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A B S T R A C T   

Machinery with rotating components poses a challenge to Operational Modal Analysis (OMA) due 
to its periodic inputs, i.e. orders. Transient (acceleration or deceleration) runs represent a relevant 
test condition for structures, which experience a low amount of broadband (noise) excitation 
during operation. In these cases, orders present themselves as a favourable source of excitation. 
However, this type of excitation can result in distortions of the response spectrum at the ending 
frequencies of individual orders. These “end-of-order” distortions can introduce spurious or 
biased modal estimations. Order-based Modal Analysis (OBMA) is an OMA method, which was 
developed specifically for the transient test case and is not affected by end-of-order distortions. 
However, some downsides are associated with OBMA because it performs modal analysis for each 
relevant order individually. In addition to the associated analysis effort, this produces multiple 
sets of modal estimations with ambiguous results. This paper introduces an extension of OBMA to 
address these issues. The proposed method, called Averaged Order-based Modal Analysis 
(AOBMA), applies scaling and (weighted) averaging to extracted orders prior to the modal esti
mation step. A Monte-Carlo simulation study is introduced to compare the modal estimation 
performance of traditional OMA, OBMA and AOBMA. Different ratios of harmonic and random 
excitation amplitudes are simulated to gauge the impact of the excitation’s composition. In 
addition, all methods are also applied to operational measurements from a turbofan casing during 
run-up. The results indicate that AOBMA produces a lower variance in the estimated modal pa
rameters compared to OBMA. Moreover, while OMA was more successful in the estimation of 
closely spaced modes, it was surpassed by AOBMA and OBMA regarding the accuracy of mode 
shape estimations.   

1. Introduction 

Accurate knowledge of modal parameters is often required for both the design and evaluation of engineering structures. As a 
foundation for reduction of noise and vibration, the risk of damage can be reduced, and maintenance intervals optimised. Another 
common application of modal parameters is the validation and optimisation of Finite Element Method (FEM) models by model 
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updating. 
Operational Modal Analysis (OMA) can be used to estimate these modal parameters. In contrast to Experimental Modal Analysis 

(EMA), OMA does not require the knowledge or measurement of the input forces and thus can be applied to structures, which are 
excited by operational or environmental forces. Benefits of this approach are that complex and large structures (which may not be 
suitable for EMA) can be tested under realistic operating (incl. boundary and forcing) conditions, producing correspondingly repre
sentative results. 

Rotating components in operating structures have a characteristic excitation due to unbalance and other periodic disturbances. The 
instantaneous rotation rate represents the foundational frequency and is typically superimposed with higher harmonics. These peri
odic input forces are also known as orders. However, OMA usually relies on the assumption of uncorrelated input forces with zero mean 
and a flat spectrum (i.e. the characteristics of white noise) [1]. Deviations from this assumption can lead to false or biased modal 
estimations [2–4], thus making results of OMA more challenging to interpret. This is not only true for rotating machinery at stationary 
operating conditions, where the input orders result in narrow-banded peaks in the force spectrum but also for transient (acceleration or 
deceleration) runs, which produce so-called end-of-order distortions, as will be shown later in Section 2.3. 

Several approaches to address this issue and to facilitate OMA of structures with rotating components is available in the literature 
and a survey is provided, for example, in [5]. This includes methods for pre-processing, which aim to reduce harmonic peaks from the 
measured output signal; adapted OMA methods, which require explicit information of disturbing harmonics; and OMA methods, which 
implicitly consider harmonics or are not negatively affected by them. 

A method from the latter category is Order-based Modal Analysis (OBMA). It relies on order excitation and uses order tracking to 
supply extracted orders as the data foundation for OMA. Most methods and studies consider the case of (approximately) stationary 
operation, while the analysis of rotating machinery at transient (i.e. acceleration or deceleration) operating conditions is a less 
researched field. However, in test cases where broadband forces during operation are too low for sufficient excitation of modes, 
transient runs with order excitation can lead to a more complete modal estimation [6]. OBMA is specifically developed for mea
surement data from transient runs and has the benefit that it is free of spurious end-of-order modes, which can be falsely identified by 
common OMA methods [7–9]. 

A survey of existing case studies of OBMA is a previous work of the authors of this paper and it considered the amount of periodic 
and random excitation [6]. However, the potential impact of the force composition was not explicitly considered by existing previous 
studies, which hinders conclusions on this question. The present paper addresses this gap by systematically analysing simulation 
response data with varying ratios of harmonic and random excitation amplitudes. The potential impact of the excitation force 
composition is a relevant research question since it is test case specific and could determine suitable data processing or analysis 
methods. For example, a single turbofan component, which is driven by an electromagnetic motor in a laboratory spinning test will 
likely experience a greater order excitation and a lower degree of operational random forces compared to a turbofan engine under 
operational and environmental forces in flight. 

It was also found that there is limited literature, which quantifies the modal estimation performance of OBMA in comparison to 
alternative, traditional OMA methods [6]. For example, just a single case study was found, which provided a comparison of mode 
shape estimations between OBMA and OMA using the Modal Assurance Criterion (MAC) [10]. Multiple studies observed OBMA 
partially resulting in high overestimation errors of damping ratios, especially in the case of lightly damped modes [9–12]. Since OBMA 
processes tracked orders individually, each processed order of a dynamic structure provides a separate set of modal estimations. These 
sets of results can vary notably from one order to another [10], increasing the effort in analysis and result interpretation. 

This paper addresses the stated issues and provides the following contributions:  

• The impact of the force composition (in terms of harmonic and random amplitudes) on modal estimation results is systematically 
analysed using a parametric Monte Carlo simulation study.  

• The modal estimation accuracy of OBMA is evaluated in terms of deviations from simulation reference parameters as well as in 
comparison to a traditional OMA method using operational test measurements.  

• A novel method and extension of OBMA, the Averaged Oder-based Modal Analysis (AOBMA), is introduced, aiming to address the 
issue of separate result sets with partially great estimation error differences.  

• For validation and performance assessment, AOBMA is applied alongside OBMA and a reference OMA method to response data 
from simulation data as well as operational data of a turbofan casing during acceleration. 

Following this introductory section, this paper is structured as follows. First, Section 2 gives an overview of the compared modal 
analysis methods and the (Pole-weighted) Extended Modal Assurance Criterion (MACXP). It continues with specifics of order exci
tation, including end-of-order distortions, followed by the theory and implementation details of the novel AOBMA method. Next, the 
test setups for the used simulation and operational data are introduced along with the analysis methodology for validation and per
formance assessment of the compared modal estimation methods in Section 3. Section 4 covers the results from the parametric 
simulation study and the operational test measurements. Finally, conclusions and suggestions for future work are given in Section 5. 

2. Theory 

In the first subsection of this chapter, an overview and the relation of each of the compared OMA methods is given. Afterwards, the 
MACX and MACXP are introduced. These metrics extend the MAC to applications with complex modes and are used in the comparative 
analysis of modal estimation results in Section 4. The impact of order excitation on the measured response is investigated next, 
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followed by the last subsection, which covers the theory and implementation details of AOBMA. 

2.1. Overview of compared OMA methods 

As the foundational OMA method, the Alias-Free Polyreference (AFPoly) method [15] is used in this study. This frequency-domain 
modal estimation method is based on the orthogonal rational fraction polynomial method (RFP) [16] and is implemented in the 
software MEscope. In comparison to RFP, AFPoly introduces a generalized companion matrix, which resolves the issue of ill- 
conditioning of modal models with high polynomial orders. Since the method operates in the Laplace domain, it has the benefit 
that the impact (i.e. aliasing) of out-of-band modes is avoided, resulting in less computational modes and clearer stabilisation dia
grams. This is in contrast to other common OMA methods, which operate in the discrete-time domain or z-domain, including the 
(polyreference) Least-Squares Complex Exponential (pLSCE) and Complex Frequency (pLSCF) methods [15,17]. The method is used 
hereafter in three configurations:  

1. Cross-spectra-based Operational Modal Analysis (OMA)  
2. Order-Based Modal Analysis (OBMA)  
3. Averaged Order-Based Modal Analysis (AOBMA) 

Each method is introduced further below and the relation between the methods is visualised in Fig. 1. 
In a classical OMA application, Cross Spectral Densities (CSD) are calculated from the DOFs’ acceleration responses with the 

Welch’s method and are used as the inputs to the OMA method. As a common OMA procedure, this approach is simply denoted “OMA” 
in the following and acts as the reference method for this study. 

