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ABSTRACT Among image reconstruction methods, Fourier transform-based techniques provide
computationally better performance. However, conventional Fourier-based reconstruction techniques require
uniform data sampling at the radar aperture. In this paper, a multiple-input multiple-output (MIMO)
scenario for near-field (NF) terahertz imaging systems is considered. A compressive-sensing-based method
compatible with efficient fast Fourier-based techniques for image reconstruction is proposed. To reduce
the error due to the multistatic array topology in the NF, a multistatic-to-monostatic conversion is used.
Employing the proposedmethod significantly reduces the number of antennas and channels. This, in addition
to saving hardware resources, can improve the overall performance of the system depending on the type
of channel access scheme. The results based on both numerical and electromagnetic data, presented as
reconstructed images of the scene, confirm the performance of the proposed method.

INDEX TERMS Compressive sensing, Fourier-based techniques, MIMO, near-field, THz imaging.

I. INTRODUCTION
In recent years, active terahertz (THz) imaging ranging from
0.1 to 10 THz has received increasing attention in the fields
of security screening, aerial imaging, medical diagnostics
and non-destructive testing [1], [2]. THz imaging modalities
offer non-ionizing radiation and can operate in all-weather
conditions [3]. Although visible and infrared frequencies can
provide very high resolution, they cannot penetrate through
some materials such as clothing. Therefore, for applications
such as security screening, THz frequencies are ideal and
can be used to detect hidden objects under clothing. These
waves provide a resolution commensurate with the size of the
aperture [4].

Image reconstruction is a mathematical process that gener-
ates scene images from projection data acquired at the target
position. The type of mechanism used in the image recon-
struction process has a fundamental effect on image quality.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhen Ren .

In literature, there are many techniques for image recon-
struction [5]–[8]. Among those, Fourier-based reconstruction
techniques offer significant potential due to high compu-
tational efficiencies. However, such techniques suffer from
several limitations, such as uniform sampling requirement,
typically achieved at the Nyquist limit.

Compressive-sensing (CS) is a framework for reconstruct-
ing a signal from a reduced number of measurements [9].
According to CS theory, sparse or compressible data can be
reconstructed from a small set of measurements fewer than
usual [9]. Therefore, using this method makes a significant
improvement in applications where the amount of data is
large, or receiving and storing data is a time-consuming and
costly process, or the time to receive all the data is limited
and short. The idea of CS has already been used in imaging
radar systems [10]–[13]. In [10], a three-dimensional (3D)
synthetic aperture radar imaging system is introduced to
reduce the number of measurement points in both frequency
and space domains. However, the system introduced in [10]
considers a monostatic scanning topology which, unlike the
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multistatic topology, is not challenging in the near-field (NF).
In [11], the problem of receivers position optimization by
CS technique in a single-input multiple-output scenario is
considered. In [13], a super-resolution technique is employed
to reconstruct the image of a target which is acquired by using
CS. This technique is based on scanning the scene by using
randomly patterned masks with fixed pixel sizes. However,
thesemethods are not compatible with efficient Fourier-based
techniques. In [12], a CS approach using a planar scanning
setup has been presented to improve the dynamic range com-
pared with the conventional imaging technique based on time
reversal of the measured fields.

For 2D scanning in a multistatic scenario, a fixed 2D array,
or a 1D arraywith 1Dmechanical scanning can be used. How-
ever, to satisfy the Nyquist criterion, such a setup requires
many antennas or spatial sampling points. For example,
to mechanically scan a scene with a width of 0.3m at 220GHz
and an inter-element spacing of λ

/
2, 441 elements will be

required. Moreover, if we have a fixed densely-populated 2D
aperture, then we would need 441× 441 elements. This may
be a major challenge for THz imaging.

