
*Corresponding author. E-mail: valerie.livina@npl.co.uk

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Journal of Civil Engineering and Management
ISSN 1392-3730 / eISSN 1822-3605

2022 Volume 28 Issue 5: 408–421

https://doi.org/10.3846/jcem.2022.16012

Copyright © 2022 The Author(s). Published by Vilnius Gediminas Technical University

MACHINE LEARNING FOR TEXT CLASSIFICATION
IN BUILDING MANAGEMENT SYSTEMS

Jose Joaquin MESA-JIMÉNEZ 1, 2, Lee STOKES3,
QingPing YANG 1, Valerie N. LIVINA 2*

1Brunel University London, Kingston Lane, Uxbridge, UK
2National Physical Laboratory, Hampton Road, Teddington, UK

3Mace Group Ltd, London, UK

Received 28 June 2021; accepted 22 October 2021

Abstract. In building management systems (BMS), a medium building may have between 200 and 1000 sensor points.
Their labels need to be translated into a naming standard so they can be automatically recognised by the BMS platform.
The current industrial practices often manually translate these points into labels (this is known as the tagging process),
which takes around 8 hours for every 100 points. We introduce an AI-based multi-stage text classification that translates
BMS points into formatted BMS labels. After comparing five different techniques for text classification (logistic regression,
random forests, XGBoost, multinomial Naive Bayes and linear support vector classification), we demonstrate that XGBoost
is the top performer with 90.29% of true positives, and use the prediction confidence to filter out false positives. This ap-
proach can be applied in sensors networks in various applications, where manual free-text data pre-processing remains
cumbersome.

Keywords: free-text classification, building management systems, Haystack data standard, sensor tagging.

Nomenclature

BMS – Building Management Systems;
CNN – Convolutional Neural Network;

EM – Expectation Maximisation;
HSLE – Hierarchical Label Set Expansion;

HVAC – Heating Ventilation and Air Conditioning;
ID3 – Iterative Dichotomiser 3;

MaxEnt – Maximum-Entropy Classication;
MLE – Maximum Likelihood Estimation;

NB – Naive Bayes;
NLP – Natural Language Processing;

PR-curve – Precision-Recall curve;
SVM – Support Vector Machine;

TF-IDF – Term Frequency-Inverse Document Frequency;
TSVM – Transductive Support Vector Machine;
XMTC – Extreme Multi-label Text Classication.

Introduction

When working with building management systems, there
are two main problems to face. First, each BMS manu-
facturer has proprietary data structures and architecture.

Second, there is no standard for the naming conven-
tions that would be automatically applied to the sensors
or equipment within these structures. Translating build-
ing sensor points into a naming standard is a very time-
consuming task that requires highly skilled engineering
knowledge. This should be done using each items name in
the BMS (points) into the clean structured format (labels).
The necessity of this manual step in the process is slow-
ing the proliferation of IoT integration with existing BMS
and causing large costs to companies during the BMS roll
out. The purpose of this paper is to apply several machine
learning methods for text classification in the context of
Building Management Systems (BMSs). The mobilisation
of a site implies the translation of all the different elements
that are used in analysis platforms with the purposes of
detecting failures of internal systems (heating, cooling),
along with controlling areas of major electricity consump-
tion and potential savings.

Most medium-to-large buildings have installed BMS
which can provide valuable data to any IoT implementa-
tion. This data includes the operational states of existing

mailto:valerie.livina@npl.co.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/jcem.2022.16012
https://orcid.org/0000-0003-0822-2700
https://orcid.org/0000-0002-2557-8752
https://orcid.org/0000-0003-3759-9013

Journal of Civil Engineering and Management, 2022, 28(5): 408–421 409

equipment in the building and occupancy comfort pa-
rameters for the installed sensors. In the context of BMS
point tagging, we need to engage the machine learning
techniques for text classification. Automatic text classifi-
cation is usually done by extracting features from the text
document. In this text classification problem, in the first
stage the classes are different tags, which are pre-defined.
The problem further departs from pre-defined classes and
becomes consisting of several stages, in each of which the
predicted classes are used for the next stage; thus, this
becomes a semi-supervised machine learning problem.
In this work we follow a generic strategy for text classi-
fication as defined in Dalal and Zaveri (2011), which has
the following steps: training set of text documents, pre-
processing, feature extraction, machine learning model
selection, train classifier and test classifier.

1. Background

1.1. Text classification methodologies

Bayesian methodology is widely applied in text clas-
sification. Models for Naive Bayes (NB) text classifica-
tion are compared in Singh et al. (2019), and finds that
multi-variate Bernoulli model performs well with small
vocabulary sizes, while the multinomial model performs
better at larger vocabulary sizes. Similarly, Liu et al. (2002)
combines the Expectation Maximisation (EM) algorithm
with the NB classification method using only partial in-
formation, one class of labeled documents and a set of
mixed documents, showing extremely accurate results
under certain class restrictions. In research by Chai et al.
(2002), Bayesian online perceptron and Gaussian process-
es have been implemented and tested, showing that their
performance is comparable to that of Support Vector Ma-
chines (SVMs). Parallel naive Bayes algorithm is used by
Liu et al. (2019) for large-scale Chinese text classification.
More recent examples for this algorithm for text classifica-
tion can be seen, for example in Venkatesh Ranjitha and
Venkatesh Prasad (2020), where Naive Bayes is used for
text classification, which lead to an advantage in terms of
characteristic dialect processing. Another recent work can
be found in Le et al. (2019), where this technique is also
combined with sentiment lexicon. The effectiveness of this
technique is further enhanced with the use of a dictionary
as an input source and a document preparation process
which improves the accuracy to 98.2%.

Decision trees also play an important role in text clas-
sification. In research by Hasanli and Rustamov (2019)
decision trees are applied to text categorisation and clas-
sification. Random forest is an ensemble learning version
of decision trees, as it constructs a multitude of decision

trees at training time and outputs the class that is made of
the classes. In terms of performance, Ali et al. (2012) show
that the random forest gives better results than decision
trees for the same number of attributes in large medical
datasets. With respect to text classification, Akinyelu and
Adewumi (2014) use random forests for content-based
phishing detection, which yields a very high classification
accuracy. Similarly, Xu et al. (2012) present an improved
random forest algorithm by simultaneously employing
a new feature weighting method and the tree selection
methods to categorise text documents. As a result, the
algorithm can effectively reduce the upper bound of the
generalisation error and improve classification perfor-
mance.

SVMs are very popular for text classification. As an ex-
ample, Joachims (1998, 2001) shows that SVMs are appro-
priate for this task, and it outperforms other algorithms.
Also, Tong and Koller (2001) introduce an algorithm for
performing active learning with SVMs, i.e., an algorithm
for choosing which instances of data to request next for
the training stage. In a comparative study, Alsaleem (2011)
shows that SVMs outperforms NB. In Sun et al. (2009), a
comparative study on the strategies addressing imbalanced
text classification using SVM classifiers is described. They
evaluated 10 methods on 3 benchmark datasets using area
under the PR-curve as the performance metric, finding
that the standard SVM learnt the best decision surface in
most test cases. In more recent studies on SVM for text
classification, Gopi et al. (2020) classify tweets data based
on polarity using improved RBF kernel on SVM, which
outperforms other SVM-RBF classifier and models. User
comments are classified using Word2Vec embedding and
SVM classifier in Kurnia et al. (2020). They classify com-
ments from social media about mobile networks applica-
tions, achieving a 79.5% accuracy. Another recent method-
ology on SVM for text classification can be seen in Zhang
et al. (2019), where text is represented mathematically by
vector space model, and the classifier is trained to classify
the text based on the principle of SVM. The framework
of the SVM for this classification system can be seen in
Figure 1. Another interesting work by Wang et al. (2019)
combines Char Convolutional Neural Networks with
SVM, to obtain the emotional tendencies of users reviews.
In research by Chatterjee et al. (2019) multi-class classi-
fication is performed using SVM and one-vs-rest, which
divides a multi-class classification problem into one binary
classification per class. On top of that, this is enhanced by
using multi-threading and CUDA.

