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Abstract

The availability of a large amount of image data and the impracticality of
annotating each sample, coupled with various changes in the target class,
such as lighting, posture, etc., make the performance of feature learning dis-
appointing on unlabeled datasets. Lack of attention to hard sample pairs
in network modeling and one-sided consideration of similarity measurement
in the process of merging have exacerbated the huge performance gap be-
tween supervised and unsupervised feature expression. In order to alleviate
these problems, we propose an unsupervised network that gradually opti-
mizes feature expression under the guidance of similarity. It employs the
deep network to train high-dimensional features and small-scale merge to
generate high-quality labels to alternately execute the two steps. Feature
learning is guided by gradually generating high-quality labels, thereby nar-
rowing the huge gap between unsupervised learning and supervised learning.
The proposed method has been evaluated on both general datasets and the
datasets for person re-identification (person re-ID) with superior performance
in comparison with existing state-of-the-art methods.
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Figure 1: Principle comparison of methods. First, (a) explains the goal pursued
by the model. Furthermore, (b) represents a hand-craft method. (c) is the
current method of combining clustering and neural network, which uses the
k-means algorithm [1] and CNN training repeatedly to optimize the feature
extraction network. Finally, (d) represents our proposed method, which refines
and taps the potential of the mergeing process and training process. Through
the comparison of these ideas(b,c,d), it is highlighted that our method pays
more attention to the sample similarity relationship in the training process.

1. Introduction

With the widespread application of image classification and image re-
trieval, accompanied by the rise of large-scale unlabeled image data, how
to use unlabeled data-driven methods to learn the feature expression of im-
ages, and how to use high-dimensional vectors to represent the discriminative
features of images become hot research topics. However, the complexity of



the content of the image, the lack of discernibility of the image with the
characteristics of hand-designed, and the guidance of learning without true
labels exacerbate the difficulty of the task. Traditional methods are mainly
manual features [2, 3] where the feature expression of images relies on prior
knowledge. With the development of neural networks, the discrimination
and robustness of image features under supervisory signal has been greatly
improved, which significantly improves the accuracy of image classification
tasks and image retrieval tasks. However, in real life, there are more un-
labeled image data, and it is impractical to make precise annotations for
each sample. Some previous works combined deep networks and clustering
algorithms together to narrow the huge gap in performance between super-
vised and unsupervised features, such as using k-means clustering tags for
reverse training of the network [1, 4] and employing minimum distance as the
merge standard to gradually generate pseudo-label to optimize the network
[5]. In recent work, the attention mechanism is further mined and applied for
more discriminative feature learning [6, 7]. However, most methods did not
fully exploit the relations or constraints among samples, which carry crucial
information for feature representation.

In order to reduce the gap with supervised methods, we propose a dy-
namic framework based on multiple similarities to combine samples between
different classes and gradually optimize feature representation. On the one
hand, in the feature network, the multi-similarly loss is used to guide the
learning of features to narrow the sample pairs of the same label and in-
crease the difference under different labels. On the other hand, in the first
merging process, we use a clustering algorithm based on limited threshold and
breadth-first search to classify similar labels with higher confidence, and gen-
erate reliable labels. Then we use the distance between the samples based on
different similarity considerations to sort as the basis for the merge of classes.

Specifically, we use the differences between the various images to initialize
the network. Due to the same network architecture, images with larger dif-
ferences during training are more likely to be far away from each other. This
provides the basis for our preliminary clustering. Furthermore, using the
breadth-first search algorithm, the adjacent samples in the feature space are
divided into multiple sets and given different pseudo-labels. We want to ag-
gregate highly similar samples to form multiple high-reliability sets, instead
of dividing all samples correctly at once. Although the number of classes
will be greatly increased and the original class will be divided into multiple
classes, the samples are aggregated by a strong confidence and the generated
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pseudo-label has a higher credibility. The Euclidean distance between sam-
ples, the consideration of the surrounding environment information where
the two samples are located, and the optional sample equilibrium restriction
constitute our distance measurement, which is called the individual-group
similarity. This distance is used as a criterion for whether to merge classes
during the merging process. It takes into account not only the spatial dis-
tance between sample pairs, but also the relationship between the sets in
the feature space where the samples are located. Based on the assumption
that the distribution of various classes in the dataset tends to the mean, the
distance measurement should be added according to the specific dataset.

We propose multi-similarly loss to train the feature extraction network. It
can narrow the distance between samples of the same class and make samples
of different classes far away from each other. As shown in Figure 1, compared
to previous works, we divide the network training into multiple stages to
facilitate the use of more accurate similarity-based merging measurement in
the process of merging classes. The proposed method makes the gradually
generated pseudo-label more credible, and it can optimize the entire feature
network.

