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ABSTRACT
The gut microbiome has emerged as a contributing factor in non-communicable disease, rendering it 
a target of health-promoting interventions. Yet current understanding of the host-microbiome 
dynamic is insufficient to predict the variation in intervention outcomes across individuals. We explore 
the mechanisms that underpin the gut bacterial ecosystem and highlight how a more complete 
understanding of this ecology will enable improved intervention outcomes. This ecology varies within 
the gut over space and time. Interventions disrupt these processes, with cascading consequences 
throughout the ecosystem. In vivo studies cannot isolate and probe these processes at the required 
spatiotemporal resolutions, and in vitro studies lack the representative complexity required. However, 
we highlight that, together, both approaches can inform in silico models that integrate cellular-level 
dynamics, can extrapolate to explain bacterial community outcomes, permit experimentation and 
observation over ecological processes at high spatiotemporal resolution, and can serve as predictive 
platforms on which to prototype interventions. Thus, it is a concerted integration of these techniques 
that will enable rational targeted manipulations of the gut ecosystem.
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Introduction

A growing body of evidence implicates the gut 
‘microbiome’, the complex ecosystem comprising 
the human gut and the microorganisms inhabiting 
it, as a contributing factor in the etiology of non- 
communicable diseases,1–8 thus positioning it as 
a potential therapeutic target. For instance, diet read-
ily modulates the gut microbiome and could thus be 
used to intervene in microbiome–host interactions. 
However, whilst broad modulators of microbiome 
composition and metabolism are known, inter- 
individual variations complicate the design and tar-
geting of beneficial interventions.9,10 People are 
unique organisms harboring individualized micro-
biomes, and their diverging intervention outcomes 
stem from variation in gut ecosystem constituents 
and processes. However, comprehensive under-
standing of the gut ecosystem is presently lacking 
and difficult to obtain. In vivo study lacks the neces-
sary spatiotemporal sampling and observation 

capacity, and in vitro models cannot recapitulate 
the host’s complexity. Yet, they offer complementary 
perspectives, informing both mechanistic under-
standing of the microbiome’s influence on host 
health and cell-specific models. We propose that, by 
encapsulating this information, in silico models that 
enable the experimentation, insight, and predictive 
capacity needed to rationally design and target inter-
ventions are now possible. Whilst we focus primarily 
on bacterial taxa, as the most abundant and most 
studied portion of the microbiome, we note that 
archaea,7 eukaryotes,8,11,12 and viruses6 (e.g. phages) 
that co-inhabit the gut are gaining attention and are 
being found to also influence host health status.

The microbiome’s impact on health outcomes is 
an emergent property manifesting from the collec-
tive activity of trillions of individual microbial cells 
vying for survival within their local gut environ-
ments (Figure 1). Interventions alter cell local 
environments and drive changes in cell behavior. 
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These behavioral changes cascade through the 
community, reconfiguring strain niches and fitness, 
intercellular interactions, community metabolic 
output, and ultimately the functional responses of 
the host. The host integrates these signals, and its 
responses feedback on local microbial environ-
ments and alter selective pressures. Thus, host and 
microbial processes are intertwined and co- 
responsive. Given such interactive complexity, 
individualized and diverging responses to interven-
tion are to be expected. Importantly, reasoning 
about the microbiome at the level of the strain 

(and thus cell) and it’s co-possession of numerous 
genes and metabolic pathways is essential: genes 
(and metabolic pathways) are only expressed 
when housed within viable organisms, and cell 
viability spans several nutritional requirements 
that involve crosstalk (coordination) between mul-
tiple metabolic pathways. Environmental perturba-
tions need only limit a cell’s access to one nutrient 
to impact all its metabolic activities. As such, ana-
lyzing the microbiome through genes alone, inde-
pendently of one another and the strains co- 
possessing them, will be of limited insight.

Figure 1. Health outcomes emerge from individual microbes and their survival strategies. Nutrient availability, primarily dietary, but 
also host secretions, drive microbes to regulate their metabolic capabilities to survive. Individual microbes adapting to their nutritional 
environment reconfigures the gut microbiome metabolic network and community-level metabolic output. The resultant changes can 
impact on host health.
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Two compositionally and functionally distinct 
microbiomes will adapt differently to a changing post- 
intervention environment and each host will respond 
differently to that adaptative process. Hence, to max-
imize effectiveness, interventions must be tailored to 
the individual. This ultimately entails (1) capturing 
the range of behaviors (‘dynamics’) each microbial 
strain in a community can exhibit across various 
environmental (including nutritional) contexts; (2) 
integrating these dynamics to extrapolate the resultant 
community-level outputs that can impact on host 
health; and (3) understanding host–microbiome 
interactions. Here, we consider how this can be 
achieved through an integration of modalities for 
studying the host-microbiome system.

In vivo studies associate host health outcomes 
with strains and molecular products, outcomes 
that originate from individual microbe-level beha-
viors. These factors form targets for control 
through intervention. In vitro culturing studies 
can reveal how specific strains respond to, and in 
turn modify, their environments. Understanding 
how and why interventions alter community-level 
emergent properties is not possible without detailed 
characterization of individual strain response 
dynamics. In silico modeling techniques deliver 
the integrative perspective of how cell-level beha-
viors scale up to the community-level phenomena 
that drive health outcomes. Models encode cell- 
level behaviors and replicate environment condi-
tions, and then reveal spatiotemporal community 
outcomes.

