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Abstract. We present a review of the methods behind the top 40 highest
accuracies achieved on the ILSVRC 2012 Imagenet validation set as ranked
on Papers with Code. A significant proportion of these methods involve
using transformer based architectures, but it should be noted that none
of the methods are naïve self-attention transformers, which would be
unmanageably large if the tokens were derived on a per-pixel basis. Rather,
the works we review here all toil with different methods of combining
the global nature of self-attention with local nature of fine-grained image
features, which have historically been the strength of convolutional neural
networks. However, it should be noted that 9 out of 22 works reviewed
did NOT use transformers.
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1 Introduction

In [1], the authors pose the question: “Are we done with ImageNet?”. They ask if
the recent progress on the Imagenet-1K [2] evaluation benchmark is continuing
improvement on generalization or the result of us (the deep learning for image
classification community) learning some latent properties of the labeling procedure.
The latter possibility is interesting, and in their work they do some good analysis
and provide a better set of labels, which we should all consider using going
forward. However, for now, the original labels remain the standard benchmark
and the means by which comparisons among the best models are made. Papers
with Code [3] has become the best known record of the state-of-the-art methods
for all types of deep learning tasks, including image classification. On Papers
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with Code, in the case of Imagenet, the performance is ranked by top-1 accuracy
achieved. In this review, we will examine the technologies behind the top 40 best
ranked accuracies, which are reported in 22 papers (some papers present multiple
models which rank multiple times).

2 Transformer-Based Networks

Since [4] and later [5], transformer networks have been dominating NLP deep
learning tasks. As such, computer vision researchers have been looking into ways
to take that success and transfer it to their domain. They have done so with a fair
amount of success, with the caveat that such success in most cases has required
unprecedentedly large networks with unprecedentedly large sets of additional
training data. The fact that in this review we will encounter non-transformer
based networks trained without additional training data that are competitive
with these networks suggest that it remains an open question whether or not
transformer-based networks will entirely supplant convolutional neural networks
in computer vision tasks. See Table 1 for a comparison of the transformer-based
models reviewed here.

In [10], the authors introduce ViT. ViT is currently the vision transformer
network that most recent transformer networks compare themselves to or use as
a basis for their designs. Inspired by the success of transformers applied to the
NLP domain, the authors endeavored to create a network for the vision domain
out of transformers sans convolutions entirely, and in their own words “with
the fewest possible modifications” to existing transformer designs. The authors
note that applying self-attention naively to entire images means attending every
pixel to every other pixel and thus represents a quadratic complexity relative to
the image’s size, which would not scale well to usable input sizes. The insight
they leveraged was that 16×16 patches of an image could be treated much like
words are treated in NLP applications. Prior attempts at fully transformer based
networks [18] failed to achieve competitive results on ImageNet-1k evaluation
accuracies due to having not attempted to scale up the networks parameters and
additional training data. Again, in their own words, the authors discovered that
“large scale training trumps inductive bias”—the inductive bias being that which
is introduced by convolutions.

In [6], the authors conducted a systematic study of the relationships between
data size, compute budget, and achieved accuracy across a spectrum of ViT
models [10]. Unsurprisingly, they discovered that bigger models with larger
compute budgets result in higher accuracies, with the caveat that there exists
sufficient data to train the model. In the largest models they studied, even 300M
samples was insufficient to saturate the models’ achievable accuracy. Additionally,
they found that the larger models were more sample efficient, meaning they
achieve the same accuracy as smaller models after training for fewer steps. Another
important observation that the authors made was that for more than two orders
of magnitude, compute budget and accuracy followed a power-law, and at the
high end of the compute budget, the largest models were not tending toward
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Table 1. Transformer-Based Networks

Rank top-1 # of Addt’l. Paper Title
Acc. Params. Training

Samples

2 90.45% 1843M 3B Scaling Vision Transformers [6]
4 90.35% 14700M 3B Scaling Vision with Sparse Mixture of Experts [7]
8 88.87% 460M 300M TokenLearner: What Can 8 Learned Tokens Do for

Images and Videos? [8]
9 88.64% 480M 1.8B Scaling Up Visual and Vision-Language Representation

Learning With Noisy Text Supervision [9]
11 88.55% 632M 300M An Image is Worth 16×16 Words: Transformers for