In this paper, a multiple-input multiple-output (MIMO)
scenario for NF THz imaging systems is considered. Unlike
many existing works focusing on target domain spar-
sity [14], [15], our focus is not on the target domain spar-
sity but the physical layer sparsity. The CS technique is
employed here to significantly reduce the number of physical
antennas and spatial sampling points. In fact, many antennas
(or channels) or sampling points that are evenly spaced may
be eliminated. In addition to saving hardware resources, this
can reduce data acquisition time in time-division-basedmeth-
ods [16], [17], reduce bandwidth and sampling frequency in
frequency-division-based methods [18], and simplify imple-
mentation in coding-based methods [19]. To correct the error
due to the multistatic array topology in the NF and conse-
quently to improve the estimation accuracy, a multistatic-
to-monostatic conversion is used. The application of this
conversion technique to a sparse aperture at microwave fre-
quencies has also been studied in [20]. Although the aperture
in [20] is sparse, the transmitting (Tx) and receiving (Rx)
antennas are uniformly sampled along the edges of each
cluster, producing a uniformly sampled effective aperture
pattern. In this work, we propose a Fourier-based process-
ing technique that can work with non-uniformly distributed
sparse aperture layouts. This gives us the freedom to choose
an arbitrary set of Tx and Rx pairs (not necessarily uniformly
sampled) and reduce the number of spatial sampling points
(sparse sampling) to facilitate compressive imaging and relax
the Nyquist sampling criterion.

The main contributions and novelties of this paper are
summarized below:
• Mathematical development of a Fourier-compatible

method for NFMIMOTHz imaging with sparse non-uniform
apertures: Although Fourier transform (FT)-based meth-
ods are commonly known as efficient image reconstruction
algorithms, they conventionally require uniform sampling.

FIGURE 1. System geometry; (a) Setup 1 with URA, (b) Setup 2 with SPA.

Sampling at the Nyquist rate ensures that raw data can sample
a complete set of Fourier components, such that a DFT can
be defined over the set of data. The two features in this
paper’s scenario that disrupt the uniform sampling structure
are NF multistatic imaging and non-uniform apertures. Since
the effective phase center principle is theoretically valid only
under the far-field (FF) assumption, a phase compensation
mechanism is required to adopt the Fourier-based image
reconstruction technique for large MIMO apertures in the
NF. We achieve such an adaptation using a multistatic-to-
monostatic conversion. In this context, for the first time, the
feasibility of using multistatic-to-monostatic conversion for
THz NF imaging is demonstrated.
• In achieving the above, the ability to work with non-

uniformly distributed apertures is of significant importance.
Non-uniform apertures can be due to sparse spatial sampling
or sparse arrangement of array elements or due to the inherent
sparse configuration of the array. In this regard, we retrieve
the data required for the image reconstruction process by
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FIGURE 2. Block diagram of the proposed method.

TABLE 1. Simulation parameters in MATLAB; Array type: URA; Target profile: T-Shaped.

TABLE 2. Simulation parameters in MATLAB; Array type: SPA; Target profile: T-Shaped.

TABLE 3. Simulation parameters in FEKO; Array type: SPA; Target profile: Rectangular metal plate with several holes.

FIGURE 3. Image reconstruction from uniformly sampled data with Config. 1; (a) full MIMO array, (b) virtual array, (c) reconstructed image.

solving a CS problem and forming a dictionary matrix in
the Fourier domain. Also, for inherently non-uniform con-
figurations, an interpolation-based solution is considered as
a preprocessing step to improve the quality of the recon-
structed image. As a result, the compatibility of the proposed

method with non-uniform THz multistatic imaging in the NF
is demonstrated for the first time.
• Validation of the performance of the proposed method

is realized in various experiments with both numerical and
electromagnetic data.
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FIGURE 4. Image reconstruction with Config. 1; (a) sparse MIMO array (35% of all antennas), (b) virtual array,
(c) image reconstructed by conventional FFT-IFFT technique, (d) image reconstructed by the proposed method.

FIGURE 5. Image reconstruction with Config. 1; (a) sparse MIMO array (50% of all antennas), (b) virtual array, (c)
image reconstructed by conventional FFT-IFFT technique, (d) image reconstructed by the proposed method.

The rest of this paper is organized as follows: In Section II,
the system model is presented; Section III briefly descri-
bes the main concepts and equations of the CS technique;

Section IV presents the proposed CS-based method for NF
imaging; In Section V, we present the simulation results;
Section VI presents the concluding remarks.
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FIGURE 6. Image reconstruction from uniformly sampled data with Config. 2; (a) full MIMO array, (b) virtual array, (c) reconstructed image.

FIGURE 7. Image reconstruction with Config. 2; (a) sparse MIMO array (50% of all antennas), (b) virtual array, (c) image reconstructed by conventional
FFT-IFFT technique, (d) image reconstructed by the proposed method (with the OMP algorithm), (e) image reconstructed by the proposed method (with
the SL0 algorithm), (f) image reconstructed by the proposed method (with the RSL0 algorithm).

Notation: Throughout the paper, symbols |.|, ‖.‖p and
.̂ stand for the absolute value, `p-norm and estimation,
respectively.

