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Abstract

Wind flow is one of the biosphere components that could change the amount of predation. This paper
suggests and analyses a prey-predator model including wind in the predation task. The Holling-
Tanner functional response has been considered to illustrate the global dynamics of the proposed
model, considering the change in wind intensity. The persistence conditions are provided to reveal a
threshold that will allow the coexistence of all species. Numerical simulations are provided to back
up the theoretical analysis. The system’s coexistence can be achieved in abundance as long as the
wind flow increases.
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1. Introduction

Environment researchers have been centred on biotic factors, which could affect species’ growth
and diffusion. That means the majority of the research captures the result of any living component
on other creatures to construct the related ecology [13, 6]. Theoretical studies on predator-prey
relationships have evolved from Lotka and Volterra’s early work [10]. After that, different mecha-
nisms have been proposed in studying mathematical ecology over a lengthy time [7, 15, 12]. In the
1940s, Leslie has presented a model where individuals’ survival rates and reproduction depend upon
their ages [5]. Robert has developed Leslie’s model by adding the network joining the reproducing
individuals. Further, he described how many features of graphs develop under his system [9]. The
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Holling-Tanner is a system of two differential equations and is assumed by Kolmogorov type [3]
provided by

dx

dt
= rx(1− x

k
)− qxy

dy

dt
= Sy(1− y

nx
) (1)

The parameters in system (1) are explained in detail in the next section. This complex model has
been used when the favoured food for the predator is not available in abundance. Therefore, the
growth of the predator population is limited. The Holling-Tanner model has been modified in [2, 1]
by adding a positive constant c to the predator environment carrying capacity. This modification has
been studied in the case the predator switches into alternative prey. Therefore, the term (1−y/nx) in
the predator equation, is exchanged to (1−y/(nx+c)), which is known as a modified Holling-Tanner
model [1].

dx

dt
= rx(1− x

k
)− qxy

dy

dt
= Sy(1− y

nx+ c
) (2)

Recently, ecologists have studied the effect of wind on the ecosystem, which may have a diverse impact
on the interaction of species. Winds may have different patterns, and speed varies accordingly [11].
In [8], it has been shown that aerial predators better detect the reed warbler nest exposed to the
wind blowing. If the prey is less able to be conscious of the nearness of predators, then the rate of
predation may increase [14].

This paper considers the effect of wind blowing and harvesting in the prey-predator interaction.
The predator attacks the prey according to the Holling-Tanner functional response. The residual of
this article is arranged as follows: Section two investigates the equilibrium points for the proposed
model. In section three, the behaviour of the possible steady points has been analysed. Finally, in
the last section, some numerical analyses have been provided to confirm our analytical results.

2. Assumptions of the model

Suppose a prey-predator model with wind flow contains the following species: prey and a predator,
with the mathematics being based on the following assumptions. n1(t) is the density of the harvested
prey, n2(t) is the density of the predator.

Under the above assumptions, the model can be presented by:

dn1

dt
= rn1(1−

n1

k
)− p(n1)n2

ϕ(w)
− eqn1 = n1f1(n1, n2)

dn2

dt
= sn2(1−

n2

ϕ(w) + βn1 + 1
)− γn2 = n2f2(n1, n2) (3)

Here, model (3) has been analysed with the initial conditions n1(0) ≥ 0 and n2(0) ≥ 0. p(n1) = αn1

is the Lotka-Volterra type of functional response. ϕ(w) = 1 + w is the wind efficiency, where w
represents the wind flow satisfying the following assumptions:

1. ϕ(0) = 1 ; i.e., the predator’s search efficiency continue as before in the absence of wind.
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2. ϕ
′
(w) > 0; i.e., the predator’s search efficiency increases with the rise of wind.

All parameters of the system (3) are expected to be positive and labelled as follows: k is the carrying
capacity of the prey with intrinsic growth rate r; βn1 is the prey’s carrying capacity for the predator
with intrinsic growth rate s; e, q are the effort, and the catchability rate applied on the prey, i.e.,
eq represents the harvest amount rate of the prey; l represents an additional food source for the
predator which is added to the predator’s carrying capacity; α is the attack rate of the prey due to
the predator; γ represents the predator’s natural death rate.

The functions in system (3) are continuous and differentiable on R2
+ = {(n1, n2), n1 ≥ 0, n2 ≥ 0}.

Therefore, there exists a unique solution for system (3).
The positive invariance of R2

+ for system (1) is examined first, and then boundedness is shown.

3. Positivity and boundedness of the solution

Lemma 3.1. System (3) is positively invariant.

Proof . Let N = (n1, n2)
T ∈ R2 and, F (N) = [f1(N), f2(N)]T where, F (N) : R2

+ → R2 and
f ∈ C∞

+ (R2
+). Then the system (3) becomes

N
′
= f(N) (4)

with N(0) = N0. It is clear for any N(0) ∈ R2
+, such that Ni = 0, then [fi(N)]ni=0 ≥ 0(fori = 1; 2).

