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EXISTENCE AND STABILITY OF A SPIKE IN THE CENTRAL COMPONENT FOR A
CONSUMER CHAIN MODEL IN A TWO-DIMENSIONAL DOMAIN

WEIWEI AO, YUN]JIE PENG, AND MATTHIAS WINTER

ABSTRACT. In this paper, we study a three-component consumer chain model which is based on
Schnakenberg type kinetics in a two-dimensional domain. In the model there is one consumer feed-
ing on the producer and a second consumer feeding on the first consumer. Through a rigorous
analysis, we show that there exist two different single spike solutions if the feed rates are small.
Further, we also establish the stability results: If the time-relaxation constants for both producer and
the second consumer vanish, the large amplitude spike solution is stable and the small-amplitude
spike solution is unstable. We also derive results on the stability of solutions when these two time-
relaxation constants are positive. We show a new effect that if the time-relaxation constant of the
second consumer is bounded, the large-amplitude spike solution is still stable while it is unstable in
the one-dimensional case.
Keywords: Consumer chain model, Reaction-diffusion systems, Spiky solutions, Stability.

1. INTRODUCTION

We consider a reaction-diffusion system which serves as a cooperative consumer chain model.
In the model, there are three components considered: One pure producer, one pure consumer and
a central component who is both producer and consumer, which means that the central compo-
nent consumes the pure producer and it is consumed by the second consumer. This model is an
extension of the model introduced in [20] which considers the model in the one-dimensional case.
For realistic consideration, we assume that the producer and the second consumer diffuse much
faster than the first consumer. We also assume that cooperation of consumers is prevalent in the
system, which has been proven to be correct in many types of consumer groups or populations.

The system can be written as follows:

a 2
aa”f = ZAul — 1y + Su2 — azulug, xeQ, t>0 (1.1)

T aatz = DyAuy — 1y + wus, x€Q, t>0

ez\loge|

where S and u; denote the concentrations of the producer and the two consumers, respectively.
0 < €2 < 1, Dy and D, are three positive diffusion constants. The positive constants a; and a; are
the feed rates, and 7, 7; (nonnegative) are the time relaxation constants.
We choose the domain Q as the unit ball B(0, 1) in R? and consider Neumann boundary condi-
tions
dS E)uz
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It is necessary to mention that the choice of the coefficients of the nonlinear reaction terms in
system (1.1) is to ensure that the spiky solutions for all three components have an amplitude of
order O(1) as € — 0. Further, to get profiles on the order unity scale, we need to have a very
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= 0. (1.2)
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small diffusion constant for the central component and much larger diffusion constants for the
other two components.

Models involving a chain of components are significant in many fields, such as biology, social
sciences and so on. Many useful works have been done by different authors. Our model is an
extension of the Schnakenberg model introduced in [7] and [9]. Firstly, let us recall some related
works. [8] and [10] studied the existence and stability of spiky patterns on a bounded interval.
[18], [13] and [14] studied similar results for a two-dimensional domain. And there are also many
useful results of Gray-Scott model, which is closely related to ours. [3], [4], [5], [6] studied the
existence and stability of spike patterns on the real line. [11], [12], [15], [16], [19] studied the
two-dimensional cases. The results we obtained in this paper generalize similar statements in the
one-dimensional case in [20].

In the following sections, we first prove the existence of single spike solutions in a unit ball. We
show that if the feed rates a; and a, are small enough, two such spiky solutions can be obtained.

We also show that in the case T = 71 = 0, the large amplitude solution is stable while the
small amplitude solution is unstable. What’s more, we have shown that if the two time relaxation
constants T and 7y are small, the stability is the same as in the case T = 79 = 0, and that is exactly
what we expected.

Throughout the paper, the symbol C represents a constant independent of € which may not be
the same in different places. Denote A = O(B) as |A| < C|B| for some C > 0.

The structure of this paper is as follows. In Section 2 we will present the main results on exis-
tence and stability. The proof of the existence and Theorem 2.1 will be presented in Section 3 and
4. In Section 5 we derive a nonlocal eigenvalue problem (NLEP) and study large eigenvalues, and
the study for small eigenvalues will be presented in Section 6. The linear theory and properties
for the Green’s function are given in the appendix.

2. MAIN RESULTS

We first construct stationary spike solutions to (1.1), i.e. spike solution to the system

D1AS + foer — @i SUi =0, x€Q,

ez\loge|
e2Auy — uq + Su1 — apuqu3 =0, x €0, (2.1)
2 _
DyAuy — up + 62\10ge\”1u2 =0, x e,

with Neumannn boundary conditions given in (1.2).
We will construct solutions of (2.1) as follows:

$ = S(|x]) € H{(QY),

X
m =i (y)) € Hy(Q0), =2,

up = up(|x[) € Hy(QY),

where
H}(Q) = {v e H*(Q) : g—z =0},
0, = B(O,%),
H,(0,) = {0 € HX(0),) 3—380 0},
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Before stating the main results, we introduce some necessary notations and assumptions. Let
w be the unique solution of the following problem

{Aww+w20, w > 0in R?,

w(0) = maxw(y), w(y) +0as |y = e (22)
yeR?

It's well known that w(y) ~ |y|~"/2e~ ¥ as |y| — oo, we can also get that [ w® = 3 [, w?.
Our main result can be stated as follows:

Theorem 2.1. Assume that

Dy =const, € <1, Dy = const. (2.3)
Let Gp, and Gp, be the Green’s functions defined in (7.13) and (7.17), respectively. Assume that
2 OF (Jrzw(y)dy)?
ajay < — 0o for some by > 0 small. (2.4)
U7 16m2D5(fre w2 (y)dy)?

Then problem (2.1) admits two "single-spike” solutions (Sg, uj ., u5 .) and (SL, ull,e, ”lz, o) with the follow-
ing properties:

(i) all components are radially symmetric functions.

(ii) For x #0,

s,l _ s,l
S (x) = c{'Gp, (x,0) + O (| log el (2.5)

s,l
Wik (x) = Lew (Vli"‘x) +0 (e ) 26)

—_
N——

|loge|
sl sl 1
uye(x) = ¢y .Gp,(x,0) + O (| 10g€|) , (2.7)
where w is the unique solution of (2.2),
__ 19 1
o 27D(14 a8 1
e = Ze|logel 1+0 |loge|) )’ (2.9)
27tD,)2(1 + ) 1
O CLe : <1+(9< )) 2.10
€ Gelloge] [ra wdy |loge| 210
and o' is given in (3.9).
On the other hand, if € is small enough and
Q2 dy)?
ey > NP U oy
1672 D5 (Jge w?(y)dy)

for some 69 > 0 independent of €, then there are no single-spike solutions which satisfy (i) and (ii).

The proof of Theorem 2.1 will be given in Section 3 and 4.