Our contributions are as follows:

1) We propose an unsupervised feature learning network based on con-
text similarity and gradual optimization of feature expression. Our proposed
method can generate high-quality pesudo-label, based on which we use itera-
tive merging methods to train the network. The network then can gradually
express the similarity distribution contained in various classes in the dataset.

2) In order to effectively use the rich similarity relationship between sam-
ples when combining, we propose the individual - group similarity between
samples as a measurement method. The proposed distance can consider the
similarity relationship between both individual samples and sample groups.
In addition, the constraints of sample balance when measuring sample spatial
distance are also considered.

3) Since there are dissimilar features between the same class and similar
features between different classes, it will cause the interference problem of the
similarity measurement of different classes in the training process. Based on
the principle of similar attraction, we propose a multi-similarly loss function
to alleviate this problem.



2. Related Work

2.1. Unsupervised Feature Learning

Unsupervised feature learning has received extensive research and atten-
tion in many tasks, such as image recognition, image classification and image
retrieval tasks [8]. The previous works [2, 3] mainly used manual methods
to generate features and used them in subsequent tasks. However, the hand-
designed features are not normally discriminatory enough because they are
limited by people’s prior knowledge. Chen et al. [9] integrated extreme
learning machine withunsupervised feature selection for clustering. Wang et
al. [10] proposed a new network structure for both representation learning
and Gaussian Mixture Model-based representation modeling. Jiao et al. [11]
combined graph-based clustering and high-level semantic features into an un-
supervised segmentation method. Du et al. [12] proposed an unsupervised
deep network to map images to hierarchical representations without any label
information. Ding et al. [13] proposed to carry out the feature selection pro-
cess in the learned latent representation space. Dosovitskiy et al. [14] used
data augmentation to generate proxy labels to guide the network learning.
Bautista et al. [15] used the similarity classification in the sample to ease
the huge imbalance between a positive sample and many negative samples
and to solve the unreliable relationship between most samples. Wu et al.
[16] proposed a non-parametric softmax classifier, and used noise contrast
estimation to solve the computational difficulties caused by a large number
of samples. Different from these methods, our framework not only considers
the diversity of samples, but also makes use of the similarity between them.
Compared with these unsupervised feature learning methods, our framework
has better performance in image classification and image retrieval tasks.

2.2. Self-supervised Learning

At present, a popular form of unsupervised learning is called “self-supervised
learning” [17], which uses a priori operation on the original data to obtain
“pseudo-label” to replace artificially annotated labels to guide the network
to learn features. For example, some researchers [18, 19] explored how to
use spatial environment and video spatiotemporal information as free and
rich supervision signals to train rich visual representations, and in [20] the
rotation of the image served as a supervised signal to guide the learning of
the unsupervised network. Recently, Jing et al. [17] classified and summa-
rized the research works related to self-supervision. It is worth noting that



the current contrastive learning as a form of self-supervision has attracted
the attention of many researchers. Oord et al. [21] predicted the data repre-
sentation in the latent space by using a powerful autoregressive model based
on the comparison prediction coding and the proposed infoNCE loss func-
tion. In [22] , it is assumed that the effective data identification pair [21]
could be further applied and improved by making the variability in the nat-
ural signal more predictable. The difference between these methods and our
work is that these methods rely on prior knowledge or keen “intuition” and
require professional knowledge to carefully design pseudo-label so that they
may generate useful features for auxiliary tasks. Our proposed method does
not require these addtional conditions and can still perform well on general
tasks.

2.3. Data Representation and Similarity Measurement

The success of machine learning algorithms usually depends on the data
representation. We assume that this is because different feature representa-
tions can represent different hidden explanatory factors behind the data. Al-
though domain knowledge can be used to help design representations, learn-
ing can also be used. In recent years, more powerful representation learning
algorithms have been put forward for visual tasks [23, 24, 25]. In general,
data representation is the core determinant factor on the performance of
most machine learning algorithms on a particular application. Furthermore,
the storage and availability of large amounts of data remain barriers, and the
cost of annotating in human and material resources is also very high. How to
express a large amount of original data into robust high-dimensional feature
representations without supervision has become an important research topic.
In particular, clustering method generating pseudo-label and feature learning
training mutually promote each other as a kind of mainstream. The similarity
measurement plays a key role in the clustering process. An important factor
that affects whether two sample groups can be combined into the same class
is the distance measurement between samples. The effect of the combination
directly affects the quality of the pseudo-label. Currently, the measurement
standards for sample pairs are often unitary, such as direct use of Euclidean
distance or Cosine distance to measure. In [5], the minimum distance be-
tween the sample pairs and the average distance based on the class level are
compared in experiments, and it is concluded that the use of the minimum
distance as the standard for the combination measurement has better perfor-
mance improvement. It uses a single metric on sample pairs to determine its
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image retrieval performance. However, we believe that only using the spatial
distance between samples for measurement has limitations, and the groups to
which the samples belong (the same label or similar samples) have a certain
reference value for their similarity measurement. Zhang et al. [26] proposed
an entropy-based distance metric that quantifies the distance between cat-
egories by exploiting the information provided by different attributes that
correlate with the target one. Zhao et al.[27] introduced a distance metric
which incorporates inner-domain neighbor similarity. In [28, 29|, the sample
pairs were measured taking into account the surrounding information, and
the original ordering in the image retrieval is rearranged. Fan et al. [30]
proposed a dual-level progressive similar instance selection method to build
relationship for each instance with its neighbors. In our unsupervised feature
learning method, merging pseudo-label is crucial, and the similarity measure-
ment of sample pairs determines the quality of pseudo-label. By considering
the spatial information and neighboring information of the sample pair, we
propose a measurement of the similarity of the individual-group distance and
use the gradual combination to improve the network.