II. SYSTEM MODEL
Consider the setups shown in Fig. 1. We assume that the radar
measurements are obtained by a MIMO structure, either by
a setup consisting of antenna elements filling a 2D aperture
(Setup 1 in Fig. 1(a)) or by an array of 1D antenna ele-
ments that are mechanically scanned (Setup 2 in Fig. 1(b)).

Setup 1 is assumed to consist of a transmitter uniform rectan-
gular array (URA) and a receiver URA including MxMy and
NxNy antenna elements, respectively. Setup 2 includes a lin-
ear sparse periodic array (SPA) placed horizontally (x-axis).
In the latter case, the array moves vertically (y-axis) with
uniform sampling steps (N ′y steps in total). This linear array,
recently proposed for THz imaging [21], [22], includesMx Tx
elements with uniform spacing dxt (distributed as two equal
parts on both sides of the array) and Nx Rx elements with
uniform spacing dxr = 0.5Mxdxt (in the middle). There may
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FIGURE 8. Image reconstruction with Config. 2; (a) sparse MIMO array (70% of all antennas), (b) virtual array, (c) image reconstructed by conventional
FFT-IFFT technique, (d) image reconstructed by the proposed method (with the OMP algorithm), (e) image reconstructed by the proposed method (with
the SL0 algorithm), (f) image reconstructed by the proposed method (with the RSL0 algorithm).

FIGURE 9. Image reconstruction from uniformly sampled data with Config. 3; (a) full MIMO array, (b) virtual array, (c) reconstructed image.

also be a vertical distance dtr between the Tx sensors and the
Rx elements.

According to the effective phase center principle, under the
FF assumption, a multistatic array topology with NT + NR
physical elements can be considered as a monostatic virtual
array with NTNR elements (equal to the number of Tx-Rx
channels) [23] (see Fig. 1(a)). Also, the Setup 2 configuration
is equivalent to a denser linear virtual array of length Dax =
(Lt + Lr )

/
2 consisting ofMxNx sampling points, where Lt =

Mxdxt + (Nx − 1) dxr and Lr = (Nx − 1) dxr (see Fig. 1(b)).
However, for NF imaging, we need a more accurate model

to reconstruct the image. Details of this adaptation are given
in Section IV.

The measured backscatter signal can be written as fol-
lows [19]:

sR (xT , yT , xR, yR, k) = ρ (x, y, z)
ejk(RT+RR)

RTRR
, (1)

where RT =

√
(x − xT )2 + (y− yT )2 + z20, RR =√

(xR − x)2 + (yR − y)2 + z20, k = 2π f
/
c is the wavenum-

ber of the corresponding to the frequency f , ρ is target
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FIGURE 10. Image reconstruction with Config. 3; (a) sparse MIMO array (50% of all antennas), (b) virtual array, (c) image reconstructed by conventional
FFT-IFFT technique, (d) image reconstructed by the proposed method (with the OMP algorithm), (e) image reconstructed by the proposed method (with
the SL0 algorithm), (f) image reconstructed by the proposed method (with the RSL0 algorithm).

TABLE 4. NMSEs of reconstructed images (Rec.) Relative to reference images (Ref.)

reflectivity and c is the speed of light. Based on this, a raw
2D data of sizeMxMyNxNy×Ns andMxNxN ′y×Ns captured
over the xy-domain can be constructed for Setups 1 and 2,
respectively, where Ns is the number of frequency points.
We refer to this raw data as S.

III. COMPRESSIVE-SENSING
According to CS theory, sparse or compressible signals can
be reconstructed from a reduced number of measurements.
Assume that signal x exhibits sparsity in certain orthonormal
basis ψ . In matrix form, the signal x can be represented by
using its sparse transform domain vector (vector of coeffi-
cients) θ as a K -sparse signal [24]:

xN×1 = ψN×N θN×1. (2)

In the CS scenario, a reduced set of measurements yM×1
is considered, where M < N . According to (2), the mea-
surement procedure can be modeled by projections of x onto
vectors

{
ϕ1, ϕ2, . . . , ϕM

}
constituting the measurement

matrix2 as

yM×1 = 2M×Nx = AM×N θ , (3)

where A = 2ψ is the sensing matrix.
Remark 1: In some computational imaging works [25, 26],

M refers to the total number of measurements and N refers
to the number of pixels in the scene (unknown to be recon-
structed, e.g., the reflectivity distribution). However, in this
paper, bothM andN refer to the number of antenna elements.
In this work, the compression comes from the fact that we use
a fewer number of spatial sampling points (and hence data
acquisition channels) on the aperture in comparison to the
regularly sampled (at Nyquist limit) case. In computational
imaging works [25], [26], it is possible to have a single
channel (only one data acquisition channel) but the number
of measurement modes, M , can still be large. It can even be
made M > N by simply increasing the number of frequency
points (each frequency point in this concept is a separate
measurement).