In vivo studies integrate whole gut ecosystem 
processes to highlight intervention targets

Non-communicable diseases are host organism-level 
properties manifesting, in part, from how micro-
biome and host interact to shape one another.13 In 
vivo study outcomes reflect an implicit integration of 
these factors. Of particular relevance is microbiome 
community composition. Host disease status has 
been associated with microbiome structural qualities 
including variation in strain relative abundances14–19 

and/or microbial community diversity.1–5,19,20 

Effects have occasionally been ascribed to individual 
strains: Christensenella minuta was found enriched 
in lean twins relative to their obese siblings, and 
inoculation of this strain into “obese” microbiomes 

transferred into mice reduced subsequent adiposity 
gains in recipient animals.21 However, isolating 
effects to specific microbial strains is difficult because 
strains overlap considerably in function. Yet it is 
pertinent to account for the effects of all strains, as 
an intervention may have no effect in a community 
if suppression of one strain elevates another of simi-
lar functional capacity.

Microbial community composition and meta-
bolic output result from the growth substrates 
microbes have access to, and these primarily origi-
nate from host diet. Microbiomes shaped under 
high-fat and/or sugar diets have been associated 
with the etiology of diseases including diabetes,22 

obesity,22 and hypertension.23,24 Conversely, dietary 
fiber consumption is associated with host health 
benefits,25–27 in part due to microbial fermentation 
of fiber into short chain fatty acids (SCFA).28 The 
direct dietary administration of SCFAs has con-
ferred protection against induced colitis,29 food 
allergies,30 asthma,31 and diabetes32 in mice. 
However, associating diet–microbiome interactions 
with health outcomes is complicated. Firstly, micro-
bial metabolic outputs vary with context. 
Substituting fiber with protein can increase micro-
bial generation of pro-inflammatory metabolites, 
including hydrogen sulfide,33,34 ammonia,35 and 
phenolic compounds.36,37 Yet, protein fermentation 
can also lead to the generation of anti-inflammatory 
compounds such as butyrate38 and the polyamine 
agmatine.39 Secondly, diet is compositional: a high 
fat diet necessitates low protein and/or carbohy-
drate, so which nutrient confers a given effect? 
Systematic variation is required for parsing of 
effects. One such study showed interactive effects 
of macronutrients on microbiome community com-
position which in turn corresponded with host 
immunometabolism and body composition 
status.40 Dietary components are readily labeled as 
deleterious or beneficial to health, but in actuality 
effects are non-linear and wider context matters, yet 
this is difficult to account for.

Beyond diet, host-derived molecules including 
bile acids and mucus glycoproteins (mucins) 
secreted into the gut also impact the 
microbiome.41,42 Mucins shape mucosal micro-
biome communities as both a growth substrate43 

and anchoring matrix44 for select commensals. For 
instance, Akkermansia municiphila and Bacteroides 
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thetaiotaomicron can adhere to and hydrolyze mucin 
glycans and thus competitively colonize the gut 
mucosa.44–47 The result is that luminal and mucosal 
communities are compositionally48 and metaboli-
cally distinct,49 and as such these communities 
have different impacts on host health. The micro-
biome also metabolizes the primary bile acids cholic 
and chenodeoxycholic acids into numerous second-
ary bile acids that can actively regulate bacterial 
populations50,51 at phylum-50 and strain-levels.52 

Together, host diets and endogenous secretions 
interact in shaping the microbiome, and rational 
intervention design should account for both, lest 
they present as confounding factors.

Targeted intervention design requires that we 
account for the effects of luminal and mucosal- 
associated strains on host health, and the various 
interacting dietary and host processes that shape 
the microbiome. Community and gut environmen-
tal contexts dictate which molecular products are 
produced, and what their contributions to health 
status are. In vivo study caries the advantage of 
integrating all such relevant factors in revealing 
host outcomes. Yet isolating specific causative fac-
tors is admittedly challenging as health status is 
rarely attributable to singular molecules and strains.

Intervention targets are multiple, with broad 
host-microbiome molecular exchanges 
impacting health

In vivo research has revealed the complexity of the 
host–microbiome signal exchange that modulates 
health outcomes, which interventions should seek 
to manipulate. For instance, whilst the SCFA buty-
rate, as a primary colonocyte energy source, is pro-
tective against colorectal cancer,53,54 it also delays 
wound repair during overt inflammation or damage 
to the intestinal mucosa.55 Hydrogen sulfide, derived 
from bacterial metabolism,56 can accelerate the ulcer 
healing process observed in colitis,57 but also upre-
gulate colorectal cancer cell division when compared 
to regular colonocytes.58 Single metabolites are not 
ubiquitously deleterious or beneficial. Again, the 
broader context matters, and targeted interventions 
must account for this.

Microbe-associated molecular patterns 
(MAMPs) are cell structural components that influ-
ence host inflammatory status. Classic examples 

include peptidoglycan, lipopolysaccharide (LPS), 
and flagellin. These molecules are structurally com-
plex and can vary considerably between strains.59– 

61 Variants can modulate both innate62 and 
adaptive63 arms of the immune system to both pro- 
inflammatory and tolerogenic effects.64–66 For 
instance, LPS has been linked to the onset of obe-
sity, diabetes, and cardiovascular disease.67–69 Yet, 
Escherichia coli-derived LPS decreased autoim-
mune diabetes incidence in animal models relative 
to Bacteroides-derived LPS.70 Thus, immune tone 
and disease status are a consequence of the balance 
of pro-and anti-inflammatory molecular signals.71 

Interventions should seek to target not only single 
MAMPs but shape the holistic profile of molecules 
generated, and this requires understanding of the 
ecology through which community composition 
arises.