Image Recognition at Scale [10]
14 88.36% 7200M 300M Scaling Vision with Sparse Mixture of Experts [7]
15 88.23% 2700M 300M Scaling Vision with Sparse Mixture of Experts [7]
16 88.08% 656M 300M Scaling Vision with Sparse Mixture of Experts [7]
18 87.76% 307M 300M An Image is Worth 16×16 Words: Transformers for

Image Recognition at Scale [10]
20 87.54% 928M 14M Big Transfer (BiT): General Visual Representation

Learning [11]
21 87.5% 173M 14M CSWin Transformer: A General Vision Transformer

Backbone with Cross-Shaped Windows [12]
22 87.41% 3400M 300M Scaling Vision with Sparse Mixture of Experts [7]
24 87.3% 197M 14M Swin Transformer: Hierarchical Vision Transformer us-

ing Shifted Windows [13]
26 87.1% 296M 0 VOLO: Vision Outlooker for Visual Recognition [14]
27 86.8% 193M 0 VOLO: Vision Outlooker for Visual Recognition [14]
32 86.5% 356M 0 Going deeper with Image Transformers [15]
35 86.4% 150M 0 All Tokens Matter: Token Labeling for Training Better

Vision Transformers [16]
37 86.3% 271M 0 Going deeper with Image Transformers [15]
38 86.3% 307M 0 BEiT: BERT Pre-Training of Image Transformers [17]
39 86.3% 86M 0 VOLO: Vision Outlooker for Visual Recognition [14]
40 86.1% 271M 0 Going deeper with Image Transformers [15]
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perfect accuracy, suggesting that a model with infinite capacity would achieve less
than perfect accuracy. The authors noted that similar effects have been observed
in generative models and the authors of that work referred to this phenomenon
as the “irreducible entropy” of the task [19]. This further supports the hypothesis
that there is a ceiling on the achievable accuracy for the ILSVRC 2012 Imagenet
validation set [1]. They observed a similar saturation at the lower end of the
compute budget scale, where smaller models achieved better accuracy than the
power-law would predict.

Mixture of Experts (MOE) is a method of combining the outputs of multiple
sub-models called experts using a router mechanism. Generally, these have been
studied since the early 1990s [20][21][22]. More recently, they have been applied to
computer vision tasks [23]. In [7], the authors endeavored to combine MOEs with
transformers. They designed a network that, while containing a large number of
parameters, not all parameters get used during inference and they demonstrate
the network’s ability to achieve competitive results while using as little as half of
the computational power available in the network on any sample. Interestingly,
the router mechanism they designed doesn’t route entire images, but rather
individual patches of the images, so that different transformers in the network
operate on different patches, possibly of a single image. Additionally, they created
a fixed buffer size per expert in their mixture to encourage load balancing among
the experts which encourages the overall model not to end up favoring only a
small subset of the experts.

The network designed by the authors of [8] is another design based on
transformers. Transformers for visual tasks work by splitting the input into
patches. The authors noted that in most cases, of the 200–500 patches produced for
images of typical training sizes, about 8 or 16 of them were the most informative.
They propose a mechanism that the call “TokenLearner” which, prior to the
transformer block, learns which patches are significant and passes only those to
the transformer. In so doing, they were able to reduce the total number of FLOPs
by half and maintain classification accuracy. In addition to the TokenLearner
module that precedes the transformer block, they devised a “TokenFuser” module
that follows the transformer block which maps the result of the transformer
operation back to the input’s original spatial resolution, which allows the input
and output of the set of operations to maintain the same tensor shape, making
them easier to fit into a model’s overall architecture.

In [12], the authors grapple with the fact that in transformer based architec-
tures for vision tasks, global self-attention is an extremely expensive operation
(quadratic in complexity) compared to local self-attention, which limits interac-
tions between tokens. Their attempt to find a middle option is to introduce what
they term a “Cross-Shaped Window” (CSWin), which is an attention mechanism
that involves computing self-attention for vertical and horizontal stripes of the
input image in parallel. In addition, they introduce a new positional encoding
scheme they call “Locally-enhanced Positional Encoding” (LePE), which they
claim “handles the local positional information better than existing encoding
schemes”, “naturally supports arbitrary input resolutions”, and is “especially
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effective and friendly for downstream tasks”. LePE differs from other positional
encoding schemes by, rather than being concatenated into the input before the
transformer block as with absolute positional encoding (APE) [4] and conditional
positional encoding (CPE) [24], moving the encoding inside the encoding block
as with relative positional encoding (RPE) [25][13]. But rather than happening
inside the SoftMax operation that uses the queries, keys, and values, LePE is
applied directly to the values only.