3. Method

We will describe the overall framework and show its algorithm flow in
section A. The design of similarity measurement and loss functions will be
introduced in sections B and C, respectively. It is worth noting that in Table
1, we define some important notations.

3.1. Owverall Framework

In unsupervised learning tasks, we can use only N unlabeled images
X = {z1,29,23,...,xn}. Our goal is to train a neural network model ca-
pable of extracting discriminative features F' = { f1, fa, f3, ..., fn } (Resnet-50
[31] is used by default in this paper ), that is, f; = function(z,z;), where
z is the learnable parameter in the model. The key to unsupervised learn-
ing is whether it can capture effective low-level appearance information and
high-level semantic information while suppressing interference from unknown
changes, such as pose, lighting, background, etc. Due to intra-class varia-
tion, inter-class similarity and the uncertainty of interference factors, the task
is more difficult. We divide the optimization model parameters into three
stages, including initial training, re-training with pseudo label and iterative



Table 1: Notations and Definitions

Notations Definitions
N the total number of samples in the dataset
X the samples
x; the i-th sample
F the sample feature
fi the i-th sample feature
L the pseudo-label
l; the label of the i-th sample
v the feature extraction network
£ the classifier
0, or 0, the parameter corresponding to f;
¢ the clustering algorithm
eps the threshold in clustering algorithm
J and o, 3 different similarity measurements
12,3 @57 and corresponding weight parameters
D the individual-group similarity
a,b the feature representation from different samples
m the dimension of feature representation
g the gallery images
K or w the different loss functions
L the multi-similarly Loss

merging process. Figure 2 and Algorithm 1 show the proposed method more
intuitively.

Initial training. In this stage, we classify each image in the training set
into an independent class, so that the network can maximize the difference
between each image. Set the training set images as X = {x1, z9, 23, ..., Tn },
and map them to NN classes, namely L = {ly,[,1s, ..., {5}, which corresponds
to each image in the image set. This will cause each image in the training
process to tend to different classes. In fact, if images with similar features
tend to be in the same network, they tend to be close to each other, that is,
features generated from similar images are also similar. In this process, we
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Figure 2: The training process of the proposed overall architecture. Network
update and merging are carried out interactively (Numbers 1,2,3 in the pic-
ture), aiming to generate distinguishing features. The detailed multi-stage
process is described in section 3. It is worth noting that the yellow arrow
represents the clustering algorithm based on breadth-first search.

need to optimize the conventional neural network:
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where &(0;v(01;x;)) is classifier. ) are the parameters of the feature ex-
traction network. 6y are the parameters of the classifier. v(6;;z;) is the
image features. Generally speaking, Loss is the cross-entropy softmax loss,
but in the case of unsupervised, the lack of real labels causes the classi-
fier to fail to be optimized effectively, so we use the Repelled loss without
classifier parameters to train the network. This loss is based on the non-
parametric characteristics of non-parametric loss [16] . The multi-stage and
multi-similarly loss function specifically proposed in the framework will be
described in detail in section C. We use mini-batch stochastic gradient de-
scent and backpropagation to calculate the gradient to minimize this cost
function. This stage is called the model initialization training stage, which
can be seamlessly migrated to other unlabeled datasets for model pre-training
tasks.



Algorithm 1 A class merging framework based on similarity guidance
Require: Unlabeled data X = {1, x,...,xx5}, merge percent p € (0,1),
CNN model (v).
Ensure: Best CNN model (v*) and accuracy (A*).
1: Initialize v, cluster label (L) and number of cluster (C').
2: Train v with L, number of merging images num = N * p.
3: for step 1:1/p do
4:  Calculate distance between sample pairs using individual-group simi-
larity p = D(v(X)).
if step =1 then

6: Generate new labels L,., through clustering algorithm based on
breadth-first search.

7. else

8: Merge classes based on similarity (L,.,) and current number of
classes C' = C' — num.

9: end if

10:  Update label L with L,..