For OBMA, individual order functions are extracted from the acceleration response at each DOF by order tracking. The re
quirements are that a tacho signal is available to provide the rotations per minute (rpm) and that an acceleration or deceleration run of 
the operating machine is measured, where the extracted orders cover a desired frequency range for later analysis. For the present 
paper, order tracking is performed using resampling to the angle-domain (AD). This method was compared with other order tracking 
algorithms for the specific use with OBMA before and provided satisfying results [18,19]. For more constrained test conditions, e.g. 
with the presence of crossing orders, alternative methods are available, including the Time Variant Discrete Fourier Transform 
(TVDFT) and Vold-Kalman (VK) order tracking. In the AD method, angular resampling of the original time-domain data provides 
order-synchronous signals. Afterwards, the Fourier transform is applied to obtain order-domain spectra, which are assembled into an 
order-rpm spectrogram. In this spectrogram, each row represents an order as a function of rpm, so the orders of interests are easily 
extracted. A frequency-domain response is estimated by converting the rpm axis values to the instantaneous frequencies of the l-th 
order using the relationship in Eq. (1). Finally, each of the extracted orders is processed by a modal estimation algorithm individually, 

Fig. 1. Processing steps of the compared methods OMA, OBMA and AOBMA.  

Fig. 2. Acceleration output spectrum of the simulated structure at node 1 (Fig. 11), X direction, harmonic ratio 0.8.  
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resulting in a set of estimated modal parameters per order. 

fl = (l rpm)/60 (1) 

AOBMA is based on the same steps as OBMA with the addition that the extracted orders are averaged into a single spectrum before 
applying modal estimation. To avoid discontinuities between orders without splitting the extracted orders to smaller sections (more on 
this in Section 2.4), the averaged orders should have similar magnitudes across their combined frequency range. Since the order 
amplitudes generally are not similar, the orders are first scaled by calculating the relative amplitude differences between subsequent 
orders. These difference functions are then used to detrend individual orders to a common level before a (weighted) averaging of the 
orders is applied. AOBMA is explained in more detail in Section 2.4. 

2.2. Extended Modal Assurance Criterion 

The Modal Assurance Criterion (MAC) [20] is a common metric to quantify the consistency between two mode shape vectors {v1} 
and {v2}. The MAC can be calculated by Eq. (2), where •H denotes a complex conjugate transpose (i.e. Hermitian). 

Fig. 3. Force input spectrum (top) and spectrogram (bottom) of the simulated structure.  

Fig. 4. Individual extracted response orders.  
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MAC({v1}, {v2} ) =

⃒
⃒〈vH

1 〉{v2}
⃒
⃒2

〈vH
1 〉{v1}〈vH

2 〉{v2}
(2) 

The MAC is well suited for modes shapes, where the individual vector components form a straight line in the complex plane [13]. 
Such mode shapes are called monophase or are said to have a low degree of complexity or a high Modal Phase Collinearity (MPC) close 
to 1. However, for the general case of non-proportional damping in combination with close or repeated modes, this condition is not 
satisfied [21]. In such cases, the MAC value is not conclusive. The Extended Modal Assurance Criterion (MACX) [13] is a generalisation 
of the MAC and addresses its potential issues when applied to complex mode shapes. The MACX is defined by Eq. (3), where •T is the 
transpose operation. 

MACX({v1}, {v2} ) =

( ⃒
⃒〈vH

1 〉{v2}
⃒
⃒+
⃒
⃒〈vT

1 〉{v2}
⃒
⃒
)2

(〈vH
1 〉{v1} + |〈vT

1 〉{v1} | )(〈vH
2 〉{v2} + |〈vT

2 〉{v2} | )
(3) 

A further extension of MACX is the Pole-weighted MACX (MACXP). It can be considered as the application of the MACX to vectors 
{V1} and {V2}, which contain the free decay time series of individual DOFs with the natural frequency and damping ratio corre
sponding to the pole λ1 and λ2, respectively. By evaluating the limits of the time interval Δt and number of time samples nr in the free 
decays, the following equation can be constructed for MACXP [13], where •* is the complex conjugate: 

Fig. 5. Procedural diagram of AOBMA; additional steps covered in Section 2.4.1: *1 prior to Eq. (7), interpolation of tracked orders to common 
frequency values; *2 prior to Eq. (9), smoothing (e.g. moving average) due to order spectrum distortions. 

Fig. 6. Averaged difference functions d
−

l,l+1 of subsequent orders based on order output acceleration (left) and order input force (right).  
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MACXP({v1}, {v2} ) = lim
Δt→0

nr →∞

MACX({V1}, {V2} ) =

(

|〈vH
1 〉{v2} |
|λ*

1+λ2|
+
|〈vT

1 〉{v2} |
|λ1+λ2 |

)2

(
〈vH

1 〉{v1}

2|Re(λ1) |
+
|〈vT

1 〉{v1} |
2|λ1 |

)(
〈vH

2 〉{v2}

2|Re(λ2) |
+
|〈vT

2 〉{v2} |
2|λ1 |

) (4) 

The MACX provides a consistent comparison of mode shape vectors with any type of complexity. The MACXP considers eigen
frequencies and damping ratios in addition to the mode shapes during the comparison of two modes. It is therefore used for matching of 
modes from different estimations in this paper. Furthermore, MACXP is significantly less sensitive to a low spatial resolution compared 
to MAC or MACX, allowing to distinguish modes with a lower number of measurement locations [13]. 

2.3. Characteristics of input and output spectra resulting from order excitation 

This section uses data from the simulation setup, described in detail later in Section 3.1, to illustrate the impact of harmonic order 
excitation on the response spectrum and to discuss the end-of-order effect. 

For modal identification with the reference OMA method, auto and cross-spectra are estimated from the time response using 
Welch’s method. The linear auto-spectrum in Fig. 2 shows discontinuities at the frequencies, where individual orders end (marked with 
vertical red lines). They are due to the end-of-order effect but can be misinterpreted as the system response and can thus lead to falsely 
identified modes [7–9]. 

The origin of this phenomenon becomes clear when visualising the spectrum and spectrogram of the input force in Fig. 3. 

Fig. 7. Trend functions d̃l,o from each order l to the highest order o = 8.  

Fig. 8. Individual order magnitudes before scaling (light lines) and after scaling (bold lines).  
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The input orders can be regarded as an excitation by multiple simultaneous sweeps with different sweeping rates. The underlying 
individual orders with linearly increasing amplitudes (defined in Eq. (13)) are visible in the input spectrum plot. A sawtooth pattern is 
formed due to the abrupt ending of the individual orders’ contribution to the excitation. This strong deviation from a flat input 
spectrum is reflected in the output spectrum in Fig. 2. The greatest distortion in Fig. 3 (top) is visible at the frequency range of the first 
order, which shows the highest amplitude slope as well as the greatest abrupt decrease at its end. This trend decreases with higher 
orders. 

This progression can be attributed to two factors:  

1. Increasing frequency bandwidths (i.e. decreasing sweeping rates) of increasing orders result in lower spectral amplitudes. The 
reason is that the Fourier transform of a sweep is proportional to 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T/(2W)

√
, where T is the total sweep duration and W is the 

frequency bandwidth of the sweep. This has been shown for sweeps with a linear frequency function and constant amplitude [14].  
2. The rows of the spectrogram in Fig. 3 can be considered as colour-coded spectra of (overlapping) time blocks of the original signal. 

The averaging of these individual spectra represents Welch’s method, which estimates the overall spectrum shown in the top 
portion of Fig. 3. When multiple orders cover a certain frequency range, they all contribute to the resulting average (i.e. the 
estimated spectrum amplitude) in this range. At rising frequencies, less and less orders are present in the excitation, leading to the 
smallest spectrogram amplitudes above 210 Hz, where solely the last order is contributing to the excitation. 

It was observed that higher harmonic ratios (i.e. greater order amplitudes with a steeper increase over rpm) produce stronger end- 

Fig. 9. Individual order magnitudes before scaling (light lines) and after scaling (bold lines) around the first resonance.  

Fig. 10. Resulting response signal after order scaling and averaging with AOBMA.  
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of-order distortions. In addition, the effect appears to be more pronounced when a higher number of spectrum averages is used in the 
Welch’s method. 