[13] precedes and is cited by [12] and the two papers share an author. The
approaches are also quite similar, though the leap from a network of transformers
like are present in ViT to what the authors propose in this work is a little more
apparent. In this work, the authors note that the spatial position of the patches
of the images (the tokens) being used by all layers in ViT are the same. The
authors argue that it is better to think of how the patches are divided up as
being subject to a window that shifts across the image in subsequent layers. This
allows for connections between overlapping regions in the image to be learned
by combinations of transformers. This network is trained entirely on publicly
available data, using the 14M image ImageNet-22k dataset for additional training
data.

The authors of [15] start with a network similar to ViT, consisting of a
series of transformer blocks with residual connections between them. They then
altered this design in two specific ways. They posit that a problem with the
ViT architecture is that the class token being passed along with the image
patches through every transformer layer is asking the optimizer to optimize two
contradictory objectives. Those objectives being learning the self-attention for
the patches and learning the information that leads to the correct classification.
In order to combat this, they propose using two different processing stages, the
first of which is not passed the class token so that the transformers in this stage
can focus solely on learning the self-attention, and only in this stage does the
self-attention get updated. In the second stage, the class token is added and
the transformers begin learning the classification. Additionally, they added a
learnable diagonal matrix they call the “LayerScale” which they multiply the
output of a transformer block by before concatenating together with the path
that skipped over that transformer block. They refer to this architecture as CaiT
(Class-Attention in Image Transformers). This network is trained without using
any additional training data.

In [16], the authors propose a method they call “token labelling”. The idea
behind it is to have each token coming out of a transformer block learn a K-
dimensional vector for the classification for that specific patch, where K is the
number of classes and the vector components represent the probabilities of that
patch belonging to each class. And then for the final classification, these are
averaged together across the patches and then combined with the overall image
class to form a final prediction. A drawback to this method is that before doing
this, each patch’s probability for each image must be generated and stored. This
network is trained without using any additional training data.
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The authors of [17] attempt to take the methods of BERT [5], which are
applied to the natural language processing (NLP) domain, and apply them to
the vision domain. They call their attempt BEiT. To do this requires a pre-pre-
training step that creates discrete token values for each patch of each image via
an autoencoder. Then, during pre-training, a transformer-based BEiTEncoder is
trained to encode image patches into their corresponding tokens, with the caveat
that some of the image patches fed into the network are masked out. Then for
the final task of image classification, the pre-trained model has an additional
classifier network appended. This network is trained without using any additional
training data.

The authors of [14] took note of the fact that all of the best performing
transformer based vision models were using large amounts of additional training
data to achieve their results. This motivated them to study the use of transformers
while training on only the actual Imagenet 1k training data. Their findings were
that a major factor in this is the larger parch sizes (typically 16×16 or 14×14)
that most transformer architectures use due to their quadratic complexity. The
authors posit that this fails to encode sufficiently fine-grained information. Their
solution, which at first seems counter-intuitive, is to increase the patch size
to 28×28, which for images of size 224×224 means an 8×8 embedding. Then,
within each of those patches, use a sliding window attention mechanism to relate
the fine-grained information within those patches together. A series of these
transformer blocks make up the first stage of their design. The second stage of
their design is to split each of those embeddings into 2×2 embeddings of size
14×14 and again apply the sliding window attention mechanism. This network is
trained without using any additional training data, and is the highest ranked
network to do so.

In their own words, the authors of [11] “aim not to introduce a new component
or complexity, but to provide a recipe that uses the minimal number of tricks
yet attains excellent performance on many tasks”. They refer to this “recipe” as
Big Transfer (BiT). In their work, they show that BiT can be pre-trained once
and then fine-tuned quite cheaply on the task it is transferred to using a simple
heuristic for choosing the hyperparameters for the fine-tuning training. They call
this heuristic the “Bit-HyperRule”. In their study they found that they could
limit the hyperparameters that need fine-tuned to the learning rate schedule
and whether or not to use MixUp [26] after transferring. The first step in their
heuristic is to categorize the size of the dataset they are transferring to. They
class datasets with fewer than 20k labeled examples as small, datasets with more
than that, but less than 500k labeled examples as medium, and everything else
as large. Then after transfer, for small datasets, they train for 500 steps, for
medium, 10,000 steps, and for large 20,000 steps, decaying the learning rate by a
factor of 10 after 30%, 60%, and 90% of the training steps. They use MixUp with
α = 0.1 for medium and large datasets. The network they designed is based on
ResNet-v2 [27], but instead of using Batch Normalization (BN), they use Group
Normalization (GN) [28] and add Weight Standardization (WS) [29] to all of the
convolutions. The authors argue that batch normalization is a poor choice for
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transfer learning due to the requirement to update running statistics and show
that the combination of GN and WS has a significant positive impact on transfer
learning tasks. This network is trained entirely on publicly available data, using
the 14M image ImageNet-22k dataset for additional training data.