The host responds to microbiome signals to 
maintain homeostasis, but tipping points exist 
beyond which microbiome–host interactions 
devolve into perpetuating inflammation that com-
promises gut barrier function.72 A high-fat diet can 
induce this state by promoting overgrowth of gut 
bacteria with consequential over-production of 
pro-inflammatory cytokines by the host.73 

Localized inflammation increases gut permeability, 
a condition known as leaky gut,74 followed by trans-
location of cytokines and MAMPs to portal circula-
tion. Characterizing the boundaries at which 
tipping points transit between self-stabilizing ben-
eficial and self-stabilizing deleterious host–micro-
biome interactions is critical, given interventions 
that seek to shift the ecosystem from one state 
into another.

Lastly, host–microbiome interactions vary both 
temporally and spatially within the gut. Being in 
closer proximity to host tissue, mucosa-associated 
strains interact more directly with the host, poten-
tially exerting different and stronger pressures rela-
tive to those of luminal strains.49 Accounting for 
this mucosal gut microbiome is relevant; however, 
mucosa-associated strains are underrepresented in 
fecal samples, and this could distort the relation-
ships inferred between observed microbial commu-
nities and their consequences on host health. 
Further, both microbial populations75,76 and envir-
onmental conditions77,78 are distributed heteroge-
neously along the colon, and undergo functional 
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and compositional diurnal oscillations79 in part 
reflecting host feeding patterns.42,80 Detailed spa-
tiotemporal characterization of such patterns is 
highly invasive and thus infeasible in vivo, but 
such heterogeneity is highly relevant to host health-
for example, the localized inflammatory regions 
characterizing Crohn’s disease.

In summary, in vivo studies reveal system tip-
ping points whose breech negatively impacts the 
host. The profile of molecular interactions between 
host and microbiome underlie these phenomena 
but are spatiotemporally variable. Further, no sin-
gle molecule is uniformly beneficial or deleterious: 
context is key. Controlling these interactions is 
non-trivial as microbiome molecular output stems 
from community-wide ecological interactions, and 
these are difficult to study in vivo.

Complex community ecology underlies 
microbiome molecular output

Fermentative microbes have evolved a spectrum of 
survival strategies that rely on shorter/incomplete 
metabolic pathways81 that output metabolites such 
as SCFAs,81–83 that other microbes can further 
metabolize. A whole community engaging in such 
strategies yields complex inter-microbial depen-
dencies. The profile of metabolites produced is 
difficult to forecast as it is sensitive to interactions 
among the microbial cells present, along with host 
diet and endogenous secretions. For instance, 
hydrogen sulfide can result from metabolism of 
endogenous and dietary cysteine and bile acids, 
thus its production depends on dietary protein84 

and fat consumption,33 and the presence of sulfur- 
reducing organisms including Clostridium and 
Enterobacter.33,34

The capacity to generate most metabolites is 
widely distributed among phylogenetically diverse 
strains, and such redundancy further complicates 
metabolite output forecasting as has been observed 
for butyrate.85,86 Over 25% of strains, spanning 
several phyla, in a given individual’s microbiome 
can generate butyrate87 and four major butyrate 
production pathways with distinct substrates 
exist.88 Further illustrating the consequences of 
such redundancy, microbiomes sampled from 
three individuals varied in the profile of SCFAs 
produced when cultured using identical growth 

media.89 Thus, even in highly controlled culture 
conditions, a community’s possession of multiple 
pathways for generating a metabolite, and numer-
ous strains supporting each pathway, render output 
prediction difficult.

Importantly, a strain’s presence and capacity for 
generating a given metabolite does not necessitate 
its actual engagement in the activity. Nutrient lim-
itation will impact a cell’s capacity to grow. The 
nutritional environment is, in turn, modulated by 
host diet, which substrates metabolically active 
strains are presently consuming, and which inter-
mediate metabolites they produce. Many microor-
ganisms possess diverse strategies for satisfying 
their nutritional requirements. For example, 
Bacteroides thetaiotaomicron can degrade a wide 
range of complex dietary carbohydrates90 and host- 
derived glycans91 rendering it adaptive to varying 
nutritional contexts.92 Thus, accurate prediction of 
community composition and metabolic output 
necessitates accounting for cell nutritional (and 
thus growth) statuses, their nutritional context 
and how they modify it.

Any intervention that modulates a strain’s 
growth dynamics, in terms of prevalence and out-
put, has the potential for cascading effects through 
the microbial community. Nutrient availability and 
competition dynamics shift, as will the profile of 
metabolites contributed back into the environment 
(Figure 1). These manifest as localized effects but 
can permeate more broadly through time and 
space. To rationally design interventions with pre-
dictable outcomes requires these ecological pro-
cesses be characterized and their integrative 
consequences understood. This is extremely diffi-
cult to achieve in the real world, but possible in 
silico with support from in vitro studies that com-
prehensively map out strain-level growth dynamics.

Comprehensive mapping of strain growth 
dynamics through in vitro study

The growth dynamics of individual strains, and 
their interactions with one another and specific 
host processes, can be characterized in detail out-
side of the living host. Environments reflecting 
locales in the gut can be imposed, controlling for 
nutritional context, water content, pH and selective 
inclusion of particular host factors. Strain growth 
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rates, substrate utilization, and metabolic output 
can be quantified. In vitro technologies afford 
a comprehensive mapping of how given strains 
respond to changing environments. Thus, mucin 
and high pH were identified as fundamental 
requirements for A. muciniphila colonization, 
explaining its prevalence in the distal colon.93,94 

Capturing strain growth requirements is essential 
for intervention design, as they determine whether 
or not a particular strain can grow given 
a particular nutrient context, with downstream 
implications for community composition and 
metabolic output.

