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Abstract. The problem of predicting the performance of a parallel relational DBMS for
a set of queries applied to a particular data set on a shared nothing parallel architecture
without transferring the application to a parallel system is a challenging one. An analytical
approach has been developed to assist with this task and has been applied to the ICL
GoldRush machine, a parallel machine with a shared-nothing architecture. This paper
describes how the Oracle Parallel Server and the Parallel Query Option are modelled by the
method and compares the predictions of the model against actual measurements obtained.
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1. Introduction

The inherent parallelism in relational databases is well suited to parallel com-
puter technology and commercial interest in the use of parallel computers
for running relational database systems has been growing [16]. A number of
parallel database systems running on different parallel machines have become
available from vendors such as Oracle [18], Informix [14], Ingres [1], Sybase [19]
and IBM [12]. However, the cost of migrating to a parallel platform is high
and the improvement in performance that can be achieved for individual ap-
plications on particular configurations is not easy to estimate. For this reason,
there is growing interest in performance prediction tools, both for assessing
what parallel database platform configuration is required and for tuning the

performance of an existing application running on a parallel system.
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STEADY [26, 24] (System Throughput Estimator for Advanced Database
sYstems) is an analytical parallel database performance estimation tool which
can aid a user in selecting a data placement strategy [23], in determining
the performance achievable from different DBMS platform configurations, in
investigating effects which changes to the system configuration might have on
performance and assisting with tuning a particular DBMS configuration to
handle a specific application. To do this it estimates performance in terms
of system throughput, resource utilisation and response time. Currently, the
tool models parallel Oracle [17, 11, 15], Informix XPS [14] and Ingres [20].

This paper discusses how parallel Oracle 1s modelled. Section 2 provides a
review of related work followed in section 3 by a description of the architecture
of the STEADY tool. Section 4 contains an overview of Oracle, discusses its
various types of parallelism, and introduces Oracle’s execution plan through
an example query. The modelling of Oracle is then discussed showing how
an execution plan is translated into the task block formalism of the tool. Its
locking policies, cache management and database background processes are
described, followed by a brief comparison between the modelling of Oracle
and Informix. Finally some results of measured and estimated performance

are compared and some of the problems encountered are discussed.

2. Related Work

Commercially available performance measuring tools can be divided into three
categories: measurement tools, combined measurement/prediction tools and
performance prediction tools. Measurement tools are used to take measure-
ments on existing systems. These tools monitor and profile the operation of
DBMSs and provide information on the way in which the systems are being
used in terms of resource utilisation. Examples of such tools are Digital’s

ECO Tools [7], the Patrol DB-Log master by BMC software [3] and the Ingres
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DB_Maximiser by DB LAB PTY Ltd [5]. Unfortunately they are of little value
to users who do not have access to a parallel database system.

Tools which combine monitoring and prediction are useful to users who
have a parallel DBMS and would like to modify their existing set up. An
example of such a tool set is BEZPlus [2], which comprises the Investiga-
tor and Strategist tools. It monitors and predicts the performance of NCR
Teradata and Oracle environments on MPP machines. The Investigator tool
monitors resource utilisation to highlight potential bottlenecks. The Strategist
evaluates hardware and software alternatives in order to identify the effect
on performance and workload of business growth. Another example 1s the
computer monitoring tool suite Athene from Metron Technology [10] [9]. Tt
comprises five core applications, one of which 1s the Planner, which uses queue-
ing theory techniques to predict performance. Performance models generated
from recorded system performance data, can be held in a database for future
reference.

The tools for performance prediction alone vary in complexity from a
simple set of cost formulae to a detailed simulation of the DBMS. An example
of a simulation-based tool is SMART(Simulation and Model of Application
based Relational Technology) [13] developed by Ifatec. It has recently been
superceded by its re-engineered successor, SWAP. SMART/SWAP is an ad-
vanced tool which is able to model complex Oracle 7 & 8 applications running
on GoldRush and Ncube platforms. An example of a tool based on an ana-
lytical approach is the DB2 Estimator [8] from IBM, designed specifically for
the relational database system DB2 for OS/390 V5 & V6. It runs on a PC
and calculates estimated costs using formulae obtained from an analysis of
real DB2 code and performance measurements. It aims to have errors, (i.e.
differences between actual and predicted values) of less than 20%. Another
example is the Oracle System Sizer V3.0 [6], produced by HP, Dell and Oracle.
The tool sizes hardware configurations for Oracle database applications. At

present there are versions for HP NetServers and Dell PowerEdge servers

pvi8a.tex; 25/11/1999; 15:44; p.3



3

under Windows NT. Oracle are planning versions for additional hardware
types in the future.