Now, any solution of the Eq. (4) with N0 ∈ R2
+, say N(t) = N(t;N0), is such that N(t) ∈ IR2

+ for
all t > 0. Thus, the system is positively invariant [7]. □

Theorem 3.2. All solutions n1(t) and n2(t) of the system (3) with the initial conditions (n1, n2) are
uniformly bounded.

Proof . Let (n1(t), n2(t)) be any system solution of (3) if the initial condition is non-negative. Then

for H(t) = n1(t) + n2(t), we have
dH

dt
=

dn1

dt
+

dn2

dt
.

dH

dt
= rn1 −

rn2
1

k
− βn1n2

1 + w
− eqn1 + sn2(1−

sn2

1 + w + βn1 + l
)− γn2

Hence,
dH

dt
+ µH ≤ 2rn1 −

rn2
1

k
− βn1n2

1 + w
+ 2sn2(1−

sn2

1 + w + βn1 + l
).

Where µ = min{r + eq, s+ γ}, Then dH

dt
+ µH ≤ 2rn1 + 2sn2 = ξ, then

0 ≤ H(n1(t), n2(t)) ≤
ξ

µ
(1− e−µt) +H(0)e−µt, hence 0 ≤ supH(t)

t→∞
≤ ξ

µ
Therefore, all the solutions of the system (3) that are initiated in R2

+ are attracted to the region

ϑ = {(n1, n2) ∈ R2
+ : H = n1 + n2 ≤ ξ

µ
} under the given conditions. Thus, these solutions are

uniformly bounded. □
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4. Existence of equilibria and their stability

In this section, the existence and the stability analysis of the steady points of system (3) are
studied. The computation shows that system (3) has four equilibria, namely

1. The vanishing equilibrium point: E0 = (0, 0).

2. The prey equilibrium point: E1 = (0, n”
2), where n”

2 =
(s− γ)(1 + w + l)

s
, exists when

s > γ. (5)

3. The predator equilibrium point E2 = (ñ1, 0), where ñ1 =
k(r − eq)

r
, exists when

r > eq. (6)

4. The positive equilibrium pointE3 = (n∗
1, n

∗
2), where n

∗
1 =

k[s(r − eq)(1 + w)− α(s− γ)(1 + w + l)]

rs(1 + w) + αβ(s− γ)
,

and n∗
2 =

(s− γ)(1 + w + βn∗
1 + l)

s
, exists when 0 < α(s− γ)(1 + w + l) < s(r − eq)(1 + w).

Now, the local behaviour around the above steady points is found. First, the Jacobian matrix of the
system (3) at each point is computed, and then, the eigenvalues of the resulting matrix are calculated.

The Jacobian matrix of system (1) at the vanishing fixed point I0 = (0, 0) can be written as:

J(E0) =

[
r − eq 0

0 s− γ

]
Then, the eigenvalues of J(I1) are given by λ01 = r−eq and λ02 = s−eq. That means E0 is a locally
asymptotically stable point if and only if

r < eq and s < γ (7)

The Jacobian matrix of the system at E1 = (0, n”
2) can be written as:

J(E1) =

r − eq − an”
2

1 + w
0

β(s− γ)2

s(1 + w + l)
−(s− γ)


Then, the eigenvalues of J(E1) are given by λ11 = r − eq − αn”

2

1 + w
and λ12 = −(s − γ) < 0. That

means E1 is a locally asymptotically stable point if and only if

r − eq <
an”

2

1 + w
(8)

The Jacobian matrix of the system at E2 = (ñ1, 0) can be written as:

J(E2) =

−(r − eq)
−αñ1

1 + w
0 s− γ


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Then, the eigenvalues of J(E2) are given by λ21 = −(r− eq) < 0 and λ22 = s− γ. That means E2 is
a locally asymptotically stable point if and only if

s < γ (9)

The Jacobian matrix of the system at E3 = (n∗
1, n

∗
2), can be written as:

J(E3) =

 −rn∗
1

k

−αn∗
1

1 + w
β(s− γ)2

s
0

 (10)

Straightforward computations show that the eigenvalues of the Jacobian matrix J(E3) satisfy the
following relations:

λ31 + λ32 =
−rn∗

1

k
< 0,

λ31.λ32 =
αβn∗

1(s− γ)2

s(1 + w)
> 0

Hence E3 is locally asymptotically stable in the R2
+.

It should also be noted that the formulae of λ31 and λ32 are given by the following equations:

λ31,32 = −(
rn∗

1

2k
)± 1

2

√
(
rn∗

1

k
)2 − 4αβn∗

1(s− γ)2

s(1 + w)
. It can be seen that real or complex eigenvalues are

possible. In particular, as the carrying capacity of the prey k → 0, the eigenvalues are real, and for
k large, the eigenvalues are complex. In the following, the global stability of E3 is investigated.

Theorem 4.1. E3 is globally asymptotically stable in R2
+, whenever it exists.