Logistic regression also provides good results in text
classification. The study of Genkin et al. (2007) uses lasso
logistic regression, which provides state-of-the-art text

 Figure 1. Framework of SVM Chinese text classification system by Zhang et al. (2019)

410 J. J. Mesa-Jiménez et al. Machine learning for text classification in building management systems

categorisation while producing sparse and thus efficient
models. In the same way, Ifrim et al. (2008) present a co-
ordinate-wise gradient ascent technique for learning logis-
tic regression in the space of all n-gram sequences (con-
tiguous sequence of n items from a given sample of text
or speech) in the training data. They use several datasets,
interestingly including a Chinese language dataset among
them. A modified logistic regression for positive and un-
labeled learning is applied by Jaskie et al. (2019), who in-
troduce a new modified logistic regression with a variable
upper bound that provides a better theoretical solution
for the proposed problem. A comparison between Bayes
classification and logistic regression is studied in tweets
categorisation in Prabhat and Khullar (2017), showing af-
ter training that logistic regression gives a 10.1% more ac-
curate and 4.34% more precise than the Bayes algorithm.
Logistic regression and its variations are popular for sen-
timent analysis, as can be seen in recent studies such as
Ramadhan et al. (2017), which studies tweets sentiment
analysis by extracting the features first, then transform-
ing the list of features into binary form and transformed
again used Tf-idf method before being classified using
logistic regression. This is very relevant for our work, as
tweets have a character limitation, so this would prove
that logistic regression is suitable for classification using
text that is shorter than usual. Following a similar line of
work, Rane and Kumar (2018) compare several method-
ologies, including logistic regression, SVM, Naive Bayes,
AdaBoost, among others, for sentiment classification of
Tweeter data for an US airline service analysis. Results
show that logistic regression shows a good score with a
F-measure of 81.9%, but it is outperformed by random
forests in the first place, with an 86.5% F- measure. This
creates a solid base for the BMS text classification case ex-
plored in this Thesis, as several of these methods are used
in this work for short text classification. Also, for another
work of tweet sentiment analysis, Hasanli and Rustamov
(2019) compared logistic regression, Naive Bayes and
SVM to detect sentiment polarity. Logistic regression and
SVM show a better performance if bag-of-words is used
for the pre-processing, and Naive Bayes performs better
if term frequency - inverse document frequency is used.

Deep learning has been increasingly gaining popular-
ity and the literature provides examples of using some of
these methods for text classification as well. An example
of this is Liu et al. (2017), which presents the first attempt
at applying deep learning to extreme multi-label text clas-
sification (XMTC), with a family of new Convolutional
Neural Network (CNN) models which are tailored for
multi-label classification. Several large-scale datasets are
constructed in Zhang et al. (2015) to show that charac-
ter-level convolutional networks could achieve state-of-
the-art or competitive results for text classification. Lai
et al. (2015) introduce a recurrent convolutional neural
network for text classification without human-designed
features, showing that the proposed method outperforms
the state-of-the-art methods on several datasets, particu-

larly on document-level datasets. More recent works on
text classification can be seen for example in Elnagar et al.
(2020). Here, the authors perform Arabic text classifica-
tion using deep learning models. Results show that atten-
tion-Gated Recurrent Units (GRUs) achieves a top perfor-
mance of 96.94% by using the dataset NADiA, which is
the largest dataset of Arabic documents. Another example
is given by Yao et al. (2019), where a novel text classifica-
tion method termed text graph convolutional networks is
used with the purpose of text classification. Results of this
work shows that this promising methodology outperforms
other state-of-the-art deep NNs such as CNN, LSTM and
others that are not NNs, such as logistic regression. The
algorithms are run in various datasets, such as news or
movie reviews, with a large corpus. Also, Gargiulo et al.
(2019) use DNNs for hierarchical extreme multi-label
text classification. They describe a methodology named
Hierarchical Label Set Expansion (HLSE) used to regular-
ize the data labels, evaluating the methodologies on the
PubMed scientific articles collection, proving the useful-
ness of the proposed HLSE methodology. The graphical
representation of the DNN model used for this work is
shown in Figure 2. Deep learning methodologies proved
unmistakably useful for text classification and they should
be considered, as the literature suggests, for large corpus
text where a lot of features need to be processed to per-
form the classification. For the purpose of this problem,
whose length of the text is the real challenge (11 words
maximum per label), DNNs are not considered. Although
they can be considered for further research.

 There is a growing number of interesting publications
in the field of text classification: Onan et al. (2016) pre-
sented a multiobjective weighted voting ensemble classi-
fier, which is based on a differential evolution algorithm
for text sentiment classification, and it proved to be better
than conventional ensemble learning methods. In study
by Onan and Korukolu (2017), a feature selection model
is presented based on genetic rank aggregation for text
sentiment classification. In another work related to senti-
ment classification, Onan (2020) studies sentiment analy-
sis based on weighted word embeddings and DNNs. Other
related works in Natural Language Processing (NLP) for
sentiment classification can be found in Onan (2021), To-
coglu and Onan (2020), including sarcasm identification
in Onan (2019), Onan and Tocoglu (2021) and satire iden-
tification in Onan and Tocoglu (2020).

Ensemble methods are also interesting in text clssifica-
tion, as they allow multiple learning algorithms to be used
to obtain a better predictive performance. Onan (2018)
includes an ensemble scheme based on language function
analysis and feature engineering for text genre classifica-
tion. Similarly, Onan (2017) uses a hybrid ensemble prun-
ing approach based on consensus clustering and multi-ob-
jective evolutionary algorithm for sentiment classification.

As this is a multi-stage text classification problem, it is
worth comparing it with similar works such as Montieri
et al. (2019), which is related to the goal of this paper.

Journal of Civil Engineering and Management, 2022, 28(5): 408–421 411

They use a hierarchical approach for traffic classification
in the deep web. This paper first uses the flat approach in
a first experiment to determine what the best performing
algorithm is, and the best performing approach is then
used in the multi-stage text classification problem, from
the simplest to the most complex categories. On each clas-
sification level, they use several classification algorithms to
select the best performing one for the next level. The final
result proves that the hierarchical approach is better than
the flat approach.

A summary comparing the methodologies considered
during the literature review for text classification are pre-
sented in Table 1.

 1.2. Text processing and categorisation

In recent years, there has been a lot of progress in natural
language modelling and representation. NLP is of major
interest in research as it represents the core business of In-
ternet companies today. Language modelling is defined in
Goodman (2001) as the art of determining the probability
of a sequence of words and introduces the N-grams, which
computes the probability of a word sequence, but if it only
depends on the N previous words. Assuming that similar
words appear in similar contexts, Brown et al. (1992) used
counts of classes, which leads to generalisation, therefore
better performance on novel data. Bag-of-words model is

one of the most popular representation methods, whose
statistical framework is explained in Zhang et al. (2010).
It consists of the sum of one-hot codes, ignoring the order
of the words, but it can be extended to bag-of-Ngrams to
capture local ordering of words. Term Frequency-Inverse
Document Frequency (TF-IDF) is another common tech-
nique that evaluates how important a word is to a docu-
ment in a collection of corpus proportionally to the num-
ber of times it appears in the document.