11:  Initialize the lookup table V' with the multi-similarly loss, which tem-
porarily stores the features of each class.

12:  Re-train v with L,,,,.

13:  Evaluate on the validation set and obtain accuracy A.

14:  if A>A* then

15: A* = A.
vt = .

16:  end if

17: end for

18: return v* and A*.

Re-training with pseudo label. After the initial training of the first
stage, we need better labels to guide the training of the feature network
in reverse. A subset of the sample set with high similarity in the feature
space is required to form the first generation of pseudo-label. We choose
a breadth propagation algorithm based on high-confidence sample pairs to
perform the combination. A high-confidence threshold can ensure that the
generated tags have a high degree of similarity. Although this will result in
many more classes than expected, we will alleviate this problem in the third
phase of the iterative algorithm. Choosing a clustering algorithm based on
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Figure 3: The proposed individual-collective similarity is in turn determined
by the spatial distance (a), the influence of neighbors (b), and the number
constraints of the same kind (c) in the picture. It is worth noting that in the
Figure (b), the ratio of the intersection and union of the neighbors of ¢ and b
is used to determine the degree of influence of their neighbors.

breadth-first search can take into account the similarity between each pair of
samples, so as to form a high-confidence set of these highly similar samples,
and mark them as the same class:

L = ((eps,v(01; X)) eps € {0.1,0.2,0.3} (2)

The eps is selected from 0.1 to 0.3 according to the actual dataset, that is,
the similarity distance between the sample pairs is smaller than the eps to
have the same pseudo-label. In this way, the high-confidence sample pairs
can be merged into one class, which provides a good basic environment for
the following iterative algorithms. For (, we use the DBSCAN [32] algorithm
as the unification algorithm for our breadth-first search. We classify it as a
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small-scale cluster algorithm and call this stage pseudo-label initialization.

Iterative merging process. When we have the preliminary pseudo-
label, we will train the network again. The network will further improve
the feature network due to these label information, so as to obtain more
distinctive features. When the preliminary potential of pseudo-label has been
tapped, we will carry out an iterative merging process. Every time classes
are merged, it will be accompanied by a network update. The purpose is
to fully explore the supervisory role of pseudo-label, and further enable the
similarities of the same kind to be reflected and the differences of different
kinds to be expanded. In the merge process, we select the sample pairs of
different classes with the smallest joint distance to merge. This joint distance
is called individual-group distance and will be described in detail in section
B. It is worth mentioning that not every merger is beneficial to the update of
the network. The main reason is the influence of the wrong merger behavior
in the merge process. The difference of the loss function at each stage will
be described in detail in section C.

3.2. Individual-group Similarity

The similarity measurement of sample pairs is very important in the un-
supervised feature extraction method of deep learning. It affects the effect
of clustering, thereby further affecting the quality of pseudo-label; and ulti-
mately affecting the update trend of the feature network. We consider that
only using the Euclidean distance between two samples to measure the sim-
ilarity between samples has limitation, because it only considers the spatial
information between the sample pairs, and ignores the surrounding informa-
tion. On the basis of Euclidean distance, we additionally adopt the nearest
neighbor algorithm and the idea that each sample’s neighbors should include
each other. And inspired by the local to global idea, we propose a joint
distance that needs to consider the feature of the sample itself and multiple
surrounding information. Our default setting is (20, 10, 5). In other words,
each layer has higher and higher requirements for data similarity. We op-
tionally add sample balance control to make the total number of samples
between each class relatively balanced.

1
dy = (Z(ai - bi)p)” (3>
i=1
where p = 2, a = (a1, as,...,a,,) and b = (by,bs, ..., b,,) represents a single

sample feature, and m represents the dimension of the feature. d; can be
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any conventional metric based on two sample features, here we use Euclidean

distance.
(k) U(g, k)
where ¥ (z, k) is the number of the sample and its neighbors each containing
each other under the premise of knn algorithm. Among them, we expand the
number of neighbor samples in order to weaken the influence of the artificial
factors of k. The main idea is to compare the similarity between the neighbor
samples (or multiple neighbors) of the sample and the neighbor samples of
the sample.

On the other hand, considering the efficiency of the algorithm and the
weight of the surrounding samples, it is simplified as:

d2:1—|

S min(e(e, g5), £(9ir 95))
Yoy maz(p(x, ;). 0(9i, 95)

dy=1— (5)

where

(6)

0 otherwise

e h0) g e y(ak)
oz, i) =

the distance is mainly a measurement of the similarity of the surrounding
conditions of the sample.

ds(a,b) = |Q + [T (7)

where |Q|, |T'| are the number of classes of the a and b samples respectively.
The distance is mainly to control the number of samples of the same kind to
be in equilibrium.

D=axd +Bxdy+vyx*ds (8)

where «, 3,y are the hyperparameters, we set them to 0.5, 0.5, 0.03. Among
them, ds has limitations on the dataset, and we selectively add it in specific
experiments. Figure 3 visualizes the principles of each similarity.