We also study the stability properties of the single-spike solution constructed in Theorem 2.1.
The following are the main results on stability.

Theorem 2.2. Assume that (2.3) and (2.4) are satisfied. Suppose that T = 171 = 0, then we have the
following results:
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(i) (Stability) The large-amplitude solution (SL, ull, o ulzl o) is linearly stable. There is a small eigenvalue

of exact order O < ) with negative real part which is given in (6.9).

e2
[loge|
(i) (Instability) The small-amplitude solution (S¢, uf ., u5 ) is linearly unstable. Thereis a large eigen-
value of O(1) with positive real part.

For the case of T and 7; positive, and T small we have the following result:

Corollary 2.3. Assume that (2.3) and (2.4) are satisfied.

(i) There exists a constant 1y > 0 independent of € such that for 0 < T < oand 0 < 17 < oo the
stability properties of the large-amplitude solution (SL,u} _, ulzl o) and the small-amplitude solution
(S%,uj ., u5 ) are the same as in the case T = 71 = 0.

(ii) There is a small eigenvalue of exact order O (H(f—;d) with negative real part which is given in (6.9).

Remark 2.4. To have this type of spiky solution, the feed rates ay and ay, in particular their combination
atay, must be small enough. Otherwise the food source S and the hybrid uy will not be able to sustain u;
and uy, respectively.

3. EXISTENCE: CALCULATING THE AMPLITUDES

In this section, we will show the existence of spike solutions to (2.1) and prove Theorem 2.1. We
begin by computing the amplitudes in leading order and will give a rigourous existence proof in
the next section.

We will show the existence of spike solutions to (2.1) which in leading order are given by (2.5),
(2.6) and (2.7). We choose the second component of the approximate solution as follows:

cewo (B2 ) (e 6)

for some positive constants ¢ and a.. Here x is a smooth, radially symmetric cut-off function
which satisfies

al,e(x) =

x € CP(R?), x(x)=1for|x| < g and x(x) =0 for |x| > Z (3.2)

The main reason for using the cut-off function (3.2) in the ansatz (3.1) is that Neumann boundary
conditions are satisfied exactly.

We set
_x
y= ¢’
and consider the limit
€ — 0.
By a simple computation, we know that w(y+/1 + a.) satisfies
Ayw — (14 ae)w + (1 + ae)w® = 0. (3.3)
Comparing coefficients between the second equation and (3.3), we have
1
2
ne = axuy . (0) + O <!10g€\) , (3.4)
1+ ae 1
= —— — . 3.5
= 5.7 O (Tioger) &)

We remark that in leading order Scu? . agrees with S¢(0)u? . since uj . decays exponentially

away from 0.
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From the Green function Gp, defined in (7.17), we get

1 2
Uge(x) = m /QGDz(x/Z)ul,e(Z)uZ,e(Z)dz
1

= 2
= Tiogel Jo Gp, (x, ey)uy e (ey)us . (ey)dy. (3.6)
This implies
Ceu%,e(o) 1
upe(0) = 27Dy (1 + &) /]sz(y)dy +0 (\loige]) )
ie.

27Dy (1 + ae) ( 1 )
ue0) = 77+ 0 | 7= |- (3.7)
O w7 TToge

Integrating the first equation in (2.1), using the Neumann boundary condition and balancing
the last two terms, we can get

a

0= 3 [ e (s
”156( )&2 1
Pa o0 (i)
— 2 1
~oit [ @@z +0 ()

_ 19 1
Ce = T T 02y +0 Toge] ) (3.8)

Then by (3.4), (3.7) and (3.8), we can calculate that

O] fra w(y)dy £ /|1 (Jy2 w()dy)2 — 1672 D3a302  fo w2 (y)dy)?
4rtDaay+/ay g2 w?(y)dy

Q) (Jge w(y)dy)?
16712D5 (g2 w?(y)dy)?
The last condition states that, all other constants being equal, the combination a%az must be

small enough.
This implies that under the condition

> QP (Jre w(y)dy)?
alaz < 2
1672D3( [g2 w?(y)dy)?

from which we can get that

(3.9)

Ke =

under the condition

a%az <

—9Jg for some dy > 0,

there are two solutions for ., denote af and &%, respectively, and one solution for .
On the other hand, if

2 [OF (J w(y)dy)*
aay > 212 2 2
16722 D3 ( Jr2 w? (y)dy)

+Jp for some oy > 0,

there are no such solutions.
Now we show that
ol >1 and ol <1. (3.10)
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Since that

ol w(y)dy—\/rm% | iy~ 16m2D3atan( | wr(y)ay? < Do vz | wd(w)iy
]RZ ]RZ ]RZ ]RZ

(:)47TD2a1\/E/ wz(y)dy < \Q\/ w(y)dy
R2 RR2

O (Jge w(y)dy)?
1672D3( [2 w2 (y)dy)?’

= a%az <

from which we can get that

10wy — \/IOP(Jre w(y)dy)? — 1672 Diadnn( e w2 (y)dy)?

€ <1,
47tDra1/az [r» w2 (y)dy

which means that L < 1. Similarly, we can prove that a$ > 1.
Finally, this results in the two single-spike solutions (SL, ull,e, ulz’e) and (S, u ., u5 ) of (2.1). In
the next section we will rigorously prove the existence of these two solutions.

4. EXISTENCE: RIGOROUS PROOFS

In this section we show the existence of solutions of (2.1) for which the central component has a

spike. As we have shown in the previous section, there are two such solutions (SL, u} o ub ) and

(8%, ui ., u5 ) which differ by the size of the amplitude. We will not write the superscripts * and !
in this section for the existence proof applies to both of them.
The second component of the approximate spike solution introduced in (3.1) is given by

(Ix[),

ﬁl,e (x) =

o (BIE)

where ¢ and &, have been computed in (3.8) and (3.9), and x has been introduced in (3.2).
Further, S. and i, . solve a partial defferential equation which depends on i1 ¢ only. Therefore
we denote S¢ = Tj[il1 ] and ilp . = T;[il; ¢], respectively. We insert this approximate spike solution
into (2.1) and compute its error.
The left hand side of the second equation in (2.1) at (Se, @1 ¢, o e) = (Ti[i1e], H1e, Toltl¢)) is
calculated as follows:

Ayily e — iy e + Sellf o — Aoty ¢113 o = Ayt e — 1l1¢ + Se(0)il] o — aptly 113 . (0) + [Se — Se(0)]i7

} i 3 5 1
- 20yt (e = e (02 (0) + O o)

= E1+E2+E3+O(W)

in L2(Q), where Q. = B(0, 1).