How strains adapt their behaviors under chan-
ging environments likewise influences intervention 
outcomes. Microbial substrate preferences can 
impact competition dynamics and have been 
uncovered. For instance, B. thetaiotaomicron prior-
itizes mannose over other monosaccharides,95 and 
plant-derived polysaccharides over mucin 
carbohydrates.96 Similarly, lactate-utilizing bacteria 
prefer glucose over lactate when both are 
available.97 These substrate preferences are often 
strain-specific,98 reflecting differences in metabolic 
pathways. Strain metabolic output also differs with 
environmental context. Certain bacteria can gener-
ate formate, a common intermediate metabolite, 
but under specific pH conditions the same micro-
organisms can further metabolize it and generate 
gaseous hydrogen instead.99 In situations where 
formate-producing bacteria are paired with hydro-
gen-dependent microbes such as Blautia hydroge-
notrophica, formate is also further metabolized to 
acetate and energy harvest is maximized.100 Even in 
pure culture, the relationship between the factors of 
substrate availability, cell capability/attributes and 
the outcome of net metabolite production is com-
plex since they result from multiple causal (and 
interfering) pathways that vary over time.

Intricate metabolic interactions take place between 
gut microbes. Diverse ecological relationships, such as 
cross-feeding (mutualism), amensalism, and competi-
tion coexist in the gut to shape the microbiome and its 
metabolic output. Cross-feeding has been extensively 
studied owing to its scope for expanding 
a strain’s growth niche. For instance, in co-culture, 
Ruminococcus bromii produces formate 
which B. hydrogenotrophica consumes, and 
B. hydrogenotrophica reciprocates with panthothenate 

which R. bromii requires for optimal growth but can-
not synthesize.100 This relationship also involves 
hydrogen utilization by B. hydrogenotrophica as 
described above. Concomitantly, R. bromii and 
B. hydrogenotrophica compete for the vitamin thia-
mine in this context, exemplifying how complex inter-
actions in the gut can be. Microbes form a complex 
web of interactions and variations in microbial mem-
bership or activity can trigger a cascade of effects 
across the network. The units of biological activity in 
a community are not necessarily cells or strains – 
syntrophic dependencies mean multi-organism net-
works are more appropriate for modeling some 
outputs.

In vitro technological advancements are also 
facilitating detailed investigation of isolated 
host–microbiome interaction pathways. These 
methods cannot fully recapitulate the host but 
can elucidate the ‘behavioral building blocks’ 
from which whole-scale host–microbiome inter-
actions emerge. Cell culture models employ spe-
cific cell lines to replicate the intestinal 
epithelium,101 capturing processes including 
mucin excretion, cell migration, and signaling. 
This has enabled study of bacterial adherence to 
epithelial cells and the former’s response to cyto-
kine generation.102 Microfluidic technologies 
combined with cellular culturing have enabled 
the study of how peristalsis and intraluminal 
flow impact the gut microbiome.103,104 Multi- 
stage continuous fermentation models reveal 
spatiotemporal dynamics, e.g. that the impact 
of a dietary intervention was not equally distrib-
uted along the gut.105 For instance, the 
Simulator of the Human Intestinal Microbial 
Ecosystem (SHINE), a modular multi-stage con-
tinuous fermentation model, was extended to 
study mucosa-adherent microbiome dynamics 
(M-SHINE), specifically the recovery of 
Lactobacillus strains following an antibiotic 
pulse.106 Microbial-host interactions fundamen-
tally shape microbial behaviors and in vitro 
approaches that trace and objectively measure 
them are important to rational intervention 
development. Advances in techniques to culture 
cells and measure physiology mean it is possible 
to effectively describe the range of cell states in 
response to variation in physio-chemical context 
(at least in much more detail than previously).107
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These in vitro approaches represent ‘reduction-
ist’ science: isolating and manipulating pathways 
and microbes to probe their dynamics. They offer 
insights that cannot be accurately generated 
through other means, but they also face limita-
tions of scale. Complete characterization of strain 
dynamics necessitates wide, systematic explora-
tion of environmental contexts and strain 
responses. It is impractical, even with advances 
in modern robotic fermentation systems, to con-
duct such broad experimentation for each of the 
thousands of strains occupying the gut. When 
compounded with the range of unique consortia 
that can be assembled and investigated, the experi-
mental burden is staggering. For instance, to map 
the growth requirements around the eight 
B vitamins would entail 255 unique inclusion/ 
exclusion combinations, which if applied to 400 
strains (approximate richness of the human 
microbiome108) entails 102,000 cultures. 
A second key challenge is one of complexity; com-
prehensive characterization of strain dynamics is 
vital to understanding the principles of commu-
nity organization and function, but there remains 
a sizable leap in scaling from these strain-level 
dynamics to predicting community outcomes. 
Reassembling and integrating these pathways to 
study how they deliver emergent behaviors and 
system-wide consequences is a ‘constructionist’ 
task. In silico techniques, fusing biological data 
with modeling, can accomplish this.

In silico models: from individual microbes to 
community outcomes

In silico modeling relies on computer algorithms 
that recapitulate microbial and host dynamics. 
Such models integrate data from different modes 
of study and at varying biological scales, spanning 
metabolites, cells, communities, and the entire gut 
ecosystem with the aim of reproducing outcomes 
observed in real-world systems. In so doing, they 
seek to explain these emergent outcomes as mani-
festing from individual molecule- and cell-level 
dynamics. Validated models can be tremendously 
insightful: being computer code, they present no 
limits for intervention or spatiotemporal observa-
tion scope. Putative targets for intervention can be 
rapidly and systematically explored for their effects. 