3.3. Multi-similarly Loss

In the first stage, since each sample is treated as a separate class, there
is no sample pair of the same kind. We only use the formula to update the
network:

iv: eVz‘:gfi/T
k=) —log(—g—77) 9)
i=1 Zj:l e'i i/
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where V;. represents the class center to which the ¢-th sample belongs. C
represents the number of classes and r is the hyperparameter.

When using this loss to update the network, it is emphasized that the
features under similar tags can be further narrowed. Although this can
strengthen the similarity of the same class, hard samples farther from the
class center between the same class require additional training to narrow the
distance and some between the different classes need to be far away, which
is not clearly reflected. Therefore, we use triplet loss function to alleviate
this problem. So that the similarity between dissimilar species is suppressed
while the similarity of hard samples in the same class can be fully expressed.

W= Z maz(D(f(z?), f(ah))

D(f(a3), £(a2)) + margin.0)

(10)

The margin is the hyperparameter of the difference between the distance

from the sample z7 to the positive sample 2! and the distance from the

sample to the negative sample z'. In the other words, the margin is the

minimum distance between positive and negative pairs in the same sample.
The final loss function is:

t=n*xk+(1—n)*w (11)

where 7 is a hyperparameter, which determines the proportion of each part’s
loss. ¢ considers that the features of the samples of the same type are close
to the average features of the class, while taking into account the training
between pairs of samples with obvious differences in the same classes and
those with smaller differences in the different classes.

4. Experimental Results

In this section, the datasets used are introduced firstly, including the
general datasets and the datasets for person re-identification (person re-
ID). Furthermore, the evaluation criteria of metrics are introduced, includ-
ing the criteria for finding one-to-one correspondence between true labels
and pseudo-label based on the Hungarian algorithm in unsupervised cluster-
ing [33] and the commonly used performance evaluation mAP and Rank-k
(k=1,5,10) [5]. Finally, we introduce the experimental implementation de-
tails and specific experiments including parameter comparison experiments,
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ablation experiments, and experiments comparing with the most advanced
methods.

4.1. Dataset

4.1.1. General Dataset

STL10 [34]. An ImageNet-adjusted dataset for developing unsupervised
feature learning, deep learning, and self-learning learning algorithms, which
contains 500/800 train/test samples from 10 classes and 500/800 train/test
samples for each class, as well as auxiliary unknown classes of 100,000 unla-
beled images. A dataset of 96 x 96 color images. That is, there are a total
of 10 classes, and each class has 1300 examples.

CIFAR10/100 [35]. A natural image dataset containing 50,000/10, 000
train/test images from 10 (/100) object classes.

MNIST [36]. A handwritten digit dataset containing 60,000/10,000
train/test images of 10 digit classes. The MNIST dataset consists of 70,000
handwritten digits and the size is 28 x 28 pixels. The numbers are centered
and the dimensions are standardized.

4.1.2. Person Re-identification Dataset

Market [37]. A large-scale dataset of pedestrian pictures captured by
6 cameras on a university campus. Each pedestrian is captured by at least
2 cameras, and there may be multiple images in one camera. It contains
12,936 images from 751 identities for training, 3368 pictures of pedestrians
from 750 identities for query and 19,732 images for testing.

Duke [38, 39]. A large-scale person re-identification dataset derived
from the DukeMTMC dataset. It contains 16,522 images of 702 identities
used for training, 2,228 images of other 702 identities used for query, and
17,661 gallery images.

4.2. Metric

4.2.1. Unsupervised Standard Metric

Evaluation is based on accuracy, that is, the correct number of samples
divided by the total number of samples. For the true label and pseudo-label
correspondence problem, we use the k-means method based on the num-
ber of classes equal to the true label to divide the learned features and find
the best one-to-one permutation mapping according to the standard evalu-
ation scheme. This is not to use true labels for learning, but to correspond
to pseudo-label. Thus, the true label situation corresponding to the final
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pseudo-label is obtained, and then the accuracy [40] is obtained. We use
both the training set and the test set for model learning, which is the same
as the experimental setting of Huang et al. [33] .

4.2.2. Person Re-ID Metric

For image retrieval tasks, the images are divided into train set, test set
and gallery set. The test set is used to find and sort the same person under
different cameras in the gallery, and get its mAP and Rank-1, Rank-5, Rank-
10 measurements.