/€
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We compute

El — Ayal,e — 17[1[6 + S~€ (O)ﬁie - azﬁl,eﬁ%ﬁ(o)

- . 14 e 1
= Ayul,e - (1 + “e)ul,e + Teuie +0 ( )

= E[Ayw — (14 ae)w+ (1 +ac)w?] + O <

1
‘OQbyO'

Computing Se(x), using the Green’s function Gp, defined in (7.13), we derive the following
estimate:

Ex = [Se(ey) — Se(0)]i] c(ey)

a ~
et _ﬁ%,e(ey) ! / [GDl (eyl €Z) - GDl (0, GZ)]S(; (GZ)TZ%,E (GZ)dZ
| log €] Qe
__mEE5e(0) / 1 2| - ,
- log €] i1 ¢ (ey) ]Rz[27TD1 log [y — 2] + Hp, (0,ez) — Hp, (ey, €z)|w (\/1 + aez)dz

x(14+0 1
Toge]

_ 1 ~2
‘OQMyOWf

Thus we have

Similarly, from (3.6), we compute

E3 = —2ay111,¢(ey) (iT2,e (€y) — 112,6(0)) 2, (0)
1
= 2a2ﬁ1,€(ey)ﬂ2,€(0)/ |Gp, (ey,ez) — Gp, (0, ez)]@ﬂ%e(ez)ﬂlle(ez)dz

1 1 o |z|
Sy —1]

= 2511y ¢ (€y) il . (0) + Hp,(ey,ez) — Hp,(0,€z)]ii1 ¢ (ez)dz

0
|log €] ]Rz[27TD2

x({14+0O 1
| loge|

1\ .
—oQbmeﬁ

Thus we have

— 1 : 2
E3 =0 (@) in L (Qe)

By definition, the first and third equations of (2.1) are solved exactly and so do not contribute
to the error.
Writing the system (2.1) in the form R¢(Se, 1 ¢, t2c) = 0, we have now shown the estimate

C1
| loge|

IRe(T1 (6], e, Talitne]) 12 (a,) < (41)

for some C; > 0 independent of € small.
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Next, we investigate the linearized operator £, around the approximate solution (S, @ ¢, iz ¢ )-
It is defined as follows:

aq ~2
3 Tl,e Dy ATl,e 2[loge| loge| Seul eq)e €2| loge| u1,€1P1,e
Le b, = GZACI)e — P, + 2561/11 eq)e + ul 6‘1,1 c ﬂzﬁz eq)e — 2&217[1’6112/615[;2/6 . (42)
Yo DyAYy e — Yo + Wuz €q>e + Zlloge| log€| ul,eﬁZ,eTZ,e

We will show that this operator leads to a uniformly invertible one for € small enough.

To study the kernel of L., we first solve its first and third components. Therefore, we have
Y1 = T1[ii1,e|Pe and ¥y ¢ = Tj[il1,¢]Pe, where T; [1l1 | and T;[ii; ¢| are linearized operators which
can be expressed by the Green’s functions Gp, and Gp, defined in (7.13) and (7.17), respectively.
Substituting these expressions into L., the first and third components vanish and it only remains
to consider the second component. We obtain the following operator:

ﬁe: le\](ﬂe) - Lz(Qe)/

Le(Pe) = AyPe — De + 2Seily o Pe + 11 o (T1[1l1,6]Pe ) — ar1l3 DPe — 202101 1l e (T [1l1,6]Pe ). (4.3)

In order to introduce a uniformly invertible operator, we define approximate kernel and the
approximate cokernel as follows:

aﬁle aale 2
Ke = span =, ~ v C H5(Qe),
€ P {ayl ayz} N( 6)
aalle aalle 2
Ce = span{ 3 oy } C L7(Qe).

Then the linear operator L. is defined by
Le: K —CZ,
Le: Teo Ly, (4.4)
where Ci- and K2 denote the orthogonal complement with the scalar product of L?(Q) to Ce and
Ke in H%(Qe) and L?(Q), respectively, and 7t denotes the projection in L?(Q)¢) onto C;-. Here

mte = id since we consider the radially symmetric case.
The next proposition will show that this operator is uniformly invertible for € small enough.

Proposition 4.1. There exist positive constants €’ and A such that for all e € (0,€’),

I£e®l 20,y = M@l q,) forall @ € Kz (4.5)
Further, the linear operator L. is surjective.
Proof. The details of the proof will be shown in the Appendix. U

Remark 4.2. So if we consider in radial function space, the operator L is invertible.

Finally, we solve the system (2.1). It can be written as:
Re(ge + LI[1/ ﬁl,e + q)/ 712,6 + LI[2) = Re(ue + QD) - 0/ (4-6)

where U, = (S, iye,0ipe), ® = (Y1, P, ¥2). Since L, is uniformly invertible if € is small enough,
we can write (4.6) in function space with ® as

® = — LR (Ue) — LIIN(D) =: M(D), 4.7)
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where £_1 is the inverse of £ and
Ng(@) — Re(Ue + @) - Re(Ue) - RIE(U(;)@. (4.8)

Note that the operator M is defined by (4.7) for ® € Hy ,(Q) x Hf, (Qe) x HY (Q), where

HIZW(Q) = {u € H%,(Q), u isradial }. We are going to show that the operator M, is a contraction
on

CoCq
| log €]

Be = {® € Hy;,(Q) x Hy,(Qe) x Hyy,(Q) : [Pl g2 () x r2(00,) < 2 (00) < } (4.9)
if € is small enough and Cy is chosen properly large. We have by (4.1) and Proposition 4.1 that

IMe (D) 120 x 200y < 2 (0) < AT (HNe(q’)\|L2(Q)xL2(Q€)xL2(Q) + ||R€(u€)||L2(Q)XL2(Q€)><L2(Q)>

<A 1(e CoCq n Ci ,
|loge|  |logel

where ¢ — 0 as € — 0. Similarly, we show

[Me(P1) — Me(P2) | 12(00) x 2 (00 ) x 2 (02) < Cel|P1 = P2l 12(0) 2 (00 ) x H2(00) -

where c¢. — 0 as e — 0. If we choose Cy large, then M, is a contraction mapping in B.. The
existence of a fixed point ®. € B, follows from the Contraction Mapping Principle, and P, is a
solution of (4.7).

We have thus proved:

Lemma 4.3. There exists € > 0 such that for every € € (0,€’) there is a @ € Hy (Q) x HY ,(Qe) X
HY, ,(Q) satisfying Re(Ue + Pe) = 0. Further, we have the estimate

C
|loge|’

|Pell 20y x H2(0) x H2(Q) < (4.10)

In this section we have constructed two exact spike solutions of the form Ue + ®¢ = (Se, U1 ¢, Up ).
In the next sections, we are going to study their stability.

