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Abstract 

Management of water-food-energy nexus (WEFN) is of great importance to achieve the 

Sustainable Development Goals. The development of WEFN management strategies is 

challenged by extensive uncertainties in different system components. Also, agricultural 

activities would contribute a large portion of the total GHG emissions in many countries, which 

are affecting the promised carbon neutrality in future. In this study, an inexact fractional fuzzy 

chance constraint programming method was developed towards planning the water-food-energy 

nexus system under consideration of both uncertainties and greenhouse gases (GHG) emission. 

An inexact fractional fuzzy chance constraint programming-based water-energy-food nexus 

(IFFCCP-WEFN) model has been established under consideration of various restrictions and 

GHG emissions. Solutions of the planting areas for different crops in different periods have been 

generated. These results imply that the corn cultivation would be prioritized to satisfy cereal 

demand due to its relatively lower GHG emission intensity. But the residual resources, after 

satisfying cereal demand, would tend to be allocated to vegetable planting. Comparison has been 

conducted among the IFFCCP-WEFN model and WEFN models based the inexact fuzzy chance 

constraint programming approach with and without GHG emissions. The results indicate that, the 

results from IFFCCP-WEFN model would achieve a highest unit benefit and lowest total GHG 

emissions. The total GHG emissions can be 11% less at most than GHG emissions from the 

resulting crop structures of the other two comparable models. Consequently, the developed 

IFFCCP-WEFN model can help decision-makers identify the desirable planting structure for 

crops with a priority of low GHG emission rate. The major contributions in this study include (i) 

the inexact fractional fuzzy chance constraint programming method to deal with interval and 

fuzzy parameters, reflect decision makers’ preferences and handle conflicts among contradictory 

objectives, (ii) the IFFCCP-WEFN model to achieve a maximized unit benefit with respect GHG 

emissions 

 

Keywords: inexact fractional programming; fuzzy chance constraint, uncertainty; 

water-energy-food nexus system; decision making; GHG emission 
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1. Introduction 

 

Consumptions of water, energy and food are accelerating due to rapid socio-economic 

development, booming population, and increasing living standard. Such an issue cannot only be 

deemed as a general problem of administration but also come into a large number of intricacies 

among water, energy and food (Liu et al., 2015). Moreover, water, food and energy have been 

involved in the 17 Sustainable Development Goals (SDGs) for 2030 to tackle global challenges 

(United Nations, 2015). However, water, energy and food systems are highly correlated. On the 

one hand irrigation is required for agricultural planting and at the same time, the effluents from 

farming will lead to pollution issues for the water systems. On the other hand, energy is required 

to sustain food transport, water treatment, farming, irrigation and water supply, while water 

resources can ensure stabilized energy generation, normal crops growth, processing and food 

production (Liu et al., 2015; Shang et al., 2018). Consequently, it is challenging to ensure water, 

food and energy demands accompanied with the urbanization process due to the complicated 

interactions among water, energy and food systems (Das et al., 2015; Yu et al., 2018). The 

deterioration of one factor in one system may spread to other components and cause serious 

consequences. The policy measure and security of water, energy or food may break the fragile 

balance among the three resources through critical demand and supply mechanism (Keskinen et 

al., 2016; Owen et al., 2018). Thus, integrated management strategies are desired for the 

water-energy-food nexus (WEFN) in order to address the above issue.  

 

WEF has complex interactions, in which the water, energy and food systems are not only 

interdependent but also competitive among each other (Cai et al., 2018). Water and energy are 

the key factors for agricultural production, whilst agriculture would produce basic food and raw 

materials to other sectors (e.g., life, manufacturing, service) and support mankind’s survival and 

economic development (Fernández et al., 2020; Guan et al., 2020; Zuo et al., 2021). Nevertheless, 

intensive contradiction among food demand and agricultural supply has been observed in many 

regions especially in water-scare areas. A recent report from FAO stated that 70% of the world’s 

freshwater resources are used for agricultural irrigation and even up to 95% in low-income 

countries (FAO, 2017). Moreover, the water depletion would significantly affect crop 

yield, which has been experienced in many countries (Daher et al., 2019; Bhattarai et al., 2021). 
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In addition, a number of studies have demonstrated the high dependence of agriculture 

production and energy supply (e.g., Arizpe et al., 2011; Ghisellini et al., 2016; Buko et al., 2021), 

even through agriculture accounts for only a relatively small proportion of total final energy 

demand. Consequently, energy supply would also play a key role in agriculture production 

especially for farm machinery and irrigation. Many research works were conducted to explore 

management strategies of water-energy nexus (WEN), water-food nexus (WFN) and 

water-energy-food nexus (WEFN) (Perrone et al., 2011; Yu et al., 2019). For example, Tsolas et 

al. (2018) and Liu et al. (2019) employed a graphical and systematic program with the purpose of 

identifying and eliminating surplus from consumption and production of WEN system. Salmoral 

and Yan (2018) used the theory of virtual water and embedded energy to explore water and 

energy allocations in the economic system. Nevertheless, there are still some issues to be 

addressed to develop effective management strategies for the WEFN system.  

 

Firstly, extensive uncertainties may exist in the WEFN system, which are embedded in different 

system components and also present different formats such as fuzzy, interval and random 

variables (Yu et al., 2020a; Ji et al., 2020a, b). This leads to challenges to reflect those 

uncertainties in developing the management policies for WEFN system. Recently, a number of 

studies have been proposed deal with various uncertainties in the WEFN system through inexact 

optimization techniques (Perrone et al., 2011; Georgiou et al., 2018; Tsolas et al., 2018; Liu et al., 

2019; Yu et al., 2019; Zhang et al., 2018). Interval mathematical programming (IMP), stochastic 

programming (SP) and fuzzy programming (FP) are the three major approaches to reflect 

uncertainties in the WEFN systems, and each technique would have its unique feature and 

shortcomings in dealing with uncertainties. For instance, the stochastic programming (SP) 

approach can effectively tackle random variables quantified with probability distributions, whilst 

a large number of samples are required to formulate those probability distributions and thus this 

method is not applicable when only limited data are available (Gholizadeh et al., 2020). In 

comparison, the FP methods are able to deal with ambiguity in knowledge or information and 

vagueness in decision makers’ aspirations, and the IMP methods can tackle uncertainties only 

having the lower and upper bounds which are useful when available data are insufficient (Li et 

al., 2017). These approaches have been widely used for management issues related to water, 

energy and food. For instance, Lv et al. (2018) proposed an interval-fuzzy chance-constraint 
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programming method towards planning the energy-water nexus system in Hebei province, China. 

Ma et al. (2020) developed a multi-preference based interval fuzzy-credibility constrained 

programming (MIFCP)approach for planning the regional-scale water-resources management 

system (RWMS) of Henan Province. Zuo et al. (2021) developed a scenario-based type-2 fuzzy 

interval programming (STFIP) approach for planning agricultural water, energy and food (WEF) 

as well as crop area management for the Henan province. Nevertheless, due to the complexities 

of the WEFN system and also data availability, those uncertain parameters in WEFN may 

present in different formats (e.g., fuzzy and interval) and even subjective/linguistic uncertainties 

(preferences of decision makers). Consequently, advanced inexact optimization methods are still 

desired to reflect complex uncertainties in a WEFN system.   

 

Secondly, a WEFN system is associated with different sectors/stakeholders such as energy, water 

and agriculture, and each sector may have their own prioritized concerns or objectives. This may 

lead to contradictions among different decision makers. Some studies have been proposed to deal 

with those contradictory issues in management of the WEFN system. For instance, Yu et al. 

(2020a) developed a copula-based interval two-level programming (CITP) method for 

optimizing energy-water nexus system management for Henan Province, in which the two-level 

programming method was adopted to balance the goals and preferences among different 

decision-making levels. Yu et al. (2020b) also developed multi-level interval fuzzy 

credibility-constrained programming (MIFCP) method for planning the regional-scale 

water-energy-food nexus (WEFN) system, in which a multi-level programming was used to 

handle conflicts and hierarchical relationships among multiple decision departments. Zhang et al., 

(2020) advanced a multi-level multi-objective stochastic approach to deal with main conflicting 

objectives of each decision-making level in water allocation in an arid agricultural region. The 

studies on dealing with contradictory goals in WEFN are still limited and more studies may be 

desired to explore the trade-offs among those conflicting concerns from different decision 

makers.  

 

Moreover, carbon neutrality is becoming one of the most critical issues all over the world to 

mitigate the climate change effect. Agricultural activities and related farming operations 

constitute a large portion of the total GHG emissions in many countries, in which the main 
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agricultural GHG emissions-CH4 and N2O-account for 10 - 12% of anthropogenic emissions 

globally (Robertson et al., 2000; Smith et al., 2008; Yang et al., 2014). In China, the agricultural 

carbon emissions have been accounted for 16 - 17% of the total carbon emissions, making up 

50% and 92% of the CH4 and N2O emissions. Consequently, WEFN management also needs to 

consider both direct and indirect greenhouse gas (GHG) emissions in relevant activities. 