Under certain conditions (restricted isometry prop-
erty) [24], the recovery problem can be described as the
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FIGURE 11. Image reconstruction from uniformly sampled data with Config. 4; (a) MIMO array, (b) all positions of the MIMO array during
mechanical scanning in the vertical direction, (c) sampling points, (d) reconstructed image (z0 = 0.3m), (e) improved reconstructed image
(z0 = 0.3m), (f) improved reconstructed image (z0 = 1.1m).

following minimization:

min ‖θ‖0 s.t. y = Aθ . (4)

However, the solution of (4) requires an exhaustive search
and is NP-hard [24]. Hence, the `0-minimization is replaced
by convex `1-minimization as follows:

min ‖θ‖1 s.t. y = Aθ . (5)

In the situation when the measurements are corrupted by
the noise (y = 2x + n = Aθ + n), where n denotes the
additive noise, the reconstruction problem can be defined as

min ‖θ‖1 s.t. ‖y− Aθ‖2 ≤ ε. (6)

where ‖n‖2 ≤ ε .

IV. PROPOSED METHOD
Normally, to avoid aliasing in image reconstruction, the
Nyquist criterion in spatial samplingmust bemet. This means
that an inter-element spacing of dx and dy in the virtual array,
along the x- and y-axes, respectively, must be implemented
as follows [27]:

dx ≤
λ

√(
Dax + Dtx

)2/4+ z20

2
(
Dax + Dtx

) ,

dy ≤

λ

√(
Day + Dty

)2/
4+ z20

2
(
Day + Dty

) , (7)

where λ is thewavelength. However, according to the descrip-
tion in the previous section and using the CS technique, it is
no longer necessary to obtain samples based on the Nyquist
rate and uniform sampling in the x- and y-axes. In fact, with
sparse spatial sampling, the data required for the image recon-
struction process can be retrieved based on (6). A summary
of the main steps for implementing the proposed method is
given in the block diagram of Fig. 2, which is described in
more detail below.

For each i, we formulate the uniformly sampled data S (:, i)
as a column vector x ∈ CN×1, where i = 1, 2, . . . , Ns and
N = MxMyNxNy. Next, we construct an N × N dictionary
matrix ψ (in practice, discrete cosine transform (DCT), DFT,
or other dictionaries may be used [10]). Note that the issue of
selecting the appropriate basis before retrieving information
using CS has been discussed in the literature under the head-
ing of best basis selection and dictionary learning [28, 29].
Then we choose a random measurement matrix2M×N to get
the noisy compressed measurement y = 2ψθ + n, where
M < N . We refer to compressed data as S̄.

To develop a CS approach for the MIMO NF imaging sys-
tem, we need a more accurate system model for image recon-
struction than that provided in Section II. This is because we
are dealing with a short-range NF multistatic configuration,
while the virtual arrays shown in Fig. 1 are theoretically
valid for the FF. Therefore, a phase compensation mechanism
is required to adopt the Fourier-based image reconstruction
technique for large MIMO apertures in the NF. Suppose(
x ′, y′, 0

)
is the position of the phase center corresponding
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FIGURE 12. Image reconstruction with Config. 4 (z0 = 1.1m); (a) spatial sparse sampling (60% of total points), (b) image
reconstructed by conventional FFT-IFFT technique, (c) image reconstructed by using NUFFT technique, (d) image reconstructed
by the proposed method.

to the transmitter element at (xT , yT , 0) and the receiver
element at (xR, yR, 0). By using a multistatic-to-monostatic
conversion [30], the multistatic data set can be converted to
an effective monostatic version as follows:

s̃R
(
x ′, y′, k

)
= sR (xT , yT , xR, yR, k)

so
(
x ′, y′, k

)
so (xT , yT , xR, yR, k)

, (8)

where so
(
x ′, y′, k

)
and so (xT , yT , xR, yR, k) correspond

to the monostatic and multistatic reference signals, respec-
tively [31]. Note that we still have a multistatic topology,
however, this conversion provides a virtual (mathematical)
approximation of the corresponding monostatic topology.
We refer to converted data as S̃.