By applying order tracking to the output signal, individual response orders can be extracted, which are shown in Fig. 4. It is visible, 
that the individual orders are free of discontinuities present in Fig. 2. This fact is utilised by the OBMA method, which performs OMA 
based on individual orders. However, this leads to multiple sets of modal results with overlapping frequency ranges, which can 
aggravate the interpretation of the results. 

A possible solution to this limitation as well as an approach to reduce uncorrelated noise is to average the extracted orders into a 
single signal, which is the foundation of the proposed AOBMA method. 

2.4. Order scaling and averaging in the AOBMA method 

This section sets the theoretical foundation for the introduced AOBMA method. To supplement the theoretical descriptions, the 
subsequent Section 2.4.1 illustrates and discusses the application steps of the proposed method in practice based on simulated run-up 

Fig. 11. Definition of the geometry and element types of the simulated dynamic structure.  

Table 1 
Simulation parameters.  

Mechanical properties 
Masses: mcore = 10 kg, mcasing = 1 kg 
Stiffnesses: kcasing = 500000 N/m, kpylon = 1e + 6 N/m, kstrut = 500000 N/m 
Damping coefficients: ccasing = 20 Ns/m, cpylon = 50 Ns/m, cstrut = 30 Ns/m  

Time response simulation 
Linear acceleration Newmark (implicit) time integration method 
Simulation sampling frequency: fs = 5 kHz  

Table 2 
Reference values for eigenfrequencies and damping ratios of the simulated structure.  

Mode Natural frequency fref [Hz] Damping ratio ξref    Mode Natural frequency fref [Hz] Damping ratio ξref 

1  0.00  0.00%    10  120.56  1.75% 
2  0.00  0.00%    11  138.70  2.24% 
3  26.37  0.47%    12  160.25  2.28% 
4  26.85  0.48%    13  177.05  2.30% 
5  47.40  0.67%    14  198.82  2.60% 
6  55.96  0.77%    15  207.42  3.35% 
7  65.94  0.93%    16  212.39  3.28% 
8  97.70  1.43%    17  229.57  3.18% 
9  101.53  1.69%    18  239.84  3.27%  
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Table 3 
Stabilisation criteria for modal identification.  

Stabilisation criterion Used value, (tested range) 

Frequency tolerance (Hz) 0.2 (0.2…0.3) 
Damping ratio tolerance (%) 1.5 (0.5…2) 
Maximum model order 25 
Minimum number of stable poles within the frequency and damping tolerances 4  

Table 4 
Tolerance criteria for matched mode estimations.  

Tolerance quantity Lower bound (incl.) Upper bound (incl.) 

Relative eigenfrequency error (fest - fref)/fref − 1% 1% 
MACX (Eq. (3)) 0.6 1  

Fig. 12. Positions of accelerometers at the instrumented fan casing.  

Fig. 13. Count of simulation runs with a matched estimation of the reference mode. For OBMA results, the individual source orders (1, 3, 5, 8) are 
specified in brackets. 
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response data. Fig. 5 gives an overview of the processing steps and illustrates the data flow of AOBMA with references to the corre
sponding equations, which are presented in the course of this section. 

Order averaging is not possible in a straightforward manner. Since the orders cover different frequency ranges and generally have 
different amplitudes, an average without further processing would suffer from similar discontinuities as the original output spectrum 
(Fig. 2). Previously, this issue has been addressed by subdividing the orders into frequency sections, where no contributing order 
begins or ends [7]. The downside of this approach is that either certain orders must be excluded from the averaging or the resulting 
sections would become impracticably small for modal analysis. As an alternative, the present work introduces an order scaling step 
prior to averaging, as described below. This allows averaging of all selected orders over their combined frequency range. 

A tracked response order of a structure can be represented as a complex function of the excitation order frequency. This function is 
an estimate of the system response spectrum to an individual excitation order at a specific measurement location or DOF. For an order l, 
these response spectra can be constructed into an (N×N) spectral matrix [Syy,l], where the diagonal entries represent the auto-spectra of 
individual DOFs and the off-diagonal entries are the cross-spectra between DOFs. 

By considering the relation between the frequency-domain force input and response output of the structure, which is given by the 
Frequency Response Function (FRF) matrix [H], the relation between input and output spectrum matrices is obtained as [22]: 

Fig. 14. Average count of matched (left) and unmatched (right) modes per single simulation run.  

Fig. 15. Relative eigenfrequency errors (fest - fref)/fref of matched mode estimations by different methods for individual harmonic ratios, where fest 
and fref are the estimated and reference eigenfrequencies, respectively. 
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[
Syy,l(f )

]
= [H(f ) ]*

[
Sxx,l(f )

]
[H(f ) ]T (5)  

where [Syy,l] is the spectral response matrix due to the excitation of a single order l described by the spectral input matrix [Sxx,l]. 
The rotating input force of an order acts as a sinusoidal signal with a 90◦ (i.e. π/2) phase shift between the DOFs in X and Y di

rections. For example, in case of the simulated structure from upcoming Section 3.1, this force is applied to the central node 9 (Fig. 11). 
Assuming that these DOFs occupy the first 2 diagonal entries of [Sxx,l], it can thus be written as: 

[
Sxx,l(f )

]
= al(f )

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 ejπ2 0 ⋯

e
j

(
− π

2

)

1 0 ⋯

0 0 0 ⋯

⋮ ⋮ ⋮ ⋱

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= al(f )[Sxx(f ) ] (6) 

Fig. 16. Relative eigenfrequency errors of matched mode estimations by different methods (for the legend refer to Fig. 17).  

Fig. 17. Relative damping ratio errors (ξest - ξref)/ξref of matched mode estimations by different methods, where ξest and ξref are the estimated and 
reference damping ratios, respectively. 

Fig. 18. MACX values of matched mode estimations by different methods.  
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where j is the imaginary number and al(f) is the spectrum amplitude, which determines the frequency range covered by order l and the 
frequency-dependent input colouration, e.g. due to the linear amplitude increase like in the presented simulation. 

Both the colouration of the input spectrum and the correlated excitation in X and Y directions (manifested in the off-diagonal terms 
of [Sxx,l] in Eq. (6)) oppose the assumption of uncorrelated white noise in common OMA theory. The impact of these characteristics of 
order excitation on the output spectrum with respect to the modal model has been derived in previous studies [8,10,23]. It is shown 
that a frequency-dependent proportionality term is introduced in the output and specific components of the modal model (namely the 
participation factors and upper and lower residuals) become complex. From that, it is concluded and demonstrated that modal 
identification methods, which estimate a common denominator (i.e. characteristic) polynomial (in contrast to partial fraction esti
mators), are suited for modal estimation from this type of output spectra [9,24]. 

Under the assumption that subsequent excitation orders have a similar force distribution described by [Sxx], the main difference 
between the orders lies in the order spectrum amplitude al(f). The description of [Sxx,l] in Eq. (6) can be substituted into Eq. (5). 

Fig. 19. Overlayed deflections of mode 12 estimated at harmonic ratio 0.8 by OMA (left) and AOBMA (right), dashed lines show the undeflected 
state, red arrow follows the trace of the central node (left). 

Fig. 20. MPC of mode shape estimations by different methods for individual harmonic ratios.  

Fig. 21. Count of simulation runs with a matched mode estimation by AOBMA and Post-AOBMA.  
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Considering the elements of matrix [Syy,l], it becomes clear that the ratio of output spectra between subsequent orders l is driven by the 
relative difference between the input force amplitude al(f) of subsequent orders: 

s(n,m)

yy,l (f )

s(n,m)

yy,l+1(f )
=

al(f )
al+1(f )

= dl,l+1(f ) (7)  

where s(n,m)

yy,l denotes the element of the output spectrum matrix [Syy,l] of order l at row n and column m. Thus, the relative amplitude 
difference dl,l+1 can be estimated from the response spectrum at any DOF, provided that the response is present in the measurement 
locations, i.e. is not affected by a modal node in the frequency of interest. As shown by Eq. (7), the resulting ratio function dl,l+1 is 
theoretically independent from the specific DOF or the element (n,m) of the output cross spectrum matrix. However, in practice the 
result will be influenced by errors due to measurements at nodal positions, nonlinear responses, measurement or processing methods 

Fig. 22. Relative eigenfrequency errors of mode estimations by OBMA(8), AOBMA, Post-AOBMA (for the legend refer to Fig. 24).  

Fig. 23. Relative damping ratio errors of mode estimations by OBMA(8), AOBMA, Post-AOBMA (for the legend refer to Fig. 24).  