In a more advanced version of text modeling there
are word vectors, also known as embedding. Each word
is represented by a real valued vector in N-dimensional
space (usually N = 50 – 1000). These representations man-
age to capture many degrees of textual similarity. In paper
by Mikolov et al. (2013a) it is shown that word vectors
capture many linguistic properties (gender, tense, plural-
ity, even semantic concepts). Following the line of work,
Mikolov et al. (2013b) present two novel architectures for
computing continuous vector representations of words,
and they measure the quality of these representations in
a word similarity task. This work introduces Word2Vec,
which uses a NN model to learn associations from a large
corpus of text. The representation of this architecture is
shown in Figure 3. In this representation, the CBOW ar-
chitecture predicts the current word based on the context,
and the Skip-gram predicts surrounding words given the
current word. In Mikolov et al. (2013c), the previously

 Figure 2. Graphical representation of the DNN models used by Gargiulo et al. (2019)

412 J. J. Mesa-Jiménez et al. Machine learning for text classification in building management systems

mentioned similarities are explored in languages for
translation, reaching above 90% accuracy for the most
confident translations. Although for the purpose of this
problem such a deep language representation is not need-
ed, this progress in NLP may be useful for future BMS
automatic tagging improvements. In a more recent study
Miaschi and Della-Orletta (2020) studied the linguistic
knowledge implicitly encoded in the internal representa-
tions of BERT, a contextual language model (Devlin et al.,
2019), in comparison to a contextual-independent one
(Word2Vec). The findings reveal that contextual-indepen-
dent model, the sum works best for obtaining sentence
representations and for the contextual-dependent one, the
mean works best.

 In this paper, we perform text classification to cre-
ate a system that tags BMS sensor data automatically. We
compare several methods for text classification, by fol-
lowing the generic strategy of Dalal and Zaveri (2011) for
solving these types of problems. We apply a bag-of-words
model for feature extraction prior to the classification. The

paper is organised as follows. In Section 2, we describe
the problem background and the goals in more detail. In
Section 3, we introduce the methods to be used for text
classification. In Section 4 all the methods are compared,
showing the accuracy per tag type, followed by a second
experiment with the complete tagging system. Limitations
and further work are provided in Section 5.

2. Problem description

The existing infrastructure uses different naming conven-
tions for sensors and equipment of buildings using labels
that are given at the moment of the installation for brief
description of the component’s type, location, parent-rela-
tionship, etc. (for example, Boiler 1 Temp Sensor describes
a sensor that measures the temperature of the water in
boiler number 1). The BMS data used in this paper was
provided by a private company and cannot be disclosed in
full (i.e., specific location, buildings, etc.) due to permis-
sions restrictions.

Table 1. Summary of considered text classification methodologies

Methods Description Characteristics
Logistic regression Models the probability of a certain class or event

existing such as pass/fail
 – Easy implementation
 – Quick to run
 – Easily to extend to multiple classes
 – Works better with simple datasets

Random forests Ensemble learning method for classification, regression
and other tasks that operates by constructing a
multitude of decision trees at training time

 – Good handling missing data
 – No overfitting
 – Random subset of features when node split

XGBoost Boosted tree implementation – Trees penalization
 – Automatic feature selection
 – Trees boosting
 – It works well in datasets of all sizes

Multinomial NB It implements the naive Bayes algorithm for
multinomially distributed data, and is one of the two
classic naive Bayes variants used in text classification

 – Suitable for classification with discrete number of
features

 – Widely used in text classification
Linear SVC It creates the classification boundary by returning a

“best fit” hyperplane that separates the features
 – Quick to run
 – Scales well with increasing number of features
 – Just one hyperparameter to tune

Figure 3. Model representation for vector representation by Mikolov et al. (2013b)

Input Projection Output

w(t – 2)

Sum
w(t – 1)

w(t + 1)

w(t + 2)

w(t)

CBOW

Input Projection Output

w(t – 2)

w(t – 1)

w(t + 1)

w(t + 2)

w(t)

Skip-gram

Journal of Civil Engineering and Management, 2022, 28(5): 408–421 413

There are several problems related to this descriptive
naming system:

 – There exists no naming standard. This complicates
tagging when mobilising several buildings to the
same analytics platform. Most of these analytics use
naming conventions to create general rules that apply
to all buildings.

 – Some tags are incomplete. The labels are created to
give a short description. This means that some words
would appear shortened. Such as Temp instead of
Temperature or Grnd flr instead of Ground floor.

 – Duplicates. If the building is big enough, with a lot
of equipment and assets, there can be duplicates in
labels. This is due, for example, to upgrades of the
equipment that may occur when renewing older sys-
tems, or if new areas are built.

The aim of this part of the paper is to automatically
create tags, defined by the Haystack specification, based
on the information provided from BMS data. A tag is a
name/value pair applied to an entity (sites, equipment,
sensor points, etc.) following the Haystack standard (Hay-
stack), which is an open source initiative that standardises
semantic data models with the goal of making easier to
extract value from the data. Their applications include au-
tomation, control, energy, lighting, HVAC and other en-
vironmental applications (Haystack Project, 2019). A tag
defines a property or attribute of an entity. Some elements
are already tagged by default, whereas others need to be
tagged according to some data criteria.

There are three main groups of tags on which to clas-
sify every label: Point tags, Service type and Equip tags.
These are the descriptions of every main category accord-
ing to Haystack, from lowest to highest level of con cision:

 – Service type: Used to classify the labels into eight
main categories, namely cooling, heating, lighting,
ventilation, metering, monitoring, terminals and
globals.

 – Equip tags: Refers to equipment type. Equipment
is often a physical asset such as an AHU, boiler or
chiller. These tags can also refer a logical grouping
such as a chiller plant. There are a total of 26 equip
tags including category ‘0’, when a point does not be-
long to any of them. Each label must belong to one
of them at least. There are never more than two cat-
egories assigned to it.

 – Point tags: It refers to a lower level abstraction of
the labels. There are 36 main types of Point tags in
the dataset and they represent the most complex clas-
sification part, as there can be many tags refering to
one label and even its manual assignation is difficult.

To perform the classification in the above categories,
we divide the process in two experiments: first we consid-
er only the category of tags with the highest level of con-
cision (Point Tags) with the five classification methodolo-
gies to obtain the top- performer technique. Subsequently,
we use such technique for multi-stage classification using

all groups of tags in series thus, using the output of the
prior classification as an input for the next one, so we add
an extra feature at every stage.

2.1. Tagging experiment 1 description:
Point Tags classification

In the first part of the paper we focus on the multi-label
classification problem concerning the tags with the high-
est level of concision: point tags. The reason why the first
classification problem should focus on the highest level
categories (point tags) is that this will reduce the complex-
ity of the problem by dividing it into several classification
stages. Subsequently, after the dataset has been classified
within the point tags categories, a second experiment is
carried out that includes the rest of the main categories
with the most successful technique to provide a complete
solution of the tagging problem, as well as an overall ac-
curacy result.

The data has been extracted from different versions of
the same BMS controller type (Trend). The raw data is
used for the purpose of training/testing the algorithms.
An example of the extracted data is shown in Table 2.

The tags that we aim to assign to each row of data are
defined by the Haystack specification (Haystack), and they
are separated into several categories for different purposes.
Some of the examples of these categories are shown in
Table 3.