By using (6), x̂ (an estimation of uniformly sampled data)
is retrieved. We refer to compressed data as Ŝ. Thus, although
we have not performed spatial sampling evenly, the resultant
data can be processed using Fourier-based image reconstruc-
tion techniques.

As an instance, 2D target reflectivity can be reconstructed
as [32]

ρ (x, y) =
∫
IFFT2D

[
ŜR
(
kx , ky, k

)
kze−jkzz0

]
dk,

kz =
√
4k2 − k2x − k2y , k2x + k

2
y ≤ 4k2, (9)

where ŜR
(
kx , ky, k

)
denotes the FT of ŝR (x, y, k). A 3D

target reflectivity can also be achieved only by modifying the
image reconstruction step and using 3D IFFT [31].

V. SIMULATION RESULTS
In this section, the performance results of the proposed
method based on numerical and electromagnetic data sim-
ulated in MATLAB and FEKO, respectively, are presented.
All computations are performed in MATLAB. The sim-
ulation parameters for different configurations are given
in Tables 1-3. All results are provided for signal-to-noise
ratio (SNR) of 20dB to ensure a realistic channel response
in the presence of additional loss factors. Our previous works
in NF imaging [33]–[35] justify this SNR selection. Accord-
ing to the parameters of Configs. 1-5 given in Tables 1-3,
targets with distances less than approximately 5m, 2m, 5m,
54m and 54m from the imaging system, respectively, are
located in the NF [36]. 2 is designed so that only one 1 is
randomly placed in each row (without repeating the position
in other rows) with a uniform distribution, and the rest of
the entries are 0. For the dictionary matrix, we considered
the DCT domain, which provided the best performance in
our experiments. For data retrieval, wherever it is not men-
tioned, the smoothed L0 (SL0) algorithm [37] is considered,
which has less complexity than other similar algorithms
such as robust SL0 (RSL0) [38], orthogonal matching
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FIGURE 13. Image reconstruction with Config. 4 (z0 = 1.1m); (a) spatial sparse sampling (70% of total points), (b) image
reconstructed by conventional FFT-IFFT technique, (c) image reconstructed by using NUFFT technique, (d) image reconstructed
by the proposed method.

pursuit (OMP) [39] and spectral projected gradient for L1
minimization (SPGL1) [40]. This section provides qualitative
comparisons as well as quantitative analyzes such as resolu-
tion and normalized mean squared error (NMSE) to exam-
ine performance. The computation formula for NMSE is as
follows [41]:

NMSE =

W∑
i=1

L∑
i′=1
|ρRec (xi, yi′)− ρRef (xi, yi′)|2

W∑
i=1

L∑
i′=1
|ρRef (xi, yi′)|2

(10)

where ρRec and ρRef denote the reconstructed image and
reference image withW × L sizes, respectively.
Assuming the use of Config. 1, Figs. 3(a), 3(b) and 3(c)

show a full MIMO array, its corresponding virtual array, and
the image reconstructed from a T-shaped profile by a Fourier-
based technique [19], respectively. According to the parame-
ters of Config. 1 and (7), the Nyquist sampling constraints are
satisfied because both dx and dy are equal to λ

/
4 in the virtual

array. The simulated system has a theoretical cross-range
resolution of 5mm (1.67λ) in both x- and y-axis [27]. Fig. 4(a)
shows a sparseMIMOarray scenario inwhich the physical Tx
and Rx antennas in Fig. 3(a) are randomly selected. Fig. 4(b)
shows the corresponding virtual array. The rate of compres-
sive sensing (r = M

/
N ) is approximately 12%.Note that this

rate is defined by the size of the data, not just the number of

FIGURE 14. The average values of NMSEs obtained by the proposed
method (using OMP and SL0 algorithms) versus r in 100 independent
experiments for various configurations. The reference images in
Configs 1, 3 and 4 are Figs. 3(c), 6(c) and 9(c), respectively.

physical antennas. Since in this scenario the Nyquist criterion
is not followed and lacks a uniform pattern required for the
conventional FFT-IFFT technique, the image reconstructed
without using the proposed method is aliased and the object
is not recognizable. This can be seen in Fig. 4(c). However,
as Fig. 4(d) shows, by using the proposed method, we were
able to reconstruct the image in such a scenario (with only
35%of the total number of antennas (12%of all channels)), so
that the object is identifiable. In Fig. 5(b), we have increased
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FIGURE 15. Images reconstructed by the proposed method with Config. 1; (a) with using the OMP algorithm (r = 0.15),
(b) with using the SL0 algorithm (r = 0.15).