A user who has existing database applications running on a simple se-
quential machine will in general, be unsure of the performance and cost
implications of migrating such applications to a parallel system. If they don’t
have access to a similar existing parallel system, then measuring and combined
measuring and prediction tools are of little relevance. In this case performance
prediction tools offer the only solution. Of these, simulation tools, although
potentially more accurate, are time-consuming and costly. On the other hand
analytical performance prediction tools provide a quicker and cheaper solution
although not necessarily as accurate. An ideal solution would be to use ana-
lytical tools in the first stage to provide an idea of the most suitable machine
configuration and data placement strategies, followed by simulation to provide
a more accurate prediction. The tool set described in this paper, STEADY,

was designed as an analytical tool for use in this first stage.

3. STEADY

STEADY is a tool set which can be used to predict the performance which
would be obtained when a particular set of transactions is executed on a
specific parallel database laid out following some particular data placement
strategy.

The tool set takes as input details of the relations (database schema),
the data placement strategy to be used, the DBMS configuration and the
execution plans of SQL queries, represented as annotated query trees. The
query trees capture the order in which relational operators are executed and
the method for computing each operator. From these parameters it predicts
average resource utilisation, maximum transaction throughput and average
transaction response time given a transaction arrival rate. The maximum

throughput value is derived by analysing the workload and identifying the
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Figure 1. STEADY architecture

system bottlenecks. Given a transaction arrival rate, lower than the maximum

throughput, the average response time is derived using an analytical queuing

model.

Fig. 1 illustrates the architecture of STEADY'. It has four layers connected

by a graphical user interface. Each layer comprises one or more modules,; as

follows:
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1. The application layer consists of the Profiler and the DPTool modules. The
Profiler is used to generate statistical profiles on the base relations. It also
generates information on intermediate relations, such as number of tuples,
resulting from particular data operations performed in the queries. The
DPTool is a data placement tool which produces data placement schemes
for parallel databases. For a chosen strategy, DPTool takes information
about the relations and the operations to be performed on them and
decides how the relations should be fragmented and divided among the
different nodes and discs. DPTool also estimates the access frequency of
different pages in each relation. It supplies this information along with the

generated data layout to the Cache Model Component.

2. The DBMS kernel layer consists of the Cache Model Component, the
Query Paralleliser and the Modeller Kernel. The Cache Model Component
estimates the cache hit ratio for pages from the different relations [25].
The Query Paralleliser is used to generate parallelised query execution
plans, incorporating a functionality which captures the different parallel
strategies of modelled parallel DBMSs. It transforms the query tree into
a task block structure. Each task block represents one or more phases
in the execution of the relational operators within the query trees. An
example of a phase is the building of a hash table in the first part of
a hash join operator. The Modeller Kernel takes as input the relation
profiles, data layout, estimated cache hit ratios and the task block profile
of the query produced by the Query Paralleliser. It produces workload
profiles in terms of the numbers of basic operations to be executed on
each node in the course of a transaction. This results in a set of workload
statistics. Together with this; the Modeller Kernel fills in the details of
the task blocks by expanding each execution phase within the block into
a corresponding sequence of basic operations. The DBMS kernel layer

represents the DBMS specific behaviour of the system.
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3. The platform layer consists of the Evaluator module. The task block
profiles of the queries are mapped by the Evaluator into resource usage
profiles. The Evaluator also gives an upper limit to the system throughput
value, based on estimating the usage of that resource which is a bottle-
neck to performance in an average transaction. This layer represents the
platform specific behaviour of the system, although there are elements of

the Query Paralleliser which are platform specific as well.

4. The response time layer consists of the Queue Waiting Time Estimator
and the Response Time Estimator modules which use queueing theory
to compute the response time for a transaction, from its resource usage
profile. Further details on the approach used for response time estimation

are given in [21].