4.8. Experimental Details

In this paper, the Resnet-50 network structure is selected. The parame-
ters trained based on the imagenet dataset are used as pre-training parame-
ters. As the input data of the network, the image width and height are set to
128 and 256 respectively. The training batches are 4 iterations except for the
20 iterations in the first round, because the first round of training changes
to network parameters fluctuates greatly. We call the completion of the first
round of training as model initialization. The default batch parameter is 64.
instances = 4 means that 4 samples of each class will be randomly selected
for training during the training process. If the number of samples is less
than 4, they will be randomly copied from the samples of this class. Merge
percent = 0.05 controls the number of classes merged each time. For exam-
ple, there are currently 1000 classes, the next time the number of classes will
be reduced by 1000%0.05 = 50 classes. It is worth noting that in the training
process of the STL10 dataset, the imagenet dataset pre-training model is
not used, instead the CIFAR10 dataset is used for pre-training. Because the
STL10 dataset is a subset of the ImageNet dataset.

4.4. Parameter Comparison Erperiment

From the data in Table 2, it can be concluded that the best hyperpa-
rameter scheme is proportion = 0.1, margin = 0.2, and eps = 0.1. Among
them, mAP is the main criterion and Rank-1 is the secondary criterion. In
order to more intuitively express the influence of hyperparameters on the
model during the training process, we show the specific changes of mAP and
Rank-1 in different stages of different values of eps in Figures 4 and 5. Gen-
erally speaking, within a certain range, the change of hyperparameters has
little effect on the model, that is, the difference between the main evaluation
indicators mAP and Rank-1 in the comparative experiment is about 1%. It
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Figure 4: The mAP comparison of different eps parameters on the Market
dataset

shows that our model is less dependent on hyperparameters. Details of each
hyperparameter are analyzed as follows.

4.4.1. Factors Affecting Joint Losses

On the one hand, the margin adjustment determines the distance be-
tween the sample with the farthest distance from the same class and the
sample with the closest distance to a different class. From the table, we can
determine that margin = 0.2 is the most ideal in the Market dataset, but it
is not much different from a margin of 0.3 and does not have an advantage
in the Rank — 1 criterion, which indicates that margin changes in a small
range have little effect on the model. On the other hand, it can be observed
that the adjustment of proportion determines the influence of the proportion
of the triplet loss function in the joint function on the result, and that the
effect is best when proportion = 0.1.

4.4.2. Determination of The Value in The First Cluster

In the selection process of the eps’s value, we tend to choose a smaller
value. But it cannot be close to 0, which will cause all samples to remain
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Figure 5: The Rank-1 comparison of different eps parameters on the Market
dataset

in one class alone or only a few samples are allocated together. So it can
be found from the table that 0.1 is the best choice. In Figures 4 and 5, we
can find that as eps increases, the number of iterations will decrease. This
is because in the first clustering, there are too many samples and labels are
assigned in advance which will increase the probability of subsequent merge
errors. The gradual decline in the accuracy of the model can also prove the
correctness of our views.

4.5. Ablation Ezperiment

We first conduct several experiments to analyze the effects of using joint
loss on the model. From the comparison between conventional model and
that uses joint loss in Table 3, we can get through the evaluation criteria
that the use of joint loss can make the features generated by the model more
discriminative. It shows that only using a single strategy to map images of
the same label to the feature space is limited. We believe that the feature
difference between images may be relatively large even if they are under the
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Table 2: The influence of the change of main parameters on the model.

parameter mAP Rank-1|Rank-5 Rank-10
proportion=0.1| 35.0 63.8 76.9 82.1
proportion=0.2| 34.4  63.2 77.4 82.7
proportion=0.3| 33.9 62.4 76.3 82.4
margin=0.1 34.3 63.0 76.7 82.2
margin=0.2 35.0 63.8 76.9 82.1
margin=0.3 345 639 7.7 83.3

eps=0.1 35.0 63.8 76.9 82.1
eps=0.2 35.0 63.0 77.0 83.2
eps=0.3 33.8  62.2 76.4 81.7

same label, and the difference between the features under different labels
may not be far away as expected either. Therefore, our improvement to the
loss function can effectively encourage the principle that samples of the same
class are close to each other and samples of different classes are far away from
cach other during the training process. Figure 6 intuitively shows the effect
of our proposed method through ablation experiment.

We also study whether the use of additional clustering algorithms in the
first stage has effects on the performance of the model. The clustering method
is used to assign pseudo-label to all samples at once, that is, to rigidly assign
pseudo-label to samples without training. It will make some pseudo-label
immeasurable and inferior, resulting in subsequent feature learning networks
based on pseudo-label supervision signals not able to be optimized in the
expected direction. For example, the k-means algorithm is directly used to
generate pseudo-label and then guide the network, trying to use all pseudo-
label generated at once to complete the optimization of the network, while
ignoring the sustainable learning nature of the network [1]. This paper does
not seek to assign high-quality pseudo-label to all samples at once, but uses
sample pairs based on a high-confidence similarity measurement as the ini-
tial merging standard, and uses local high-quality pseudo-label to train the
network first before the merge process. It can gradually increase the quality
of pseudo-label, gradually optimize the network, and further highlight the
similarity relationship between samples. In the first stage, the clustering
and division of samples with high similarity can be used to generate a small
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Table 3: Ablation experiments and Comparison results on Market. “basic”
means only using the first stage of pre-training. “conventional” represents
the conventional merging and training. “-+loss” represents adding the loss
function we proposed on the basis of “basic”. “4-clustering” represents adding
a clustering algorithm based on “+loss”. “4distance” represents replacing the
euclidean distance in “+clustering” with the distance function we proposed.