All points are classified as sensors, commands, or set-
points, apart from other possible assigned categories, us-
ing one of the following three tags:

 – sensor: input, analogical/digital input, sensor
 – cmd: output, analogical/digital output, actuator,
command

 – sp: setpoint, internal control variable, schedule.

Table 2. Extraction of BMS raw data

Label Type Outstation Module Units Interval
IL4-6
Damper Boolean 15 D11(Sv) None 300

AHU2 Low
Temp Hold
Off SP

Numeric 12 K1(V) °C 3600

Extact Fan28
Override Boolean 15 W3(S) None 3600

AHU
Heating Coil Numeric 17 D2(Sv) None 300

. . .

Table 3. Example of tagged data (other categories have been
removed from the table for simplicity)

Label Point tags
AHU1 Dampers sensor, damper, recirc
AHU1 Frost Stat sensor, valve, frost
AHU1 Max Supply Temp sp, temp, air, discharge, oneA
UPS Rm Fire Sys Fault sensor, alarm

.

414 J. J. Mesa-Jiménez et al. Machine learning for text classification in building management systems

2.2. Tagging experiment 2 description:
Complete tagging problem evaluation

For this part, all three categories are used to define the en-
tire problem: Service type, equip tags and point tags. The
three compound three separated problems, whose output
is connected to the next. Because of this, the problem is
solved with an increased level of complexity.

An example of data classification can be seen in Table 4.
This would constitute a complete formulation of the tag-
ging problem as it is constructed in the BMS trend system.
For this part, a different result is obtained for point tags as
this is a concatenation of separated problems. This work
uses BMS controller data, according to the real system
used at the Mitie company (U.K.). The dataset available
has data from 37 buildings, from which 36 (40472 points)
have been using for training and the largest building (1875
points) has been used for testing.

3. Methodology

This section describes the classification algorithms we
used and how the data has been pre-processed. First, we
pre-process the data and concatenate sparse matrices be-
fore the two-step model classification. The high level over-
view of the process is shown in Figure 4.

One of the biggest challenges in BMS data pre-process-
ing is that the default names of the sensors (text labels) are
introduced manually, therefore we can find many typos,
acronyms, groups of words written together separated by
upper case, etc. The text label is first separated by upper
case letters, taking into consideration those which con-

tain acronyms. Then these are converted to lower case.
Next, we apply stemming, which is the process of reducing
words to their stem. This refers to the roots of the words
known as lemma. With this, the classification algorithm
is more likely to capture similarities. Then, we categorised
the result with bi-grams (groups of two words) bag of
words.

Lan and outstation fields can be found together, so we
separate them before categorisation. Same with controller
reference, such fields contain sensor type information (I/O
such as switches, temperature sensors, etc.) and data type
(static, variable, etc.).

After that, all the fields with their respective vector
representations, are concatenated in a matrix (a matrix in
which most elements are zeros), whose rows serve as in-
puts for the first step. The first step aims to predict only sp,
cmd or sensor, as all labels always belong to one of these
three categories. Second step aims to predict the rest of
the labels, by using the first step prediction, so an extra
bit of information (plus the input data) is added for better
accuracy.

3.1. Classification methodologies

For classification, we are dealing with multi-class and mul-
ti-label problems. There are several methods that we are
comparing for the purpose of this work: logistic regres-
sion, decision trees, random forests, multinomial Naive
Bayes and SVM. Considering that the text we aim to clas-
sify has the peculiarity of being very short (i.e., maximum
11 words per input), we study which methodology works
better in this case.

Table 4. Example of tagging problem with all categories

Label Service type Equip tags Point tags
CHW Pump 1 Enable East
VT Valve
HWS TEMP SETPOINT
Space cooling setpoint

. . .

Cooling Heating
Heating Terminals

. . .

cooling pump vtHeating
boiler
fcu

. . .

sensor, run cmd, heat
sp, leaving, temp, water
sp, air, cool, temp, zone

. . .

Figure 4. BMS label classification process for pre-processing data and predicting categories

Journal of Civil Engineering and Management, 2022, 28(5): 408–421 415

From the different methodologies explored in the lit-
erature review for the text classification part, the ones ex-
plored in this Thesis are the ones whose applications are
similar to the problem defined here. The text explored in
this work for BMS application has a maximum length of
11 words, therefore past applications to short text classifi-
cation with a high accuracy have been explored.

Other applications for short-text classification, such
as the diverse tweets classifiers, utilised random forests,
xgboost, logistic regression, Naive Bayes and SVM among
others. These classifiers proved to deliver good accuracy
for these particular problems. Therefore the methodolo-
gies explained in this section are the ones that are used to
obtain the results, due to the length of the text used here.

All methods have been implemented in Python v3.7,
and the library used to reproduce the algorithms has been
sci-kit learn (Sci-Kit).

3.1.1. Logistic regression classification
Logistic regression, is known in the literature as logit re-
gression, maximum-entropy classification (MaxEnt) or the
log-linear classifier. Despite its name, this linear model
works as a classifier more than as a regressor. The logistic
function is a monotonic function defined between 0 and 1:

() () ()
0

, 0,1 ,
1 k x x

Lf x f x
e− −

= ∈
+

 (1)

where x0 is the value of the sigmoid’s midpoint, L is the
saturation point of the curve and k the logistic growth rate
or steepness of the curve. The objective function of the
logistic regression maximizes the likelihood function. The
Maximum Likelihood Estimation (MLE) can be written
as follows:

()1

1

arg max : log (|) (1 (|)) ,ii

n
yy

i i i i
i

P y x P y x −
b

=

−∏ (2)

where yi is the output between 0 and 1, (|)i iP y x the pos-
terior probability which is equal to ()1/ 1 fe−+ , and b is
the vector of weights/coefficients.

3.1.2. Decision trees
Decision trees build classification (or regression) mod-
els in the form of a tree structure. They break the dataset
down into increasingly smaller subsets while the decision
tree is incrementally developed. The resulting decision
tree has decision nodes and leaf nodes (Figure 5).

 The core algorithm for building decision trees is the
Iterative Dichotomiser 3 (ID3), developed by Quinlan
1986). The algorithm begins with the original set, iterates
on every unused attribute of the set S and calculates the
entropy ()H S , defined as () () ()2log

x X
H S p x p x

∈
= −∑

,
where S is the current dataset, X the set of classes in S and
()p x the proportion of the number of elements in class x

with respect to the number of elements in set S.

3.1.3. Random forests
Random forests or random decision forests, from Baran-
diaran (1998), are an ensemble learning method for clas-
sification, among others, that constructs a finite number
of decision trees at training time, increasing the number of
results for a better output. This ensemble method should,
by definition, provide better, although sometimes very
similar, results.

After training, predictions for unobserved samples x′
can be made by averaging the predictions from all the in-
dividual regression trees on x′, ()

1
ˆ B

bb
f f x

=
= ′∑ . In the

case of classification trees, the alternative option is per-
formed by taking the majority vote, also known as voting
algorithm.

3.1.4. XGBoost
XGBoost is developed by Chen and Guestrin (2016). The
methodology creates a scalable end-to-end tree boosting
system and introduce a sparsity-aware algorithm for par-
allel tree learning. It uses a gradient boosting framework.

 Figure 5. Generic example of decision table and decision tree

416 J. J. Mesa-Jiménez et al. Machine learning for text classification in building management systems

Generally, XGBoost is fast when compared to other im-
plementations of gradient boosting. The summary of the
main features is listed below:
− Regularisation: It penalises more complex models

through LASSO and Ridge regularisation to prevent
overfitting.