Therefore, it is desired to formulate effective strategies for water, energy and food management 

to coordinate rapid development of various relevant departments in a sustainable pathway under 

various uncertain conditions (Martinez et al., 2018; Wang et al., 2018). 

 

Therefore, this paper aims to propose an inexact fractional fuzzy chance constraint programming 

(IFFCCP) method through coordinating interval programming (IP), fuzzy chance constraint 

programming (FCCP), and fractional programming (FP) into one framework. The developed 

inexact fractional fuzzy chance constraint programming method integrates the unique 

contribution of each individual technique, in which the IP would be adopted to deal with 

uncertain parameters presented in interval numbers, FCCP is employed to tackle fuzzy variables 

and also reflect preferences from decision makers, and the FP would be employed to reflect 

conflicting objectives of the studied problem. Moreover, an inexact fractional fuzzy chance 

constraint programming-based water-energy-food nexus (IFCCP-WEFN) model is developed for 

planning the water-energy-food nexus system for the City of Jinan, in which both the system 

benefit and the GHG emissions are to be considered subject to restrictions related to food 

requirements, water availability, energy supply and other environmental protection constraints. 

There are different modelling formulations for WEFN planning such as land-use optimization 

(e.g. Zuo et al., 2021), resource technology network optimization (e.g., Bieber et al., 2018), 

water and energy resources allocation (e.g., Li et al., 2019), and so on. In this study, the 

IFFCCP-WEFN model would be developed for planning the crop cultivation areas under 

consideration of energy and water requirements, as well as GHG emissions. In addition, both 

interval and fuzzy variables are employed to reflect extensive uncertainties existing in a WEFN 

system. In detail, interval numbers are adopted for some economic parameters (e.g., unit price 

for crops, unit cost of fertilizer), resources availability (total cultivation areas, availabilities for 

water resources, energy consumption, fertilizers and pesticides). The interval parameters are used 

since their lower and upper bounds can be easily specified with only limited data, and also help 
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decision makers make trade-offs between lower and upper bound conditions. Also, some 

parameters, such as local population, food loss rate, irrigation reliability, are presented as 

triangular fuzzy numbers in order to explore their impacts on the resulting solutions for crop 

cultivation patterns. Particularly, one major unique feature for this study is that the direct and 

indirect GHG emissions from WEFN system would be considered in the IFFCCP-WEFN model. 

Those GHG emissions be used as the denominator in the objective function in order to generate 

maximized unit benefit with respect to GHG emissions for the WEFN system. The obtained 

solutions can help the local governor generate reliable planting schemes for different crops to 

achieve desirable system benefits and at the same time alleviate GHG emissions.  

 

2. Overview of the Study Area 

 

As the capital city, the City of Jinan is located in the north-western part of Shandong Province, 

with the latitude ranging between 36001’ and 37032’ N, and the longitude varying between 

116011’ and 117044’ E. After absorbing the City of Laiwu, Jinan is now covering a terrain of 

10244 km2 and having a population of 8.91 million. The total Gross domestic product (GDP) in 

2019 is about RMB 944.34 billion with an increase rate of 7.0%, ranked as the second largest 

city in Shandong Province (Jinan Municipal Bureau of Statistics, 2020). the Mount Tai is in the 

south of Jinan and Yellow River plain is located in the north part, leading to higher land in the 

south than that in the north. There are two major river systems, namely the Yellow River and 

Xiaoqing River, flowing across the city, with other small rivers such as North-South Dasha River 

and Yufuhe River, etc. Jinan has the warm temperate continental climate, with hot and rainy in 

Summer, and dry and rainless in other seasons. The annual average temperature is 13.5℃-15.5℃, 

the frost-free period all year round is about 230 days and the amount of precipitation is 600~900 

mm.  

 

As one of the major agricultural provinces, Shandong province is an important production area 

for a number of agricultural products such as wheat, corn, peanuts, which accounts for 8.4%, 

11% and 16% respectively for food, vegetables and peanuts production in China in 2020. For the 

City of Jinan, the total output of grain was 2.855 million tons and the output of vegetables was 

6.72 million tons in 2019. There are several crops sown in Jinan, but wheat, corn and vegetables 
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are the three major crops. In 2019, the total sown areas for wheat, corn and vegetables are 2.19 × 

106, 2.32× 106, and 1.00 × 106 ha respectively, making a respective contribution of 35%, 37% 

and 16% to the total sown area (Jinan Municipal Bureau of Statistics, 2020). Even though there 

has been a prosperous growth for food and vegetable production in the City of Jinan, several 

issues need to be addressed to enhance the sustainability of the agriculture system in response to 

increasing food requirement, environmental protection and also climate change 

 

a) The amount of water resources for irrigation is abundant, while its utilization efficiency is low 

and leads to serious waste of water. For instance, the total water demand in the city is about 

1.542 × 109 m3 in 2017, in which water demands for agricultural, industrial, municipal and 

environmental sectors are respectively 8.67× 108, 1.99× 108, 2.85× 108, and 1.93× 108 m3 (Jinan 

Municipal Bureau of Statistics, 2018). For the water demand in agriculture, about 6.54 × 108 of 

water were supplied for irrigation, which made a contribution of 42% for the total water demand 

(Jinan Municipal Bureau of Statistics, 2018). 

 

(b) Due to rapid urbanization and industrialization, there has been a fierce competition for land 

use among municipal, industrial and agricultural sectors. The planting area of grain was 0.48 × 

107 ha, decreased by 1.0% in 2019, whilst the sown area of vegetables was 0.1× 107 ha decreased 

by 2.2% (Jinan Municipal Bureau of Statistics, 2020).  

 

(c) There are growing electricity consumption in the city especially after 2019 while the city of 

Laiwu was merged into Jinan, especially for industrial and household power consumptions. For 

instance, the industrial and household consumption for electricity respectively increased from 

121.5 × 108 and 66.8 × 108 kWh to 221.5 × 108 and 77.6 × 108 kWh in 2019. Nevertheless, the 

electricity production only increased from 152.9 × 108 to 295.1 × 108 kWh, which implied a 

remarkable power deficit and also serious competition for electricity consumption between 

agriculture and other sectors.  

 

(d) In order to mitigate climate change, China has promised to reach carbon neutrality by 2060, 

which indicates remarkable carbon reduction pressures for all socio-economic sectors including 

agricultural production. The greenhouse gas emission from agricultural production accounts for 
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16-17% of the total emission in China (Huang et al., 2019). The agricultural greenhouse gas 

emissions are from various sources including both the direct and indirect emissions caused by 

utilization of fertilizers, pesticides, electricity and fossil fuels. As one of the major provinces for 

agricultural production, Shandong Province, including the City of Jinan, are facing a noticeable 

pressure for reducing carbon emissions in agricultural production process.   

 

Due to the above issues, the sustainability of the agricultural system is being challenged in terms 

of food production, water availability, energy/electricity utilization and greenhouse gas emissions. 

Consequently, it is desired to develop effective management strategies for the water-energy-food 

nexus at the City of Jinan in order to achieve the coordination among planting agricultural 

planting, environmental protection and carbon reduction to promote the sustainable development 

of agriculture. 

 

 
Figure 1. The location of the City of Jinan at Shandong Province 
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3. Model Development 

3.1. Modeling formulation 

 

For a real-world water-energy-food nexus system, there are multiple components and multiple 

uncertainties in association with different decision makers’ preferences. There are many 

uncertain technical and economic parameters in the production and processing of agriculture. 

Besides, the management of water-energy-food nexus system does not only consider the profit of 

the entire system but also balances the contradiction among agricultural, water and energy 

resources managers according to different decision-making priorities. Consequently, a WEFN 

model need to be established for planning the water-energy-food nexus system for the City of 

Jinan, China, in which the agriculture activities (i.e. crop cultivation, crop processing, food 

generation, food transportation) and available resources control (i.e. fertilizer utilization, 

pesticide utilization, energy consumption for farming, water consumption for irrigation) are 

considered to achieve a desirable trade-off between system benefit and greenhouse gas emissions. 

Moreover, in order to reflect uncertain future in the planning horizon, inexact parameters are to 

be included in the WEFN model, which are denoted as either interval or fuzzy numbers.  

 

Therefore, the objective of the WEFN model is to maximize unit benefits between agriculture 

profits and carbon emission. The agriculture profits include revenue of crops, and the cost used 

for the consumption of various resources (e.g., water, fertilizer, electricity and seed). In addition, 

the labor cost has not been taken into account. 