Models can be used in a predictive capacity, explor-
ing possible interventions to achieve a desired 
outcome.

Models can aid understanding of a system’s 
operation, elucidating the fundamental mechanistic 
principles underpinning the system through sim-
plification to the most essential components and 
their interactions. Simplifying can mean modeling 
a subset of the full system, and can entail amalga-
mating distinct components (cells, molecules, path-
ways) with similar function or that constitute 
a module of given function (e.g. multi-organism 
networks) into a single-component types.109

Agent-based modeling (ABM) is one such 
‘abstractive’ technology. ABMs can capture spa-
tially explicit, heterogeneous environments occu-
pied by discrete, dynamic agents whose 
interactions give rise to complex emergent 
outcomes.109 Modeled agents encode behavioral 
responses to environmental stimuli and interac-
tions with one another which are dependent on 
an agent’s state: the result of its past experiences. 
With microbiome phylogenetic diversity exceeding 
functional diversity,110 findings reported in terms 
of phylogenetic taxonomies have become increas-
ingly complicated to interpret.111 Interpretation 
through functional units and their interactions 
may prove more tractable and informative. ABM 
was used to abstract the gut microbiome into six 
trophic guilds that represented distinct nutritional 
strategies,40 thus distilling hundreds of stains into 
far fewer and functionally distinct terms. This 
model demonstrated that microbial strategies for 
acquiring nitrogen from either dietary or endogen-
ous sources could explain the variation in commu-
nity composition observed across a broad range of 
mouse diets. The model revealed ecosystem 
dynamics, explaining changes in community com-
position in terms of which nutrients were limiting 
the growth of each microbial cell; those cells’ nutri-
tional environments as resulting from diet, host 
digestion, and endogenous substrate provision; 
and how effectively cells were competing for nutri-
ents. Such mechanistic insight would have proven 
difficult to obtain through the lenses of phyloge-
netic and gene cataloging. This study also exempli-
fies the high-throughput of in silico modeling: 250 
‘mice’ administered varying diets were readily 
simulated within hours, whereas the corresponding 
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in vivo work was a huge undertaking spanning 
many months.40 By offering unparalleled tracing 
of spatiotemporal dynamics, ABMs have shown 
how modifications in host epithelial secretions 
shift the microbial community112 and how isolated 
and aggregated feedback mechanisms (toxin- 
antitoxin, substrate sharing and antibiotic resis-
tance dynamics) impacted gut microbiome resili-
ence to common stressors (e.g. antibiotic 
therapy).113 These insights would have proven 
complicated to extract from real-world observa-
tions. Thus, ABMs can trace microbial dynamics 
to reveal the governing ecological principles at the 
single-cell level and what their community-level 
consequences are.

Not all modeling approaches strive for simplifi-
cation, and models emphasizing capture of real- 
world detail seek to quantitatively explain real- 
world phenomena in those same terms. Genome 
Scale Models (GSMs) are one such technology. 
They are reconstructions of a cell’s genome- 
encoded metabolic pathways and networks,114 

and simulations of communities are emerging.115 

A common GSM application is to estimate 
a configuration of ‘fluxes’ (throughputs) through 
metabolic pathways that maximize organism 
growth rate(s) in a given metabolic environment: 
‘flux balance analysis’.116,117 GSMs offer ease of 

systematic exploration of the nutritional dimen-
sion, allowing the sampling of hundreds of media 
formulations in a matter of hours. The technology 
can substitute for arduous in vitro culturing work 
to determine a strain’s nutritional growth require-
ments. For instance, an A. muciniphila GSM pre-
dicted the commensal could utilize a number of 
monosaccharides derived from mucin, findings 
that were subsequently validated in vitro.118 

Similarly, GSMs have been used to identify the 
minimal media needed for Faecalibacterium 
prausniitzii119 and Bacteroides caccae,120 resulting 
in their successful culturing. Beyond determining 
strain niches, growth rates and metabolic output 
yields are potentially determinable through GSMs, 
but these are sensitive to bounds on nutritional 
uptake and biomass generation rates that are pre-
sently unknown for most strains. If these upper 
rate bounds can be determined through targeted 
in vitro cultures, and are otherwise invariant to 
nutritional context, then growth and metabolic 
output rates for very broad combinations of 
media could also be rapidly estimated in silico 
and thus save considerable in vitro effort.

GSMs can now be simulated in consortia and 
have provided insight into the ecological principles 
that underpin emergent community outcomes. 
This technology enables tracing of strain-level 

Table 1. List of recommended computational resources for gut microbiome in silico modeling.
Resource Summary Available from

Personal 
computer

Most in silico based approaches can be ran on a basic personal 
computer. High specifications (e.g. 8GB of RAM or higher) are 
recommended to reduce modeling times

High 
performance 
computing 
cluster

A network of fast interconnected computer servers that are more 
practical for running either: 1) very large scale simulations that 
a personal computer would struggle to handle or 2) very high- 
throughput experiments (many simulations) that a computing 
cluster can run in a massively parallel fashion.

Most universities and research institutes now provide such facilities 
at modest, if not zero, cost. Alternatively, cloud-based systems 
such as Amazon Web Services could be set up to support such 
work, though this often comes at a cost.