5. STABILITY I: STUDY OF A NONLOCAL EIGENVALUE PROBLEM

We study a small perturbation of a single-spike steady state (Se, U7 ¢, 42 ¢) which could be either
the small-amplitude solution (5%, uj ., u5 ) or the large-amplitude solution (SL, ull,e, ”lz,e)~

We linearize (1.1) around the single-spike solution derived in leading order S¢ + ¥ ce’<!, u1 . +
Peete!, uy ¢ + Vo€, where the three perturbation ¥1 . € H3,(Q), @e € H(Qe), Y2, € H(Q)
are small in their respective norms. Then the perturbations in leading order satisfy the eigenvalue

problem
N Y1e TAeY1,e
Ee @e — )\e@e ’ (5. 1)
Yo TA Yo

where L. denotes the linearized operator around the steady state (Se, u1 ¢, t2) which has the
domain H%,(Q)) x H%(Qe) x H%(Q). Here we have A € C, the set of complex numbers. To show
the stability, we first introduce a necessary definition.

Definition 5.1. A spike solution is linearly stable if the spectrum of Le lies in the left half plane {\ €

C: Re(A) < —co} for some ¢y > 0. A spike solution is linearly unstable if there exists a eigenvalue A
of Le such that Re(A¢) > 0.
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We first consider the case T = 0 and 7; = 0 and show its stability. Writing down L, explicitly
and expressing ¥; . = T/[il; c|Pe, i = 1,2, using the Green’s functions Gp, defined in (7.13) and
(7.17), respectively, we can rewrite (5.1) as

EADe — D¢ + 2Seil  Pe + 15 (T1 [i1,6]Pe ) — a21l5 DPe — 202111 1l e (T3 [1,6]Pe) = AcPe.  (5.2)

Then, arguing as in the proof of Proposition 4.1, a subsequence of the sequence ®, converges
to a limit which we denote by ®. Next we derive an eigenvalue problem for ®.
Integrating the first equation of (5.1), we get

/”1e( X)¥1e(x)dx = —2/ Se(x)up e (x)Pe(x)dx.
O 9

Letting y = Z and € — 0, we have

V1O [ wPdy = ~25:0)% [

wddy + O (#) ,
R2

[loge|
which implies that

_ 25¢(0) Jre wPdy 1
0= iy (140 (oga)) Y
Then by (3.1) and (3.5) we have
2S¢ ( 2 wdd 1

Tl,e(o)uie(ey) = - (:e 2 2%{ oy (1 + O (| 10g€|))

fle d}/ 2 < < 1 ))
—2(1 1+0 . 54
(e f]RZ Jrew?dy " \Jloge] G4

We also compute

1
Y,.(0) = @ /Q Gp, (0, ez)[u%e(ez)@e (€z) +2uy c(€z)upe(€z)¥oe(€2)]dz

_ #1(1)%)[“2/6(0) /]R2 Ody + 28 ¥ (0) /]R2 wdy] (1 +0 (@)) '

We know by (3.7)
21Dy (1 + ae) 1

Ce Jr2 w(y)dy O(|10g€|)’

uzle (0) =

which means that

¥, (0) = éﬁljm (uz,e(()) /]R Py +2¥2,(0) /]R 2 wdy) (1 +0 (@)) .

Finally we get

a0 = 2O [ oy (10 (L))

27Dy (1 + ) Jre @dy <1 O< 1 )) s
‘:g f]RZ Wdy f]RZ ZUdy * yloge‘ : ( . )

Therefore we compute

_ f]RZ Pdy 1
20911 U Vo e = 20¢ fle wdyw 1+0 @ . (5.6)
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Putting the expressions (3.4), (3.5), (5.4) and (5.6) into (5.2) and let e — 0, we derive the nonlocal
eigenvalue problem(NLEP)

LO=AD— (1+a)D+2(1+a)wd—2(1+a fIRZ w +2 W I P, AD,  (5.7)
f]R2 fJRZ wdy

where & = lim ..
e—0

Although this derivation has been only made formally, we can rigorously prove the following
separation of eigenvalues.

Theorem 5.2. let A be an eigenvalue of (5.2) such that Re(A¢) > —ag for some suitable constant ay fixed
independent of €.
(1) Suppose that (for suitable sequences €, — 0), we have Ae, — Ag # 0, then A is an eigenvalue of
the NLEP given in (5.7).
(2) Let Ay # 0 be an eigenvalue of the NLEP given in (5.7), then for all € sufficiently small, there is an
eigenvalue A¢ of (5.2) with Ae — Agase — 0.

Proof. Part (1) follows by an asymptotic analysis combined with passing to the limit as e — 0
which is similar to the proof of Proposition 4.1.

Part (2) follows from a compactness argument by Dancer introduced in Section 2 of [2].

Let Ag # 0 be an eigenvalue of (5.7) with Re(Ag) > 0. We rewrite (5.2) as follows:

®e = —Re(Ae) [2§ea1,€q>e 12 (T} [dy,e] De) — a2 D — 2arily il (T [al,e]cbe)] . (5.8)

where R.(A¢) is the inverse operator of —A + (1 + A¢) in H?(Q)¢) (which exists if Re(A¢) > —1 or
Im(Ae) # 0). The important thing is that Re(Ae) is a compact operator if € is small enough. The
rest of the argument follows in the same way as in [2], we omit the details. L]

Remark 5.3. From Theorem 5.2 we see that the eigenvalue problem (5.2) is reduced to the study of the
NLEP (5.7).

The stability or instability of the large eigenvalues follows from the following results:

Theorem 5.4. [19] Consider the eigenvalue problem

P
AP — D 4 2ud — 7f]R2 @ ~w? = Ad, @ e H*(R?), (5.9)
Jrew
where w is a solution of (2.2) and vy is real.
(1) If v > 1, there exists a positive constant cq such that Re(A) < —cq for any nonzero eigenvalue A
of (5.9).

(2) If ¥ < 1, there exists a positive eigenvalue A of (5.9).
Q@) Ify#1land A =0, then ® € span{g%,% :
(4) If y =1and A = 0, then ® € span{w, g%,g—;"z :
In our applications to the case when 7 > 0 or 7y > 0, we have to deal with the situation when
the coefficient vy is a complex function of TA. Let us suppose that
v(0) € R, |y(tA)| <CforAg >0, T2>0, (5.10)
where C is a generic constant independent of 7, A. Then we have

Theorem 5.5. [17] Consider the nonlocal eigenvalue problem

AP — P + 2wd — y(TA) fIRz Sw’ =Ad, e HX (R, (5.11)

Jre w?
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where y(TA) satisfies (5.10). Then there exists Ty > 0 such that for all 0 < T < T,
(1) if v(0) < 1, then there is a positive eigenvalue to (5.11);
(2) if v(0) > 1, then for any nonzero eigenvalue A of (5.11), we have

Re(/\) < —cg < 0.