4. Oracle Parallel Server and Parallel Query Option

In Oracle, parallelism is exploited in two ways: through the Oracle Parallel
Server (OPS) and through the Parallel Query Option (PQO) [17].

OPS allows multiple Oracle instances to share a common database. Each
instance is a separate user of Oracle. An instance can be run on one or more
nodes of the parallel machine. Each instance has its own processes and log
files, but the data and control files are common to all instances. Parallel Server
is designed to allow an instance to be shut down, intentionally or otherwise,
without affecting the other running instances and also allows multiple users
to access the same database.

The primary purpose of PQO is to improve the performance of the system
in terms of both throughput and response time. It involves using more than
one process(server) to carry out a task. It only comes into action when a query
contains a full table scan, otherwise the query is processed sequentially by a

single server.
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In both OPS and PQO there is a shared database system at the disc
level. Its form depends on the architecture of the underlying machine. In a
system with multiple nodes and a shared disc this is straightforward, but a
shared nothing system requires a coherent virtual file system. Oracle employs
a distributed lock manager (DLM) to maintain the status of distributed locks
to coordinate access to resources required by different database instances.
Requests for locks or 1/O may be satisfied by a node remote from the one
issuing the request (host).

Assuming that there is at least one full table scan in the query, the oper-
ations which take advantage of PQO, are:

e Full table scans.

e Sorts for GROUP BY, ORDER BY and joins.

e Sort merge, hash and nested loop joins.

o Aggregation including GROUP BY, MIN, MAX, and AVG.

e CREATE TABLE.

Operations which are not parallelised include:

e UPDATE, DELETE and INSERT.

e UNION, INTERSECT and MINUS.

e Any queries which do not contain a full table scan.

The flow of a query through the PQO starts with the user process issuing
a query or transaction. The dedicated server process parses and executes it.
It assigns work to a number of query servers depending upon the degree of
parallelism. The query servers split the workload and return the result data
back to the dedicated server process. The dedicated server assembles the data
and returns the results to the user process. The process of parsing the query
includes optimisations, the details of which are not published by Oracle. A
node may have several query servers running at the same time. The maximum
number of query servers available 1s set as an initialisation parameter.

The main types of parallelism used by the PQO are inter-query, intra-query
and pipeline parallelism. Inter-query parallelism is the execution of different

queries or transactions in parallel. Intra-query parallelism 1s parallelisation
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SELECT ename, job, sal, dname Parallel to_serial

FROM emp, dept
WHERE emp .deptno = dept .deptno

Join(p_t_s)

Parallel_combined_with_parent

@

Select emp(p_c_w_p)

Parallel_to_parallel

id operation options object type

0 SELECT STATEMENT Select dept(p_t_p)
1 HASH JOIN parallel_to_serial

2 TABLE ACCESS FULL emp parallel_combined_with_parent

3 TABLE ACCESS FULL dept parallel_to_parallel Parallel_from_serial

(c) (b)

Figure 2. (a) Example query (b) Server allocation (c) Execution plan

within a query and involves two forms: inter-operator and intra-operator paral-
lelism. In inter-operator parallelism different component operations of a query
(sub-query) are carried out in parallel. In intra-operator parallelism a single
operation such as a hashjoin is divided up and executed by multiple servers
in parallel. Two successive operations exhibit pipeline parallelism when their
execution is overlapped in such a way that the second is activated every time
the first produces and sends a single tuple. In order to show some of these
types of parallelism consider the example query in Fig. 2a.

The query takes two tables, containing employee details and department
details, joins them on the department number and returns the employee’s
name, job, salary and department. Fig. 2b shows a possible server allocation
for the example query. The default number of servers for scanning the dept
table is three and for the emp table it is four. Three servers (2,3,4) scan the
dept table and broadcast all of the tuples to each of the four servers (5,6,7,8)
which scan the emp table. Each tuple read from the emp table is then joined
with the broadcast dept tuples if the department numbers are the same. The
results are then sent to the query dedicated server(1).

The execution plan for the query is shown in Fig. 2¢. It shows the actions
carried out to execute the query. Some of the operations have options. For

example, accessing the data in operations 2 and 3 requires a full table scan
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on both the emp and dept tables. The last column specifies the type of Oracle
parallelism to be used. The type ’parallel_combined_with_parent’ indicates
that the current operation (2) will be carried out by multiple servers which
will also carry out the subsequent operation (1). The rest of the types are self
explanatory.