COBRA 
Toolbox132

MATLAB-based software suite for modeling genome-scale metabolic 
networks and predicting phenotypes

https://opencobra.github.io/cobratoolbox/stable/index.html

COBRApy133 Python package for modeling and analyzing genome-scale 
metabolic networks

https://opencobra.github.io/cobrapy/

MICOM115 Python package for metabolic modeling of microbial communities https://github.com/micom-dev/micom
μbialSim A dynamic Flux-Balance-Analysis-based simulator for complex 

microbial communities
https://git.ufz.de/UMBSysBio/microbialsim

AutoKEEGRec134 A KEGG databases-based tool to create draft GSMs and community 
reconstructions, that is compatible with COBRA Toolbox

https://almaaslab.nt.ntnu.no/index.php/resources/

ModelSEED135 A web resource to create GSMs from Rapid Annotation of microbial 
genomes using Subsystems Technology (RAST)

https://modelseed.org/

KBase136 Open source platform that allows the creation and curation of GSMs 
among other functions

https://kbase.us/applist/

AGORA120 A collection of 818 GSMs for human gut microbes compatible with 
COBRA Toolbox and COBRApy

https://www.vmh.life/#microbes/search

GutSim40 An ABM that integrates gut environmental pressures such as 
peristalsis, mucin secretion and host feeding regimens.

https://github.com/marknormanread/GutSim

e1965698-8 J. P. MOLINA ORTIZ ET AL.

https://opencobra.github.io/cobratoolbox/stable/index.html
https://opencobra.github.io/cobrapy/
https://github.com/micom-dev/micom
https://git.ufz.de/UMBSysBio/microbialsim
https://almaaslab.nt.ntnu.no/index.php/resources/
https://modelseed.org/
https://kbase.us/applist/
https://www.vmh.life/#microbes/search
https://github.com/marknormanread/GutSim


metabolic activities, and how their survival strate-
gies vary with changing community contexts. For 
instance, using GSMs, a behavior was observed 
wherein one microbial guild’s reduction of growth 
rate (70% of its community-specific maximum 
growth rate) when paired with another guild 
allowed for an increased total community biomass, 
thus improving community-level fitness.121 

Similarly, over 800 GSM microbial communities 
were assembled and assessed in terms of competi-
tion and cooperation dynamics and showed that 
whilst competition was the predominant interac-
tion across the community, modules of up to four 
cooperating strains persisted across 
communities.122 The metabolites that were coop-
eratively exchanged were also identifiable.122 Such 
understanding is key for rational intervention 
design as it explains the underlying ecology that is 
difficult to otherwise interrogate through non-in 
silico means. Lastly, GSM consortia’s capture of 
community ecology has enabled successful predic-
tion of intervention outcomes. This was accom-
plished for two groups of human patients differing 
in insulin resistance profiles;123 GSM consortia 
reflecting patient microbiomes correctly predicted 
changes in stool amino acid and SCFA levels under 
a dietary intervention that was subsequently admi-
nistered to the humans. Thus, there is a potential 
role for GSM technology to guide intervention 

design and choice. Although useful, GSM technol-
ogy caries some caveats, namely omitting genome 
regulatory networks and equating the genotype and 
phenotype. Yet, GSM technology is rapidly 
advancing,114,124 and is well poised to revolutionize 
our understanding of the gut ecology.

Recently, supervised machine learning has 
shown promise in predicting physiological out-
comes (e.g., post-prandial glucose response125) of 
dietary manipulation, essentially treating micro-
biome–host interactions and dynamics as a ‘black 
box’. These approaches demonstrate that interven-
tion outcomes can be predictable and therefore 
targeted at individuals. Yet they have limitations. 
These models are opaque and do not necessarily 
learn the true mechanisms underpinning the biol-
ogy. Consequently, they may prove inaccurate in 
predicting outcomes for cases outside the training 
data’s range of intervention. Lastly, it is debatable 
how much penetration machine learning efforts 
will have if they are not accompanied by a well- 
understood mechanistic foundation.

In silico approaches offer continuous observa-
tion, at high spatiotemporal resolution, of the 
nutritional environment, cellular interactions, 
internal cell state and competition dynamics, and 
facilitate simulation of multifactorial interventions. 
They cannot (yet) simulate ‘health outcomes’, as 
these are emergent from the holistic host at 

Figure 2. In vivo, in vitro and in silico methods each contribute complementary insights that are collectively necessary to understand 
gut ecology and manipulate it to achieve specific outcomes.
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a breadth current models do not capture. But they 
can model the profile of health-impacting commu-
nity composition and metabolic output and the 
ecological dynamics responsible for them. GSMs 
are close to predicting these profiles for previously 
unobserved contexts, which would prove transfor-
mative for targeted intervention discovery.123 This 
could be accomplished through systematic explora-
tion of intervention space (e.g. the space of possible 
dietary interventions). For example, a computer 
model of an individual’s gut microbiome (profiling 
of in vivo communities) could be constructed and 
used to predict the outcomes for an intervention 
based on the fiber inulin, accounting for: which 
strains can catabolize it (based on in vitro experi-
mentation) and are they competitive to do so given 
the community; which metabolites will be gener-
ated from inulin based on this profile; how these 
metabolites will impact other strains and how this 
will ultimately impact the community’s composi-
tion and metabolic output. Such study is easily 
repeated with variation to investigate how out-
comes relate, potentially non-linearly, with fiber 
dosage. To conclude, evidence-based in silico meth-
ods can offer unparalleled experimental resolution 
and traceability at the spatial-temporal and biolo-
gical levels.