− Sparsity awareness: It automatically captures missing
values depending on training loss and handles differ-
ent types of sparsity patterns more efficiently.

− Cross-validation: The algorithm comes with built-
in cross-validation method at each iteration, thus
excluding the need to hard-code this search and to
specify the number of iterations required.

− Parallelisation: It uses parallelised implementation.
This is possible due to the interchangeable nature of
the different loops, building many different trees in
parallel. This feature allows many users to run state-
of-the-art algorithm without requiring a very power-
ful computer.

3.1.5. Multinomial Naive Bayes
Multinomial Naive Bayes (Maron, 1961) is a specialized
version of Naive Bayes that is widely used in text analysis.
Whereas simple NB would model presence and absence
of particular words, multinomial naive Bayes explicitly
models the word counts and adjusts the underlying cal-
culations, as explained in McCallum and Nigam (1998),
combining probability distribution of Pr with fraction of
documents belonging to each class for each class j and
word i, at a word frequency of fi:

()
1

(|) ,i

V
f

j
i

Pr j Pr i j
=

∝ π ∏ (3)

where

1

class

class

j
N

n

j

n=

π =

∑
 is the fraction of documents or

labels on each class, and |V| the feature space. We use the
sum of logs and to smooth the probability going increas-
ingly up when a word re-appears several times, we take
the log frequency:

() () ()
1

log log 1 log((|)).
V

j i
i

Pr j f Pr i j
=

= π + +∑ (4)

3.1.6. Support vector machines classification
SVMs are discriminative classifiers originally defined by
Vapnik and Lerner (1963), based on a separating hyper-
plane. In other words, given labelled training data (super-
vised learning), the algorithm outputs an optimal hyper-
plane which categorizes new examples. In a two-dimen-
sional space, this hyperplane is a line dividing a plane into
two parts, and each class lays on each side.

Let us consider the case of two classes. Given a train-
ing dataset of n points of the form () ()1 1, ... ,n nx y x y

,
where yi has the value of either 1 or –1, indicating the class
to which ix

 belongs. The goal is to find the “maximum-
margin hyperplane” that divides the group of points of

both classes. Any hyperplane can be written as the set of
points x

 that satisfies:

0,w x b⋅ − =

 (5)

where w

 is the normal vector to the hyperplane, and
b
w

 determines the offset of the hyperplane from the ori-

gin along the normal vector. For the hard-margin case, the
minimisation problem to solve is:

 ()minimise subject to: 1 for 1,..., .i iw y w x b i n⋅ − ≥ =

(6)

In the soft-margin case, the function we wish to mi-
nimise is:

()() 2

1

1 max 0.1 ,
n

i i
i

y w x b w
n

=

 − ⋅ − + l

∑

 (7)

where the parameter l determines the trade-off between
increasing the margin size and ensuring that each point
belongs to the correct side of the margin.

The way of transforming SVM to create a non-linear
classifier is by means of the kernel trick, a method of us-
ing a linear classifier to solve a non-linear problem. Boser
et al. (1992) suggested a way to create non linear classi-
fiers by applying the kernel trick to maximum margin
hyperplanes. The resulting algorithm is similar, except
that every dot-product is replaced by a nonlinear kernel
function. This allows the algorithm to fit the maximum-
margin hyperplane in a transformed feature space.

Rane and Kumar (2018) compare some of these meth-
odologies for sentiment analysis. The comparison of the
different methodologies for this particular work can be
seen in Table 5.

Table 5. Accuracy of classifier for tweets sentiment analysis
by Rane and Kumar (2018)

Classifier Precision Recall F- Measure
Decision Tree 63% 64.6% 64.5%
Random Forest 85.6% 86.5% 86.5%
SVM 81.2% 84.4% 84.8%
Gaussian Naïve Bayes 64.2% 64.7% 64.6%
AdaBoost 84.5% 83.5% 86.5%
Logistic Regression 81% 81.6% 81.9%
KNN 59% 59.2% 59.3%

 4. Experiments

In this section we describe both experiments. First, we
perform only Point Tags classification with five different
methodologies to obtain the top-performing one. In the
second experiment, such methodology is used for multi-
stage text classification. This means that the output ob-
tained in the previous classification stage is used as an in-
put for the next, so an extra feature is added at every stage.

Journal of Civil Engineering and Management, 2022, 28(5): 408–421 417

4.1. Tagging experiment 1: Point Tags classification

The results of the experiments have been presented in two
tables. Table 6 presents the train and test accuracy for the
first and second classification steps. The algorithm counts
an element as correctly tagged when we obtain 100% true
positives and 100% true negatives per label. Table 7 pre-
sents the individual accuracy per tag type for a sample of
the eight first tags and per method used.

 Results in Table 6 show that for the experiments per-
formed with our data, XGBoost algorithm provides the
best result for test accuracy, closely followed by logistic
regression and linear SVC. The best accuracy achieved at
the second step, however, are by logistic regression, fol-
lowed by XGBoost and linear SVC.

Results per tag type in Table 7 show that the accuracy
per tag type varies with every different method. In fact,
we can observe that every method outperforms on at least
one predicted tag. Table 8 shows the runtimes for each of
the steps.

One can see that linear SVC is the fastest, followed by
logistic regression and XGBoost. The choice of the clas-
sification algorithm stays the same, as the runtime of less
than a minute is considered good if the runtime/accuracy
tradeoff is acceptable.

Assessment of errors

 We aim to consider the class probability for each predic-
tion, which is the probability for each label of belonging to
a certain class, to calculate the confidence of the prediction
and to discard all the elements below a certain boundary.
Gneiting and Raftery (2007) provide summary measures
for the evaluation of probabilistic forecasts, by assigning a
numerical score based on the predictive distribution and
on the event or value that materializes. The probabilities
of our system do not seem to follow a clearly-defined dis-
tribution, as shown in the histogram in Figure 6.

 Table 6. Results of applying five techniques and their % of absolute and relative accuracy

LogReg RndForests XGBoost MultinomialNB LinearSVC
First Step

Train 99.80 99.99 99.78 98.75 99.78
Test 99.73 99.07 99.84 87.69 99.50

Second Step
Train 83.75 96.34 81.43 55.84 85.21
Test 89.01 87.14 88.68 58.24 87.64

Table 7. Results of applying five techniques to the individual tags, % of accuracy per tag type. Bold font denotes
the algorithm which produced the highest score for each tag type

Tag LogReg RndForests XGBoost MultinomialNB LinearSVC
air 98.68 98.24 97.52 98.85 97.91
alarm 99.18 98.90 98.68 96.04 99.07
chilled 99.89 99.94 100.0 88.52 99.84
co2 99.56 99.50 99.89 90.66 99.84
cool 99.89 100.0 99.89 98.74 100.0
damper 99.57 99.56 99.50 90.44 99.56
discharge 98.52 98.90 98.79 94.40 98.57
enable 100.0 100.0 100.0 95.99 100.0

Table 8. Train/Test runtime of the used methods

LogReg RndForests XGBoost MultinomialNB LinearSVC
First Step (milliseconds)

Train 941.28 8670.94 925.26 15.96 170.76
Test 6.00 742.35 45.88 8.98 4.99

Second Step (seconds)
Train 6.62 200.84 20.53 0.30 2.89
Test 0.12 10.98 0.80 0.18 0.12

418 J. J. Mesa-Jiménez et al. Machine learning for text classification in building management systems

Therefore, we decided to create a different metric to
assess and discard values based on the prediction confi-
dence. It consists on scaling each probability from 0 to
1, so that a probability around 0.5 results in a confidence
around 0. For each prediction probability, obtained as the
algorithm’s output, Pi, we define the confidence score, Ci,
calculated as shown in Eqn (8):

2 0.5 .i iC P= ⋅ − (8)

For simplicity, we take the all tags average confidence
per label. The aim of this is to filter the values by how
strong the choice of the algorithm is, therefore the value
of the confidence around the value 0.5 will be close to
zero, but a probability close to either 0 or 1 will result in
a confidence value close to 1. The resulting chart with all
the confidence values of the test set can be seen in Fig-
ure 7, in which a boundary of 0.85 has been set. The rea-
son for this boundary choice is by convenience: a higher
boundary value would result in a poorer accuracy, but also
in a lower percentage of false positives, whereas a lower
boundary value would result in a better accuracy but more
false positives.