Oracle can join tables in three ways: nested loop, sort merge and hash join.
Oracle carries out a nested loop join when one of the tables has an index on the
joining attribute. It is done by reading the non-indexed table and broadcasting
the qualifying tuples to each of the join servers. The join servers receive the
tuples and then select tuples from the larger table using the index and join
each qualifying tuple against the non-indexed table tuples. Sort merge joins
are carried out by scanning and sorting the two tables at the same time, which
is an example of inter-operator parallelism, i.e. two separate tasks within the
same query being carried out at the same time. Sorted partitions are sent
to the appropriate merging servers. To show how Oracle carries out a hash
join, consider the join query example shown in Fig. 2b. The smaller table is
read and all of its tuples are broadcast to each of the servers, which are to
read the larger table, and they build a hash table with these tuples. Tuples
from the larger table are used to probe the hash table and are joined if their
department numbers are the same.

An optimisation feature of Oracle is that all full scans are always read
from disc, except for a small number of pages which can be set by the user
(default is five pages), so as not to empty the cache each time a full scan
is conducted. When scanning large tables, Oracle employs a load balancing
technique to share the load of the operation amongst all of the servers involved.
The table is split into thirteen parts and these are grouped into three groups
containing nine, three and one part, respectively. The first group is allocated
to the available servers and execution commences. As soon as a server finishes
processing its allotted parts, it is allocated the largest of the remaining parts

until all thirteen have been processed.
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l BLOCK :start
S MODE:independent
HOME:PE1
Start adfivite 5 _dept
activate scan_emp
,l, BLOCK:scan_dept
MODE:full_depend start
Scan | HOME:PELPE2PE3
dept send d build
I v
v
Scan BLOCK:build BLOCK:scan_emp
emp MODE:pipeline_depend scan_dept MODE:full_depend start

HOME:PEL,PE2,PE3,PE4,PES

send r probe send e probe

I P,
HashJoin BLOCK:probe
MODE:full_depend build;
I i end scan_em

pi Ee'ﬁne d )¢
HOME:PE1,PE2,PE3,PE4,PES

CPEN

BLOCK:end
MODE:full_depend probe FP" d_epend
HOME:PE1 - Pipeline depend

Figure 3. Task Execution Sequence

5. Modelling Parallel Oracle

In developing a model of parallel Oracle both the Parallel Server and the PQO
features need to be catered for. The first basic assumption relating to Parallel
Server concerns the node which will act as host to the query since the choice
of host node can have a significant effect on the performance of a query. For
this reason, each node in turn is treated as the host and the performance
estimated, after which the results are totalled and an average figure is used
for modelling the Parallel Server feature of Oracle, as this effectively means
that there are as many users as there are nodes.

The rest of this section describes the modelling of PQO, locking, and

background processes.
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BLOCK: scan_emp
MODE: full_depend start
HOME: pel 1.0, pe2 1.0, pe3 1.0
OPERATION_DEFINITION
loop { pel: xpe2: X,, pe3d:X,}{
read { disc1(1: p,), disc2(1: p,) }{pel: h , pe2:h,, pe3:h, }
loop{ TpP }{
predicate_check;
send hash_joinen

}

}
END_DEFINITION

Figure 4. scan_emp block

5.1. MODELLING PARALLEL QUERY OPTION

To show how the different forms of parallelisation employed in Oracle are
modelled, consider the join query example shown in Fig. 2a. The parallelised
query execution plan can be schematically represented as shown in Fig. 3.
It shows the sequence control graph of the query (left-hand side) and the
corresponding structure of the task block formalism of the model (right-hand
side). There is a task block for each SQL operation and a start and end task
block. The start block activates the two scan blocks. The scan_dept block 1is
fully dependent on block start, which means that 1t can only be started after
the execution of start has completed. The hash join operation 1s made up of
two blocks (tasks), one to build the hash table and the other to probe the hash
table. The build block 1s pipeline dependent on the dept scan block, which
means that as the table is being scanned, the hash table 1s being built with
the tuples that were scanned. This represents pipeline parallelism which is
indicated by a dotted line. The probe block is fully dependent upon the hash
table being built (indicated by the solid line between the blocks), but pipelines
the scanning of the emp table and the probing of the hash table, i.e. each tuple
read is then used to probe the hash table. The end block receives the result
tuples and presents the results.