Max f ± = (f1 - f2 - f3 – f4 – f5 – f6)/f7 (1a) 

 

(1) Revenues of agricultural products 

f1 = ∑t=1
T∑v=1

VSAt,v
±×UWt,v

±×UPt,v
± (1b) 

 

(2) Costs for irrigation and discharge 

f2 = ∑t=1
T∑v=1

VSAt,v
±×UICt,v

± (1c) 

 

(3) Costs for fertilizer utilization  

f3 = ∑t=1
T∑v=1

VSAt,v
±×FCt

±×FAt,v
±  (1d) 



11 
 

 

(4) Costs for pesticide utilization 

f4 = ∑t=1
T∑v=1

VSAt,v
±×PCt

±×PAt,v
± (1e) 

 

(5) Costs for energy consumption 

f5 = ∑t=1
T∑v=1

VSAt,v
±×UOPt

±×UOCt,v
± (1f) 

 

(6) Costs for seeds  

f6 = ∑t=1
T∑v=1

VSAt,v
± ×SEDPt,v

±   (1g) 

 

(7) Total greenhouse gas emissions 

f7 = ∑t=1
T∑ TCEt

±  

  (1h) 

Here, GHG emission in the food-water-energy nexus system is also measured to evaluate the 

environmental impacts. GHG emissions associated with food production are mainly generated 

from electricity for irrigation, diesel for machinery, fertilizer and pesticide utilization. which is 

formulated as: 

TCEt
± = ∑v=1

VSAt,v
± ×(EFdiesel×UOCt,v

± + EFelectricity×UECt,v
± + EFfertilizer, v×FAt,v

± + 

EFpesticide,v×PAt,v
±)  

 (1i)  

Based on the current situation and future development strategy, the WEFN model would consider 

multifaceted and comprehensive constraints (e.g., limited utilization amount of land and 

electricity), which could be clearly seen as follows. The constraints can help plan the agricultural 

development, alleviate the contradictions among the development of socio-economic, 

environmental protection and other aspects at the City of Jinan, which will ultimately realize the 

sustainable development.  

 

(1) Land availability for cultivation: The excessive exploitation of land for agriculture may lead 

to negative effects (e.g., ecological environment deterioration and soil erosion), which means 

cultivated area should be restricted. Also, there has been significant competition for land use 

between agricultural cultivation and other sectors, which lead to limited land availability for crop 
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cultivation. Constraint (2a) limited the minimum and maximum planting area of crops, so as to 

avoid large fluctuations of the market price of agricultural products. Meanwhile, the total 

planting area of crops should not exceed the available arable land in planning periods, as shown 

in constraint (2b). 

SAt,v
min± ≤ SAt,v

± ≤ SAt,v
max±             (2a) 

 

∑v=1
VSAt,v

± ≤ TSAt
±               (2b) 

 

(2) Food balance constraint: The crop yield should satisfy local basic food requirements to 

guarantee food security. The local basic food requirement is estimated as the product of per 

capita food demand standard and population. 

∑v=1
VSAt,v

± ×UWt,v
±×(1 – ũv) ≥ λ × FDt

±× Ñt (3) 

where, FD± is per capital food demand standard (kg/person); Ñt denotes the number of population 

in planning horizon, which is expressed as fuzzy number; ũv is the loss rate in production, 

transportation and other processes for crop v, which are also denoted as fuzzy numbers; λ denotes 

the food self-sufficiency rate for the study area. 

 

(3) Water availability: Constraint (4) indicates that the total consumption of water should not 

exceed the available amount for agriculture in study area. Furthermore, this constraint can 

optimize the water use structure of crops under a certain amount of water resources, coordinate 

the contradictions among water-using departments, and obtain higher economic benefits. 

∑v=1
VSAt,v

± × AWQt,v
±×õ ≤ AWSt

± (4) 

where õ is the reliability of irrigation, expressed as a fuzzy number, AWQt,v
±is the irrigation quota 

for crop v in period t, and AWSt
±is the total water availability in period t.  

 

(4) Energy system: 

(a) Electricity constraint. In this study, electricity consumption associated with food production 

mainly consists of the electricity used for irrigation.  

∑v=1
VSAt,v

± × UECt,v
± ≤ PMEt

± (5a) 

where PMEt
± is the total electricity availability for agricultural production.  
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(b) Fossil consumption constraints (here only the diesel is considered). The plowing machines 

are required in the food production process, which will consume diesel for their operation. In 

general, there are also certain limitations for fossil availability in different planning periods.   

  

∑v=1
VSAt,v

± ×UOCt,v
± ≤ PMOt

± (5b) 

 

where UOCt,v
± is the unit diesel consumption (kg/ha) for crop v in period t, and PMOt

± 

is the total diesel availability for agricultural production.  

 

(5) As the major sources of agricultural pollution and greenhouse gas emission, the utilization 

amounts of chemical fertilizers, pesticides would be restricted in constraints (6a), and (6b), 

respectively.  

∑v=1
VSAt,v

± ×FAt,v
± ≤ TCFt

±            (6a) 

∑v=1
VSAt,v

± ×PAt,v
± ≤ TEPt

±            (6b) 

where TCFt
±and TEPt

± is respectively the total fertilizer and pesticide availability for agricultural 

production.   

 

The proposed WEFN model is established based on some recent studies (e.g., Yu et al., 2020a; Ji 

et al., 2020b; Zuo et al., 2021). However, there are some inherent assumptions in the 

establishment of the WEFN model. Firstly, the availabilities for some resources, especially for 

water and energy, are those can be allocated to agricultural production whilst those resources 

used by other sectors would be excluded. This assumption would be validated in the availability 

predictions for these resources, in which the relevant availabilities are projected through 

regression methods based on historical resources allocated to agricultural production. Secondly, 

there are GHG emissions in food production process but also carbon sinks in crop cultivation 

through soil organic carbon storage and cover carbon sequestration. Studies have argued that the 

major crops production showed as carbon sinks in general (e.g., She et al., 2017). However, in 

the developed WEFN model, the carbon sinks in crop planting are not considered. This 

assumption would be accepted since, without considering carbon sink, the developed WEFN 

model would generate crop cultivation structures with low GHG emission intensities. Finally, 

product prices, including crop products (e.g., wheat, corn, vegetables) and raw materials (e.g., 
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fertilizers, energy), would have complex relationship with their supply-demand curves. In this 

study, those prices are simply projected through add an inflation rate based on historical product 

prices. Moreover, certain fluctuation ranges are added to those projected prices in order the 

reflect the price volatility. This is one of the main reasons to introduce uncertain parameters in 

the developed WEFN model.  

 

Table 1 provides the definitions of the symbols used in the WEFN model as well as their 

uncertainty formats. The developed WEFN model expressed as Equations (1) - (6) is a nonlinear 

programming model since it has a fractional objective function. Here the fractional programming 

(FP) is introduced to deal with the benefit and GHG emission objectives in the WEFN system 

since it is an effective tool to deal with optimization of ratio, where the objective is quotient of 

system benefit and GHG emission. The FP method can compare objectives of different aspects 

directly through their original magnitudes and provide an unprejudiced measure of system 

efficiency (Zhu et al., 2014). It has been proved to be a natural way of approaching both 

economic and environmental criteria related to the systems’ sustainability (Zhu and Huang, 

2011). In the real WEFN system, parameters may be affected by a series of factors (e.g., limited 

data availability, inaccuracy of statistical data, subjective experience), which would result in 

system errors and multiple uncertainties (Si et al., 2019). For example, during the entire planning 

horizon, prices of agricultural products and costs of agricultural production conditions may 

fluctuate under the influence of demand-supply relationship and policies (Hoolohan et al., 2019). 

In general, the economic coefficients such as prices for crops, costs for utilization of energy, 

fertilizers and pesticides are uncertain in natures since they are closely related to the volatility of 

interest rates, inflation rates and other factors (i.e., energy price, labor fee, and operation 

condition) (Yu et al., 2020c). In this study, these parameters are denoted as interval variables due 

to limited data availability. Moreover, the future resources availabilities for the WEFN system 

such as water resources, electricity availability, fertilizer and pesticides availabilities are 

projected through regression methods based on historical data. However, these parameters would 

also be affected by a number of factors such as hydrometeorological conditions and would 

present uncertain features. Therefore, some variation ranges are added to those forecasting 

results and thus lead to interval parameters. In addition, the prioritized objective for WEFN 

system is to satisfy the food demand from local population, and the food loss rate in production, 
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transportation and other processes are also quite crucial affecting the food availabilities to local 

people. Thus, these two parameters are presented as fuzzy numbers. Also, the fuzzy number 

would be used to express the uncertainty in irrigation reliability. The purpose of using fuzzy 

numbers was to explore the impacts of changes in population, food loss rates and irrigation 

reliabilities on the resulting crop cultivation patterns.  