Fig. 24. MACX values of mode estimations by OBMA(8), AOBMA, Post-AOBMA.  
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and the associated noise. 
It is possible to reduce the uncorrelated errors and noise in dl,l+1 by calculating its values from different DOFs or elements (n,m) of 

the output spectrum matrix. Subsequent averaging of the individual estimates for dl,l+1 provides the averaged estimation d
−

l,l+1: 

d
−

l,l+1(f ) =
1
N
∑N

n=1

(
1
N
∑N

m=1

s(n,m)

yy,l (f )

s(n,m)

yy,l+1(f )

)

(8) 

Fig. 25. Count of simulation runs with a matched mode, 25 Hz analysis bandwidth (for the legend refer to Fig. 26).  

Fig. 26. MACX values of matched mode estimations, 25 Hz analysis bandwidth.  

Fig. 27. Relative eigenfrequency errors of matched mode estimations, 25 Hz analysis bandwidth (for the legend refer to Fig. 26).  
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The averaged difference function d
−

l,l+1 between subsequent orders can then be used to eliminate the magnitude differences, which 
are due to different input order amplitudes al between those orders. This aligns the magnitudes of the output orders to facilitate 
subsequent order averaging. 

To apply the presented method beyond the common (i.e. intersecting) frequency range of all orders, the edge values of the dif

ference functions d
−

l,l+1 in Eq. (8) are extended to cover the full frequency range of order l. This ensures that the final averaged spectrum 
covers a frequency range, which is a union (and not just an intersection) of the individual orders’ frequency ranges. This is a benefit of 
AOBMA compared to OBMA, where the spectral content is divided into several orders with different, partially overlapping frequency 
ranges. 

A difference function can be computed between arbitrary orders l and o > l by multiplying the difference functions of intermediate 
orders: 

Fig. 28. Relative damping ratio errors of matched mode estimations, 25 Hz analysis bandwidth (for the legend refer to Fig. 26).  

Fig. 29. Acceleration spectrum (top) and spectrogram (bottom) from operational run-up data.  

G. Sternharz et al.                                                                                                                                                                                                     



Mechanical Systems and Signal Processing 169 (2022) 108719

16

Fig. 30. Acceleration magnitude spectrum from scaled and averaged orders (AOBMA).  

Fig. 31. Mean eigenfrequency differences relative to OMA results.  

Fig. 32. Mean damping ratio differences relative to OMA results.  
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d
−

l,o(f ) =
∏o− 1

i=l
d
−

i,i+1(f ) (9) 

The highest order o is selected as the reference to calculate scaling factors for the remaining orders according to Eq. (9). At every 

frequency value f, spectrum values of the order l are divided by the difference ratio values d
−

l,l+1 as per Equation (10). This results in 
spectra of order l with magnitudes scaled to the input order amplitude ao of the reference order o. 

1

d
−

l,o(f )

[
Syy,l(f )

]
=
[
Syy,l(f )

]
al=ao (10) 

Finally, the scaled orders l…o are averaged over common frequencies f: 
[

S
−

yy(f )
]

=
1

o − l + 1
∑o

i=l

[
Syy,i(f )

]
ai=ao (11) 

For simplicity, Equation (11) shows an average of the orders with equal weighting. Alternatively, a weighted average can be 
applied to emphasize the influence of the most significant orders. In the present work, a frequency-dependent weighted averaging of 
orders based on the original (unscaled) order magnitudes was implemented to favour orders with higher energy content at individual 
frequency values. This addresses the issue that the quality of results from OBMA depends noticeably on the chosen order as observed in 
[10]. The approach also extends a previous work [7], where significant orders were chosen for OBMA without further consideration of 
frequency-dependence. This is relevant in the sense that a certain order might be suitable for a certain frequency range, while modal 
identification in a different frequency area might benefit from a different order. 

Because a higher frequency modulation rate increases distortions of obtained order spectra [25,26] (further discussed and 

Fig. 33. Mean MACX values between mode shape results from OMA and the specified methods.  

Fig. 34. Mean MPC values of mode shape results from all methods.  
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illustrated in the following subsection with Fig. 9), it can be reasonable to assign a greater weight to lower orders. This can be done 
explicitly, e.g. by taking the inverse of the order number as the weighting factor for the corresponding order spectrum. However, the 
mentioned magnitude-weighting accomplishes that implicitly because order input forces typically increase as a function of rpm while 
the rate of frequency progression is order-dependent as shown in Equation (1). That is, lower orders have a higher rate of increasing 
magnitude over their order frequency compared to higher orders. 

2.4.1. Implementation and application of AOBMA 
While the last section serves as a theoretical description, the paragraphs below focus on aspects of the practical implementation of 

AOBMA, such as the presence of discretely sampled data. This section also illustrates the methods’ application using the same 
simulated response data, which was presented earlier in Section 2.3 and which is further described in the following Section 3.1. 

Since orders are extracted as a function of rpm or time, the first step is to interpolate the orders to common frequency values. Let Fl 
be such set of discrete frequencies fl,i with samples i of order l after the interpolation. The overlapping frequency range Fl∩l+1 of two 
subsequent output order functions, yl,i and yl+1,i, is determined as Fl∩l+1 = (Fl ∩ Fl+1). 

Next, relative difference functions dl,l+1 of the orders’ magnitudes are calculated for all fl∩l+1,i ∈ Fl∩l+1 according to Eq. (7) for each 
channel individually. A noise reduction can be achieved by averaging the resulting difference functions for each subsequent order 
across all channels as per Equation (8). 

If the lower order l covers frequencies outside the frequencies of the higher order l + 1, i.e. if Fl \ Fl+1 ∕= ∅ (where \ denotes the 
relative complement in set theory), values at the edges of dl are extended to cover the full frequency range Fl of order l. 

Fig. 6 shows the averaged difference functions d
−

l,l+1 between all subsequent orders of a simulation run (using harmonic ratio 0.8, 
Eq. (12)). The left part of the illustration is based on orders extracted from the acceleration response of the structure. For validation, the 
right section provides scaling functions, which are determined from input force orders directly. Recall that the goal is to determine 
(and afterwards to reduce) the magnitude trend difference between response orders due to different amplitudes of input orders. Order 
difference functions (Fig. 6, left), which were determined from the tracked response orders follow the overall progression of the true 
difference functions (Fig. 6, right) of the inputs. This underlines that these input force differences in fact can be estimated from the 
response signal. 

However, noticeable deviations occur at resonant frequencies of the structure and are visible as spikes (Fig. 6, left). These spikes are 
explained by distortions in the response order spectra at resonance peaks [25,26], shown in Fig. 9. They occur when relating the 
instantaneous sweeping excitation frequency to the response frequency and depend on the sweep rate of the excitation [27]. The 
averaging of order scaling functions across different channels does not alleviate these distortions as they are present across different 
channels. However, uncorrelated noise is reduced, which is visible in the output order difference functions (Fig. 6, left), where 
averaging across all 18 channels is used. In contrast to that, the plots of the input order difference functions (Fig. 6, right) are based on 
an average of just 2 signals (from order excitations in X and Y direction) and thus show greater noise. 

Afterwards, a moving average is applied to the scaling functions d
−

l,l+1. This ensures that 1) the noise in the difference functions is 
further reduced while preserving the estimated difference trend and 2) the sharp peaks in Fig. 6 (left) due to the mentioned resonance 

distortions are alleviated. Alternatively, a fitting function can be determined for d
−

l,l+1, e.g. from polynomial fit by employing the least- 
squares method. The resulting estimated trend function is denoted d̃l,l+1. 

To find the direct trend relation between each order to the highest present order, the subsequent order difference functions of 
higher orders are multiplied as explained by Eq. (9). For example, the scaling of order l = 4 to order o = 8 is determined as d̃4,8 =

d̃4,5d̃5,6d̃6,7d̃7,8. Fig. 7 shows the resulting trend difference estimations from each order to the highest tracked order. 
According to Eq. (10), the estimated trend differences d̃l,o are used to scale the magnitude of each order |yl| to the common 

magnitude level of the highest order |yo|. Fig. 8 shows the individual orders in their original (unscaled) and resulting scaled form. It is 
visible that the magnitudes of the scaled orders (plotted as bold lines) align well to the highest order. 

Zooming into the first resonance peak in Fig. 9 shows that small-scale differences between orders are preserved while the 
magnitude level alignment is ensured along the whole frequency range. 