model mAP Rank-1 | Rank-5 Rank-10
basic 13.3 34.9 52.8 60.9
conventional 28.0 59.8 70.8 76.0
+loss 32.0 62.5 75.5 80.6
+clustering 33.4 62.8 76.0 81.2
+distance(ours) | 35.0  63.8 76.9 82.1

number of high-quality labels in the first round of merging, which provides a
basis for subsequent merging. From the comparison between model with only
loss function and that with both loss function and the traditional clustering
algorithm, it can be clearly seen that there is considerable improvement in
the quality of the pseudo-label, and the follow-up training maintains a good
trend, which confirms our perspective. This reflects that the quality of the
pseudo-label at the initial stage is crucial for the subsequent training of the
merge and feature network. It also shows that using the control of the
thresh-old value can classify the samples with high similarity into one class
and train the model, which can improve the performance to a certain
extent. But it will cause the problem of too many classes, and we will
alleviate this problem in subsequent iterations.

We test the effect that the adoption of individual-group has on the model.
In Table 3, we can intuitively see the difference between the model using
clustering based on Euclidean distance and the model using joint distance,
which highlights the positive impact on the overall quality of pseudo-label
generation. It shows that it is defective to only use the Euclidean distance
between samples as the standard of union. This is because the Euclidean
distance can only consider the spatial distance between the two samples, and
ignore the different label groups in which the two samples are located. It
did not consider the difference of the two label groups or the surrounding
environment of their samples and fail to take the similarity of their “class”
level into consideration. Therefore, we added the influence based on the
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surrounding environment of the sample, and added the control of sample
balance to form the joint distance. It is worth noting that the sample balance
idea performs well in the person re-identification datasetes, but it needs to
be adjusted in other general datasets.

Finally, we try to find out how each similarity affects the individual-group
distance. In Table 4, we conduct ablation experiments on the proposed simi-
larity distance from single similarity to joint similarity. From experimenting
with only Euclidean distance, to adding surrounding information or adding
dataset constraints, the overall return is positive. At the end, the individual-
group distance we proposed reaches the best state. It is worth mentioning
that in the comparison between adding surrounding information and adding
dataset constraints, although we can see that the effect of adding dataset
constraints is more prominent, the factor that we cannot ignore is that the
ablation experiment was carried out on the person re-identification dataset
of Market, and the distribution of the dataset itself tends to be balanced, so
the effect will be more advantageous.

21



Table 4: Ablation experiments and Comparison results about the Individual-
group Similarity. “d;”: Euclidean distance. “d;”: surrounding information.
“d3”: dataset constraints.

model mAP Rank-1 | Rank-5 Rank-10
d; 30.1 60.3 74.7 79.9
dy + do 32.8 62.0 76.2 81.4
dy + d3 334 62.8 76.0 81.2
di+ds+ds | 350 63.8 76.9 82.1

Table 5: Comparision results on image clustering of unsupervised learning
methods. “+4”: Used k-means.

Methods MNIST | STL10 | CIFAR10 | CIFAR100
JULE[41] 064 | 277 | 272 137
DECI40] 84.3 35.9 30.1 18.5
DAC[42] 978 | 470 | 522 23.8
ADC[43] 99.2 | 530 | 325 16.0
11C[44] 98.4 59.8 57.6 25.5
Random CNN-+ 48.1 20.1 18.6 10.3
Triplets+[45] 52.5 24.4 20.5 9.9
AE+[46] 812 | 303 | 314 16.5
Sparse AE+[47] 827 | 320 | 207 15.7
Denoising AE+ [48] 83.2 30.2 29.7 15.1
Variational Bayes AE+[49] | 83.2 28.2 29.1 15.2
SWWAE+[50] 825 | 270 | 284 14.7
DCGAN+[51] 828 | 208 | 315 15.1
DeepCluster+-[4] 65.6 33.4 37.4 18.9
PAD[33] 982 | 465 | 626 28.8
Ours 95.0 58.7 63.5 39.2

4.6. Comparisons with State-of-the-art Methods
4.6.1. General Dataset

In Table 5, we compare the proposed method with two different types of
methods. The first representation method is based on clustering. The second
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Table 6: Comparision with the latest method on 2 datasets based on person
re-identification, i.e., the Market dataset and the Duke dataset. The “Label”
list indicates whether to use labels and their format. “Transfer” means using
the information of another dataset with full annotations. “OneEx” represents
an example annotation, where everyone in the dataset is annotated with a
labeled example. “*” means that the results are reproduced by us.