 

Table 1. Definitions of symbols used in the WEFN model 

 Definition 

Indices   

t index of time period 

v index of crop (1 for wheat, 2 for corn, 3 for vegetables) 

Decision variables  

SAt,v
± interval variables for sown areas of crop v in period t (ha) 

Objective functions  

f ± interval objective function for unit benefit of WEFN system with respect to GHG 

emissions 

Parameters  

UWt,v
± interval parameters for the unit output of crop v in period t (kg/ha) 

UPt,v
± interval parameters for the unit price of crop v in period t (RMB ¥/ha) 

UICt,v
± interval parameters for the unit cost of irrigation and drainage for crop v in period t 

(RMB ¥/ha)  

FCt
± interval parameters for the unit cost of fertilizer (RMB ¥/ha) 

FAt,v
±  interval parameters for the amount of fertilizer utilization per unit area for crop v 

(kg/ha) 

PCt
± interval parameters for the cost of pesticide (RMB ¥/ha) 

PAt,v
± interval parameters for the amount of pesticide utilization per unit area for crop v 

(kg/ha) 

UOCt,v
± interval parameters for the unit oil (i.e. diesel) consumption per unit area for crop v 

(kg/ha) 

UECt,v
± interval parameters for the unit electricity consumption (kWh/ha) for crop v in 

period t  

UOPt
± interval parameters for the oil price in time period t (RMB ¥/kg) 

SEDPt,v
± interval parameters the unit cost for seeds (RMB ¥/ha)  

EFdiesel the carbon emission factor for diesel (kg CO2-eq/kg) 

EFelectricity the carbon emission factor for electricity (kg CO2-eq/kg) 

EFfertilizer, v the carbon emission factor for fertilizer utilization for crop v (kg CO2-eq/kg) 

EFpesticide,v the carbon emission factor for pesticide utilization for crop v (kg CO2-eq/kg) 

SAt,v
min± interval parameters for minimum planting areas for crop v in time period t (ha) 

SAt,v
max± interval parameters for maximum planting areas for crop v in time period t (ha) 

TSAt
± interval parameters for the total the available arable land (ha) 

ũv fuzzy parameters for the loss rate in production, transportation and other processes 

for crop v 

Ñt fuzzy parameters for the total population in time period t 

FDt
± the interval parameter for per capital food demand standard (kg/person) in period t 

λ parameter for food self-sufficiency rate 

AWQt,v
± interval parameters for the irrigation quota for crop v in period t (m3/ha) 
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AWSt
± interval parameters for the total water availability in period t (m3) 

PMEt
± interval parameters for the total electricity availability for agricultural production 

(kWh) 

PMOt
± interval parameters for total diesel availability for agricultural production (kg) 

TCFt
± interval parameters for the total fertilizer availability for agricultural production 

(kg) 

TEPt
± interval parameters for the total pesticide availability for agricultural production 

(kg) 

 

 

3.2. Solution Method 

 

In order to reflect uncertain conditions in the future planning horizon, uncertain parameter, 

expressed either by interval or fuzzy numbers are introduced into the developed 

water-energy-food nexus (WEFN) model expressed as Equations (1) – (6). Consequently, an 

inexact fractional fuzzy chance constraint programming (IFFCCP) method will be developed to 

solve the proposed WEFN model, which will finally lead to an IFFCCP-WEFN model in this 

study. The proposed IFFCCP approach integrates the inexact fractional programming and fuzzy 

chance constraint programming approaches to deal with contradictory objectives and also 

multiple uncertainties in the water-energy-food nexus planning practices.  

 

Consider a generic inexact fuzzy fractional programming with fractional objective function, and 

uncertain parameters expressed as interval and fuzzy numbers as follows: 

Max f ± = (∑j=1
ncj

±xj
± + α±)/(∑j=1

ndj
±xj

± + β±) (7a) 

Subject to  

∑j=1
naij

±xj
± ≤ bi

±, i = 1, 2, …, l (7b) 

∑j=1
nãijxj

± ≤ 
~

ib , i = l+1, …, m (7c) 

xj
± ≥ 0 (7d) 

 

Based on the interactive transform algorithm proposed by Zhu et al. (2014), an inexact fractional 

programming (i.e. Equations (7a), (7b) and (7d)) can be converted into two conventional 

fractional programming submodels corresponding to the lower (i.e. pessimistic) and upper (i.e. 

optimistic) bound of the objectives. However, for the constraints with fuzzy parameters (i.e. 

Equations (7c)), a number of approaches have been proposed such as the α-cut method (e.g., 



17 
 

Ammar, 2008), Lexicographic criteria (e.g., Pérez‐Cañedo, 2020), possibility and necessity 

measures (Inuiguchi and Ramik, 2000; Xu et al., 2011). In this study, the measures of possibility 

and necessity will be adopted to deal with the constraints with fuzzy parameters. The necessity 

and possibility constraints are introduced by Dubois and Prade (1987), which are considered to 

be very relevant to the real life decision problems (Maity, 2011). These two measures have been 

used for many practical management problems with fuzzy uncertainties such as portfolio 

selection problem (Inuiguchi and Ramik, 2000), production-inventory control problem (Maity 

and Maiti, 2007), and so on. Consequently, based on the integration of the interactive transform 

algorithm and the measures of possibility and necessity, the IFFCCP model can be transformed 

into two conventional fractional programming submodels corresponding to the low and upper 

bound of the objective.  

 

The first submodel corresponding to the lower bound (i.e. f -) of the objective, which is 

formulated as follows (i.e. Submodel (I)): 

Max f - = (∑j=1
kcj

-xj
- + ∑j=k+1

ncj
-xj

+ + α-)/(∑j=1
kdj

+xj
- + ∑j=k+1

ndj
+xj

+ + β+) (8a) 

Subject to 

∑j=1
k|aij

±|+Sign(aij
±)xj

- + ∑j=k+1
n|aij

±|-Sign(aij
±)xj

+≤bi
-, i = 1, 2, …, l (8b) 

Nes{∑j=1
kãijxj

- + ∑j=k+1
nãijxj

+ ≤
~

ib }≥α, i = l+1, …, m (8c) 

xj
- ≥ 0, j = 1, 2, …, k (8d) 

xj
+ ≥ 0, j = k+1, …, n (8e) 

 

The second submodel corresponds to the upper bound (f +) of the objective function, which is 

formulated as (i.e. Submodel (II)): 

Max f + = (∑j=1
kcj

+xj
+ + ∑j=k+1

ncj
+xj

- + α+)/(∑j=1
kdj

-xj
+ + ∑j=k+1

ndj
-xj

- + β-) (9a) 

Subject to 

∑j=1
k|aij

±|-Sign(aij
±)xj

+ + ∑j=k+1
n|aij

±|+Sign(aij
±)xj

-≤bi
+, i = 1, 2, …, l (9b) 

1 1 1 1

1, 2, ...,
i i

i i

r k tk n

ij j ij jopt ij jopt ij j i

j j r j k j k t

a x a x a x a x b i l
+

− + − − − + − − +

= = + = + = + +

+ + +  =     (9c) 

Pos{∑j=1
kãijxj

+ + ∑j=k+1
nãijxj

- ≤
~

ib }≥α, i = l+1, …, m  (9d) 

xj
+≥ 0, j = 1, 2, …, k  (9e) 
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xj
+ ≥ xjopt

-, j = 1, 2, …, k (9f) 

xj
- ≥ 0, j = k+1, …, n (9g) 

xj
- ≤ xjopt

+, j = k+1, …, n (9h) 

 

In the solution procedures denoted as Models (8) and (9), the former k (k ≤ n) coefficients get 

their lower bounds for Submodel (I) and upper bounds for Submodel (II), which are determined 

by the criteria proposed by Zhu et al. (2014). The later n – k coefficients get their upper bounds 

and lower bounds respectively corresponding to Submodel (I) and (II). xjopt
- (j = 1, 2, …, k) and 

xjopt
+, (j = k+1, …, n) are the optimal solutions obtained from Submodel (I). ri and ti stands for 

the numbers of aij
± ≥ 0 associated with decision variables xj

± (j = 1, 2, …, k) and xj
± (j = k+1, …, 

n) for constraint i. Nes{.}in Equation (8c) is the measure of necessity for fuzzy numbers and 

Pos{.} in Equation (9d) indicates the measure of possibility for two fuzzy numbers. Consider 

two fuzzy numbers 
~

a  and 
~

b with their membership functions being ( )
a

x  and ( )
b

y . For a 

confidence level [0,1]  , we can have (Inuiguchi and Ramik, 2000; Xu et al., 2011): 

~ ~

( ) sup{min( ( ), ( )) | }
a b

Pos a b x y x y a b− + =          (10a) 

~ ~

1( ) inf{max(1 ( ),1 ( )) | }
a b

Nes a b x y x y a b+ −

− = − −         (10b) 

where ~

1inf( | ( ))
a

a x x− −= =   and ~

1sup( | ( ))
a

a x x+ −= =    are the lower and upper bounds for 

the α-cut of fuzzy number
~

a , and ~

1inf( | ( ))
b

b y y− −= =    and ~

1sup( | ( ))
b

b y y+ −= =    are the 

lower and upper bounds for the α-cut for fuzzy number
~

b . 

 

Based on Models (8) and (9), the final solutions for Model (7) under any fuzzy confidence level 

α can be obtained as follows: 

f ± = [fopt
-, fopt

+] (11a) 

xopt
 ± = [xjopt

-, xjopt
+] (11b) 

 

3.3 Data collection 

In this study, three planning period will be considered with each one having one year (i.e. 

2022-2024). The parameters for the water-energy-food nexus system such as water availability, 
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unit outputs for different crops and their sown area limits, unit consumptions for fertilizers, 

pesticides, electricity and fossils are collected from national, provincial, and local yearbooks 

(Shandong Statistical Bureau, 2017, Jinan Municipal Bureau of Statistics, 2017, 2018, 2019; 

National Development and Reform Commission, 2018) as well as relevant literatures (Hu et al., 

2016; Zhu et al., 2017; Hu et al., 2019; Ji et al., 2020a,b; Ma et al., 2020, MARA, 2020). The 

irrigation quotas for different crops are obtained from the local irrigation policy (No. DB37/T 

3772-2019) released by the Water Resources Department of Shandong Province. Table 2 presents 

the variation intervals for relevant agricultural and economic parameters. Here the interval values 

are adopted to reflect uncertainties in those parameters. Table 3 presents the availabilities for 

water resources, electricity, fertilizers and pesticides.  