The distortion impact of higher orders on the resonance spectrum is visible in Fig. 9. Detailed discussions on this phenomenon can 
be found in [25,26]. The effect is especially pronounced on lightly damped modes, which is also the case here. With greater excitation 
sweep rates (i.e. higher orders), two effects are observed:  

1. The resonance peak is shifted to the sweeping direction, which can lead to an overestimation of natural frequencies in case of a 
positive sweep rate as in the present simulation. Vice versa, a negative sweep rate (i.e. decreasing excitation frequency over time) 
would promote an underestimation of natural frequencies.  

2. The resonance peak becomes flatter, which produces an overestimation of the modal damping. 

Finally, the orders can be averaged into the result shown in Fig. 10 using Eq. (11). In contrast to the overall response spectrum in 
Fig. 2, the resulting average does not show discontinuities at the ending frequencies of orders. In comparison to the individual orders in 
Fig. 4, the averaged magnitude is aligned to a common level and the phase signal shows less noise. Furthermore, the partial frequency 

Fig. 35. Eigenfrequency differences (fest - fOMA)/fOMA relative to OMA results.  
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ranges of individual orders are combined into a single spectrum signal covering their full combined frequency range. 
The present study focuses on the dynamic response of a stationary structure, which is subjected to periodic excitation by a 

contiguous rotating structure, like a fan or disc assembly. It should be noted that this rotating structure itself can exhibit rpm- 
dependent natural frequencies due to gyroscopic effects [28]. On the stationary structure, these resonances would thus emerge as 
an excitation with rpm-dependent amplitude and become part of the measured response of the combined system. The order spectra are 
associated with the individual order frequencies, which differ from the rpm by the factor l, Eq. (1). This means that the measured 
response peak arising from an rpm-dependent eigenfrequency of the rotating structure would occur at different frequencies for 
different tracked orders. This has to be considered during the smoothing (e.g. by a suitable moving average window size), so that the 
sharp distortions shown in Fig. 6 (left) are removed while amplitude changes due to rpm-dependent eigenfrequencies are preserved in 
the difference functions. Otherwise, there is a risk that a single rpm-dependent mode contributes to the averaged signal with multiple 
peaks at different frequencies. Besides that, when each order is scaled to the highest order in AOBMA (Eq. (10)), the resulting averaged 
order spectrum will correspond to this highest reference order in terms of the rpm-dependent eigenfrequencies. While the present 
study does not further consider the influence of rpm-dependent eigenfrequencies, such conditions can be assessed further in the future 
with a data set, which incorporates gyroscopic effects. 

3. Methodology 

Acceleration responses from a parametric simulation study as well as operational measurements of a turbofan casing during ac
celeration are used in this study. The purpose is to validate the novel AOBMA method and to compare the modal estimation perfor
mance of OMA, OBMA and AOBMA. Both datasets are introduced in the following subsections together with the used analysis 
methodology. 

3.1. Parametric simulation study of a 2D spring-mass-damper system 

The simulated 2D structure consists of 9 nodes, which represent point masses and are connected with spring and dashpot elements 
with a total of 18 degrees of freedom. The parameters of the structure’s elements and its geometry are provided by Table 1 and Fig. 11, 
respectively. 

External forces are applied at the central node 9 in both the X and Y direction. These forces consist of combined random input and a 
rotating force vector in the XY-plane to simulate unbalance and harmonics, which produce individual orders l. In the parametric study, 
the harmonic ratio is introduced as an independent variable, which adopts the set of values given in Eq. (12). It describes the ratio of 
harmonic (i.e. order) RMS amplitude RMS(xl(t)) to the sum of harmonic and random RMS amplitudes RMS(xl(t)) + RMS(xr(t)): 

RMS(xl(t) )
RMS(xl(t) ) + RMS(xr(t) )

∈ {0.2, 0.4, 0.6, 0.8, 1.0} (12) 

The total duration of each simulation run is T = 100 s. While the harmonic ratio is kept constant per simulation run, the sum RMS 
(xl(t)) + RMS(xr(t)) is linearly increased over time t according to Eq. (13), where Σt1 = 200 N and Σt2 = 4000 N are the RMS sums at the 
beginning and end of a simulation run, respectively. 

RMS(xl(t) )+RMS(xr(t) ) = Σt1 +(Σt2 − Σt1)
t
T
= 200N+ 3800N

t
T

(13) 

The frequency f1 of the first order l = 1 (i.e. the fundamental frequency) is increased linearly from f1,t1 = 5 Hz to f1,t2 = 30 Hz over 
time as specified by Eq. (14). This equates to a run-up from 300 rpm to 1800 rpm. 

f1(t) = f1,t1 +
(
f1,t2 − f1,t1

) t
T
= 5Hz+ 25Hz

t
T

(14) 

The first 8 orders are included in the excitation with frequencies defined by Eq. (15). 

fl(t) = l f1(t), l ∈ {1, 2, 3, 4, 5, 6, 7, 8} (15) 

Each distinct harmonic ratio below 1.0 is simulated with 30 runs each to determine the means and confidence intervals of estimated 
modal parameters. The harmonic ratio of 1.0 is simulated by a single run due to the deterministic nature of the purely harmonic order 
excitation. Therefore, the resulting Monte Carlo parametric simulation study features a total of 121 simulation runs. 

The reference modal parameters of the presented structure are determined from a complex eigenvalue analysis of its system 
matrices. The undamped eigenfrequencies and damping ratios are presented in Table 2. Even though not immediately obvious from the 
geometry (Fig. 11), the structure has two rigid body modes. These are listed as modes 1 and 2 with zero damping in Table 2. 

All compared modal estimation methods (OMA, OBMA and AOBMA) were first applied to a small subset of randomly selected 
simulation runs to determine a suitable range of common stabilisation criteria for modal identification. Within the determined range of 
stabilisation criteria, 4 different combinations of frequency and damping tolerances were then used in a batch analysis of all simulation 
runs to estimate the potential impact of the stabilisation criteria on the obtained results. The modal parameter results from the 3 

Fig. 36. Damping ratio differences (ξest – ξOMA)/ξOMA relative to OMA results.  
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estimation methods were then stored for a subsequent comparison with the reference results (i.e. eigenfrequencies, damping ratios and 
mode shapes) from the simulation. The main trends and observations remained consistent within the range of tested stabilisation 
criteria. A final representative set of stabilisation criteria is used for the presented results and is given in Table 3. 

The Pole-weighted Extended Modal Assurance Criterion (MACXP) [13] is utilised to match estimated modes to reference modes. 
First, a matrix of MACXP values is constructed between the numerical reference modal parameters and the modal estimation set from a 
simulation run. This step is analogous to the construction of the more common MAC matrix. In contrast to the MAC value, however, the 
MACXP is less sensitive to mode shape complexity and also considers natural frequencies and damping ratios of the compared modes 
(see Section 2.2 for more details). Higher values of the resulting MACXP matrix indicate matching modes, which are then compared 
further. Additionally, tolerances of the relative estimation errors are introduced as matching criteria. In the present case, the estimated 
eigenfrequency fest (quantified by the relative error) and mode shape (quantified by the MACX) of the estimation must stay within the 
tolerances specified by Table 4 to be considered a matched mode. These values were chosen to exclude outliers from the comparison 
and declutter the comparison plots. Estimations, that do not meet these tolerances are defined as unmatched modes and can occur due 
to noise, end-of-order modes, or numerical spurious modes. 

Estimation results from the individual methods, OBMA, AOBMA and OMA are compared later in Section 4.1. 

3.2. Operational run-up of a turbofan casing 

To validate the presented AOBMA method in a real-world test case, it is also applied to operational vibration data of a mechanical 
spinning test. The estimation results are then compared to outputs from OMA and OBMA. 

The used mechanical test rig hosts a fan/casing assembly of a commercial turbofan engine. The fan is driven directly by an 
electromagnetic motor. Due to the lack of combustion and environmental forces, an increased contribution of harmonic order input is 
expected in relation to random excitation amplitudes. The fan casing is instrumented with accelerometers at 12 positions illustrated in 
Fig. 12. One triaxial accelerometer is used at position 4. The remaining positions host 11 uniaxial accelerometers oriented in the 
normal direction of the cylindrical surface area of the casing. Hence, a total of 14 accelerometer data channels is recorded. In addition, 
the rotation speed is acquired from a pulse signal reading. The measurement signals are sampled at a frequency of 65 kHz but low-pass 
filtered and downsampled to achieve a lower Nyquist frequency of interest. Such a high sampling frequency is used as standard practice 
in the test facility, which conducted the measurement campaign to provide leeway in the acquired bandwidth against potential 
contingencies during the test. The analysed measurement data covers a run-up of the fan with the lowest acceleration rate provided by 
the fan speed control unit, resulting in a measurement duration of 190 s. 