Proof. Theorem 5.5 follows from Theorem 5.4 by a perturbation argument. To make sure that the
perturbation argument works, we have to show thatif Ax > 0and 0 < 7 < 1, then |A| < C,
where C is a generic constant. In fact, multiplying (5.11) by ® (the conjugate of ®) and integrating
by parts, we obtain that

o i}
/(]V®]2+\®]2—2w\®]2):—/\/ ]<I>\2—'y(r/\)f]R2w /w2q>. (5.12)
R2 R2 flewz R2

From the imaginary part of (5.12), we obtain that

o -
/\1/ |D|? = Im <—’)/(T)\)f]R2 w2 / wZCI)) ,
R2 f]Rz w R2

A1l < Cily(TA)],

where A = Agr ++/—1A; and C; is a positive constant. By assumption (5.10), |y(tA)| < C and so
|A7| < C. Taking the real part of (5.12) and noting that

hence we have

Lhsof (5.12) > c/ |®|? for some C € R,
R2

we obtain that Ag < C,, where C; is a positive constant. Therefore, |A| is uniformly bounded and

hence a perturbation argument gives the desired conclusion.
O

Now we consider the large eigenvalue problem (5.7).

Lemma5.6. (1) If a < 1, for any nonzero eigenvalue of (5.7), we have
Re(A) < —¢p < 0.

If & > 1, the eigenvalue problem (5.7) has an eigenvalue with Re(A) > 0.

() Ifa #1and A =0, then O € span{g%,g% .

Proof. Integrating (5.7), we derive

(0(—)\—1)/ ddy = 0.
R2

Then for all the eigenvalues we have (i) « — A — 1 = 0, or (ii) the corresponding eigenfunction
satisfies [p. @dy = 0.

We first consider case (i). If « < 1, then A = a — 1 < 0 and this eigenvalue A is stable.

If« >1,then A = a —1 > 0, we construct an eigenvalue ® with eigenvalue A as follows and
the eigenvalue problem (5.7) is unstable: first we set

®=(L+1—a) qw®+cuw)], (5.13)
where
L: Kt = ChH LO:=AP— (14+a)®+2(1+a)wd,

K+ = {v € H*(R?) : / oVwdy =0}, Ct = {ve*(R?: / vVwdy = 0},
R2 R2
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[re wPdy Jre Pdy
>, = —2u .
Jre wdy Jr2 wdy
Then we multiply (5.13) by w and 1, respectively, and integrating we get a linear system for

the coefficients ( [g. w®Pdy, [r. Pdy) which has a unique nontrivial solution. Solving this system,
using the identities

c1=2(1+a)

Lw = (1+ a)w?,

L (yl);;lwy—kw) = (14 a)w,

we can eliminate ® in the definition of ¢; and c;. We can finally get

Jge2 w?dy

_ -1 _ =12
cl—/]sz(L—kl a) " wdy, /]sz(L—kl ) wdy+2(1+a).

Thus the eigenvalue problem is unstable for a > 1.

Next we consider case (ii).

Rescaling the spatial variable, the NLEP (5.7) reduces to the familiar NLEP considered in The-
orem 5.4 with v = 2 which implies that the real parts of all eigenvalues are strictly negative and
thus we get the stability. Then we get the proof for (1).

As for (2), integrating (5.7), we derive

ddy = 0.
R2
Rescaling the spatial variable, The NLEP (5.7) reduces to the familiar NLEP considered in The-
orem 5.4 with v = 2 and we thus get that ® € span{g%, aa—y“; . O
Proof of Theorem 2.2. By (3.10) we know that % < 1 and a$ > 1. Then the theorem follows by
combining the results of Theorem 5.2 and Lemma 5.6.

Next we extend the case T = 0 and 73 = 0 to the case T > 0 or 7y > 0 and show their stability.
Proof of Corollary 2.3. To emphasize the possible different behavior if T > 0 or 7y > 0, we
consider the cases separately:

(1): Consider 0 < T < 19 for some 1y > 0 and 13 = 0.

From the first equation of (5.1), using (3.5) and (7.15),

aj
¥140) = ~ i /Q G, 2 (0,2)[F1eiid  + 2Scity @) (2)dz

a 1
e /Q (laen + G0 (0.2) + O(T)) [¥1.c8 .+ 25etn o @] (2)d=

B 1 Gp, (0,€ez) TA 5
=01 ], Tiogelf i Togel* ©\Toga] [ ¥retfe + 25e0cl ()

B 1 1 ’ 1
= o1 | iogearen * by (P + 25anc@aedz (140 (e ) ).
(5.14)

We solve the equation above in three cases:
case 1: TA|loge| — O:
Then from (5.14), we get

— 1 2 1
Tl/e(O) = —m /]R2 W(Tlxeulﬁ + 2Seu1/€q)€)(€2)dz (1 + @ <‘ loge‘ )) ,




14 W. AO, Y. PENG, AND M. WINTER

which implies that

—2a Jr2 w®edy 1
Tl,E(O): 1 o) 2 2 140 (7= ’
e o ey ' (T

then we compute

_2a f 2 wCD dy ]'
2 1 R I w?
Y1,e(0)uye = [loge[TA|Q] (1 O (7)) '

a w?d loge
sy + T SR o5
It is easy to see that the factor
—2&11
loge|TAlQ] | m52
g2 w?dy 1+ae

is bounded.
case 2: TA|loge| — Cp, where Cy is a constant:
Then from (5.14), we get

B 1 1 ’ 1
¥1(0) = —m /]RZ( Toge||QTh + 27ID1)(T1’€’”1’€ + 251 e Pe) (€2)dz (1 +0 (@)) /
which implies that
—2a1 (g7 + 7207) d.d 1
¥1,(0) = T, f?zw = <1+0 <“ e‘)) ,
Ir zwzdy + 1i0§e (C0|Q| + 27rD R Y 08

then we compute

_n wded 1
Tl,e(o)uie = 1 " a fLHFZ wzfi ’ w (1 o <|10 €|)) .
&2 Jr2 wdy( T+2n11) ) MRS ! i

1

It is easy to see that the factor

is bounded for Re(A) > 0.
case 3: TA|loge| — oo:
Then from (5.14), we get

1 1
Y1(0) = —a /IRZ 27D, (¥, e“le + 2Scu1 De ) (€2)dz (1 + O ( )) ,

which implies that

11000) = g SOl (1o (L),

. 2
2;1;1?;2% + @ Jrewidy | log €|

then we compute

> —2(1+ae) Jre wPedy > 1
‘I’LE(O)uLe—MJrl f]szzdy 1+ 0 |loge| ) )"

0182 [po widy
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It is easy to see that the factor

2rDy (140 | 4
0182 2 w2dy T

is bounded.
Combining the three cases above, we can know by Theorem 5.5 that both the stability and in-
stability result extend from 7 = 0to 0 < T < 19 for some 15 > 0.