Methods Label Vear Market-1501 DukeMTMC-reID
mAP | Rank-1 | Rank-5 | Rank-10 | mAP | Rank-1 | Rank-5 | Rank-10

BOW [52] None 2015 | 14.8 | 35.8 52.4 60.3 8.3 17.1 28.8 34.9
OIM* [53] None 2018 | 14.0 | 38.0 58.0 66.3 11.3 | 245 38.8 46.0
UMDL [54] Transfer | 2016 | 12.4 | 34.5 52.6 59.6 7.3 18.5 314 37.6
PUL[1] Transfer | 2018 | 20.1 | 44.7 59.1 65.6 16.4 | 304 46.4 50.7
EUG*[55] OneEx | 2018 | 22.5 | 49.8 66.4 2.7 24.5 | 45.2 59.2 63.4
SPGAN([56] Transfer | 2018 | 26.7 | 58.1 76.0 82.7 26.4 | 46.9 62.6 68.5
TJ-AIDL[57] Transfer | 2018 | 26.5 | 58.2 - - 23.0 | 44.3 - -
UPRSSLI[58](w/o part and CCE) | None 2020 | 29.8 | 58.7 70.4 76.3 174 | 31.6 48.3 53.4
BUC*[5] None 2019 | 30.0 | 61.7 73.1 e 22.1 | 404 52.5 58.2
ours None 2021 | 35.0 | 63.8 76.9 82.1 31.8 | 53.2 65.2 70.1

method focuses on general expression learning. It is worth noting that for
the second method, we use the k-means algorithm for clustering to facilitate
comparison under the same standard. The experimental data comes from 11C
[44]. Although the focus of the method is different, the goal of generating
more discriminative feature representations under unsupervised conditions is
the same. Some analysis results are drawn from the observation of the above
two methods and our proposed method:

On the one hand, the first method tends to generate better clustering
results. This is because they use the known number of real classes to jointly
learn feature representation and clustering during end-to-end model training,
that is, consistency between training and testing goals. Among them, IIC
achieved the best results. On the other hand, without clustering as the target,
the second group of methods are relatively poor in modeling the structure
of the data group. Among them, PAD uses the affinity between the sample
pairs to combine to achieve the best performance in this group.

Finally, our model is still very competitive with all the advanced methods
mentioned above, and achieved the best results on CIFAR10/100. We believe
that the main reason is that the proposed model considers the relationship
between the data in the process of focusing on the small-scale combined
sample and the neural network feedback, which makes the generated features
more unique. Furthermore, our model adopts progressive combination for
end-to-end learning without the known number of true classes.
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4.6.2. Person Re-identification Dataset

Table 6 shows the comparison between our method and the most advanced
methods on the image retrieval dataset. We use the person re-identification
task based on the Market and Duke datasets as our experimental evalu-
ation criteria for image retrieval. And in these two datasets our proposed
method reaches current optimal level. For BOW, OIM* and other experimen-
tal data are derived from BUC*. On the Market dataset, our method reaches
mAP=35.0%, Rank-1=63.8%. It is better than the most advanced unsuper-
vised methods by 5% and 2% respectively, such as BUC* and UPRSSL.
Similarly, improvements of 9% and 12% were obtained on the duke dataset.
It is worth mentioning that for UPRSSL, we chose a model without the prior
knowledge of camera id and block. Because we don’t use these techniques to
optimize.

We also compare our experimental results with the last two popular meth-
ods. The first is to use cross-domain learning methods between different
datasets under the same task conditions, such as UMDL, PUL, SPGAN
and TJ-AIDL. Furthermore, we implement experiments on one-shot meth-
ods which use a very small number of labeled samples and a large number
of unlabeled samples, such as EUG*. The numerical comparison between
mAP and Rank-k proves that the proposed model has greater advantages
than these methods. At the same time, it highlights that our method can
achieve better feature representation without supervision.

5. Conclusion

In this paper, we propose an unsupervised visual feature network based on
similarity guidance, aiming to solve the problem of image feature generation
under the unsupervised manner. The essence is to use a variety of similarities
to enrich the similarity measurement between samples, and then use multi-
stage network training to jointly optimize the pseudo-label quality and the
neural network. It achieves state of the art on two person re-identification
datasets, and competitive performance on four general classification datasets.

The focus of future work lies in three aspects. Firstly, we will focus on
exploring and using more similarity measurement for feature learning of high-
dimensional features. Secondly, how to apply our method to massive data
is also one of our future research directions. Thirdly, we consider to apply
the idea of adversarial learning in self-supervision manner to our proposed
framework to obtain a better pre-training model in the early stage.
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