 With the chosen boundary of 0.85, the results can be
found below in Table 9. Each dot of the cloud represents

a particular confidence score for that particular label. The
choice of the boundary is related with the strength of the
decisions. A lower boundary value implies a lower value
of true and false negatives, but a higher value of true and
false positives.

Table 9. Percentages of true/false positives/negatives with
respect to the total length of the test set, 1875 labels

Positive Negative
True 83.74% 3.95%
False 8.52% 3.79%

True positives are the labels that pass the boundary
and whose classification is correct, true negatives are the
ones that did not pass the filter because they are predict-
ed with low confidence, but the classification is incorrect,
false positives are the elements with an incorrect classifica-
tion but that are not detected because they are predicted
with high confidence and false negatives are the elements
whose prediction is correct but with low confidence over-
all. As shown in Table 8, 83.74% of the test set is correctly
put in the category of good predictions, whereas a 3.95%
of the test set is correctly identified as misclassified ele-
ments.

4.2. Tagging experiment 2: Complete
tagging problem evaluation

The complete text classification problem scheme has been
illustrated in Figure 8. XGBoost methodology has been
used in all prediction stages as conclusion from the previ-
ous experiment.

As can be seen here, the predictions start from the
same pre-processing as the prior experiment. Then the
first prediction considered has been for service type. As
the results obtained for both train and test sets are above
95%, we sub-divide the output into the eight service type
categories that serve individually as training inputs for the
following step. The reason for doing this is to improve the
chances of success for further category predictions. For
example, a predicted equip tag of boiler would come from
a heating service type for sure. Therefore, there is no need
of training the equip tag problem according to other ser-
vice categories. Then, every individual result is moved to
both stages of point tag predictions as it was done in the
previous experiment.

The results for every prediction stage can be seen be-
low in Table 10.

As can be seen in Table 10, the percentage of true posi-
tives descends as the complexity of the forecast increases.
Also, the number of false positives increases, as every
stage inherits the errors from the previous one.

In absolute terms, the final total accuracy of the out-
put is 90.29%. In comparison to the previous experiment,
it can be seen that the accuracy results on this one are
higher, this meaning that sub-dividing the problem into
the eight predicted service type categories is favourable
to the problem.

Figure 6. Prediction probabilities histogram of test set

Figure 7. Prediction confidence of test set calculated according
to Eqn (8). The dashed line represents the boundary,

currently set to 0.85

Journal of Civil Engineering and Management, 2022, 28(5): 408–421 419

5. Limitations and further work

The limitations of this work are related to feature extrac-
tion from the labels. The maximum length of each label is
11 words, with misspelt words in many occasions, there-
fore, to extract as much information as possible to per-
form classification into three categories has been the main
challenge. This said, many incoherences are found in the
training set, as the system relies on manually tagged data
for training. This means that some engineers many use
slightly different tags sometimes or simply that the infor-
mation contained within the label itself is just incomplete
and only compensated by personal experience, which lim-
its the system results.

For this work, only proprietary data structure from
Trend BMS controllers have been used. To further im-
prove this model we could use other BMS types (Samsung,
Tridium, etc.) as they use different fields and will probably
output different results. This may be potentially a factor
for a choice on which BMS to use in the future. Another
potential future work could consider multi-task learning
by using a multimodal deep learning architecture named
DISTILLER that would allow solving the three considered
problems (service, equip, tags) simultaneously (Gneiting
& Raftery, 2007).

Conclusions
This paper presents a two-stage text classification study in
the field of BMS. The results of the first stage show that
XGBoost performs better than the other four, but the oth-
ers make good candidates for this stage too, except maybe
for multinomial Naive Bayes, which shows slightly worse
results. The outperformer in the second stage classifica-

tion, the multi label problem, is logistic regression. The
top performers that follows are followed by XGBoost al-
gorithm and, again, the Naive Bayes method performs the
worst of the five. The accuracy per tag type shows that
certain algorithms may be better in predicting certain tags
than others. In the current paper, we have considered XG-
Boost and logistic regression to design the system, but the
aim for further work will be a combination of methods for
the second stage, using each method for doing only the
classifications they are the best at, to improve the general
accuracy of the whole implementation. Sub-dividing the
problem into several problems improves its accuracy for
the whole system as expected.

In terms of the model’s deployment, the assessment of
errors is very important. The main problem for this sys-
tem’s implementation is to locate false positive elements.
The false positives are the incorrectly tagged elements that
passed to the building analytics software. These elements
may be difficult to detect, especially for buildings with a
big number of points. Increasing the confidence bound-
ary to a higher level may help to solve this problem and
reduce false positives to a minimum. This also may reduce
the number of true positives, increasing the amount of
manual work.

The findings of this work open a new field of applica-
tion for text classification methodologies, aiming to a sci-
entific audience, which may explore the methodologies of
this paper further to generalise this field of application for
text processing and categorisation, or to industrial profes-
sionals who seek to implement this system to reduce oper-
ational tagging times from several days to a couple of min-
utes. Our research provides a novel multi-stage machine
learning solution for the real-world BMS problem, which
can be applied in several systems, or even re-trained with
new standards that could appear in the future.

Acknowledgements

We would like to thank the Department for Business, En-
ergy and Industrial Strategy of the United Kingdom and
the College of Engineering, Design and Physical Sciences
of Brunel University London for funding this research.

Table 10. Percentages of true/false positives/negatives
with respect to the total length of the test set

for all predictions, 1875 labels

Service type Equip tags Point tags

Positive Negative Positive Negative Positive Negative
True 93.85% 0.99% 92.37% 1.59% 90.29% 2.08%
False 1.09% 4.06% 4.96% 1.09% 5.45% 2.18%

Figure 8. BMS label classification for the whole process

420 J. J. Mesa-Jiménez et al. Machine learning for text classification in building management systems

References

Akinyelu, A. A., & Adewumi, A. O. (2014). Classification of
phishing email using random forest machine learning tech-
nique. Journal of Applied Mathematics, 2014, 425731.
https://doi.org/10.1155/2014/425731

Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random
forests and decision trees. International Journal of Computer
Science Issues, 9(5), 272–277.

Alsaleem, S. (2011). Automated Arabic text categorization us-
ing SVM and NB. International Arab Journal of e-Technology,
2(2), 124–128.

Barandiaran, I. (1998). The random subspace method for con-
structing decision forests. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 20(8), 832–844.
https://doi.org/10.1109/34.709601

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth An-
nual Workshop on Computational Learning Theory (pp. 144–
152). ACM. https://doi.org/10.1145/130385.130401

Brown, P., Desouza, P., Mercer, R., Della Pietra, V., & Lai, J.
(1992). Class-based n-gram models of natural language. Com-
putational Linguistics, 18(4), 467–479.