In contrast to the simulation-based analysis from the previous section, true reference modal parameters of the real tested structure 
are unknown. Therefore, modal estimation results from traditional OMA are used as the baseline to compare and validate results from 
OBMA and AOBMA. The same procedure as described in the previous section is used to find matching modes for the comparison of 
their estimated parameters by different methods. 

Fig. 38. Overlayed deflections of mode 1 estimated by OMA, OBMA(1), AOBMA.  

Fig. 39. Overlayed deflections of mode 15 estimated by OMA, OBMA(4), AOBMA.  

Fig. 37. MACX values between mode shape results from OMA and the specified methods.  
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4. Results and discussion 

The first subsection below uses data of the parametric simulation study (Section 3.1) to compare the estimation accuracy of OMA, 
OBMA and AOBMA while considering the potential impact of the harmonic ratio. Afterwards, the three methods are applied to 
operational measurements of the test setup presented in Section 3.2. 

4.1. Comparative performance assessment of OMA, OBMA and AOBMA 

In the following, OMA, OBMA and AOBMA are first applied to the maximum frequency range available to each method in Section 
4.1.1. In the subsequent Section 4.1.2, the results of an additional approach based on averaging of OBMA results in post-processing are 
introduced and discussed. Finally, OBMA and AOBMA are applied to a common, narrowed analysis bandwidth (covering modes 3–4 
only) to isolate the impact of the analysis band on the estimation performance. 

Only orders l ∈ {1, 3, 5, 8} of the simulation are used for the following OBMA results and the specific source order is specified in 
brackets as OBMA(l). This reduced set of orders is used to support conciseness of the following plots and discussions. The included 
orders are selected to be spread approximately equal across the range of all orders. All 8 excitation orders are simulated with the same 
amplitude function over rpm or time (Eq. (13)), so there is no inherent preference of the picked orders of the subset and their individual 
differences are limited to the sweep rates and covered frequency ranges. The same reduced set of 4 orders is also processed within the 
presented AOBMA results below to ensure better comparability. 

4.1.1. Modal estimations over the maximum frequency range of each method 
In this section, the maximum frequency range of each method is used for modal analysis. For OMA, an analysis band from 0 Hz to 

270 Hz is chosen to cover all eigenfrequencies (Table 2). The full frequency bands of individual orders, determined by Eqs. (14) and 
(15), are used for OBMA. Consequently, their combined frequency ranges provide the used analysis band of 5 Hz to 240 Hz for AOBMA. 

Fig. 13 shows for each mode (on the horizontal axis) the count of simulation runs (on the vertical axis), where this mode was 
matched according to the criteria from Table 4. Since there are 30 simulation runs per discrete harmonic ratio below 1.0, the maximum 
number of matches per mode and harmonic ratio is 30. An exception is the purely harmonic (and thus deterministic) excitation with a 
harmonic ratio of 1.0, where only 1 simulation run was performed. Focusing on OBMA(l), it is evident that the range of matched 
reference modes on the horizontal axis increases if a higher order l is used. This is simply due to the increasing frequency range, which 
is covered by higher orders. 

Within individual methods, the overlaid plots of harmonic ratios are mostly consistent, except for certain modes that are more 
challenging to identify. This is the case for reference modes number 3 and 4, which have close natural frequencies with a difference 
below 0.5 Hz (Table 2). OBMA(1) and OMA achieve the highest number of matches for these modes. The difference between the results 
of OBMA(1) and OBMA(3) is likely due to the increased distortion of the spectrum of order 3 compared to order 1 (Fig. 9). OBMA(1) 
results in a substantially higher number of matched estimations of mode 3 compared to AOBMA. Whether this is due to the smaller 
frequency range of OBMA(1) or a potential impact of order averaging by AOBMA will be evaluated in Section 4.1.3. 

Another clear dip in the number of matches appears in OBMA(8) at mode number 10 and is also reflected in AOBMA. However, this 
dip is limited to a low harmonic ratio of 0.2. OMA identifies this mode only once in the 121 simulation runs. Between modes 5–12, the 
proposed AOBMA method is free of gaps in contrast to OMA and shows a less pronounced dip compared to OBMA, which can be 
attributed to a noise reduction by averaging of orders. Modes 13 and up are not identified by OMA either. A reason might be the 
increased damping ratios of these modes in combination with the end-of-order effect, which produces small-scale distortions of the 
spectrum as shown in Fig. 2. AOBMA and OBMA(8) are able to identify these higher modes, albeit with a trend that higher harmonic 
ratios lead to a greater number of matches. 

None of the methods successfully matched mode 18. The reason is that the maximum frequency of the highest order 8 (240 Hz) is 
very close to this mode’s eigenfrequency (239.84 Hz). This mode is therefore not sufficiently covered by the frequency range of OBMA 
(8) and AOBMA. While this restriction does not apply to OMA, it is not able to identify this mode either, likely due to the substantial 
end-of-order distortion of the spectrum at this frequency, which is visible in Fig. 2. 

The results can be summarised with Fig. 14 (left), which shows how many different modes from a single simulation run have been 
matched on average. Each data point represents the mean value of 30 simulation runs (for harmonic ratios below 1.0). The vertical 
error bars extending from the data points visualise 95% confidence intervals around the mean. 

It is visible that OBMA(8) and AOBMA benefit from higher harmonic ratios while OMA is mostly unaffected. However, even at low 
harmonic ratios of 0.2 and 0.4, the number of modes matched with AOBMA approaches the number of modes matched with OMA. 
Overall, the proposed AOBMA method provides the greatest number of matched modes. 

For completeness, Fig. 14 (right) also shows the count of unmatched modes, which exceed the tolerances from Table 4. Only a 
minor impact of the harmonic ratio is visible: the low harmonic ratio of 0.2 results in slightly elevated unmatched count values, 
especially in OBMA(8) and AOBMA. Unmatched count values of the harmonic ratio 1.0 follow the overall trend more coarsely because 
each plotted point is based on a single sample (i.e. simulation run). In contrast to that, data points of other harmonic ratios are based on 
30 samples, resulting in more representative average values. OBMA(1) shows the highest amount of unmatched modes compared to 
OBMA results of higher orders because order 1 covers the smallest frequency range and the modal model is overfitting resulting in 
spurious mode estimations. The dip of the number of unmatched modes in OBMA(8) is also explained by the frequency range of order 
8, which starts at 40 Hz and thus omits the challenging modes 3–4, as seen in Fig. 13. Finally, AOBMA and OMA show similar counts of 
unmatched modes in Fig. 14 (right) despite more matched modes in favour of AOBMA in Fig. 14 (left). 
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Next, the accuracy of the methods regarding individual estimated modal parameters of the matched modes is compared. 
Fig. 15 shows the relative errors of estimated eigenfrequencies. Considering the error tolerance of ± 1% (Table 4) and the con

sistency of the results in Fig. 15 (with limited outliers), the accuracy of estimated eigenfrequencies in this simulation study is high 
across all methods. An impact of the harmonic ratio is visible in the form of more accurate estimations with increasing harmonic ratios 
in order-based methods. For example, this is the case for the mode 4 of OBMA(3), modes 14–16 of OBMA(8) and AOBMA. A stronger 
impact of harmonic ratios was observed and discussed in the previous results of Fig. 13 and Fig. 14. In contrast to that, the overall 
impact on the estimation accuracy of modal parameters is minor since the graphs of different harmonic ratios mostly overlap for all 
modal estimation methods. 

Therefore, hereafter, results of individual harmonic ratios are averaged into single plots to increase conciseness and facilitate the 
comparison of the methods by overlaying their plots. Fig. 16 combines the eigenfrequency results from Fig. 15 in such way. 

In Fig. 16, the result of averaging with the proposed AOBMA method is visible. Aside from mode 3, which is also based on much 
fewer AOBMA estimation samples (Fig. 13), AOBMA produces more consistent results compared to OBMA and mitigates increased 
error values of OBMA(8) at modes 6–7. Eigenfrequencies of lower, lightly damped modes are overestimated by the order-based 
methods OBMA and AOBMA due to the distortion effect described with Fig. 9. 