Practical considerations for in silico modeling

ABM encompasses considerable flexibility in how 
the target biology is represented within the model, 
and this translates to models that require substan-
tial custom computer code to implement. Which 
cells, pathways, molecules, and environmental fea-
tures a given model captures is typically entirely 
bespoke to the given research context. Such flex-
ibility complicates the generation of ‘one size fits 
all’ generalized simulation frameworks – lacking 
a standardization of what should be simulated and 
how, such frameworks would need to be vastly 
complicated in catering for all possibilities, and 
thus they instead typically represent very abstract 
and general tools that can require considerable 
custom code to adopt into a specific simulation.126 

Our lab’s ARTIMMUS127 and MotiliSim128 agent- 
based models are built atop the MASON agent- 
based simulation framework,129 and yet encompass 
several thousand lines of custom Java code each. 

The GutSim simulation is entirely custom code, 
written in Python.40 Whilst existing ABM models 
can certainly be adapted to different research ques-
tions, engaging with the ABM paradigm can neces-
sitate a considerable aptitude for writing computer 
code.

A key consideration for ABM technology, stem-
ming from the flexibility it affords in which biolo-
gical features are represented and how, is ensuring 
that ABM models correctly capture the biology and 
that they are well-calibrated against existing real- 
world data. By necessity of simulating a system that 
is incompletely understood, ABMs often encom-
pass parameters that control agent behaviors for 
which appropriate values are not exactly known. 
Calibration aims to infer these values from existing 
data by exploring a range of putative parameter 
values with an aim of reproducing known results. 
Agent-based model calibration has been reviewed 
extensively elsewhere,130 and we summarize the 
salient points here. Calibration requires data 
describing target system behaviors, and there is no 
minimum threshold for this – more is better but 
with a diminishing return on additional data. 
Ideally, multiple real-world experiments will be 
used in calibration,131 as these perturb the real- 
world system (and thus the simulation in attempt-
ing to reproduce real-world results) in different 
ways, targeting various cells, pathways, genes, 
molecules, etc. This encourages the full range of 
each agent’s possible behaviors to be exercised 
and assessed. Thus, ideally, data or knowledge 
describing the behaviors, rates, probabilities, tim-
ings, etc., of each individual model component (e.g. 
strain) can be provided, but failing this, higher-level 
data (e.g. at community composition-level) 
describing how the biological system behaves both 
‘normally’ and under perturbation can facilitate 
calibration efforts.

ABM models are not necessarily computation-
ally expensive to run (Table 1). The scale of the 
simulation, in terms of number of agents (e.g. cells), 
size, complexity and detail of the physical simulated 
space can often be adjusted, and these are the chief 
determinants of how much computational power 
and time is needed for the simulations to execute. 
In our lab, we have often prototyped models on 
personal computers before deploying them on 
a high-performance computing (HPC) facility to 
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execute many more replicates and experimental 
variations at a larger-scale than a personal compu-
ter could accommodate. Access to HPC facilities is 
rarely prohibitive these days, with most research 
institutes either providing them directly or facilitat-
ing access to shared utilities. Thus, the biggest 
resource needed in engaging with ABM technology 
is time and personnel in building the models. 
Relative to this, experimentation with the models 
is relatively swift and the software tools are either 
cheap or free to use. Model building is rarely done 
in a timeframe less than months, with calibration 
and exploration of which biological features to 
include, and how, taking the most time – writing 
code is easy, demonstrating and arguing that the 
code correctly captures the target biology is what 
takes time.137 This is an important (and easily over-
looked) consideration, as without it results are mis-
leading rather than insightful. Planning 
experiments to verify model predictions (whatever 
they may be; this is problem-specific) is 
a worthwhile activity to budget for and if successful 
can hugely elevate the work’s impact.

Growing support around GSM has contributed 
a rich, accessible, and growing ecosystem of tools 
for the further development and application of this 
technology. Free online tools such as 
AutoKEGGReg134 and ModelSEED135 allow the 
generation of draft GSMs based on annotated gen-
omes. Curated GSMs are commonly made freely 
available by researchers specialized in the matter, 
and the tools to simulate them are likewise freely 
accessible (Table 1). Curation can be the most time- 
consuming step of the GSM assembly process. 
GSMs are complicated, and manual critical inspec-
tion and verification against known organism beha-
vior by a specialist cannot be avoided. Most readily 
available gut microbiome GSMs have been rigor-
ously curated at a qualitative level of which meta-
bolic reactions a given strain is capable of. 
However, we are not aware of any GSMs for 
which the upper bounds on reaction rates have 
been comprehensively calibrated. This is an impor-
tant omission, as these reaction rate bounds ulti-
mately constrain maximum growth rates, and thus 
community composition and metabolic output out-
comes. Not knowing these upper bounds limits the 
extent to which GSMs can be used as faithful sur-
rogates for real communities in predicting 

outcomes to putative interventions (i.e. where 
these outcomes are not already known and thus 
cannot be calibrated against). There is enormous 
upside in establishing these reaction rate limits, as 
the search for interventions that deliver targeted 
outcomes could then be automated and run in 
a massively parallel fashion on a HPC using GSM 
technology as faithful surrogates for the real com-
munity. Importantly, for a given GSM/strain, these 
rates could be inferred through a combination of 
in vitro culturing where specific growth rates, sub-
strate uptake, and metabolite production rates can 
be established across a variety of media formula-
tions, and through automated calibration meth-
odologies that find parameter values that best 
recapitulate all these in vitro-observed strain beha-
viors simultaneously.131

GSM technology can be relatively straightfor-
ward to engage with. GSMs are built upon indivi-
dual strain genomes, independently of one another, 
forming modules that can then be simulated indi-
vidually or combined into communities in a ‘plug 
and play’ fashion. The COBRA132 and 
COBRApy133 toolboxes cater for individual GSM 
simulations, and frameworks such as MICOM115 

and µbialSim138 support GSM simulations of com-
munities. Coding proficiency in Python or 
MATLAB is required. Simulations of individual 
GSMs or simple consortia can be conducted on 
a personal computer, but HPC access is advisable 
for large communities or very broad experimental 
designs, such as extensive systematic exploration of 
nutritional variations or community memberships.