 

Table 2. Agricultural parameters. All these parameters are obtained as intervals based on local statistical 

yearbooks and relevant literatures (e.g. Jinan Municipal Bureau of Statistics, 2017, 2018, 2019; National 

Development and Reform Commission, 2018, 2019; MARA, 2020; Ji et al., 2020a,b; Ma et al., 2020; Hu 

et al., 2016; Zhu et al., 2017; Hu et al., 2019; Li et al., 2020)) 

Time Period t =1 t = 2 t = 3 

Unit weight of different crops (kg/ha) 

Wheat [5696, 6182] [5696, 6182] [5696, 6182] 

Corn [5748, 6452] [5748, 6452] [5748, 6452] 

Vegetables [65475, 66918] [65475, 66918] [65475, 66918] 

Unit price of different crop products (RMB/kg)  

Wheat [2.52, 2.57] [2.57, 2.62] [2.62, 2.67] 

Corn [1.73, 1.89] [1.76, 1.93] [1.80, 1.97] 

Vegetables [1.75, 1.80] [1.78, 1.84] [1.82, 1.87] 

Consumption of fertilizer (kg/ha)    

Wheat [425, 470] [404, 447] [384, 424] 

Corn [375, 415] [356, 394] [339, 374] 

Vegetables [640, 687] [608, 652] [577, 620] 

Price of the fertilizer (RMB/kg)  
  [5.34, 5.79] [5.45, 5.90] [5.56, 6.02] 

Consumption of pesticide (kg/ha)  
Wheat [9, 10.05] [8.55, 9.55] [8.12, 9.07] 

Corn [10.83, 11.37] [10.29, 10.80] [9.77, 10.26] 

Vegetables [37.84, 39.73] [35.95, 37.75] [34.15, 35.86] 

Price of the pesticide (RMB/kg) 

  [30.47, 31.99] [31.08, 32.63] [31.70, 33.28] 

Costs for irrigation and discharge (RMB/ha)  
Wheat [636, 683] [649, 697] [662, 711] 

Corn [368, 389] [375, 397] [383, 405] 

Vegetables [700, 736] [714, 750] [728, 765] 

Fossil consumption for machinery operation (kg/ha)  
Wheat [207.1, 213.9] [207.1, 213.9] [207.1, 213.9] 

Corn [111.7, 115] [111.7, 115] [111.7, 115] 
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Vegetables [46.3, 48.6 [46.3, 48.7 [46.3, 48.8 

Fossil price (RMB/kg)  
  [7.68, 7.92] [7.83, 8.08] [7.99, 8.24] 

Minimum sown areas for different crops (105 ha) 

Wheat [1.68, 1.89] [1.68, 1.89] [1.68, 1.89] 

Corn [1.51, 1.69] [1.51, 1.69] [1.51, 1.69] 

Vegetables [0.64, 0.72] [0.64, 0.72] [0.64, 0.72] 

Maximum sown areas for different crops (105 ha) 

Wheat [2.20, 2.64] [2.20, 2.64] [2.20, 2.64] 

Corn [2.32, 2.78] [2.32, 2.78] [2.32, 2.78] 

Vegetables [1.0, 1.2] [1.0, 1.2] [1.0, 1.2] 

Irrigation Quota (m3/ha)       

Wheat [3300, 3675] [3300, 3675] [3300, 3675] 

Corn [1155, 1545] [1155, 1545] [1155, 1545] 

Vegetables [2400, 3075] [2400, 3075] [2400, 3075] 

Food demand (kg/person) 

Cereals (wheat and corn) [285, 315] [291, 322] [294, 325] 

Vegetables [372, 411] [379, 419] [385, 426] 

 
Table 3. Resources availability: The resource availabilities are projected linearly based on historical 

records from 2011-2019 collected from local statistical yearbooks (Jinan Municipal Bureau of Statistics, 

2017, 2018, 2019) 

Time Period t = 1 t = 2 t = 3 

Water availability (108 m3) [9.27, 9.67] [9.24, 9.63] [9.22, 9.61] 

Fertilizer availability (108 kg) [2.86, 3.22] [2.77, 3.12] [2.69, 3.03] 

Pesticide availability (106 kg) [7.73, 8.69] [7.50, 8.43] [7.26, 8.14] 

Electricity availability (108 kWh) [7.34, 8.97] [6.96, 8.50] [6.58, 8.04] 

 

The GHG emissions associated with food production are mainly generated from electricity for 

irrigation, diesel for machinery, fertilizer and pesticide utilization. The emission coefficients for 

these sources are presented in Table 4. Here the emission coefficients for fertilizer utilization for 

different crops would be different duet to different combinations of nitrogen (N), phosphorus (P) 

and potassium (K) fertilizers for different crops. The emission coefficients for pesticide 

utilization are also different because of different usages of herbicide, pesticide and fungicide for 

different crops.   

   

Table 4. The GHG emission coefficient from different sources. These emission coefficients are collected 

from relevant literatures (Hu et al., 2016; Zhu et al., 2017; Hu et al., 2019) 

Source Emission coefficients Unit 

Fertilizer      

Wheat 4.68 kg CO2-eq/kg 

Corn 3.93 kg CO2-eq/kg 

Vegetables 3.53 kg CO2-eq/kg 

Pesticide      
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Wheat 12.73 kg CO2-eq/kg 

Corn 12.22 kg CO2-eq/kg 

Vegetables 12.3 kg CO2-eq/kg 

diesel  3.1 kg CO2-eq/kg 

electricity 0.8 kg CO2-eq/kWh 

 

In addition to the uncertain parameters presented as intervals, there are also some parameters 

estimated as fuzzy numbers such as the irrigation reliability, the loss rates for food and 

vegetables and also local population in the City of Jinan. There are several methods to express a 

fuzzy number. The triangular fuzzy number is adopted to present the fuzzy uncertainty since the 

membership function for a fuzzy number is easily established. This kind of fuzzy numbers has 

been wide used in a number of studies (e.g., Fan et al., 2009, 2012; Ma et al., 2020). The fuzzy 

parameters used in this study are presented in Table 5. 

 

Table 5. Fuzzy parameters used in this study. 

 t = 1 t = 2 t = 3 

Local population (106) (8.80, 8.98, 9.16) (8.87, 9.05, 9.23) (8.94, 9.12, 9.30) 

Food loss rate (0.03, 0.035, 0.04) (0.03, 0.035, 0.04) (0.03, 0.035, 0.04) 

Vegetable loss rate (0.28, 0.30, 0.32) (0.28, 0.30, 0.32) (0.28, 0.30, 0.32) 

Irrigation reliability  (0.5, 0.625, 0.7) (0.5, 0.625, 0.7) (0.5, 0.625, 0.7) 

 

 

 

4. Result Analysis 

 

Based on the constraints (e.g., environmental protection and limited resource utilization) and the 

objective of maximum unit benefit, the planting areas of different crops as well as total CO2 

emission during the planning periods could be obtained by solving the inexact fractional fuzzy 

chance constraint programming-based water-energy-food nexus model. Particularly, three α-cut 

levels (i.e., α = 0.2, 0.5, 0.8) are chosen to deal with the fuzzy parameters in the developed model 

in order to reflect the preferences by the decision maker. Under each α-cut level, two submodels 

corresponding to the optimistic and pessimistic conditions are formulated based on the solution 

method presented in Section 3.2, leading to six submodels in total. Each submodel is a 

conventional fractional programming model with deterministic parameter values. In current 

study, the cultivation areas for corn, wheat and vegetables would be generated from the 
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IFFCCP-WEFN model in three planning periods. Therefore, the developed IFFCCP-WEFN as 

well as its corresponding submodels would have nine decision variables. The generated 

submodels were solved through LINGO 11.0 software packagewith a computational time less 

than 1 second and infeasibility tolerance less than 10-6. Interval solutions are finally obtained, 

under each α-cut level, to reflect the potential farming pattern in different planning periods. 

 

Table 6 clearly shows crops’ planting area and the corresponding variation trend during the 

planning periods under different preferences (i.e. α-cut levels) from the decision maker, which 

would further help the decision makers to formulate and implement scientific planning schemes. 

It can be seen that the planting areas for different crops would vary in different planning periods 

due to the socioeconomic and environmental restrictions. In detail, the planting areas for corn 

and vegetables show a slightly increasing trend, while in comparison, the sown area for wheat 

tends to keep constant. For instance, the planting area for corn would be 1.784×105 ha in period 1 

and 1.932×105 ha in period 3 under a fuzzy confidence level of 0.2, showing an increasing rate of 

8.3%. In comparison, cultivation area for wheat would be 1.89 510 ha for all the planning 

periods, which is the upper bound of the minimum planting limit. The results imply that the corn 

seems to be prioritized between corn and wheat in the planting structure to satisfy the cereal 

demand from local population. More specifically, as the cereal demand increases in time periods 

2 and 3, these demands would also be satisfied by corn, and thus lead to an increasing trend for 

corn cultivation over the planning horizon. In addition, the cultivation area for vegetables would 

slightly increase from [0.956, 1.204] ×105 ha in period 1 to [0.996, 1.204] ×105 ha in period 3 

under this fuzzy confidence level, with an increasing rate of 4.2% for the lower bound. The 

increasing trend for vegetable cultivation under the demanding/pessimistic conditions (i.e. lower 

bound) may also be attributed to the increasing vegetable demand over the planning horizon. 