3 Transformer/Convolution Hybrid Networks

Two of the works we reviewed, including the top ranking design, endeavored to
use a combination of transformers and convolutions in their designs. See Table 2
for a comparison of the transformer/convolution hybrid networks reviewed here.

Table 2. Transformer/Convolution Hybrid Networks

Rank top-1 # of Addt’l. Paper Title
Acc. Params. Training

Samples

1 90.88% 2440M 3B CoAtNet: Marrying Convolution and Attention for All
Data Sizes [30]

3 90.45% 1470M 3B CoAtNet: Marrying Convolution and Attention for All
Data Sizes [30]

19 87.7% 277M 14M CvT: Introducing Convolutions to Vision Transform-
ers [31]

The authors of [30] note that convolutional neural networks perform well due
to their natural locality bias and tend to generalize well and converge relatively
quickly, whereas networks employing transformers perform well because of their
ability to find global interactions more easily than CNNs but have been shown to
require much more data and many more parameters. In their work, the authors
endeavored to combine the benefits of both convolution and attention by summing
a global static convolution kernel with the attention matrix prior to the Softmax
normalization inside the transformer block’s attention heads. They refer to this
as relative attention. Because the global context required for relative attention
has a quadratic complexity with respect to the spatial size of the input, the direct
application of relative attention to the raw image is not computationally tractable.
Thus, their overall network architecture begins with an initial stem of traditional
convolutional operations, which they refer to as stage 0, that down-samples the
input image to feature maps half of the original image’s size. Then, stage 1 and
2 are Squeeze and Excitation [32] blocks that each further reduce the size of
the filter maps by half. It is at this point the filter maps have attained a size
that relative attention is able to cope with. As such, stages 3 and 4 are made
up of a series of relative attention transformer blocks before the network goes
on to a final global pooling and fully connected layer that leads to the output
classification probabilities. Residual connections are made between each stage
and before the feed-forward network of each transformer block. The authors
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pre-trained their networks on Google’s internal JFT-3B dataset [6], which as the
name implies, consists of 3 billion images. It is worthy of note that training their
best performing network took 20.1K TPUv3-core days.

The authors of [31] start with ViT as a basis for their design and then introduce
3 changes. First, at the beginning of each transformer, they introduce what they
call a convolutional token embedding, which involves reshaping the token sequence
going into the transformer back into their 2D spatial positions and performing
an overlapping, striding convolution. Then, they replace the linear projection
before each self-attention block with what they call “convolutional projection”,
which uses depth-wise separable convolutions [33] on the 2D-reshaped token map.
This replaces the linear projection used by ViT that is applied to the query,
key, and value embeddings. Finally, they remove the positional encoding that is
usually present in the first stage of a transformer block. The question regarding
the necessity of positional encoding in transformers used for vision tasks had
been previously raised and studied [24]. Notably, this is the highest rank achieved
using less than 300M additional training samples, as well as being the highest
ranking design to use a public dataset (Imnagenet-22k) for its additional 14M
samples of training data.

4 EfficientNet Networks

4.1 EfficientNetV2: Smaller Models and Faster Training

EfficientNet [34] is a model family that consists of progressively larger models
which have been optimized for computation and parameter efficiency using Neural
Architecture Search [35], which is a reinforcement learning method that learns
the best neural network architecture to use for a given task. See Table 3 for a
comparison of the EfficientNet networks reviewed here.