the rate r to 25%. As Fig. 5(c) shows, the conventional FFT-
IFFT technique still failed to properly reconstruct the image.
As expected, using the proposed method with r = 0.25,
the image is reconstructed with a better resolution than the
12% rate. This advantage comes at the cost of increasing the
complexity in the recovery step because the computational
complexity of the SL0 algorithm is of orderO(M2). Note that
the SPGL1 algorithm is able to estimate the noise power in the
optimization problem-solving process. Therefore, it has the
advantage that it provides higher accuracy in CS problems
in the presence of noise. However, this algorithm has a very
high computational complexity of order O(N logN ). Also,
OMP and RSL0 algorithms have computational complexities
O(KMN ) and O(M2), respectively. Note that by employing
the proposed method, the overall transmitting time (assuming
the use of conventional time-division and code-division tech-
niques) in Figs. 4(a) and 5(a) are reduced to 12% and 25% of
the full array in the structure of Fig. 3(a), respectively [19].
Also, by employing the proposed method (assuming the use
of the frequency-division technique), the bandwidth (and
consequently the sampling rate) are reduced to 35% and 50%,
respectively [19].

For further investigation, we increased the operating fre-
quency to 220GHz. Other parameters are similar to Config. 1
(see Table 1). The results of simulations based on Config. 2
are shown in Figs. 6-8. The most important limitation of Con-
fig. 2 compared to Config. 1 is a significant reduction in aper-
ture size. This is due to the significant increase in frequency,
while the inter-element spacing remained constant in terms
of wavelength. This difference can be found by comparing
Figs. 3(a) and 3(b) with Figs. 6(a) and 6(b), respectively. Such
a system has a theoretical cross-range resolution of 3.67λ in
both x- and y-axis. As expected, even with full array data,
the reconstructed image (Fig. 6(c)) does not have the good
quality of the image obtained in Fig. 3(c) at 110GHz. The
significant decrease in aperture size has also had a significant
effect on the quality of images reconstructed with sparse
data (see Fig. 7(e) and compare it with Fig. 5(d)). Table 4
shows the NMSE values of some images reconstructed by the

FIGURE 16. Image reconstructed by using uniformly sampled data (full
data) with Config. 5.

proposed method. In addition to the SL0 algorithm, we also
used the OMP and RSL0 algorithms to retrieve the data, the
results of which are shown in Figs. 7(d) and 7(f), respec-
tively. Both qualitative results, i.e. reconstructed images, and
quantitative results, i.e. NMSE values (see Table 4), indicate
that the OMP algorithm provided poorer performance. Also,
the RSL0 algorithm performed slightly better than the SL0.
This is because RSL0 is more robust against noise than SL0.
We also increased the compressive sensing rate from 25% to
almost 50%. However, due to the aperture size limitation, the
reconstructed images (Figs. 8(d), 8(e) and 8 (f)) still do not
look desirable, despite the relative reduction of the sidelobes.

Note that despite the insufficient aperture size, the results
obtained from the proposed method still provide a much
better idea of the target than the images obtained from the
conventional FFT-IFFT technique (Figs. 7(c) and 8(c)).

To improve the results at the latter frequency, it is necessary
to increase the aperture size. For this purpose, we consid-
ered Config. 3 (see Table 1). The corresponding results are
shown in Figs. 9 and 10. Comparing Figs. 9(c) and 10 with
Figs. 6(c) and 7, respectively, shows that by increasing the
aperture size, we were able to significantly improve the
quality of the reconstructed images. Such a system provides
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FIGURE 17. Image reconstruction with Config. 5; (a) by conventional FFT-IFFT technique with sparse spatial
sampling (50% of total points), (b) by conventional FFT-IFFT technique with 60% of points, (c) by matched filtering
technique with 50% of points, (d) by matched filtering technique with 60% of points, (e) by using NUFFT
technique with 50% of points, (f) by using NUFFT technique with 60% of points, (g) by GSAFT with 50% of points,
(h) by GSAFT with 60% of points, (i) by the proposed method with 50% of points, (j) by the proposed method with
60% of points.
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FIGURE 18. Image reconstruction from Ŝ with Config. 5; (a) by using matched filtering with 50% of points, (b) by using
matched filtering with 60% of points, (c) by using GSAFT with 50% of points, (d) by using GSAFT with 60% of points.