Conclusion

The gut microbiome impacts host health and has 
emerged as a therapeutic target. The therapeutic 
value of currently available interventions, e.g. pre-
biotics, probiotics, or diet, is contingent on how 
they integrate within a host’s existing gut 
ecosystem.9 Yet this differs between hosts, and as 
such outcomes are divergent. Better design and 
targeting of interventions requires improved 
understanding of the ecological processes under-
lying microbiome composition and function. In 
vivo approaches have revealed the breadth and nat-
ure of interactions between host and microbiome; 
these are multiple and have non-linear, context- 
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dependent effects. These interactions are 
a culmination of intertwined processes that shape 
both host and microbiome. However, in vivo 
approaches struggle to isolate and probe individual 
ecological processes at fine spatiotemporal resolu-
tion. Through in vivo approaches we understand 
which microbial outputs impact host health, but 
not why or how such outputs emerge as key factors 
across differing contexts and individuals. In vitro 
approaches permit isolation and study of particular 
microbes and pathways in broad environmental 
contexts. They reveal the cellular behaviors upon 
which an ecology is built. Yet the number of 
microbes, unique consortia and unique environ-
mental contexts that exist represent 
a combinatorial explosion that is insurmountable 
to study purely in vitro. Further, in vitro technolo-
gies cannot capture the breadth of complexity 
within the host, and thus cannot integrate all rele-
vant pathways, or reveal critical ecological para-
meters such as cellular nutritional state and 
competition dynamics, without disturbing or 
destroying the system. We have argued here that 
in silico approaches can span this divide. Genome- 
scale models can broadly supplement in vitro cul-
turing efforts, though tuning and corroboration 
through in vitro means are necessary. In silico mod-
els enable observation and experimentation that 
reveal how cell-level behaviors underpin ecological 
processes to generate community-level outputs of 
relevance to the host (Figure 2). In silico techniques 
are undergoing rapid advancement and their full 
potential is as yet untapped. Efforts to functionally 
annotate genomes are accelerating, giving rise to 
increasing numbers of bacteria GSMs.120 Yet, their 
adoption is sparse relative to in vitro and in vivo 
experimental research.

There are aspects of the gut microbiome that 
influence health outcomes and are difficult to inter-
rogate experimentally, but which could be amend-
able to study through computational modeling 
technologies. The non-bacterial (archaea, fungal, 
viral) gut microbiome is gaining recognition for 
its impact on host health,7,8 though such investiga-
tions are as yet scarce. Since in silico investigations 
rely on in vitro- and in vivo-derived data, explora-
tion of the non-bacterial gut microbiome through 
computational modeling approaches will take some 
time to become established at scale. However, there 

is progress: GSMs of gut methanogenic archaea 
species have been added to AGORA120 and GSMs 
of (non-gut) protozoa can be found as part of the 
BiGG Models knowledgebase.139 Similarly, GSMs 
of fungal gut commensals and opportunistic patho-
gens have emerged in recent years.140,141 GSM has 
limited capacity to represent phages, however, as 
these viruses are not metabolically self-sufficient 
organisms. ABMs could represent the effects of 
phage-infection, and other behavior-modifying 
phenomena such as horizontal gene transfer 
(HGT). For instance, an ABM that explores bac-
teria-phage interactions at the community level and 
their effect on antibiotic resistance has already been 
developed,142 but this did not concern the gut 
microbiome specifically. Similarly, modeling efforts 
have been made toward the study of bacteria–bac-
teria HGT at the community level.143–144 

Furthermore, ABM has scope for the study of spa-
tiotemporal dynamics of mucosa-associated micro-
biome, offering some advantages over in vitro 
continuous fermentation models. For example, 
M-SHINE relied on static mucin-covered micro-
cosms to replicate a mucin layer,106 whereas 
GutSim readily simulated real-world continuous 
mucin secretion patterns.40 We are unaware of 
any agent-based models that explicitly distinguish 
mucosal from luminal microbial communities, 
though it is not conceptually difficult to do so by, 
e.g., simulating an additional spatial dimension in 
GutSim. Detailed spatiotemporal analysis, beyond 
what is possible in vivo, would thus be possible.

Scientific investigations that integrate in vitro, in vivo 
and in silico perspectives are key to enable the knowledge 
that would move the field of personalized interventions 
forward. However, such efforts are exceedingly rare as 
research groups seldom possess deep capacity in all 
three. This is necessarily a broadly inter-disciplinary 
venture encompassing clinical and animal studies, anae-
robic microbial culturing and bioengineering, omics, 
mathematics, and computer science. Dialog between 
these disciplines is not always easily established but 
should be encouraged, as should collaboration between 
research groups that specialize in these techniques. 
Education is already shifting to i) give biologists and 
health-care practitioners exposure to data and modeling, 
and ii) give a greater focus on clinical and biological 
application in engineering programs. The forthcoming 
convergence between disciplines together with our 
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proposed integration of in vivo, in vitro, and in silico 
technologies will reveal the mechanistic underpinnings 
required for the design of rational interventions targeting 
the diet-gut microbiome-host system.
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