The same effect is also responsible for the large overestimation of damping ratios (with differences up to approximately 200%) by 
OBMA, which are shown in Fig. 17. It is visible that higher orders produce greater overestimations compared to lower orders used 
within OBMA, which is in conjunction with earlier observations from Fig. 9. AOBMA reduces these error deflections and delivers more 
consistent results compared to individual OBMA outputs because the negative impact of higher orders is mitigated by spectrum 
averaging with lower orders carrying less distortions. This is additionally reinforced by a weighted averaging in AOBMA, which 
implicitly favours the contribution of lower orders as noted in the ending paragraphs of Section 2.4. As a result, the accuracy of 
eigenfrequency and damping ratio estimations by AOBMA approaches the results from OMA, which is not affected by the order 
spectrum distortion effect. 

In Fig. 18, the estimation performance of mode shapes is quantified by MACX values, which are calculated between the matched 
mode estimations and the true reference mode shapes of the simulated structure. The graph shows that OBMA and AOBMA provide 
similar results and clearly surpass OMA in the estimation of mode shapes: while the difference is small in modes 5–7, greater dif
ferences are visible in modes 8–12, where OBMA and AOBMA still provide MACX values close to 1. A decreased mean and increased 
variance of MACX values from OBMA and AOBMA is visible at mode 14 and up. The discrepancy between the performance of OBMA/ 
AOBMA and OMA is likely related to the present excitation condition (mixed random and correlated harmonic order excitation at a 
single location). 

For a closer analysis, Fig. 20 is limited to modes 6–12 and shows the degree of mode shape complexity using the MPC value for 
individual levels of the harmonic ratio. In addition, 30 simulation runs with a harmonic ratio of 0.0 (i.e. purely random excitation) are 
included in the analysis by OMA. The mode shape estimation of OMA seems to be affected by the phase of the (sweeping) order input, 
resulting in increased complexity of the estimated mode shapes. OBMA and AOBMA, on the other hand, provide consistently low mode 
shape complexity (with MPC values close to 1) for harmonic ratios of 0.2 and up. 

This is also supported by an observation of the estimated mode shapes on the structure. For example, Fig. 19 shows the overlayed 
deflections of a vibration cycle for the mode shape estimation of mode 12 at harmonic ratio 0.8 by OMA (left) and AOBMA (right). At 
the illustrated scale, the AOBMA mode shape is indistinguishable from the reference mode shape and shows antisymmetric deflections. 
The OMA estimation (Fig. 19, left), on the other hand, matches these reference deflections well on the right part of the structure (e.g. at 
node 6, Fig. 11) but fails to do so at the nodes of the left half of the structure. In addition, the impact of the rotating excitation on the 
OMA estimation is visible, resulting in a circular motion of the central node illustrated by the ellipsoidal trace line in Fig. 19 (left). This 
in turn explains a decreased MPC value of the OMA estimation (Fig. 20). During order tracking, each tracked response order is phase- 
referenced with a sinusoidal reference signal of the input order, which is synthesised using the rpm signal and the corresponding order 
number [19,29]. It appears that OBMA and AOBMA benefit from this phase-referencing of the output signal, leading to a more accurate 
mode shape estimation. 

4.1.2. Averaging of OBMA results in post-processing 
This section presents and discusses results obtained from an alternative averaging approach. Instead of averaging of order spectra in 

pre-processing as presented before, the modal estimations of each mode obtained from OBMA are averaged across different orders in 
post-processing. In the following, this method is denoted “Post-AOBMA” and averages the previously presented results of OBMA es
timations from orders 1, 3, 5, 8. In analogy with the weighted averaging in AOBMA (Section 2.4), a higher weighting of lower orders is 
also implemented in Post-AOBMA by using the inverse of the order number as the weighting factor for modal estimations from the 
corresponding orders. The following plots in Fig. 21 to Fig. 24 show the modal estimation performance of Post-AOBMA. For reference, 
the previously presented results of AOBMA and OBMA(8) are included as well. 

In Fig. 21, Post-AOBMA shows a higher number of simulation runs with matched modes compared to AOBMA results for modes 3–4 
and for a harmonic ratio of 0.2 in the range of modes 8–10. The reason is that Post-AOBMA benefits from the fact that OBMA(1) and 
OBMA(3) more often identify modes 3–4 while OBMA(5) more often identifies modes 8–10 compared to AOBMA (Fig. 13). However, 
this elevated performance of OBMA(1) and OBMA(3) is also due to their smaller frequency band and comes at the cost of increased 
spurious modes as discussed with Fig. 14 (right). This question is further evaluated in the following Section 4.1.3. Moreover, in the 
presented setup, Post-AOBMA has the advantage that averaged OBMA results of individual orders are already matched to a set of true 
reference modal parameters. In a real-world application of Post-AOBMA (where true modal parameters are unknown) the mode 
matching should be performed between individual OBMA results themselves. While this can be implemented algorithmically (e.g. 
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utilising the MACXP), it constitutes an error source for Post-AOBMA results, which is not considered here. In contrast to that, this 
requirement of mode matching between orders does not apply to AOBMA because it is based on pre-processing. 

From Figs. 22–24 it is visible that, in the upper frequency range, the results of Post-AOBMA are identical to those of OBMA(8), 
which is due to the lack of other orders’ contributions in the frequency range of mode 12 and up (Fig. 13). For the closely spaced modes 
3–4, Post-AOBMA shows favourable performance in the estimation of modal parameters. However, this performance is likely elevated 
due to factors discussed in the previous paragraph. Leaving aside modes 3–4, AOBMA shows a greater mean estimation performance 
for all modal parameters compared to Post-AOBMA. This is also the case for mode numbers above 11, even though both AOBMA and 
Post-AOBMA are solely based on order 8 in this frequency range since order 5 ends at 150 Hz. However, this can be related to a reduced 
number of modes identified in this frequency range (Fig. 13), contributing to a higher uncertainty of the results indicated by larger 
vertical bars, especially visible in Fig. 24. Besides that, averaging by AOBMA reduces the variance in the processed spectra, potentially 
leading to a reduced error bias during the modal estimation. It was shown that averaging of the frequency spectrum has an impact on 
modal estimation performance, albeit primarily on the variance of modal parameters estimated in (regular) OMA by the pLSCF method 
[30]. 

4.1.3. Comparison of OBMA and AOBMA at a common, narrowed analysis bandwidth 
Due to different frequency ranges of individual orders (Eq. (15)), the previously presented results are obtained not only by different 

estimation methods but also utilise different analysis bandwidths. Great estimation differences of modes 3–4 between OBMA(1), 
OBMA(3) (and consequently Post-AOBMA) on one hand and AOBMA on the other hand were observed in Sections 4.1.1 and 4.1.2. 
Therefore, this section compares the estimation performance of these methods using the common analysis bandwidth of 25 Hz 
covering modes 3–4. More precisely, the analysis band of AOBMA is reduced to match the frequency range of OBMA(1), i.e. 5 Hz-30 
Hz. The analysis band of OBMA(3) is shortened to cover the same bandwidth of 25 Hz, resulting in a range of 15 Hz-40 Hz. This 
alleviates the advantage of Post-OBMA noted in Section 4.1.2 for a clearer comparison and allows to gauge a potential impact of order 
averaging on the estimation of closely spaced modes. The same stabilisation criteria are used for the following results as before 
(Table 3), except for the required minimum number of stable poles, which is increased to 10 to avoid overfitting with identifications of 
spurious modes. 

As expected from previous discussions (Fig. 9), OBMA(3) mostly shows a decreased performance compared to OBMA(1) in Fig. 25 
to Fig. 28 because of the increased spectrum distortion at higher frequency modulation rates of higher orders. In AOBMA, the spread of 
modal parameter estimations between different harmonic ratios (Fig. 25 to Fig. 28) appears smaller compared to OBMA(1) and OBMA 
(3). This indicates a positive effect of AOBMA at low harmonic ratios, which show a decreased performance in OBMA(1) and OBMA(3), 
especially at the eigenfrequency (Fig. 27) and damping ratio (Fig. 28) estimations. Overall, AOBMA does not show worse results 
compared to OBMA(3) and partially surpasses the performance of OBMA(1). Based on this, it can be concluded that the estimation of 
the closely spaced modes 3–4 is not negatively affected by order averaging in AOBMA compared to OBMA. Instead, the estimation 
performance benefits from a narrow analysis band in this range. 