Chai, K., Chieu, H., & Ng, H. T. (2002). Bayesian online classi-
fiers for text classification and filtering. In SIGIR ‘02: Proceed-
ings of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (pp.
97–104). ACM. https://doi.org/10.1145/564376.564395

Chatterjee, S., George Jose, P., & Datta, D. (2019). Text classifi-
cation using SVM enhanced by multithreading and CUDA.
International Journal of Modern Education & Computer Sci-
ence, 11(1), 11–23. https://doi.org/10.5815/ijmecs.2019.01.02

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD Internation-
al Conference on Knowledge Discovery and Data Mining (pp.
785–794). ACM. https://doi.org/10.1145/2939672.2939785

Dalal, M., & Zaveri, M. (2011). Automatic text classification: a
technical review. International Journal of Computer Applica-
tions, 28(2), 37–40. https://doi.org/10.5120/3358-4633

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). Bert: Pre-
training of deep bidirectional transformers for language under-
standing. https://arxiv.org/abs/1810.04805

Elnagar, A., Al-Debsi, R., & Einea, O. (2020). Arabic text clas-
sification using deep learning models. Information Processing
& Management, 57(1), 102121.
https://doi.org/10.1016/j.ipm.2019.102121

Gargiulo, F., Silvestri, S., Ciampi, M., & De Pietro, G. (2019).
Deep neural network for hierarchical extreme multi-label text
classification. Applied Soft Computing, 79, 125–138.
https://doi.org/10.1016/j.asoc.2019.03.041

Genkin, A., Lewis, D., & Madigan, D. (2007). Large-scale Bayes-
ian logistic regression for text categorization. Technometrics,
49(3), 291–304. https://doi.org/10.1198/004017007000000245

Gneiting, T., & Raftery, A. (2007). Strictly proper scoring rules,
prediction, and estimation. Journal of the American Statistical
Association, 102, 359–378.
https://doi.org/10.1198/016214506000001437

Goodman, J. (2001). A bit of progress in language modeling.
Computer Speech & Language, 15(4), 403–434.
https://doi.org/10.1006/csla.2001.0174

Gopi, A. P., Jyothi, R. N. S., Narayana, V. L, & Sandeep, K. S.
(2020). Classification of tweets data based on polarity using
improved RBF kernel of SVM. International Journal of Infor-
mation Technology.
https://doi.org/10.1007/s41870-019-00409-4

Hasanli, H., & Rustamov, S. (2019). Sentiment analysis of Azer-
baijani twits using logistic regression, Naive Bayes and SVM.
In 2019 IEEE 13th International Conference on Application of
Information and Communication Technologies (AICT). IEEE.
https://doi.org/10.1109/AICT47866.2019.8981793

Haystack Project. (2019). https://project-haystack.org
Ifrim, G., Bakir, G., & Weikum, G. (2008). Fast logistic regres-

sion for text categorization with variable-length n-grams. In
Proceedings of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (pp. 354–362).
ACM. https://doi.org/10.1145/1401890.1401936

Jaskie, K., Elkan, C., & Spanias, A. (2019). A modified logistic
regression for positive and unlabeled learning. In 2019 53rd
Asilomar Conference on Signals, Systems, and Computers (pp.
2007–2011). IEEE.
https://doi.org/10.1109/IEEECONF44664.2019.9048765

Joachims, T. (1998). Text categorization with support vector ma-
chines: Learning with many relevant features. In European
Conference on Machine Learning (pp. 137–142). Springer.
https://doi.org/10.1007/BFb0026683

Joachims, T. (2001). A statistical learning learning model of
text classification for support vector machines. In Proceed-
ings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (pp.
128–136). ACM. https://doi.org/10.1145/383952.383974

Kurnia, R., Tangkuman, Y., & Girsang, A. (2020). Classification
of user comment using Word2Vec and SVM classifier. Inter-
national Journal of Advanced Trends in Computer Science and
Engineering, 9(1), 643–648.
https://doi.org/10.30534/ijatcse/2020/90912020

Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional
neural networks for text classification. In Twenty-Ninth AAAI
Conference on Artificial Intelligence (pp. 2267–2273). AAAI.

Le, C., Prasad, P., Alsadoon, A., Pham, L., & Elchouemi, A.
(2019). Text classification: Naive Bayes classifier with senti-
ment lexicon. IAENG International Journal of Computer Sci-
ence, 46(2), 141–148.

Liu, B., Lee, W., Yu, P., & Li, X. (2002). Partially supervised clas-
sification of text documents. In ICML ‘02: Proceedings of the
Nineteenth International Conference on Machine Learning (pp.
387–394).

Liu, J., Chang, W., Wu, Y., & Yang, Y. (2017). Deep learning for
extreme multi-label text classification. In Proceedings of the
40th International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 115–124).
https://doi.org/10.1145/3077136.3080834

Liu, P., Zhao, H., Teng, J., Yang, Y., Liu, Y., & Zhu, Z. (2019).
Parallel Naive Bayes algorithm for large-scale Chinese text
classification based on spark. Journal of Central South Uni-
versity, 26, 1–12. https://doi.org/10.1007/s11771-019-3978-x

Maron, M. (1961). Automatic indexing: an experimental inquiry.
Journal of the ACM, 8(3), 404–417.
https://doi.org/10.1145/321075.321084

McCallum, A., & Nigam, K. (1998). A comparison of event mod-
els for Naive Bayes text classification. In AAAI-98 Workshop
on Learning for Text Categorization (pp. 41–48).

Miaschi, A., & Della-Orletta, F. (2020). Contextual and non-
contextual word embeddings: an in-depth linguistic investi-
gation. In Proceedings of the 5th Workshop on Representation
Learning for NLP (pp. 110–119).
https://doi.org/10.18653/v1/2020.repl4nlp-1.15

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient
estimation of word representations in vector space.
https://arxiv.org/abs/1301.3781v3

https://doi.org/10.1155/2014/425731
https://doi.org/10.1109/34.709601
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/564376.564395
https://doi.org/10.5815/ijmecs.2019.01.02
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5120/3358-4633
https://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.ipm.2019.102121
https://doi.org/10.1016/j.asoc.2019.03.041
https://doi.org/10.1198/004017007000000245
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1007/s41870-019-00409-4
https://doi.org/10.1109/AICT47866.2019.8981793
https://project-haystack.org
https://doi.org/10.1145/1401890.1401936
https://doi.org/10.1109/IEEECONF44664.2019.9048765
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1145/383952.383974
https://doi.org/10.30534/ijatcse/2020/90912020
https://doi.org/10.1145/3077136.3080834
https://doi.org/10.1007/s11771-019-3978-x
https://doi.org/10.1145/321075.321084
https://doi.org/10.18653/v1/2020.repl4nlp-1.15
https://arxiv.org/abs/1301.3781v3

Journal of Civil Engineering and Management, 2022, 28(5): 408–421 421

Mikolov, T., Le, Q., & Sutskever, I. (2013b). Exploiting similarities
among languages for machine translation.
https://arxiv.org/abs/1309.4168

Mikolov, T., Yih, W., & Zweig, G. (2013c). Linguistic regulari-
ties in continuous space word representations. In Proceedings
of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies (pp. 746–751).