(2): Considert=0and 0 < 1y < o0.
Similar to the derivation of (5.14), we have

1
Y,.(0) = W /Q GDlelA(O,z)[u%’eCID6 +2uq ctp Yel(z)dz

_ 1 1 2
= Tiogel Jolara oy +Coe(02) + O+ A1 P - 2ur 0 ¥e (2)dz
1 Gp,(0,€z) 14+7TA >
- b, +2 Y d
/e(|10g€||0|(1 + 1A) |log €] ( | log € DzePe + 2us etip e ¥e] (€2)dz

1 1
~ 27Dy (1 + &) /sz(“%'e (0) e 26tz (0)F2e (O)w)dy (1 O <\ log €| )) '

which implies
2
u5 (0) [ge wdy [re Pedy ( ( 1 ))
Y56(0) = : 1+0(——=])- 5.15
2¢(0) 27D (1 + &) — 2t ¢(0) [re wdy [g2 wdy |log €| ©-15)
Finally we get by (3.7) that

o f]RZ q)edy 1 . 2
2021/[1,61/[2,6 (O)Tz,e (0) = 2lxemw 1+ @) @ in H (QG)

Thus we have for € small enough, putting all the expressions into the second equation of (5.1),
we know that both the stability and instability are the same as in the case when 7 = 0 and 73 = 0.

(3): In this stage we assume that 0 < T < 1y for some 7p > 0and 0 < 7y < o0.
Combining the formulas in the proofs of (1) and (2), it follows that both the stability and insta-
bility result extend from T = 0and 7y = 0to 0 < T < 1 for some 1p > 0and 0 < 77 < 0.

6. STABILITY II: COMPUTATION OF THE SMALL EIGENVALUES

We now compute the small eigenvalues of the eigenvalue problem (5.1), i.e., we assume that
Ae — 0 as € — 0. We emphasize that the analysis in this section applies to both (S, uf ., u5 )

and (Sle, ull o ulz e). Further, we assume that 0 < 7 < 1, where 19 > 0 is a constant which is small
enough and may be chosen independently of €, and 0 < 71 < co. Let us define

fi1,e(x) = uy,e(x)x(|x]).
Then it follows easily that
ure(x) = i e(x) +est. in H(Qe),

where e.s.t. denote the exponentially small term of O(e~%/€) for some d > 0 in the corresponding
term.
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Taking the derivation of the system (2.1) w.r.t. y we compute
Ay Vil e — Vyliy e + 2811, Vyly e + erSeuie — azvyalleuie —2apu1 cUp €V ylp e = es.t.. (6.1)
Let us now decompose the eigenfunction (¥1 ¢, ®e, ¥ ) as follows:

P = a°Vy iy o + O,

a .
where a¢ = ( al’e ), a1 ¢ and ap ¢ are complex numbers to be determined and
2,

We decompose the eigenfunction ¥ . as follows:
L
.\Pl,e — H€T9,€ + ‘Pl’el

where ‘I’(l) . satisfies

0 _ a 0,2 _ _2m
DlATl,e 62‘ lOge‘Tl,eulze 62‘ lOg€| S T/ll eVyul € — TA‘ETl e’
2yl =0
v ~Le|yn

and ‘I’f’e is given by

DlATlL,e WT%(; %e mseul eq) = T/\(:‘Tl e
swi| o 6.2)
v Lefon

Similarly, we decompose the eigenfunction ¥, ¢ as follows:
‘Pz’e = a(:‘\ifg’e + ‘PZL,G’

where ‘Pg c satisfies

0 0 2 0 0
DoAYy = e + cpiogertietze Yo, — W”z eVylle = TiAeY;
9 g0 =0
v~ 2€ 90 ’

and ‘I’z%e is given by

1 1 2 1 1 2 1 _ 1
DzATzle - Tz,e + €2| loge\ ul,euz’eTzle - €2| loge\ u2,€¢€ — TlAeTzle, (6 3)
2ys | =0 ’
W " 2€050

Note that ¥4 . and ¥, can be uniquely expressed in terms of ®, by solving the first and third
equation using the Green’s function Gp, 1), and Gp, r), defined in (7.15) and (7.19), respectively:

TLG = aeT(l),e + Tfe = aeTll,T/\e Vyal,e + T{,T)qu)é_’
Yy = a¥Y + Y5 = 0Ty Vyilie + Th o DL
Putting all the expressions into (5.2) we can decompose (5.2) by (6.1) as follows:
Hh+DL+13= aeu%e( (f,e —€VySe) — 2a€a2u1,€u2,€(‘1’g,€ —€Vilne)
+ ADL — DL +2u1 SeDF + uf i — 2211 etin Vo — 200u3 (DF — AeDF
= A«eaev!/ill/e. (6.4:)
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Using the Green’s function Gp, and Gp, ;). defined in (7.13) and (7.15), we compute €V S, and
Y9 . near zero, we get

-y m— 2
€sze(€y) GZHOgG‘ / Vprl €Y,z ) ( )”1,e(Z)dZ
___ 1 1 ,
~ |logel Ja. Vy (27TD1 log ely —z| Hp, (6}/,62)) Se(ez)u? .(ez)dz

_ _alse(o)/ 1 1 _ 2 1
= Thoge| Jre Vy 27D, log ey —7] Hp, (ey,€z) | ui (ez)dz (14O 7’ og <] ,

denote z = €2,
Y (ey) = —L/ Gp, A (€Y,2)Se(2)u1,e(2)Vzuy e(z)dz
116 €2| 10g€| Q 1/T € 4 € €
_ m 2
~ e [ Goumnlen, 152 Vi (2))a:

. 0156(0) / 7 1
|loge| Ja. Gy rac(ey, €2)Vz(u1e(e2))dz ( 1+ O | log €|

__alSe(O)/ 1 1 1
~ |loge| RZ(IQ]TA6+27TD1IOg€\y—z] Hp, (ey, ez))

X V(12 . (e2))dz (1 +0O <“ ! g T’/\g‘)) .

Using the fact that

1 1 1 1
Vi (27rD1 log ley — ez\) E <27TD1 log ey — ez\) =0, fory#z

then we have by integrating by parts that

Y9 (ey) — €ViSe(ey)

_5156(0) 1 1 1 - ) )
Hoge\ /]Rz (( ‘Q‘T/\e * 27tDy log 6’]/ — Z‘ HD1 (ey’ez))vz(ul,e(ez))

! 1 2 1
Vy (27TD1 10g€|y 2 le(ey,ez)) ”1,6(('32)) dz (1 +0 (|1 2 + T|Ae |))

[loge| /]RZ(VZHD1 (ey,ez) + VyHp, (ey,ez))ui(ez)dz | 1+ O Toge] + 7| A¢]
_ ang(O) 2 2 o 1
== €*y(VV+Hp,(0,0) + V2Hp, (0,0))u? .(ez)dz ( 1+ O o F|Ae|
’ Ogé“ R2 ‘ ’
2
_ _m€y5e(0) o / 2 1
=~ lloge V<Hp, (0,0) - ui(ez)dz (1+ O Togel + 7| Ae]

2
e y‘:e 2 7 1
iopq VHo 0.0 [wiy (140 (1 e ) )
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here V and V, are the derivatives of the first component and the second component, respec-
tively. Thus

I = auf (¥] . — €VsSe)
a°me*yG?