4.2. Operational run-up of a turbofan casing 

In this section, first, spectra from the unprocessed time response are compared to the response spectrum estimate from the proposed 
AOBMA method. Afterwards, differences in modal parameter estimations between OBMA and AOBMA in relation to OMA are pre
sented and discussed. 

In the following, rpm, frequency (fnorm), and amplitude values are provided in normalised units, which are scaled in relation to their 
respective maximum values in the analysed measurement. 

Fig. 29 shows a spectrum from the response in radial direction at position 4 (Fig. 12). Ending frequencies of orders 1, 2, 3 are 
highlighted in the graph with red vertical lines. On closer inspection, discontinuities are observed at some of these frequencies. These 
discontinuities can be attributed to the end-of-order effect. The distortion is especially pronounced at the ending frequency of order 1 
(fnorm = 0.25) and potentially order 2 (fnorm = 0.5). This stronger impact of the end-of-order effect on frequencies of low orders is in 
agreement with the observations and explanations from the simulated structure (Fig. 3) in Section 2.3. 

The orders 1, 2, 3 and 4 were tracked from the response data and, according to the presented AOBMA method, scaled and averaged, 
resulting in the spectrum of the same channel shown in Fig. 30. A clear difference in both spectra is visible in the frequency range of the 
first order. Its impact on the spectrum amplitude is reduced and the discontinuity at its ending frequency (fnorm = 0.25) is eliminated in 
Fig. 30. The impact of the second order’s ending frequency at fnorm = 0.5 is difficult to judge from Fig. 29 alone, because it appears to 
coincide with a resonance. However, the peak at this frequency is reduced in the order-based spectrum in Fig. 30, indicating that an 
impact of the end-of-order effect on this area is indeed present in Fig. 29. 

OMA estimated the most modes with a count of 21, followed by AOBMA with 18 modes. In OBMA, the orders 4, 3, 2 and 1 
determined 16, 15, 7 and 2 modes, respectively. In contrast to the simulation data, no tolerance criteria for mode matching are used 
here, so all modes estimated by OBMA and AOBMA are matched and are included in the following graphs. Another difference to the 
simulation study is that OMA estimation results are used as reference values since the true modal parameters of the structure are 
unknown. 

Figs. 35–37 show all relative difference values of estimated modal parameters in relation to OMA results for individual modes. The 
results of individual modes are summarised in Fig. 31–33 into error plots with mean values and confidence intervals of the estimation 
differences over all modes combined. 

Fig. 37 shows that the estimated mode shape of mode 1 has a much greater correlation between OMA and OBMA(1) compared to 
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AOBMA. These mode shape estimations are plotted in Fig. 38 and clear differences between the estimation methods are visible 
although they all indicate an overall ellipsoidal deflection, typical for the first circumferential mode of a cylindrical structure. The 
OBMA(1) mode shape shows symmetry about the horizontal axis but a lack thereof about the vertical axis, while the OMA mode shape 
seems to be superposed with rigid body motion with clear displacement components along the horizontal axis. In contrast to that, the 
MACX value indicates consistent results for the mode shape of mode 15 between OMA, OBMA(4) and AOBMA in Fig. 37, which is also 
confirmed by the mode shapes in Fig. 39. 

In Fig. 31, OBMA(1) shows the smallest mean difference and confidence interval in relative eigenfrequency differences compared to 
OMA. However, this is also promoted by the small frequency range of order 1, resulting in only two estimated modes as shown in 
Fig. 35. Apart from that, AOBMA delivers estimated eigenfrequencies and damping ratios, which show smaller variance and mean 
difference compared to OBMA as seen in Fig. 31 and Fig. 32, respectively. 

In Fig. 33, the lowest average MACX value is obtained from AOBMA. On first sight, this contradicts the observations from the 
simulation study in Fig. 18, where MACX values from AOBMA are among the highest. However, here the reference mode shapes 
originate from (imperfect) OMA estimations while the simulation study uses numerical reference parameters from the eigensolution. 
As observed in the simulation study, mode shape estimations by OMA were less accurate compared to OBMA and AOBMA. Therefore, 
low MACX values between OBMA/AOBMA and OMA may indicate less accurate estimations by OMA and not the other way around. 
This assumption is also supported by the comparison of the mode shape complexity in Fig. 34, where OMA shows mode shape esti
mations with higher complexity compared to OBMA and AOBMA, which is in conjunction with observations from the simulation study. 

5. Conclusions and future work 

This work introduced the AOBMA method, which extends OBMA by including intermediate steps of scaling and (weighted) 
averaging of tracked orders. To validate the proposed method, AOBMA was applied to simulation and real operational data along with 
OBMA and traditional OMA. Based on this, a comparative study of the three methods was performed to assess their modal estimation 
performance. In the simulation study, the harmonic ratio was introduced as an independent variable to estimate the impact of har
monic and random contributions in the excitation. The results showed that, with harmonic ratios of 0.6 and up, AOBMA identified a 
similar or higher number of modes in the specified error range (Fig. 14). However, OMA surpassed the order-based methods in the 
identification of two very closely spaced modes. 

End-of-order distortions are present but relatively limited in the presented simulation, even at high harmonic ratios, as shown in 
Fig. 2. This likely explains why no clear impact of these distortions and of different harmonic ratios on OMA was observed (Fig. 14, 
left). However, the spectrum from operational measurements in this paper (Fig. 29, top) as well as previous studies [7–9] illustrate that 
stronger end-of-order distortions can occur. Since order-based methods are not affected by these distortions, OBMA and AOBMA 
benefit in such cases, even though it was not observed in the specific simulation study of this paper. 

A benefit of the proposed AOBMA method is the reduction of analysis effort in comparison to OBMA, since estimates from indi
vidual orders with fractional, partially overlapping frequency ranges are combined into a single data source in AOBMA. The issue of 
high variance of OBMA results depending on the used order is addressed by AOBMA, as it achieves a noise reduction through averaging 
of orders and is able to emphasise most significant orders by the application of weighted averaging. As a result, AOBMA provided more 
consistently low error values of eigenfrequencies and damping ratios compared to individual OBMA results and approached the 
performance of OMA. This was observed in the analysis results of simulation (Fig. 16, Fig. 17) as well as real operational data (Fig. 31, 
Fig. 32). The alternative Post-AOBMA method (i.e. averaging of OBMA estimations in post-processing) was examined but does not 
outperform AOBMA in this study assuming that similar frequency analysis bandwidths are used (Sections 4.1.2 and 4.1.3). Post- 
AOBMA requires the additional step of mode matching across different orders but is free of the required order scaling and aver
aging steps of AOBMA. As Post-AOBMA showed an improvement over OBMA results, further research on this method, including 
algorithmic mode-matching and additional case studies, is suggested. 

Regarding mode shape estimation performance, OBMA and AOBMA surpassed OMA in the simulation study (Fig. 18). This 
observation was also supported by the analysis of real measurements (Fig. 34), even though they lead to a less conclusive assessment 
due to a lack of true reference mode shapes from the real structure. Order excitation was identified as the likely origin for degraded 
mode shape estimations in OMA (Fig. 20). In contrast to that, order tracking in OBMA and AOBMA seems to prevent a negative impact 
of the excitation orders by phase-referencing. To the best of the authors’ knowledge, this paper is the first to make this finding, thereby 
extending the existing use cases for OBMA and AOBMA. 

While AOBMA reduces the variance of individual OBMA results, the specific orders used in AOBMA still have a major impact on the 
achieved results, since the orders form the data foundation of the method. In future work, additional metrics (apart from relative order 
amplitudes) for the selection of relevant orders and weighting factors for weighted averaging in AOBMA should be evaluated. A 
correlation-based tool such as the Frequency Response Assurance Criterion (FRAC) could serve to identify and group orders with 
similar spectra or to create weighting factors depending on the spectrum similarity. This approach can be also useful to determine 
orders, which meet the assumption of similar force distributions (Section 2.4) and are thus especially suitable for averaging. Moreover, 
a modal model, which incorporates the distorted shape of resonances in order spectra (Fig. 9) could further enhance the performance of 
OBMA and AOBMA, especially in the estimation of closely spaced and weakly damped modes. As explained in the ending paragraph of 
Section 2.4.1, the research on AOBMA can be developed by evaluating the impact of gyroscopic effects in more detail based on 
corresponding data. Finally, additional independent variables, such as measurement noise or machine acceleration rate, can be 
included in the simulation study to estimate their impact on the compared methods in the future. 
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