Moreover, compared with the cultivation structures for corns and wheat, there are certain 

fluctuations ranges for vegetable planting between demanding/pessimistic and advantageous 

conditions (e.g., [0.956, 1.204] 510 ha in period 1). The advantageous/optimistic conditions 

generally correspond to more resource availabilities (e.g., water resources, electricity, fertilizers 

etc.) but less food demand (e.g., less population, less food loss rate etc.). The fluctuation ranges 

for vegetable cultivation indicate that, when more resources are available, these resources tend to 

be utilized to increase sown areas for vegetables. Furthermore, as the fuzzy confidence level 
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changes, the detailed sown areas for corn and vegetables would be changed, whilst the variation 

pattern would not change significantly. Figure 2 presents the fluctuation of sown areas for the 

three crops in the planning horizon, which shows the variation trends under both advantageous 

and demanding conditions under different fuzzy confidence levels.   

 

Table 6. The sown areas for different crops in different planning period (105 ha). Three fuzzy confidence 

levels are considered denoted as α.  

 Wheat Corn Vegetables 

alpha = 0.2    

t =1 1.889 1.784 [0.956, 1.20] 

t = 2 1.889 1.868 [0.974, 1.20] 

t = 3 1.889 1.932 [0.996, 1.20] 

alpha = 0.5    
t =1 1.889 1.784 [0.956, 1.20] 

t = 2 1.889 1.851 [0.978, 1.20] 

t = 3 1.889 1.915 [1.000, 1.20] 

alpha = 0.8    
t =1 1.889 1.784 [0.956, 1.20] 

t = 2 1.889 1.835 [0.983, 1.20] 

t = 3 1.889 1.899 [1.003, 1.20] 
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Figure 2. The planting patterns for wheat, corn, and vegetables over the planning horizon under different 

fuzzy confidence levels. Three fuzzy confidence levels, denoted as α, are considered in this study. The 

Grey bars denote the lower bound of cultivation areas for different crops and the angle dashed lines 

present the upper bounds of crop cultivation areas.   
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In this study, three fuzzy confidence levels are chosen to reflect the variations of the predefined 

triangular fuzzy parameters (i.e., α = 0.2, 0.5, and 0.8). Under each fuzzy confidence level, the 

α-cut method would be employed to convert the fuzzy numbers into corresponding interval 

numbers under this level. These three levels are selected since they can generally reflect the 

variations of fuzzy parameters under low, medium and high possibilities. The α-cut value of 0.2 

indicates a low possibility for the corresponding parameter ranges (i.e., the intervals of fuzzy 

numbers under α-cut = 0.2), but such ranges can cover most possible values for the fuzzy 

parameters. In comparison, the α-cut value of 0.8 indicates a high possibility for the 

corresponding parameter ranges but such ranges may neglect some possible parameter values 

with low possibilities. Consequently, through choosing these three fuzzy confidence levels, the 

proposed IFFCCP-WEFN model would generate desired cultivation structures under different 

possibilities. Moreover, based on the solutions under multiple fuzzy confidence levels, the 

impacts of fuzzy parameters on the resulting solutions can be explored.  

 

As stated in Table 6, it can be concluded that the change of fuzzy confidence levels may not pose 

significant effects on the resulting solutions under advantageous conditions since there would be 

less food demand but sufficient resource availabilities under these conditions. In comparison, the 

fuzzy confidence level would have some visible impacts on the detail sown areas for corn and 

vegetables. Under the demanding/pessimistic conditions, the necessity measure would be 

adopted as presented in Equation (11b). Figure 3 compared the local population and crop 

cultivation under different fuzzy confidence levels. As the increase of fuzzy confidence level, 

less population would be estimated (i.e., 0.8 0.2( ) ( )t tP P+ + ), leading to less food demand. 

Nevertheless, more food loss rate may happen as the increase of fuzzy confidence level 

(i.e.,
1 0.8 1 0.2(1 ) (1 )L L

− −−  −  ). Figures (3a) and (3b) present constant sown areas for corn and 

vegetables for all three fuzzy confidence levels at time period 1. This implies that the decreasing 

food demand, with the increase of fuzzy confidence level, would be balanced by the decreases of 

food loss rates. Thus, the fuzzy confidence level would not have explicit impacts on crop 

cultivation in this planning period. However, in time periods 2 and 3, more food demands 

(especially for cereal) are expected per person as presented in Table 2. Therefore, the decrease of 

local population, as a result of increasing fuzzy confidence level, would lead to more decrease of 

total food demand than that happened in period 1, which would not be balanced by the 
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corresponding increases of food loss rates. Consequently, the food demand in both periods 2 and 

3 would generally decrease as the increase of fuzzy confidence levels. This would lead to less 

sown area for corn as the fuzzy confidence level increases as presented in Figure (3c) and (3e). 

Besides, the reduction of corn cultivation would generally lead some residues for arable land. 

The remaining land would tend to be utilized for planting vegetables and thus lead to increasing 

sown areas for vegetables as presented in Figure (3d) and (3e). Such a conclusion is consistent 

with the changes of cultivation patterns under advantageous conditions where sufficient 

resources are available.    

 

 

Figure 3. Comparison between local population and crop cultivation under different fuzzy confidence 

levels over the planning horizon for the demanding conditions.  
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As stated in Table 6 and Figure 2, different sown areas would be expected for wheat, corn and 

vegetables in different planning period under different fuzzy confidence levels. These planting 

structures would also lead to different GHG emissions from utilization of electricity, fossil, 

fertilizers and pesticides. Figure 4 presents the percentages of the cultivation areas for the three 

crops as well as the associated GHG emission contributions in the planning horizon under a 

fuzzy confidence level of 0.2. The results indicate that the proportion for wheat cultivation shows 

a decreasing trend due to the increasing proportion for corn. This can be attributed to the 

relatively high GHG emission rate from wheat. For instance, under the pessimistic conditions, 

the wheat cultivation has a planting proportion of 40.8% but it would make a contribution of 

42.1% to the total GHG emission in time period 1. In comparison, the cultivation of corn would 

contribute 29.1% of GHG emission through a 38.5% planting proportion. However, it can be 

observed from Figure 4 that the cultivation of vegetables seems to have higher CO2 emission 

intensity than the other two crops, which would contribute 20.7% to the total CO2 emissions 

through a planting proportion of 28.9% in time period 1 for pessimistic conditions. Nevertheless, 

the sown areas for the vegetables would still show an increasing trend especially under the 

demanding/pessimistic condition as presented in Table 6 and Figure 2. This may be due to two 

possible reasons: i) the vegetables would generally have much higher unit production weight 

than corns and wheat, which may lead to more profits; ii) both corn and wheat belong to cereals 

and thus they are interchangeable, but the vegetables can hardly be replaced by cereals. 

Consequently, a large proportion of the sown areas should be allocated to vegetables to meet the 

vegetable demands in the local area. More importantly, as presented in Table 6 and Figure 3, 

after satisfying the cereal demands from local population, the residual resources (e.g., arable land, 

water resources, electricity, etc.) would be suggested to be used for vegetable cultivations. 

Figures 5 and 6 present the cultivation pattern for the three crops and the corresponding 

contributions of GHG emissions under the fuzzy confidence levels of 0.5 and 0.8. The results 

also reveal similar patterns for crop cultivation and GHG emissions with those under a fuzzy 

confidence level of 0.2. However, the GHG emissions from corn cultivation would likely 

decrease as the increase of the fuzzy confidence level especially in time periods 2 and 3. This 

would be due to the decreasing sown areas for corn as presented in Figure 3. In comparison, the 

GHG emissions from vegetables would slightly increase at the same time. For instance, under the 

pessimistic condition, the cultivation for corn and vegetables would respectively have 
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proportions of 39.2%, 20.7% in time period 2 under a fuzzy confidence level of 0.5, and 39.0%, 

20.9 % under a fuzzy confidence level of 0.8. Correspondingly, the GHG emissions from corn 

and vegetables would respectively make contributions of 29.6% and 29.1% under the fuzzy 

confidence level of 0.5, and 29.4% and 29.2% under the fuzzy confidence level of 0.8. These 

results also demonstrate the priority of corn cultivation to meet the cereal demand in the City of 

Jinan.   