Table 3. EfficientNet Networks

Rank top-1 # of Addt’l. Paper Title
Acc. Params. Training

Samples

12 88.5% 480M 300M Fixing the train-test resolution discrepancy: FixEfficient-
Net [36]

23 87.3% 208M 14M EfficientNetV2: Smaller Models and Faster Training [37]
25 87.1% 66M 300M Fixing the train-test resolution discrepancy: FixEfficient-

Net [36]
28 86.8% 120M 14M EfficientNetV2: Smaller Models and Faster Training [37]
30 86.7% 43M 300M Fixing the train-test resolution discrepancy: FixEfficient-

Net [36]
34 86.4% 30M 300M Fixing the train-test resolution discrepancy: FixEfficient-

Net [36]
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In [37], the authors of the original EfficientNet paper continue their work
by introducing EfficientNetV2. In their study, they argue that the scale of
regularization needs to be proportional to the original image size of the dataset’s
images. This includes varying the regularization on a single network design based
on the original image size of the dataset it is being trained with. Networks that
work with smaller images, should use less regularization, and networks that work
with larger images should use more regularization. In their prior work, the authors
scaled up the number of layers in every stage of their network by the same factor.
In this study, they show that gradually adding additional layers in the later stages
is superior. Their prior work achieved the then state-of-the-art top-1 accuracy of
84.4%. This extension to that work achieved 87.3% top-1 accuracy—nearly a 4%
absolute improvement.

The work in [36] can appropriately be seen as an extension of their earlier
work [38]. In both papers, the authors note that there exists a discrepancy between
the prevalent data pre-processing operations during training vs. evaluation. It is
common to extract random rectangles from training images and scale them to a
certain size each epoch as a form of data augmentation, but during evaluation,
the common practice is to choose a central crop of equivalent size. This differing
approach during training and evaluation results in varying typical scales of the
objects trained on compared to objects of the same class during evaluation, and
crucially, unlike with the case of translation, CNNs do not respond to scale
differences in a predictable manner. In both works, the authors combat the scale
discrepancy by allowing the network to learn how to resize the images during both
training and evaluation. The details of the method by which they accomplish
this are quite involved and beyond the scope of this paper. The interested reader
is referred to the original works. In the first paper, the authors applied their
method to ResNet networks and trained only with the 1.2M training images
that are a part of the standard Imagenet-1k training set. In the second paper,
they applied their method to EfficientNet [34] networks and used the standard
Imagenet-1k training set with an additional 300M images for training.

5 Using Neither Transformers Nor Convolutions

A single network using neither transformers nor convolutions ranks among the
top 40 state-of-the-art networks we reviewed (see Table 4).

Table 4. Networks Using Neither Transformers Nor Convolutions

Rank top-1 # of Addt’l. Paper Title
Acc. Params. Training

Samples

17 87.94% 431M 300M MLP-Mixer: An all-MLP Architecture for Vision [39]
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The authors of [39] begin their introduction with the observation that “As
the history of computer vision demonstrates, the availability of larger datasets
coupled with increased computational capacity often leads to a paradigm shift”.
Ironically, their architecture involves avoiding the usage of the canonical paradigm
shifting methods of convolutions and transformers and instead is made up entirely
of simple multi-layered perceptrons (MLPs). Their architecture uses exclusively
matrix multiplication, reshaping and transposition, and scalar nonlinearities.
They use two different types of MLP layers. One which works independently
on image patches, which “mix” the per-location features, and one which works
across patches, which “mix” spatial information. They build their architecture
from a series of “Mixer” layers, each of which is made up of each of the two types
of “mixer” MLPs, each of which is two fully-connected layers and a GELU [40]
nonlinearity. Mixer layers also include residual connections around the mixing
sub-layers.

6 Teacher-Student Networks

Using teacher and student networks is arguably more of a training method than
a network design. The overarching idea is that the two networks (a) have closely-
related but nonetheless different goals or information and (b) either feed from the
teacher to the student in a directed manner or to each other in a cyclic manner.
See Table 5 for a comparison of the teacher-student networks reviewed here.

Table 5. Teacher-Student Networks

Rank top-1 # of Addt’l. Paper Title
Acc. Params. Training

Samples

5 90.2% 480M 300M Meta Pseudo Labels [41]
6 90% 390M 300M Meta Pseudo Labels [41]
13 88.4% 480M 300M Self-training with Noisy Student improves ImageNet

classification [42]

Pseudo-labeling [43] involves using a teacher network that generates pseudo-
labels on unlabeled data that is fed into a student network in tandem with
labeled data. Eventually, the student outperforms the teacher. In [41], the authors
extended on this idea, by allowing the teacher to receive feedback from the student
and then to adapt. Specifically, how well the student performs on the labeled data
is fed back to the teacher as a reward signal for the quality of the pseudo-labels
it generated. This surprisingly simple idea leads to the highest ranked design
that we reviewed that does not use transformers.

