 

before optimisation, ZCRASH was used to pivot out the artificial variables 

and then Keyzer was applied then in this case, 77 iteration were 

required to obtain the non-feasible solution. 
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APPENDIX Zero tolerances for algorithmic steps [OHAY 68] 

 

In this appendix some zero tolerances which determine logic tests used in 

the simplex steps of the LP computations are discussed and their 

suggested numerical values given. 

 

Zero tolerances are introduced in to LP optimisers in order to control 

the degree of accuracy obtained in the numerical computations and to 

improve computing time. Their purpose is to eliminate noise that would 

otherwise be introduced indefinitely by algebraic operations. 

 

The most basic tolerance is the threshold value, XTOLZE, for the 

magnitudes of real numbers. Two real numbers a and b are said to 

be equal if their difference is within this tolerance, that is 

 

    -XTOLZE ≤ a-b ≤ XTOLZE . 

 

Similarly a real number c is considered to take zero value if 

    -XTOLZE < c < XTOLZE .                          

This tolerance is normally set to 10-12. 

 

Another important tolerance is the pivot (rejection) tolerance, XTOLPV, 

which prevents a coefficient very close to zero from being considered as 

a pivot element in a simplex iteration, hence directly affecting the 

stability of the computational steps. The value 10-θ is normally used for 

this purpose. If this tolerance is increased then it is known to increase 

the total run time for a solution [MUAT 81]. 
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A second pivot tolerance XTOLIN is used during the reinversion of the 

basis matrix to test the size of a proposed pivot. The value of this 

tolerance is related to the value of XTOLPV. Normally XTOLIN is larger 

than XTOLPV to ensure that at the end of the reinversion the basis is 

not singular. The value of 10-6 is usually used for this tolerance. 

 

Feasibility tolerances XTOLV (for primal solution values) and XTOLDJ (for 

dual solution values) cure designed to check whether or not the values of 

the basic variables (rhs values) and the reduced cost coefficients are 

feasible, respectively. A larger value is used for the reduced cost 

coefficient than for the rhs values since computations with the pie-vector 

tend to have more error. The values 10-7 and 10-6 are normally used 

for XTOLV and XTOLDJ respectively. Increasing the value of XTOLV may 

give a shorter total run time, but increasing the value of XTOLDJ may 

cause unnecessary extra iterations. 

 

In general it is well known among computational LP specialists [see for 

example MIBE 69] that the following ordered values are used for 

tolerances 

 

  XTOLDJ > XTOLV > XTOLIN > XTOLPV > XTOLZE . 

In most LP optimisers the value of these tolerances can be altered by 

the user to suit the environment. Typical tolerance values used for a 60 

bit floating point word giving approximately 15 decimal places accuracy 

are: 

X T O L D J = 1 0 - 5  

X T O L V = 1 0 - 6  

X T O L P V = 1 0 - 8  

X T O L Z E = 1 0 - 1 0  
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Tolerances as used in MPSX [MPSX 71] and APEX [APEX 77] are set out 

in table A. 1. Note that IBM uses 64 bit double precision floating point 

representation, and CDC uses 60 bit double precision floating point 

representation. 

 

TABLE A.1: TOLERANCES IN MPSX AND APEX 

 

 Tolerance variable Identifier Default value 

 zero XTOLZE 10-30

 reduced cost XTOLDJ 10-5

rhs value XTOLV 10-6

MPS X 
pivot value during XTOLPIV 10-6

 primal iterations   

 pivot value during XTOLINV 10-6

 reinversion   

 zero RTPACK 10-13

 reduced cost RTDINF 10-5

APEX rhs value RTINFZ 10-6

 pivot value during RTPVMIN 10-8

 primal iterations   

 and reinversion   
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