 

 

Figure 4. the percentages of sown areas and the associated CO2 emissions under the fuzzy confidence 

level of 0.2. The inner doughnut corresponds to the demanding (or pessimistic) condition while the outer 

one corresponds to the optimistic condition. A larger percentage of corn cultivation would be preferred to 

meet the cereal demands since more than 40% of corn planting only leads to about 30% of CO2 

emissions. 
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Figure 5. the percentages of sown areas and the associated GHG emissions under the fuzzy confidence 

level of 0.5. The inner doughnut corresponds to the demanding (or pessimistic) condition while the outer 

one corresponds to the optimistic condition. A slight decrease for cultivation percentage would be 

expected in time periods 2 and 3 for corn under both pessimistic and optimistic conditions as the fuzzy 

confidence level increases from 0.3 to 0.5, which also lead to percentage increase for the other two crops. 
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Figure 6. the percentages of sown areas and the associated GHG emissions under the fuzzy confidence 

level of 0.8. The inner doughnut corresponds to the demanding (or pessimistic) condition while the outer 

one corresponds to the optimistic condition. The cultivation percentage of corn will continue decrease as 

the fuzzy confidence level increases due to less food demand, while the residual resources tend to be 

allocated to vegetable cultivation.  

 

Figure 7 presents both the unit benefits and total benefits obtained from the developed 

IFFCCP-WEFN model under different fuzzy confidence levels. Under the demanding conditions, 

which corresponding to more food demands, less resource availabilities and thus lower objective 

bounds, an increasing trend would be observed as the increase of fuzzy confidence level. For 

instance, the unit benefit would range between 8.410, 8.438 and 8.459 RMB/kg CO2-eq 

respectively under the fuzzy confidence level being 0.2, 0.5 and 0.8. Correspondingly, the total 

benefits would be RMB 4.0951010, RMB 4.1031010, and RMB 4.1091010, respectively. This 

may be due to more sown areas for vegetables as presented in Table 6. For the advantageous 

conditions corresponding to the upper bound of the objective, an increasing trend would be still 

observed since, after satisfying cereal demands, the remaining resources tend to be allocated to 

vegetables. Nevertheless, the total benefit as presented in Figure (7b) tends to slightly decrease 

from RMB 5.3791010 under α = 0.2 to RMB 5.3731010 under α = 0.8. This would be mainly 
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because that, under the advantageous conditions where the possibility measure is adopted, the 

increase of fuzzy confidence level would also lead to increase for the lower bound of irrigation 

reliability (i.e., (õ)α
-) in Constraint (4). Such an increase would lead to decrease for the total 

sown areas for the three crops as presented in Table 6 (i.e., sown area for corn decreases while 

the sown areas for the other two crops keep constant). Consequently, this would lead to a slight 

decrease in the total benefit under advantageous conditions.  

 

 

Figure 7. System benefits for the IFFCCP-WEFN model. A slightly increasing trend, under the 

demanding conditions, can be observed for both unit and total benefits as the increase of fuzzy confidence 

level (denoted as α). The unit benefit would also increase for advantageous conditions while the total 

benefit would decrease due to the decrease of total crop sown areas. 
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5. Discussion 

 

The objective of the developed IFFCCP-WEFN model is to achieve a maximized unit benefit for 

the agriculture department with respect to the GHG emissions. This is the reason to introduce a 

fractional objective function into the IFFCCP-WEFN model. If the objective function is to 

maximize the total benefit of the water-energy-food nexus system, this will lead to an inexact 

fuzzy chance constraint programming-based water-energy-food nexus (IFCCP-WEFN) model. 

More specifically, if the GHG emission target is not considered, the objective function in 

Equation (1) will be denoted as Max f ± = f1 - f2 - f3 – f4 – f5 – f6, which is denoted as 

IFCCP-Case1 in the following analyses. Moreover, the GHG emission can also be considered in 

the IFCCP-WEFN model through introducing a carbon trading objective, in which the function 

of f7 can be revised as f7 = ∑t=1
T∑ CTPt

±*TCEt
± and the objective function in Equation (1) will be 

denoted as Max f ± = f1 - f2 - f3 – f4 – f5 – f6 – f7. Here CTPt
± denote the carbon trading price in 

time period t, which was set as [48, 60], [51.1, 65.4] and [54.5, 71.3] RMB/tonne for t = 1, 2 and 

3 respectively. Such an IFCCP-WEFN model is denoted as IFCCP-Case2 in the following 

comparison analyses.  

 

Compared with the developed IFFCCP-WEFN model, both IFCCP-Case1 and IFCCP-Case2 

models can be converted into two conventional linear programming submodels under each fuzzy 

confidence level, which were solve by LINGO 11.0 software package in this study. Also, the 

submodels generated from the two IFCCP models would be solved with less computational time 

than those fractional submodels generated from the IFFCCP-WEFN model. However, due to the 

small model size for the studied WEFN system, all the submodels (including linear programming 

and fractional programming submodels) were solved by the LINGO 11.0 software package 

within 1 second. Therefore, there would be no computational burden in practical computation for 

the developed IFFCCP-WEFN model. In addition, since the fractional submodels would be 

generated from the IFFCCP-WEFN model, only local optimal solutions would be obtained from 

LINGO corresponding to both pessimistic and optimistic conditional. In comparison, the 

submodels for the IFCCP-WEFN model (both IFCCP-Case1 and IFCCP-Case2 models) would 

generate global optimal solutions since these submodels are linear programming models.   
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Figure 8 compares the low and upper bounds of the total benefits obtained through the IFFCCP 

and IFCCP models. The results indicate that the IFCCP-Case1 model would generate the highest 

total benefits for both demanding/pessimistic and advantageous/optimistic conditions since the 

GHG emissions from WEFN system is not considered. For instance, the total benefits would 

range between RMB[4.111, 5.574]1010 under a fuzzy confidence level of 0.2, compared with 

the total benefit of RMB[4.095, 5.379]1010 from IFFCCP-WEFN model, which leads to an 

slightly increase rate of 0.4% for the lower bound and 3.6% for the upper bound. In comparison, 

when the GHG emission is also consider in the IFCCP-WEFN model (i.e., IFCCP-Case2), the 

obtained total benefits would be lower than the benefit from IFFCCP-WEFN model under 

demanding conditions, but higher for the advantageous conditions where sufficient resources are 

available. For example, the total benefit from the IFCCP-Case2 model would be RMB[4.078, 

5.546]1010 under a fuzzy confidence level of 0.2, leading to a decreasing rate of 0.4% for the 

benefit from IFFCCP-WEFN model under demanding conditions, but an increasing rate of 3.1% 

for the upper bound. Moreover, the lower bounds of the total benefit from all three models would 

present an increasing trend as the increase in fuzzy confidence level, implying the visible effect 

of the decision makers’ preferences on the desired crop planting structures. Nevertheless, except 

the slightly decreasing trend for the upper bound objective from IFFCCP model, the upper bound 

benefits for the two IFCCP models would keep constant regardless of the changes in fuzzy 

confidence level. This suggest that the decision preferences would not have explicit impact on 

the desired WEFN management strategies under advantageous conditions. 
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Figure 8. Comparison of the total benefits for the water-energy-food nexus system between the inexact 

fractional fuzzy chance constraint programming (IFFCCP) model and inexact fuzzy chance constraint 

programming (IFCCP) models.  

 

Figure 9 presents the comparison of the unit benefits with respect to GHG emissions from the 

IFCCP-WEFN model and two IFCCP-WEFN models. Since the IFCCP-Case1 model did not 

consider the GHG emissions during the crop cultivation process, it is straightforward that the 

unit benefit with respect to GHG emissions would generally lower than that obtained from the 

developed IFFCCP-WEFN model. For instance, the unit benefit generated from the 

IFCCP-Case1 model would range within [8.401, 10.398] RMB/kg CO2-eq under a fuzzy 

confidence level of 0.2, whilst the unit benefit from IFFCCP-WEFN model would vary within 
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[8.410, 11.204] RMB/kg CO2-eq. A decreasing rate about 0.1% would be observed for the lower 

bound while the decreasing rate for the upper bound can increase to 7.2%. The results indicate 

that the planting structure for crops without consideration of GHG emission may not be as 

efficient as the solution from IFFCCP-WEFN model in response to GHG mitigation especially 

when sufficient resources are available for crop planting. It is noticeable that the introduction of 

carbon trading in the IFCCP model (i.e., IFCCP-Case2) would not enhance the efficiency of 

GHG mitigation as presented in Figure 9. The unit benefits from the IFCCP-Case2 model are the 

same as the unit benefits obtained from IFCCP-Case1 model for both demanding and 

advantageous conditions under all three fuzzy confidence levels. These results may be due to two 

possible reasons: i) both the IFCCP-Case1 and IFCCP-Case2 models were developed to 

maximize the total system benefit and thus the unit benefit with respect to GHG emission was 

not considered. ii) the GHG trading price, obtained from some open news report, would be too 

low (e.g., 0.07 RMB/kg CO2-eq for the highest price), and such a price may not visibly affect the 

desired crop planting structure from the IFCCP models. This can be further demonstrated 

through comparing the total benefits from the two IFCCP models. The total cost for carbon 

trading (i.e., the benefit from IFCCP-Case1 model minus the benefit from IFCCP-Case2 model) 

would only have a proportion about 0.8% under demanding conditions and 0.5% under 

advantageous conditions in the total benefit.  