The work presented in [42] is clearly the prior stepping stone that led to [41]
reviewed above, as the methods described are quite similar, and the papers share
3 authors. The first key difference in this paper is the attention they pay to the
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role of noise in the teacher-student training process, thus the name NoisyStudent.
They never inject noise in the teacher model so that when it generates pseudo
labels, those labels are as accurate as possible. However, when training the
student, they inject considerable noise using RandAugment [44], dropout [45],
and stochastic depth [46]. The second key difference is that in this paper rather
than having the single student feedback to the single teacher, in this work, the
authors follow a self-training framework [47] consisting of three steps. The first
step is training the teacher with labeled data. The second step is to generate
pseudo labels for unlabeled data with the teacher. The third step is to train
the student with a mixture of labeled and pseudo-labeled data. These steps are
repeated several times, each time promoting the prior student to be the new
teacher and creating a new student model. The authors compare their method
to Knowledge Distillation [27], but note that in that work the student was often
smaller so that it could infer faster and did not inject noise so aggressively. They
say that their method could be thought of as Knowledge Expansion in that the
student is larger, with greater capacity and taught in a difficult environment
made up of more noise.

7 Innovations Related to Training Procedures

In the remaining works we review, the authors credit their achievement of state-
of-the-art results not on the design of the network they used, but rather on other
innovations related to the training of the networks (see Table 6).

Table 6. Innovations Related to Training Procedures

Rank top-1 # of Addt’l. Paper Title
Acc. Params. Training

Samples

7 89.2% 527M 300M High-Performance Large-Scale Image Recognition With-
out Normalization [48]

9 88.64% 480M 1.8B Scaling Up Visual and Vision-Language Representation
Learning With Noisy Text Supervision [9]

10 88.61% 480M 300M Sharpness-Aware Minimization for Efficiently Improv-
ing Generalization [49]

29 86.78% 377M 0 Drawing Multiple Augmentation Samples Per Image
During Training Efficiently Decreases Test Error [50]

31 86.5% 438M 0 High-Performance Large-Scale Image Recognition With-
out Normalization [48]

33 86.45% 255M 0 Drawing Multiple Augmentation Samples Per Image
During Training Efficiently Decreases Test Error [50]

36 86.3% 377M 0 High-Performance Large-Scale Image Recognition With-
out Normalization [48]
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In [9] the authors note that there are no publicly available labeled datasets
of the order being used by many of the state-of-the-art network designs (e.g.
JFT-300M and JFT-3B). This is due in large part to how costly and labor
intensive it is to curate such datasets. In their work, they describe a process of
downloading 1.8B images accompanied with alt-text from the internet, and rather
than doing labor intensive curation, instead opt to only perform a small amount
of filtering to the alt-text. Although they don’t give a detailed explanation of their
filtering process, it would stand to reason that they would filter out words that
occurred very infrequently or extremely frequently. After the filtering process,
they then have multiple noisy “labels”, one per word in the alt-text, per image.
For the purposes of this review, we will focus on their efforts to use this data
as supplementary data to train a network for validating on the Imagenet-1k
validation data. As such, we only briefly mention that prior to doing training for
the image classification task, they trained a different model to embed the image
and alt-text pairs of their 1.8B image dataset into a shared embedding space
where matched pairs were pushed together and unmatched pairs were pushed
apart. They then used this embedding to give each of the images’ associated
alt-text words different weights as labels.

The majority of networks, especially very deep networks like ResNets [51],
employ Batch Normalization (BN) [52]. BN has the effect of smoothing the
loss landscape which allows for larger learning rates and larger batch sizes.
However, BN is a costly operation, behaves differently during training than it
does evaluation, and breaks the independence among the training examples in
each batch. Furthermore, BN results in a tight coupling of batch size to network
performance such that when the batch size is too small, the network performs
poorly. The authors of [48] believe that in the long term, reliance on BN will
impede progress in neural network research. They noted that by suppressing the
scale of the activations on residual branches in ResNets, networks can be trained
effectively without BN. Specifically, they propose Adaptive Gradient Clipping
(AGC) which works by clipping the gradients based on the ratio of gradient norms
to parameter norms. The authors note that their work is closely related to recent
work studying “normalized optimizers” [53][54][55] which ignore gradient scale
and instead choose adaptive learning rates inversely proportional to the gradient
norms. They state that “AGC can be interpreted as a relaxation of normalized
optimizers, which imposes a maximum update size based on the parameter norm
but does not simultaneously impose a lower-bound on the update size or ignore
the gradient magnitude”.