To show how the details of the task block format are modelled, consider

the scan_emp block, shown in Fig. 4. The first line gives the block’s name
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(scan_emp) and the second line its mode. The scan_emp block is fully depen-
dent on block start. The block is executed by query servers on nodes PE, PE,
and PE3 with equal probability, an example of intra-operator parallelism. On
each server it reads a number of pages locally from relation emp where z; pages
are read from node PE;, as indicated by the keyword loop. The probabilities
of the page being read from disc 1 or disc 2 are p; and pa (= 1 — p1). The
probability attached to the disc read operation (h;) represents the cache miss
ratio for a page of emp on node PE;. This is followed by a loop of TpP
iterations where T'pP 1s the number of tuples per page of emp. In this loop a
predicate check 1s carried out on each tuple and the selected tuples are sent
through the interconnect to the block hash_join. Here e and n are the tuple
length and the number of tuples sent per iteration.

As Oracle’s load balancing technique is designed to balance the workload
across the nodes of a parallel machine, the model considers each full table

scan to be spread across all the nodes involved equally.

5.2. ORACLE TrRANSACTION LocKING aAND DLM PoLICIES

For Oracle installed on a GoldRush machine each relation (table) comprises a
number of tuples (rows) and these tuples are stored in pages, which is the unit
of storage at the disc level. In general, a page may contain a number of tuples.
GoldRush Oracle has two distinct types of locks: parallel cache management
(PCM) and transaction locks.

PCM locks are used at the database page level. They can be held in shared
(read only) or exclusive (update) mode. These page locks are assigned to the
distributed lock manager (DLM) instances on the nodes according to a hashing
scheme, so that each page lock has an owner. The owner handles PCM lock
requests for that page lock. When a transaction requests a page, the PCM
locking process is used to ensure the safe extraction of the page and the
delivery of that page to the requesting transaction. However, once it receives

the page, the transaction will want to access a tuple within that page.
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At this point the transaction locks come into play. Each row has a trans-
action lock associated with i1t. Transaction locks are owned by individual
transactions and not by servers. They are only given up when the transaction
commits or rolls back. Each transaction has an owner (its host, where the
dedicated server resides). A system is used to number the transactions as they
start. This number also identifies the node that is hosting the transaction. A
server scanning a relation receives a page from disc and locates the row it wants
to access. Attached to this row may be a transaction number, indicating that
this row has been, or is going to be modified. If no number exists then the
transaction is free to set a row lock and update the row. If the server reading
the page finds a transaction number, then it must determine the status of
the row. This it does by asking its DLM. The DLM contacts the host of the
transaction using a lock status request. The host node consults its rollback
segment index for the location of the segment and sends this location to the
server querying the status of the row. The server reading the row receives the
location of the rollback segment and reads it into its buffer. It looks up the
version of the row with the largest transaction number, smaller than its own.
The corresponding value of the row is returned.

To illustrate PCM locks consider the following example. Suppose the DLM
on node PEg3 is the owner of a page lock, which a server on node PE; needs
in order to update a page. Suppose that this page is held in exclusive mode
on node PE,. The server on node PE; asks its DLM for the lock. The DLM 1s
not the owner, and therefore 1t sends a lock request to the owner. The owner
(the DLM on node PEj3) looks up its lock status table and notes that node
PE> has the page held under an exclusive lock. The DLM on node PE3 sends
a lock-request message for the page to node PEs, which writes the page to
disc and sends a lock-grant message in return to the DLM on node PE3. Once
the DLM on node PEg receives it, it updates its lock status table and sends
a lock-grant message to the original requester on node PE;. The server on
node PE; reads the page from disc into its buffer with an exclusive lock and

continues with the update. Note that node PE, releases the lock immediately
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BLOCK: start BLOCK: dim BLOCK: end
MODE: independant MODE: full_depend start MODE: full_depend dim
HOME: pel 1.0 HOME: pel 0.25, pe2 0.25, pe3 0.25, pe4 0.25 HOME: pel 1.0
OPERATION_DEFINITION OPERATION_DEFINITION OPERATION_DEFINITION
........... obtain_lock;
send dim Ick_req v send end Ick_rep{ pel:1.0} 1.0 END_DEFINITION
END_DEFINITION END_DEFINITION