 

Figure 10 presents the total GHG emissions in different planning periods under different fuzzy 

confidence levels. It indicates that the GHG emissions from the planting patterns obtained by the 

IFCCP-WEFN models (i.e., IFCCP-Case1 and IFCCP-Case2) are higher than those from the 

cultivation structure obtained by IFFCCP-WEFN model in all the planning periods under all the 

fuzzy confidence levels. This is because that the IFFCCP model would maximize the unit benefit 

with respect to GHG emissions while the IFCCP models only considered the total system 

benefits. In addition, the total GHG emissions, under each fuzzy confidence level, tend to 

decrease over the planning period for all the three WEFN models. This may be mainly because 

that the resources availabilities, especially for fertilizers and pesticides, would decrease due to 

more strict environmental restrictions. These results demonstrated the ineffectiveness of the 

planting structure obtained from the IFCCP-WEFN models for GHG emission control.  
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Figure 9. Comparison of the unit benefit for the water-energy-food nexus system between IFFCCP model 

and IFCCP models. Under all the fuzzy confidence levels, the IFFCCP model will lead to higher unit 

benefits with respect to CO2 emissions than the IFCCP models, especially for the advantageous conditions. 
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Figure 10. Comparison of GHG emissions from the water-energy-food nexus system in different time periods between the IFFCCP model and 

the IFCCP models. Visible decreases can be expected for the planting pattern obtained by the IFFCCP model since compromise between system 

benefits and GHG emissions would be considered in IFFCCP. In comparison, the IFCCP model would lead to significant increases of GHG 

emissions due to the low GHG mitigation efficiency. 
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In this study, the contradictory objectives between system benefits and GHG emissions for a 

WEFN system were reflected through introducing the fractional programming method into the 

developed IFFCCP approach in order to achieve a maximum unit benefit with respect to GHG 

emissions. However, such contradiction issues in the WEFN system would also be tackled 

through bi-level or multi-level programming methods as developed in Jin et al. (2018), Yu et al. 

(2020a), Zhang et al. (2020) and other relevant studies. Nevertheless, we argue that the 

developed IFFCCP approach would have some merit when compared with bi-level or multi-level 

methods in dealing with trade-offs among contradictor objectives. Firstly, the bi-level or 

multi-level methods would need to pre-define the hierarchical structure for the upper-level and 

lower-level models. For the same conflicting objectives (e.g., system benefit and GHG 

emissions), different hierarchical structures (e.g., the upper-level for system benefit or the 

upper-level for GHG emissions) would lead to significant discrepancies in the desired solutions. 

In comparison, the developed IFFCCP approach would reflect contradiction between system 

benefit and GHG emissions through maximizing the unit benefit with respect to GHG emission, 

without pre-specifying the priority among these two objectives. Moreover, the bi-level or 

multi-level models would be solved through some complex interactive algorithms (e.g., Jin et al. 

2018), in which one model (either the upper-level or the lower-level model) would be solved 

firstly, and the other one would then be solved for decision variables around their solutions from 

the first model within a pre-defined tolerance (Jin et al. 2018). This may lead to two possible 

issues: i) the tolerance was commonly determined subjectively by the decision makers or model 

developers, in which different tolerance values would lead to different solutions. ii) Since the 

second model would be solved around the solutions of the decision variables obtained from the 

first model, this would also lead to local optimal solutions. Furthermore, we admit that the 

bi-level or multi-level models may generate crop planting structures with relatively higher unit 

benefits than the IFCCP models (IFCCP-Case1 and IFCCP-Case2). However, those models may 

hardly produce the crop planting structure with a higher unit benefit than the desired cultivation 

pattern generated by the developed IFCCP-WEFN model based on the shortcomings for the 

bi-level or multi-level models discussed above.    
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6. Conclusions 

 

In this study, an inexact fractional fuzzy chance constraint programming (IFFCCP) method has 

been developed to provide management strategies for the complex water-energy-food nexus 

(WEFN) system. An IFFCCP-based water-energy-food nexus (IFFCCP-WEFN) model has been 

formulated for planning the WEFN system for the City of Jinan, Shandong province under 

consideration of both system benefits and GHG emissions. Solutions of the planting areas for 

different crops under different periods have been generated in order to achieve a maximized unit 

benefit with respect to the GHG emissions.  

 

Based on the IFFCCP-WEFN model, results indicated that, the increase of cereal demand over 

the planning horizon would be mainly satisfied by the corn cultivation, while the cultivation area 

of wheat would maintain at it upper bound of minimum requirement to avoid noticeable 

fluctuation for wheat price. This is due to the relatively lower GHG emission intensity from corn, 

in which the proportion of GHG emissions from corn would approximately drop 10 percentage 

points compared with its proportion in the crop cultivation areas. In addition, the sown area for 

vegetables, under strict restrictions, would also increase to meet the vegetable demand over the 

planning area. However, the sown area of vegetables would reach its upper bound under the 

advantageous conditions whilst the corn and wheat cultivation would not change even though 

more resources would be available under advantageous conditions. This implies that, after 

satisfying the cereal demand, the residual resources (e.g., water, fertilizer, energy, etc.) would 

tend to be allocated to vegetable planting. Moreover, preferences of decision makers on fuzzy 

parameters, as denoted as fuzzy confidence level, would generally pose explicit impacts on the 

obtained crop planting structure under demanding conditions where strict constraints are adopted. 

In detail, the increase of fuzzy confidence level would generally lead to decreased planting area 

for corn but increased planting area of vegetables in the time periods 2 and 3. This is because that, 

under, the increase of fuzzy confidence level would lead to decreased population estimation and 

thus decreased food demand. Therefore, less corn planting is required whilst the residual 

resources would be allocated to vegetables and thus lead to increased vegetable planting. 

Conversely, the planting structure would keep constant regardless of changes of fuzzy 

confidence level since the decreased food demand, with the increase of fuzzy confidence level, 
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would be balanced by the decreased food loss rates.  

 

The objective of the IFFCCP-WEFN model is to achieve a maximized unit benefit with respect 

to GHG emission, and thus the obtained planting scheme is different from that generated by the 

inexact fuzzy chance constraint programming-based water-energy-food nexus (IFCCP-WEFN) 

models. The results suggest that the unit benefit from IFFCCP-WEFN model would higher than 

that from IFCCP-WEFN models both considering and not considering GHG emissions. 

Moreover, the total GHG emissions from the cultivation scheme obtained by IFFCCP-WEFN 

model would be less than the cultivation scheme generated by the IFCCP-WEFN models. This is 

particularly explicit under advantageous conditions where sufficient resources are available. The 

GHG emissions based on the IFFCCP-WEFN model can be reduced by about 11% at most than 

those from the IFCCP-WEFN models. Particularly, inclusion of GHG emission objective in the 

traditional IFCCP-WEFN model (i.e., IFCCP-Case2) would not produce distinguishable results 

with the IFCCP-WEFN model without GHE emission target (i.e., IFCCP-Case1) since the cost 

for carbon trading would only account for a small proportion in the total benefit (about 0.8% 

under demanding conditions and 0.5% under advantageous conditions). Consequently, these 

results indicate that the IFFCCP-WEFN model would generate more desirable support for 

sustainable WEFN management in response to climate change.   

 

In this study, an inexact fractional fuzzy chance constraint programming (IFFCCP) approached 

have been developed for management of water-energy-food nexus system under consideration of 

GHG emissions. This study would have contributions in both methodology and model 

development for WEFN planning and management. Firstly, the proposed IFFCCP method is able 

to reflect uncertainties presented as both fuzzy and interval numbers. Particularly, the measures 

of necessity and possibility, which are considered to be very relevant to the real-life decision 

problems (Maity, 2011), are introduced to reflect decision preferences on fuzzy parameters. 

Secondly, the fractional programming is introduced into the IFFCCP approach to deal with 

contradictory targets in the WEFN system. The IFFCCP-based models can be solved more easily 

than those models based on bi-level or multi-level programming methods, in which subjective 

pre-specifications for hierarchical model structure and solution tolerance are required. Finally, 

the proposed IFFCCP-WEFN model has considered GHG emissions in food production in order 
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to achieve a maximized unit benefit with respect GHG emission. The obtained solutions have 

been demonstrated to be more effective in GHG mitigation than the results from some traditional 

models even considering carbon trading. Moreover, such a model can be transferred to other 

areas to provide scientific support for carbon emission control in the water-energy-food nexus 

system.  

 

Even though the proposed IFFCCP-WEFN model has been demonstrated to be effective for 

sustainable management of WEFN system, further studies are still required to address some 

potential issues in the present IFFCCP-WEFN model. Firstly, only the GHG emissions were 

considered in the current IFFCCP-WEFN model whilst the carbon sink from crop cultivation 

was not considered. In fact, some studies (i.e., She et al., 2017) has demonstrated that the major 

crops production showed as carbon sinks rather than carbon sources in general. Secondly, the 

uncertain parameters adopted in the proposed model are only expressed as fuzzy or interval 

variables, while some studies claimed that some parameter may present as multiple uncertain 

formats based on different data availability (e.g., Yu et al., 2020c, Yue et al., 2021). Therefore, 

further studies are required to improve the developed model to include carbon sink and also 

multiple uncertain parameters.  
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