Montieri, A., Ciuonzo, D., Bovenzi, G., Persico, V., & Pescape, A.
(2019). A dive into the dark web: Hierarchical traffic clas-
sification of anonymity tools. IEEE Transactions on Network
Science and Engineering, 7(3), 1043–1054.
https://doi.org/10.1109/TNSE.2019.2901994

Onan, A. (2017). Hybrid supervised clustering based ensemble
scheme for text classification. Kybernetes, 46(2), 330–348.
https://doi.org/10.1108/K-10-2016-0300

Onan, A. (2018). An ensemble scheme based on language func-
tion analysis and feature engineering for text genre classifica-
tion. Journal of Information Science, 44(1), 28–47.
https://doi.org/10.1177/0165551516677911

Onan, A. (2019). Topic-enriched word embeddings for sarcasm
identification. In Computer Science On-line Conference (pp.
293–304). Springer.
https://doi.org/10.1007/978-3-030-19807-7_29

Onan, A. (2020). Sentiment analysis on product reviews based
on weighted word embeddings and deep neural networks.
Concurrency and Computation: Practice and Experience,
33(23), e5909. https://doi.org/10.1002/cpe.5909

Onan, A. (2021). Sentiment analysis on massive open online
course evaluations: a text mining and deep learning approach.
Computer Applications in Engineering Education, 29(3), 572–
589. https://doi.org/10.1002/cae.22253

Onan, A., Korukolu, S., & Bulut, H. (2016). A multiobjective
weighted voting ensemble classifier based on differential
evolution algorithm for text sentiment classification. Expert
Systems with Applications, 62, 1–16.
https://doi.org/10.1016/j.eswa.2016.06.005

Onan, A., & Korukolu, S. (2017). A feature selection model based
on genetic rank aggregation for text sentiment classification.
Journal of Information Science, 43(1), 25–38.
https://doi.org/10.1177/0165551515613226

Onan, A., & Tocoglu, M. (2020). Satire identification in Turk-
ish news articles based on ensemble of classifiers. Turkish
Journal of Electrical Engineering & Computer Sciences, 28(2),
1086–1106. https://doi.org/10.3906/elk-1907-11

Onan, A., & Tocoglu, M. (2021). A term weighted neural lan-
guage model and stacked bidirectional LSTM based frame-
work for sarcasm identification. IEEE Access, 9, 7701–7722.
https://doi.org/10.1109/ACCESS.2021.3049734

Prabhat, A., & Khullar, V. (2017). Sentiment classification on
big data using Naïve Bayes and logistic regression. In 2017
International Conference on Computer Communication and
Informatics (ICCCI). IEEE.
https://doi.org/10.1109/ICCCI.2017.8117734

Quinlan, J. (1986). Induction of decision trees. Machine Learn-
ing, 1(1), 81–106. https://doi.org/10.1007/BF00116251

Ramadhan, W., Novianty, S., & Setianingsih, S. (2017). Sentiment
analysis using multinomial logistic regression. In 2017 Inter-
national Conference on Control, Electronics, Renewable Energy
and Communications (ICCREC) (pp. 46–49). IEEE.
https://doi.org/10.1109/ICCEREC.2017.8226700

Rane, A., & Kumar, A. (2018). Sentiment classification system
of twitter data for us airline service analysis. In 2018 IEEE
42nd Annual Computer Software and Applications Conference
(COMPSAC) (Vol. 1, pp. 769–773). IEEE.
https://doi.org/10.1109/COMPSAC.2018.00114

Singh, R., Kumar, B., Gaur, L., & Tyagi, A. (2019). Comparison
between multinomial and Bernoulli Naïve Bayes for text clas-
sification. In 2019 International Conference on Automation,
Computational and Technology Management (ICACTM) (pp.
593–596). IEEE.
https://doi.org/10.1109/ICACTM.2019.8776800

Sun, A., Lim, E., & Liu, Y. (2009). On strategies for imbalanced
text classification using SVM: A comparative study. Decision
Support Systems, 48(1), 191–201.
https://doi.org/10.1016/j.dss.2009.07.011

Tocoglu, M., & Onan, A. (2020). Sentiment analysis on students
evaluation of higher educational institutions. In International
Conference on Intelligent and Fuzzy Systems (pp. 1693–1700).
Springer. https://doi.org/10.1007/978-3-030-51156-2_197

Tong, S., & Koller, D. (2001). Support vector machine active
learning with applications to text classification. Journal of
Machine Learning Research, 2, 45–66.

Vapnik, V., & Lerner, A. (1963). Recognition of patterns with
help of generalized portraits. Avtomatika i Telemekhanika,
24(6), 774–780.

Venkatesh Ranjitha, K. V., & Venkatesh Prasad, B. S. (2020).
Optimization scheme for text classification using machine
learning Naive Bayes classifier. In A. Kumar, M. Paprzycki, &
V. Gunjan (Eds.), Lecture notes in electrical engineering: Vol.
601. ICDSMLA 2019 (pp. 576–586). Springer.
https://doi.org/10.1007/978-981-15-1420-3_61

Wang, X., Sheng, Y., Deng, H., & Zhao, Z. (2019). CHARCNN-
SVM for Chinese text datasets sentiment classification with
data augmentation. International Journal of Innovative Com-
puting, Information and Control, 15(1), 227–246.

Xu, B., Guo, X., Ye, Y., & Cheng, J. (2012). An improved random
forest classifier for text categorization. Journal of Computing,
7(12), 2913–2920. https://doi.org/10.4304/jcp.7.12.2913-2920

Yao, L., Mao, C., & Luo, Y. (2019). Graph convolutional networks
for text classification. Proceedings of the AAAI Conference on
Artificial Intelligence, 33, 7370–7377.
https://doi.org/10.1609/aaai.v33i01.33017370

Zhang, Y., Jin, R., & Zhou, Z. (2010). Understanding bag-of-
words model: a statistical framework. International Journal
of Machine Learning and Cybernetics, 1(1–4), 43–52.
https://doi.org/10.1007/s13042-010-0001-0

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convo-
lutional networks for text classification. In Advances in Neural
Information Processing Systems 28 (NIPS 2015) (pp. 649–657).

Zhang, M., Ai, X., & Hu, Y. (2019). Chinese text classification
system on regulatory information based on SVM. In IOP
Conference Series: Earth and Environmental Science (Vol.
252), 022133. IOP Publishing.
https://doi.org/10.1088/1755-1315/252/2/022133

https://arxiv.org/abs/1309.4168
https://doi.org/10.1109/TNSE.2019.2901994
https://doi.org/10.1108/K-10-2016-0300
https://doi.org/10.1177/0165551516677911
https://doi.org/10.1007/978-3-030-19807-7_29
https://doi.org/10.1002/cpe.5909
https://doi.org/10.1002/cae.22253
https://doi.org/10.1016/j.eswa.2016.06.005
https://doi.org/10.1177/0165551515613226
https://doi.org/10.3906/elk-1907-11
https://doi.org/10.1109/ACCESS.2021.3049734
https://doi.org/10.1109/ICCCI.2017.8117734
https://doi.org/10.1007/BF00116251
https://doi.org/10.1109/ICCEREC.2017.8226700
https://doi.org/10.1109/COMPSAC.2018.00114
https://doi.org/10.1109/ICACTM.2019.8776800
https://doi.org/10.1016/j.dss.2009.07.011
https://doi.org/10.1007/978-3-030-51156-2_197
https://doi.org/10.1007/978-981-15-1420-3_61
https://doi.org/10.4304/jcp.7.12.2913-2920
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.1088/1755-1315/252/2/022133