a theoretical cross-range resolution of 2.62λ in both x- and
y-axis. It is emphasized that the unsatisfactory quality of the
reconstructed images in Figs. 7 and 8 is more due to the
insufficient aperture size in the Config. 2 than to the perfor-
mance of the proposed method. This can also be examined
by comparing NMSEs. For example, the NMSE values in
Figs. 7(e) and 10(e) are calculated as 0.0199 and 0.0258,
respectively. This means that the similarity of Fig. 7(e) to
its reference image (i.e. Fig. 6(c)) is even greater than the
similarity of Fig. 10(e) to its reference image (i.e. Fig. 9(c)).
Therefore, satisfactory image reconstruction with sparse data
requires that the minimum conditions be met for ideal image
reconstruction with full data; because according to informa-
tion theory, no process can increase the information content
of sparse data beyond the information content of the original
data.

The rest of the results of this section are related to SPA, the
structure of which was presented in Section II. Fig. 11 shows
the results corresponding to the case in which Config. 4 is
used (see Table 2). In the case of Fig. 11(d), it is assumed
that the target is located at a distance of 0.3m from the radar.
The SPA, despite the advantages it provides (including large
inter-element spacing [21], [22], [42]), creates a gap in the
center of the virtual array, regardless of whether Nx is even
or odd (see Figs. 1(b), 11(b) and 11(c)). Although this gap
does not pose a problem for non-FT-based image recon-
struction techniques (such as generalized synthetic aperture

focusing technique (GSAFT) [22]), it can affect the quality
of results for Fourier-based techniques that require uniform
spatial measurements. In [43], more details are provided
and an interpolation-based solution to improve the results is
presented. Fig. 11(e) shows the reconstructed image using the
improved technique. As can be seen, Fig. 11(e) has less distor-
tion than Fig. 11(d). We then increased the target distance to
1.1m (note that the target is still in the NF). It can be seen that
with increasing range, the quality of the reconstructed image
has improved. In fact, although increasing the range causes
a tolerable degradation in resolution, by bringing the target
closer to the FF region, the accuracy of the approximations
used in multistatic to monostatic conversion and interpolation
steps is improved [19], [43], [44]. Also, since the illumination
footprint of the radar increases with the distance, the recon-
structed image in Fig. 11(f) has larger dimensions than the
one in Fig. 11(e).

The SPA itself has a physically sparse form and due to
its properties [21], [22], [42], compared to the URA, with a
smaller number of physical elements, a larger aperture size
can be achieved. So here for Setup 2, we consider sparsity
in spatial sampling. However, at the end of this section,
we will also consider another scenario. Figs. 12 and 13 show
the results obtained from the conventional FFT-IFFT tech-
nique, the non-uniform FFT (NUFFT) technique [45] and
the proposed method for spatial sampling rates of 60% and
70%, respectively. As can be seen, the conventional FFT
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FIGURE 19. Image reconstruction with Config. 5; (a) sparse MIMO array in all scanning positions (r = 50%), (b) sparse virtual structure (r = 50%),
(c) image reconstructed by the proposed method (r = 50%), (d) sparse MIMO array in all scanning positions (r = 60%), (e) sparse virtual structure
(r = 60%), (f) image reconstructed by the proposed method (r = 60%).

technique still failed to reconstruct the image properly (see
Figs. 12(b) and 13(b)), and images reconstructed by the
NUFFT technique (Figs. 12(c) and 13(c)) are of poor fidelity;
while in the images reconstructed by the proposed method
(Figs. 12(d) and 13(d)), the target can be identified (withmore
clarity in Fig. 13(d), as expected).

Sparse reconstruction analyzes [46], [47] show that
approximately at least 15% of the signal samples are required
for reconstruction by sparse recovery algorithms. Here we
perform a numerical study to determine an approximate limit
for the CS rate that provides a reconstructed image of sat-
isfactory quality using the proposed method. For this pur-
pose, we consider Configs. 1, 3 and 4. As we saw in the
discussions above, the images reconstructed by the full data in
these configurations were of good quality. Fig. 14 shows the
average values of NMSEs obtained by the proposed method
(using OMP and SL0 algorithms) versus r in 100 independent
experiments for various configurations. First, let us consider
Config. 1. According to Fig. 14, the corresponding NMSE
values show a noticeable decrease as the CS rate increases
from 15% to 25%, and then undergo an imperceptible down-
trend. Therefore, the quality of the reconstructed images is
expected to improve significantly by increasing r from 0.15 to
0.25. Such an improvement can be easily detected by compar-
ing Figs. 15 and 5(d). Also, the lower quality of Fig. 15(a)
compared to Fig. 15(b) is consistent with the findings