_ 2 2 2 1
= 3loge] V“Hp, (0,0)w /]sz dy (1+(9 (|10g€| +T|Ael ) |-

1
€Viiize(ey) = Togd/QVyGDz(G%Z)“Le(z)“ie(z)dz
_ 15.(0) 1
y

1 1
- oge| Jre 7D; log =7 — HDz(ey,ez)) uye(€z)dz <1 + O <7‘ loge\)) ,

Similarly,

1
Bele)) = ariorg) [, om0, () Vo ()

13,6(0)

1
Nogel I, Gomene et (10 (o))

2
o uZ,e(O) 1 1 1
= Tioge| Jwe \IOIT T aAe) + 27D, OB oy —2 ~ Tp2(€v,€2)

1
X Viuye(€z)dz (1 +0 (@ + ’L'1|)\e|)) ,

2

uZ,e(O) 1 1 1 B
~ Tlogel Jr, \\[Q[T +1ure) " 27D, loge\y_z\ Hp, ey, ez)
X Vi c(€2)

1 1
_vy <27TD2 10g e’y _ Z‘ - HDz (e% 62)) ul,e(ez)) dz

x11+0 #+T1|/\e|
| log e

eyuf (0)Ge  _, 1
STt S To e Y HR00) /]szdy <1 ) (—‘ fog< +71]/\6\>) .

—2a°ay1q cUp ¢ (‘Pg,e —€eVilpe)
3 2
__2.,€ u2,e(0)ge 2 / 1
= —€"ya ﬂ2(1+ae)|10g€|v HDZ(O,O)ZU IRZZUdy 1+0 7|10g€| —FTl‘Ae‘ .

We now estimate the orthogonal part of the eigenfunction by using the equation (6.4). Since
&L L K¢, then similar to the proof of Proposition 4.1, we conclude that

2
. - €
[0 < Ol + Elision = © (1roagy )

¥2e(ey) — eViinne(ey)

Thus
12 =

(6.5)
This implies

2
1T} 0. P |l 200y = O ( ) ,

Toge] (6.6)
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and

62
T3 20, P 120y = O (@) : (6.7)

We calculate

/ IgVyulledy:%lz/ ul,euz,eevxuzlecbédy—/ (—:szeuiecbédy
QE Qe Q

_2‘12/ ul,eu2,evyu1,€Té:edy+/Qu%,evyul,ellffedy

62
‘O(|1oge|2)'

by using (6.2), (6.3) and the estimate

vauze - O 1 ’ GVxS(; - O 1 .
’ | log €] | log €]
Note that

2 __1/ 3 / __1/ 2 / 3 _§/ 2
/]szwa— 3 ]sz, ]szwa— > ]sz, ]szdy—z ]szdy. (6.8)

Thus we multiply the eigenvalue problem (5.2) by Vw and integrating, we get

Lh.s. :/ (I + I + I3) Vwdy
R2
a°a1€7G3 _, 2 2 1
~ Jlloge) \Y HDl(O’O)/]sz wady/]sz dy (1+(’) (|1 ] + 7| Ae |))

2 € uZe()g

€“a a2(1+¢xe)|loge|v Hp,(0,0) /]szwady/]szdy (1+O (|1 el —i—Tl]/\e\))
2
<0 (oger)

_ %3 [ mle o axu %e() 2 27.\2 e?
T 5700+ S 0 00 w40 (1)

Further, we compute

1
r.hs. = Aea®ée /]RZ(Vw)zdy <1 +0 <@)) :

Combining the L.h.s. and r.h.s., we have

©2 (0 5 2 2 2
4 (Ael ’fg‘;‘(”léevzHDl(o 0) + E 2 ))vzHDz(0,0))%> = (9(7| 10;€|2)-

Denote M = “£2Hp, (0,0) + az(blli:i ))VZHDZ(O 0), then we have

he o Upewidy)?

where ¢ is an eigenvalue of M, and the vector a¢ approaches the eigenvector of M corresponding
too.
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Remark 6.1. From the study of the regular part of the Green’s function in [1], we know that both V?Hp,
and V2 Hp, are negative definite matrices at the origin.

We summarize our result on the small eigenvalues in the following theorem.

Theorem 6.2. The eigenvalues of (5.1) with A — 0 satisfy |A¢| ~ —‘ Furthermore,
Ae (J; R2 wzdy

— = c:,‘e—(f. (6.9)

Toge] f R2 (Vw)zdy
In particular these eigenvalues are stable.

This completes the proof of Theorem 2.2.
7. APPENDIX
7.1. Proof for Proposition 4.1. We will divide the proof into two parts:
PartI: There exist positive constants €’ and A such that for all € € (0,¢€’),
1£e®ll 200 = MIPllpp () forall® e Kt (7.1)

Suppose that (7.1) is false. Then there exist sequences {e;}, {®'} with e — 0, F = P,
k=1,2,...such that

1£e,@ |20y = 0,k — oo, (7.2)
HCI> \|Hz(Q€) = 1, k=1,2,.. (7.3)
By using the cut-off function x defined in (3.2), we define the following functions:
D16 (y) = Pe(y)x(Ix]), Y€ Qe
Dae(y) = Pe(y)(1 = x(Ix])), v € Qe. (74)

Let ;. = 0and P, = 0in R? \ Q, then by a standard procedure, we extend ® . and ®, . to a
function defined on IR?, respectively, such that

[D1ellp2(r2) < CllPrell 2(02,) [D2ell2(r2) < CllP2ell p2(02e )

for some positive constant C.
Then from || ®e|[12(,) = 1 we have

Hq)l,GHHz(]RZ) <C, Hq)Z,eHHZ(]Rz) <C.
By taking a subsequence of € we may also assume that fori =1, 2,

®;. —d; as e—0 in H*(R?).

Taking the limit € — 0 in (4.4), then ® = ( g; ) satisfies

/ D Vwdy =0, (7.5)
R2
and it solves the system
LO] = Ay®; — (14 ) +2(1 + a)wd; — fle Jrewddy o e ®dy (7.6)
f]RZ w>dy Jre wdy

In Lemma 5.6 we have show that the system (7.5) and (7.6) has only the solution ®; = 0 in R?.
Further, trivially, ®, = 0 in R2.
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By standard elliptic estimates we get ||®D; ¢, [|;2(,) — 0 fori = 1,2 as k — co. This contradicts
the assumption that ||®*|| H2(0p) = 1

PartII: The linear operator L. is surjective.

Consider the adjoint operator £} to the linear operator L¢. To show the linear operator L. is
surjective, we just need to show that £ is injective from K to C;. We first pass to the limite — 0
for the adjoint operator L:. Then we have to show that the limiting adjoint operator £* has only
the trivial kernel.