Figure 5. PCM lock blocks

upon request. If one or more servers hold the same page under a shared lock
(only one copy of a page is allowed in any cache under an exclusive lock) and
another server requests the page for updating, all servers holding a shared-
lock on the page, are asked by the page lock owner to give up the lock and
page. Once they acknowledge that they have done so, the owner grants the
lock to the server requesting it. If a server finishes with a page and no other
server requests it, the page stays in its buffer until it is required or the buffer

is flushed. At this point the owner 1s informed to update the lock status table.

5.2.1. Modelling Locks
A model has been developed to estimate the number of PCM locks held on
pages in a particular server’s cache. The model is derived following the ap-
proach originally developed by Dan and Yu in [4]. The Oracle7 parallel cache
management as described above is similar to the Deferred until Transfer or
Flushing policy detailed in [4]. The model allows one to estimate the number
of DLM exclusive and shared locks held on pages in a particular node’s cache.
This, in turn, allows one to obtain an estimation of local and remote buffer hit
probabilities. The details of the model are described in greater detail in [25].
The example in Fig. 5 shows how PCM locks are handled in the task block
notation. A transaction running on node PE; requests a lock from the DLM
running on node PEs, which is the owner of the page. An extra block is added
for lock request processing by the DLM instance. v is the probability that the
page that the lock request is for, is not held in the local cache.

pviBa.tex; 25/11/1999; 15:44; p.15



15

The additional dlm block represents the handling by the DLM of a lock
request from the transaction running on node PE;. The owner of the page
may be any of the four nodes; thus each has a probability of 0.25 of owning
the page lock. Ick_req is the message size transmitted from node PE; to node
PEs to request a lock. Ick_rep is the message size transmitted from node PE»
to node PE; to grant the lock request.

The modelling of transaction locks uses the same blocks as the DLM
(shown above), because it also uses the DLM to communicate with the trans-
action owner about row locks, but with different frequencies. The estimation of
the frequencies is based on the number of modifying queries in the transaction

and the calculation of queue lengths for the rows being modified.

5.3. MODELLING BACKGROUND PROCESSES

In Oracle there are many background processes, including a database writer,
log writer, session monitor, checkpoint process, archiver and process monitor.
The archiver, checkpoint process, session and process monitors are concerned
with recovery from a system breakdown, and are not modelled. This leaves
the two most important background processes which both write to disc and
therefore require to be modelled. They are the database writer (DBWR) and
the log writer (LGWR).

The database writer (DBWR) writes buffers to disc. It maintains two lists,
the least recently used (LRU) and the modified buffer list. The DBWR writes
the modified buffers to disc when one of three things occur: when no free buffer
can be found in the LRU list, when a time out occurs or when a checkpoint
process is initiated. The total number of pages in the buffer and the page size
are set by the user. The cache miss probability is estimated by the cache model.
Knowing these, the number of pages in the buffer cache can be estimated.

The redo log buffer, circular in design, records changes made to the database.
The log writer (LGWR) writes the redo log buffer to disc. There are three

circumstances when 1t does this:
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BLOCK: dbwr
MODE: independent
HOME: pel 1.0
OPERATION_DEFINITION
in_parallel {
write { disc1( x:p,), disc2( x:p,)} 1.0}
END_DEFINITION

Figure 6. dbwr block

e Every three seconds.

e When the buffer is one third full.

e When the DBWR, process writes to disc.

The buffer size, row length of the table and the query frequencies are set
by the user. Knowing these, the rate of filling of the buffer can be estimated.
To model the writes that occur due to the expiry of the time interval, the cost
can be added at the end of the transaction.

The block representation of the background processes which are modelled
are very similar. For example, the DBWR, process can be represented by a
block as shown in Fig. 6. The LGWR block is identical except that the value
of & 1s equal to a third of the size of the log buffer instead of the number of
modified buffers in cache. Thus background processes are treated as if they

were separate transactions run at the same time as user transactions.