The authors of [49] point out that with the heavily overparameterized models
that are commonly in use, minimizing the training loss, which is the usual goal
when training neural networks, can easily result in a suboptimal model. They
propose a simple, yet effective approach of not only minimizing the training loss
but while doing so, simultaneously minimizing the curvature of the loss landscape
in the neighborhood of the loss. Among their other results, notably, they show
that when using Sharpness-Aware Minimization (SAM), they achieve robustness
to noisy labels “on par with that provided by state-of-the-art procedures that
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specifically target learning with noisy labels”. In their related work section,
they note that similar superior generalization had previously been observed by
achieving wider minima, not by explicitly searching for such, but by arriving at
it by evaluating on a moving average of the prior training weights [56].

The usual approach to online data augmentation is to draw n samples from
the training data, augment each of them with whatever augmentation procedure
is being followed and then submit that batch of n augmented images to the
training procedure. In [50], similar to earlier work as in [57] and [58], the authors
perform a study of the consequences of drawing n samples, augmenting each
of them c times and submitting a batch of size cn to be trained. One of their
key findings is that for integer values of c greater than 1, higher accuracies were
achieved, even in the presence of fixed batch sizes, which means the number
of unique images in each batch was fewer. The authors noted that this was
especially true in the cases of large batch sizes. The authors state of such models
that “despite their superior performance on the test set, large augmentation
multiplicities achieve slower convergence on the training set.” It is our opinion
that it is not “despite” this but at least in part because of this. The authors also
note that prior work has found that observations of the regularizing effect of large
learning rates was proportional to the batch size used [59][60][61]. An interesting
hypothesize put forward by the authors is that this observation is a specific case
where c is held at one of the more general principle that the regularizing effect of
large learning rates is proportional to the number of unique training samples in
the batch.

8 Conclusion

In this work we reviewed the 22 papers that elucidate the methods that result in
the top 40 accuracies on the ILSVRC 2012 Imagenet validation set as ranked
on Papers with Code. An obvious trend is the interest in transformer-based
architectures. Additionally, the general trend towards larger and larger model
capacities as measured in the number of trainable parameters is readily apparent
(see Figure 1).

One thing that could be overlooked, though, is that along with the trend
towards increased model capacities there exists the trend toward using more and
more additional training data (see Figure 2), the two largest sets of which are
not publicly available.

These trends present problems for independent researchers, researchers who
are University faculty, and smaller labs. The first such problem is simply the
availability of data. The creation of Imagenet represents a turning point in the
history of computer vision. Up to that point, dataset sizes were most commonly
measured in the 10s of thousands of samples. Imagenet gave us a mega scale
dataset and has become the de-facto measure of state of the art as a result. The
second problem is the compute power required to train giga scale models on giga
scale data. For example, the highest ranked model had to be trained for 20,100
TPUv3-core days. The published price for this much compute is over $300,000
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and would take 10 days using the largest TPUv3 pod that exists. On a consumer
GPU like an NVIDIA GeForce RTX 3090, it would take approximately 18 years
to train this model. As such, state-of-the-art research is now dominated by large
corporations like Google, Microsoft, and Facebook.

What can we (the deep learning computer vision community) do to re-
democratize the research of state-of-the-art methods? We are certainly not saying
that the directions we have been going should be abandoned nor should such
research be ceded to large corporations. Instead, we are saying that we should
consider scaling up our efforts along an additional vector. That vector being the
data we train these models with. We should consider prioritizing the collection
of new standard benchmark datasets that fill the gaps between CIFAR-100 and
Imagenet and between Imagenet and the internal giga scale datasets of large
corporations. And furthermore, we should start researching the quality of the
data and develop analytical methods of measuring sufficiency in data quantity as
opposed to simply assuming more will always be better.

Fig. 1. The number of model parameters used to achieve the top 40 best accuracies on
the ILSVRC 2012 Imagenet validation set.
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Fig. 2. The amount of extra training data used to achieve the top 40 best accuracies
on the ILSVRC 2012 Imagenet validation set.
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