Proof . For any initial value (n1, n2) in R2
+, let H(n1, n2) =

1

n1n2

, h1(n1, n2) = rn1(1 − n1

k
) −

αn1n2

1 + w
− eqn1 and h2(n1, n2) = sn2(1−

n2

1 + w + βn1 + l
)− γn2.

Clearly, H(n1, n2) > 0 for all (n1, n2) ∈ R2
+ and it is a C1 function in R2

+.

Now, since Hh1(n1, n2) =
r

n2

− rn1

kn2

− α

1 + w
− eq

n2

; Hh2(n1, n2) =
s

n1

− sn2

n1(1 + w + βn1 + l)
− γ

n1

Hence, ∆(n1, n2) =
∂Hh1

∂n1

+
∂Hh2

∂n2

= − r

kn2

− s

n1(1 + w + βn1 + l)
< 0

Note that ∆(n1, n2) does not change of sign and is not identically zero in the R2
+. Then according

to Bendixson-Dulic criteria, there is no periodic solution. Since all the solutions of model (3) are
bounded and E3 is a unique positive equilibrium point, hence by using the Poincare-Bendixson
theorem, E3 is globally asymptotically stable. □

Remark
According to the Jacobian matrix J(E3) given by (10), all the eigenvalues of J(E3) have negative

real parts at the equilibrium point E3. Therefore, E3 is a hyperbolic equilibrium point, and thus,
the system (3) has no bifurcation at E3.

5. Persistence analysis

The persistence of model (3) indicates the survival of all system species over the long term.
Mathematically means the strictly positive trajectories of system (3) that initiate in R2

+ have no
omega-limit sets on the boundary planes.
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Theorem 5.1. Assume that the boundary equilibrium points conditions hold, then system (3) is
uniformly persistent.

Proof . Consider the function ω(n1, n2) = nα
1n

b
2, where a and b are positive constants. Obviously

ω(n1, n2) > 0 for all (n1, n2) ∈ R2
+ and ω(n1, n2) → 0 when n1 → 0 or n2 → 0. Consequently,

φ(n1, n2) =
ω̇

ω
= b[s− sn2

1 + w + βn1 + l
− γ] + a[r − rn1

k
− αn2

1 + w
− eq].

Now, the only possible omega limit sets of the system (3) on the boundary of the n1n2− plane
are the equilibrium points E0, E1 and E2. Thus according to the Gard method [4], the proof follows,
and the system is uniformly persistent, provided that φ(n1, n2) > 0 at the boundary fixed points.
Now, since

φ(E0) = b(s− γ) + a(r − eq);

φ(E1) = a(r − eq − αn”
2

1 + w
);

φ(E2) = b(s− γ),

It follows that, φ(E0) > 0, φ(E1) > 0 and φ(E2) > 0 under the existing conditions of the boundary
equilibrium points for all values of a and b. Then, system (3) is uniformly persistent. □

6. Numerical analysis

This section explores model (3) dynamics in a windy atmosphere by providing some numeri-
cal simulations using MATLAB 2015a. For this determination, the following set of parameters is
considered for model (3) throughout the article:

r = 5, k = 20, α = 0.8, e = 0.03, q = 0.02, s = 4, β = 0.3, l = 0.2, γ = 0.001. (11)

Now, the effect of the wind flow is discussed on the behaviour of model (3). The system without wind
flow, i.e., w=0 shows stable behaviour for the positive steady point E3 = (8.24, 3.67) with different
starting points, as exhibited in Fig. 1. This behaviour confirms the result that has been proved
in Theorem 4.1, which states that E3 has global stability whenever it exists. Moreover, system (3)
illustrates unstable behaviour at E0, E1 and E2. This shows that at least one of the conditions in
Eqs. 7, 8 or 9, are violated.

To check the dynamics of system (3) in the presence of wind flow strength, we have chosen w=5.
The results show that for different values of initial points, the trajectories of system (3) approach
asymptotically to the positive equilibrium point E3 = (14.02, 11.2). From Fig.1 and Fig. 2, it is
observed that the density of prey and predator populations rise to a certain level in the presence of
wind flow, while they decrease in the absence of wind. Ecologically, in the presence of blowing wind,
the prey is less able to observe the proximity of predators. Therefore, the predator becomes more
effective to detect the prey.

7. Conclusion

In the proposed model, it has been observed that the system has four different equilibrium points.
The values of the first and third equilibria E0 and E2 are independent of the wind flow w, but E1

and E3 are dependent on w. The system’s stability at E0, E1 and E2 has been determined based on
specific conditions, while the equilibrium E3 is always stable if the conditions for its existence are
satisfied. E3 can only exist if E1 and E2 both exist. Assuming that 0 < α(s−γ) < s(r−eq), then E3

exists if the wind speed is large enough, and E3 exists for lower wind speeds if the second inequality
is satisfied by a large amount.
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Figure 1: Phase plane analysis with the data given by Eq. (11) with w = 0.

Figure 2: Phase plane analysis with the data given by Eq. (11) with w = 5.
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