of Fig. 14. So, in total, in the case of Config. 1, it can be
concluded that a CS rate of at least 25% is required to obtain
a satisfactory image quality. According to Figs. 14 and 10,
and with a similar argument, it can be concluded that in the
case of Config. 3, a CS rate of about 15%, provided that
the SL0 algorithm is used, may be sufficient to reconstruct
a satisfactory quality image; because the decreasing trend of
NMSE is smooth and uniform throughout the corresponding
diagram. However, if using the OMP algorithm, it is recom-
mended to increase this rate to 35% to ensure the quality
of the reconstructed image. Now, let us consider Config. 4.
As Fig. 14 shows, increasing the CS rate from 15% to 25%
does not affect the results. However, if this rate reaches 35%,
it may have a significant impact on the results. However,
unlike Configs. 1 and 3, which quickly became relatively sat-
urated, in Config. 4 onemay expect a noticeable improvement
in results by increasing r (even to about 0.75). This can also be
investigated by comparing Figs. 12(d) and 13(d). The reason
for this different behavior should be sought in completely
different URA and SPA structures. In fact, the SPA inherently
has a sparse configuration. Therefore, non-uniform spatial
sampling in the SPA imposes additional sparsity.

To validate the performance of the proposed method,
in addition to the numerical data simulated in MATLAB,
we used the electromagnetic data simulated in FEKO. The
simulation parameters are given in Table 3. Fig. 16 shows
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images reconstructed by using full data. Fig. 17 shows
images reconstructed by the conventional FFT-IFFT method,
the matched filtering method [48], the NUFFT technique,
the GSAFT method [22], and the proposed method in a
sparse scenario. It is observed that we can identify the
target image only by using the proposed method because
images reconstructed by other methods suffer from severe
distortion.

Note that in the proposed method, in the last step,
we use (9) to reconstruct the image from Ŝ (see Fig. 2). Here,
instead of using (9) in the proposed mechanism, we recon-
struct the images from Ŝ by using matched filtering technique
and GSAFT. The related results are shown in Fig. 18. As can
be seen, employing the matched filtering technique (which
is based on FT) in the proposed mechanism provides a more
acceptable image of the scene than employing GSAFT, which
is not based on FT. Figs. 18(a) and 18(b) may be compared
to Figs. 17(i) and 17(j), respectively. It is observed that the
images reconstructed by (9) have a better quality than those
reconstructed by employing the matched filtering technique.
The reason for this is that the matched filtering technique,
despite its more straightforward implementation, has limita-
tions in terms of resolution [49].

For a case like Setup 2, where a 1D array is combined with
a mechanical scanning, it is ideal for the sparse scenario to
skip some scanning steps (lines) randomly (as in experiments
we did the above for Setup 2). This reduces data acquisition
time and completes mechanical scanning faster. However,
here we consider another scenario and that instead of skipping
some scanning steps, we randomly turn off some SPA ele-
ments in each step (see Fig. 19). As can be seen, compared to
Figs. 17(i) and 17(j), a slight quality improvement is observed
in the reconstructed images. Note that this comparison is
made with similar compressive sensing rates. The reason for
this relative improvement is that in the latter scenario, the data
is sparser, which is more desirable for CS.

VI. CONCLUSION
In this paper, a CS-based method compatible with Fourier-
based techniques for NF mm-wave imaging was presented in
a practical MIMO scenario. To reduce the error due to the
multistatic array topology in the NF, we used a multistatic-
to-monostatic conversion. By using both numerical and elec-
tromagnetic data, we showed in various experiments that
we were able to successfully reconstruct the scene images,
despite the non-observance of the Nyquist condition (which
is a prerequisite for most Fourier-based methods). Employing
the proposedmethod can reduce the complexity of data acqui-
sition in imaging applications. This advantage is particularly
important at THz frequencies where conventional Nyquist
sampling of the aperture can require an excessive amount of
sampling points. Moreover, the capability of the developed
Fourier-based reconstruction technique to work with non-
uniformly sampled data introduces an additional degree of
freedom in designing sparse apertures for imaging at THz
frequencies.
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