5.4. COMPARISON WITH MODELLING OF INFORMIX

There are a number of important differences in modelling the Parallel DBMSs
Oracle and Informix. In Informix, data is only read by the node that owns
that data whereas in Oracle data can be read from any node. Consequently
all reads in Informix are local reads whereas in Oracle they can be local or
remote. In Oracle, locking policies are more complex, partly because of the two
types of locks and partly because of maintaining the consistancy of the data
in the virtual file system employed. By contrast, in Informix all reads are local
and the cost of locking can be dealt with more simply. Repeat full table scans

in Informix are cached, unlike Oracle where all multiple full table scans are
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read from disc except for a few pages. A separate cache model component had
to be written for Oracle, detailed in [25]. Background processes are modelled
in the same way for both PDBMSs, only the actual amounts written to disc
are different. Informix has no load balancing scheme for full table scans, as all
data is read from the node that owns the data, but redistribution of qualifying

tuples is carried out for aggregation to even the workload amongst nodes.

6. Comparison With Actual Performance Measurements

Having developed the Oracle model, it was calibrated to obtain estimates for
the basic costs using an ICL GoldRush parallel server with 6 nodes and 6
discs per node.

Once the basic costs were obtained, a set of queries and tables were used to
validate the model. Three of the queries used will be considered here, and are
referred to as Query 1, 2 and 3. Each involves a scan of a relation coupled with
one or more aggregate operations. Three uniques relations of the AS3AP [22]

benchmark were used by all three queries:

Uniques30, 30,000 tuples on 1 disc of node PE3 (30k1)

Uniques90, 90,000 tuples on 1 disc of node PE3 (90k1)

Uniques270, 270,000 tuples on 1 disc each of node PEy,PEy,PEy, PE3, PFEy
and PFEs (270k6)

There were two main steps in the validation phase. The first step estab-
lished the maximum throughput and the second the average response times for
transactions. For each step a separate transaction generator was required. The
two generators were written in Pro-C. The first generator, used to dtermine
throughput, fires queries at a constant rate. Generally a batch of 100 queries
was fired for each inter-arrival time considered, although larger batches were
tried to check the validity of the results gained from the smaller batches. The

start time of each query was recorded as was the time when the result was
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returned and the difference between the two taken as the time for the query to
return the result, this includes execution and queue waiting time. The times
for all 100 queries was totalled and averaged to give the throughput figure.
The response time generator fires queries with exponential inter-arrival times,
to represent the load of a working database system. Again batches of 100 were
found to be sufficient to give as good results as larger batches. The timings
were taken in exactly the same way as for the throughput tests. All timings

were taken in clock ticks and then converted into seconds.

6.1. THROUGHPUT

A selection of the results for the throughput tests are shown in Fig. 7 a, b and
c. The x- and y-axis denote query arrival rate and throughput respectively,
and are measured in transactions per second. In the top right hand corner of
each graph, the value of the maximum throughput predicted by STEADY,
which is a single value independent of the arrival rate, and the maximum
throughput actually achieved by the system are displayed. The maximum
throughput achieved by the system was established by firing batches of 100
queries with increasing inter-arrival rates; calculating the throughput, until
the calculated throughput peaked.

The throughput results for all of the queries showed reasonable agreement
with the STEADY maximum throughput results. A total of 9 experiments
was performed. In 7 of the 9 cases the relative error between predicted and
measured maximum throughput was under 10%, and in 5 of these it was
within 5%. Only 2 cases produced errors above 10% and here the worst case
was less than 17%. The average discrepancy was about 6%. The STEADY
figure is always higher than the actual measured value. This may be due to
additional operating system overheads which were not taken into account in

the STEADY model.
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Figure 7. Throughput graphs (a) 30k Query 1 (b) 90k Query 2 (c) 270k Query 3

6.2. PROBLEMS WITH MEASURING ORACLE PERFORMANCE

During calibration the difference in behaviour between Oracle and Informix
became apparent. The most obvious difference in behaviour was the variability
in measured results exhibited by Oracle compared with the very consistent
behaviour of Informix. As a result, each test, which obtains a throughput
value for a given arrival rate, had to be repeated a number of times to ensure
consistency. As an example Query 1, was run on 12 separate occasions with
an inter-arrival rate of 0.27 transactions per second. On each occasion the
machine was in a similar state and was dedicated to this application. Each
run involved firing 100 queries. The graph of the results of these 12 runs is
shown in Fig. 8.