Expressing L7 explicitly, we can rewrite the adjoint eigenvalue problem as follows:

DlATl/e W”l eTl € + 1/[1 €®€ — T)\ Tl €7
2ADe — D + 2Scuu1 De — azuzlecbe Seu1e¥1e + loge| log€|
DZATZ,E - TZ,e + ul,euz,eTZe 2a2u1,eu2,eq)e = Tl)\ TZ,E'

uz eTZ e = AeDe, (7.7)

62|loge\
2
€2|loge|

Integrating the first equation, we have

ay 2 2
S ul,e‘I’Ledx = ullecbedx,
€ |10g€| 0O 0O

taking the limit e — 0 as in the proof of part I, then we have

€*|loge| [p2 w*®dy 1
Tl,e(o) - a f]Rz wzdy (1 + O ( )) ’

which implies that

—iseulﬂu = -2(1 fle @ <1 +0 <L)) . (7.8)

e?|loge f]R2

We also compute that

2
¥,(0) = /Q Gp, (0, €z) {@uu(ez)uzle(ez)‘I’zle(ez) — 2€%apu1 c(€2)Up (ez)q)e(ez)} dz,

then by (3.7) we compute that

_ 92 g2 wPdy 1
¥2(0) = 2¢”|loge|ay [ wdy (1 +0 (‘ ogel) )

Therefore we have
U5 Y. =20 —— (1 _— . 7.
€2|10g€|u2,e 2€ & f]RZ wdy + O [Toge] (7.9)

Putting the expressions (7.8) and (7.9) into (7.7), Then by (3.4) and (3.5) we derive the following
nonlocal linear operator which is the adjoint operator of (5.7):

od
L =AD— (1+4a)®+2(1+a)wd —2(1+a fIRZ Jrew ey o Jee@®dy g0

f]RZ w?dy f]RZ wdy

Then we have the following claim:
Claim. The kernel of the operator £* defined in (7.10) is trivial.
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Proof. Integrating (7.10), we derive [z, w®dy = 0 since otherwise there is an unbounded term.
Furthur, we get the relation

jiRz y 2
@ _ (I) . 7.

Multiplying (7.10) by w and integrating, we derive

/ w*ddy = 0. (7.12)
R2

Then from (7.11) we get [ Pdy = 0. Then all the nonlocal terms of (7.10) vanish and by Theorem
5.4 in the special case v = 0 we derive ® ¢ span{g%, 37“;}. Thus the kernel of £* is trivial. O

7.2. The Green’s Functions. Let Gp, (x,() be the Green’s function of the Laplace operator with
Neumann boundary conditions:
D1AGp, (x,§) — ﬁ +6z(x) =0 inQ
Ja Gp, (x,&)dx =0 (7.13)
2:Gp,(x,8)| =0

Here J¢(x) denotes the Dirac delta distribution concentrated at the point ¢.
We can decompose Gp, (x, &) as follows:

1 1

Gp, (x,¢) = 271Dy log x — ¢ — Hp, (x,8), (7.14)

where Hp, (x, ¢) is the regular part of Gp, (x,¢).
Next we define

{DlAGDm(x, ¢) = TAGD, 1A (x,§) +J¢(x) =0 inQ (7.15)

0 _
EGDLT/\(X/ (:) ‘ 20 =0

By simple calculation we can get that

/Q Gp,,A(x, §)dx = %
Let
Go,a(2,8) = Ty + Covea(,9)
where

DlAéDl,T/\(xl ’é) - T)\GDl,T)\(xl g) - ﬁ + 5@(3() = 0 ln Q
fQ Gp,, (X, g)dx =0

9 A
a_nyDl,T/\(x/ g)’aﬂ =0

From calculation we can get Gp, 1 (x, &) as follows:

GDl,m(X, &) = Gp,(x,8) + O(TA),
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which means that

Gp,, w(x,8) = |Q| -y +GD1(x ¢+ O(tA)
~ A 3D, 98 g — Hoy(0:8) + O()
T QA T 2xD, Blx—g D
1 1 1
- - 7.
alx T oD, P8y =g~ Hoim (@), (7.16)
where Hp, -1 (x, ¢) is the regular part of Gp, A (x, §).
Then an elementary computation shows that:
1
HDl(x/‘:) - HDl,T/\(x/‘:) |Q| -y < C|T)\|

uniformly for all (x, &) € Q) x Q. For the first two derivatives we have
|V[Hp, (x,) = Hp, ra(x,§)]] < C|TA|
uniformly for all (x,¢) € Q x Q and
V2[Hp, (x,8) = Hp,za(x,8)]| < ClrA

uniformly for all (x,¢) € Q) x Q), where V above can mean derivative w.r.t x or ¢.
Further, let Gp, (x, ¢) be the following Green'’s functions:

DzAGDZ(X, C:.() - GDz(x, C:.() + 5(:(3() =0 inQ (7 17)
%GDZ(x’g))aQ: |
then
/ Gp, (x,¢)dx =
QO
Let )
GDz(x g) |Q| + GDz(x g)
where
DyAGp, (x,&) — Gp,(x, &) — ﬁ +6:(x) =0 inQ
Ja Gp,(x,&)dx =0
%GDZ(X’(:)‘aQ -
By calculation we can get that
1 1 n
GDz(x g) 27TD ]‘Og |x ‘:| HD2 (x’ ’é) + 0(1)’
then
1
GDz(x ‘:) |Q| +GD2(x ‘:)
1 1 1 N
- @ + 27TD2 log |x I (:| - HDZ(x/‘:) + 0(1)
1 1 1
=@l + 27D, log P Hp,(x,¢), (7.18)

where Hp, (x, ¢) is the regular part of Gp, (x,¢).
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Similarly, define

DZAGDZ,Tl/\(x/ g) — (1 + TlA)GDLTl/\(x, c:,‘) + 5@'(36) =0 inQ)
d (7.19)
MGDz,Tl/\(xl C:.() }BQ - 0
By simple calculation we can get that
1
/QGDZ’Tl/\(x,C)dx = m
Let )
GDZ,TlA(X, (;I) = m + GDz,TM(xI (;I),
where A X
DyAGp, (%, ¢) — (14 1iA)Gp,ma(x, ) — ﬁ +0z(x) =0 inQ
Jo Gpyra(x,&)dx =0
aéDz,Tl/\(xrg) -0
oy - Y
o)
From calculation we can get Gp, 1,1 (x, &) as follows:
Gp,u (%, &) = Gp,(x,8) + O(1+1A),
which means that
1
Gp,ua(x,6) = O/ + 1) +Gp,(x,8) + O(1+1A)
1 1 1
~ A+ a0 + oD, log r—d Hp,(x,&) + O(14+1A). (7.20)
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