The x-axis of the graph in Fig. 8 represents the identity number of the
query, which is allocated as it 1s fired, while the y-axis represents the execution
time of the query in seconds. As can be seen, there are three runs (4, 5 and

6) where the times increased dramatically for no apparent reason and queries
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Response Time

Figure 8. Throughput - 0.27 Txn/sec - 12 Runs

arriving later completed ahead of earlier ones (giving the backward diagonal
line effect). The times prior to the sudden increase were as expected and
conditions during all runs were 1dentical. The reason for this behaviour was
due to the background processes in Oracle, although the monitoring tools did
not enable one to isolate and identify these.

If the three runs with anomalously high execution times are removed and
the graph is rescaled, the graph in Fig. 9 is obtained. Here a further anomaly is
observed. There appear to be two distinct bands of query times, one averaging
5 seconds (band 1), the other averaging just above 6 seconds (band 2). This
difference between the bands was attributed to the nondeterminism in the
engagement of a background DBMS process, such as garbage collection.

By comparison, Fig. 10 shows the throughput results for three runs at 0.2
transactions per second for Informix on the GoldRush machine using the same
type of transaction generator. As can be seen the variation in response times
is much less than those of the Oracle graphs, i.e. within 13% either side of the

average compared to nearly 40% in Fig. 9. In total more than one hundred runs
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Response Time

Figure 9. Throughput - 0.27 Txn/sec - 9 Runs
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Figure 10. Informix - Throughput - 0.2 Txn/sec

were obtained on Informix and this same level of consistency was observed
in all cases. The erratic behaviour seen in Fig. 8 did not arise in Informix at
all, possibly due to the different approach to background processes. It should
be noted that the band effect observed in Fig. 9 has a minimal effect on the
overall maximum throughput figures. However, it does have a significant effect

on response time measurements.
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6.3. REspPONSE TIME

The same problems were experienced with the exponential transaction gen-
erator, although the discrepancies are more difficult to isolate because of the
variabilities in the inter-arrival time. In view of these problems, it was decided
to concentrate the response time tests on arrival rates between 10% and 70%
of maximum throughput, as this is the resource utilisation that would be
considered normal for database work. Two examples of results for the response
time tests on Oracle are shown in Fig. 11a & b. These two graphs highlight
the variations in the results achieved. Fig. 11a shows a set of results where
the error between measured and actual values are close together until 50%
of maximum throughput when the curves diverge. However, Fig. 11b shows
results where the two curves are closely matched throughout. For comparison
purposes the same test as Fig 11a for Informix is shown in Fig. 11c.

For Informix, the average error, between measured and predicted values,
for all response time tests was less than 15% for arrival rates up to 70%

of maximum throughput. Between 70% and 90% of maximum throughput
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measurements for Informix showed errors up to 30%. On the other hand, for
Oracle, for transaction arrival rates less than 70% of maximum throughput the
average error was 19%, whereas for transaction arrival rates above this it is dif-
ficult to predict the response times as additional background processes cause
serious problems to overall performance. However, normal database activity
oceurs below 70% of maximum throughput and it would not be recommended

to exceed this value for any significant period of time.

7. Conclusions

Predicting the performance of a parallel database system is a complex task. An
analytical approach has been developed for identifying bottlenecks, predicting
maximum throughput and estimating response times. This has been applied
to three separate parallel relational database systems (Oracle, Informix and
Ingres) running on the ICL GoldRush Megaserver. This paper focuses on
the Oracle system, discussing the different forms of parallelism, the locking
policies, cache management and background processes, showing how these can
be mapped into a block formalism and presenting some preliminary results.
In validating the model, considerable problems were experienced in repeating
results for both throughput and response time tests. The throughput results
show very good correlation between STEADY predictions and actual measure-
ments, with an average error of about 6% between the maximum throughput
predicted and that measured. The correlation of the response times between
STEADY predictions and actual measurements for arrival rates up to 70% of

STEADY maximum throughput shows an average error of 19%.
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