




the content of the image, the lack of discernibility of the image with the 
characteristics of hand-designed, and the guidance of learning without true 
labels exacerbate the difficulty of the task. Traditional methods are mainly 
manual features [2, 3] where the feature expression of images relies on prior 
knowledge. With the development of neural networks, the discrimination 
and robustness of image features under supervisory signal has been greatly 
improved, which significantly improves the accuracy of image classification 
tasks and image retrieval tasks. However, in real life, there are more un­
labeled image data, and it is impractical to make precise annotations for 
each sample. Some previous works combined deep networks and clustering 
algorithms together to narrow the huge gap in performance between super­
vised and unsupervised features, such as using k-means clustering tags for 
reverse training of the network [1, 4] and employing minimum distance as the 
merge standard to gradually generate pseudo-label to optimize the network 
[5]. In recent work, the attention mechanism is further mined and applied for 
more discriminative feature learning [6, 7]. However, most methods did not 
fully exploit the relations or constraints among samples, which carry crucial 
information for feature representation. 

In order to reduce the gap with supervised methods, we propose a dy­
namic framework based on multiple similarities to combine samples between 
different classes and gradually optimize feature representation. On the one 
hand, in the feature network, the multi-similarly loss is used to guide the 
learning of features to narrow the sample pairs of the same label and in­
crease the difference under different labels. On the other hand, in the first 
merging process, we use a clustering algorithm based on limited threshold and 
breadth-first search to classify similar labels with higher confidence, and gen­
erate reliable labels. Then we use the distance between the samples based on 
different similarity considerations to sort as the basis for the merge of classes. 

Specifically, we use the differences between the various images to initialize 
the network. Due to the same network architecture, images with larger dif­
ferences during training are more likely to be far away from each other. This 
provides the basis for our preliminary clustering. Furthermore, using the 
breadth-first search algorithm, the adjacent samples in the feature space are 
divided into multiple sets and given different pseudo-labels. We want to ag­
gregate highly similar samples to form multiple high-reliability sets, instead 
of dividing all samples correctly at once. Although the number of classes 
will be greatly increased and the original class will be divided into multiple 
classes, the samples are aggregated by a strong confidence and the generated 
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pseudo-label has a higher credibility. The Euclidean distance between sam­
ples, the consideration of the surrounding environment information where 
the two samples are located, and the optional sample equilibrium restriction 
constitute our distance measurement, which is called the individual-group 
similarity. This distance is used as a criterion for whether to merge classes 
during the merging process. It takes into account not only the spatial dis­
tance between sample pairs, but also the relationship between the sets in 
the feature space where the samples are located. Based on the assumption 
that the distribution of various classes in the dataset tends to the mean, the 
distance measurement should be added according to the specific dataset. 

We propose multi-similarly loss to train the feature extraction network. It 
can narrow the distance between samples of the same class and make samples 
of different classes far away from each other. As shown in Figure 1, compared 
to previous works, we divide the network training into multiple stages to 
facilitate the use of more accurate similarity-based merging measurement in 
the process of merging classes. The proposed method makes the gradually 
generated pseudo-label more credible, and it can optimize the entire feature 
network. 

Our contributions are as follows: 
1) We propose an unsupervised feature learning network based on con­

text similarity and gradual optimization of feature expression. Our proposed 
method can generate high-quality pesudo-label, based on which we use itera­
tive merging methods to train the network. The network then can gradually 
express the similarity distribution contained in various classes in the dataset. 

2) In order to effectively use the rich similarity relationship between sam­
ples when combining, we propose the individual - group similarity between 
samples as a measurement method. The proposed distance can consider the 
similarity relationship between both individual samples and sample groups. 
In addition, the constraints of sample balance when measuring sample spatial 
distance are also considered. 

3) Since there are dissimilar features between the same class and similar 
features between different classes, it will cause the interference problem of the 
similarity measurement of different classes in the training process. Based on 
the principle of similar attraction, we propose a multi-similarly loss function 
to alleviate this problem. 
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the current contrastive learning as a form of self-supervision has attracted 
the attention of many researchers. Oord et al. [21] predicted the data repre­
sentation in the latent space by using a powerful autoregressive model based 
on the comparison prediction coding and the proposed infoNCE loss func­
tion. In [22] , it is assumed that the effective data identification pair [21] 
could be further applied and improved by making the variability in the nat­
ural signal more predictable. The difference between these methods and our 
work is that these methods rely on prior knowledge or keen "intuition" and 
require professional knowledge to carefully design pseudo-label so that they 
may generate useful features for auxiliary tasks. Our proposed method does 
not require these addtional conditions and can still perform well on general 
tasks. 

2. 3. Data Representation and Similarity Measurement

The success of machine learning algorithms usually depends on the data 
representation. We assume that this is because different feature representa­
tions can represent different hidden explanatory factors behind the data. Al­
though domain knowledge can be used to help design representations, learn­
ing can also be used. In recent years, more powerful representation learning 
algorithms have been put forward for visual tasks [23, 24, 25]. In general, 
data representation is the core determinant factor on the performance of 
most machine learning algorithms on a particular application. Furthermore, 
the storage and availability of large amounts of data remain barriers, and the 
cost of annotating in human and material resources is also very high. How to 
express a large amount of original data into robust high-dimensional feature 
representations without supervision has become an important research topic. 
In particular, clustering method generating pseudo-label and feature learning 
training mutually promote each other as a kind of mainstream. The similarity 
measurement plays a key role in the clustering process. An important factor 
that affects whether two sample groups can be combined into the same class 
is the distance measurement between samples. The effect of the combination 
directly affects the quality of the pseudo-label. Currently, the measurement 
standards for sample pairs are often unitary, such as direct use of Euclidean 
distance or Cosine distance to measure. In [5], the minimum distance be­
tween the sample pairs and the average distance based on the class level are 
compared in experiments, and it is concluded that the use of the minimum 
distance as the standard for the combination measurement has better perfor­
mance improvement. It uses a single metric on sample pairs to determine its 
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Table 3: Ablation experiments and Comparison results on Market. "basic" 

means only using the first stage of pre-training. "conventional" represents 

the conventional merging and training. "+loss" represents adding the loss 

function we proposed on the basis of "basic". "+clustering" represents adding 

a clustering algorithm based on "+loss". "+distance" represents replacing the 

euclidean distance in "+clustering" with the distance function we proposed. 

model mAP Rank-1 Rank-5 Rank-10 
basic 13.3 34.9 52.8 60.9 
conventional 28.0 59.8 70.8 76.0 
+loss 32.0 62.5 75.5 80.6 
+clustering 33.4 62.8 76.0 81.2 
+distance( ours) 35.0 63.8 76.9 82.1 

number of high-quality labels in the first round of merging, which provides a 
basis for subsequent merging. From the comparison between model with only 
loss function and that with both loss function and the traditional clustering 
algorithm, it can be clearly seen that there is considerable improvement in 
the quality of the pseudo-label, and the follow-up training maintains a good 
trend, which confirms our perspective. This reflects that the quality of the 
pseudo-label at the initial stage is crucial for the subsequent training of the 
merge and feature network. It also shows that using the control of the 
thresh­old value can classify the samples with high similarity into one class 
and train the model, which can improve the performance to a certain 
extent. But it will cause the problem of too many classes, and we will 
alleviate this problem in subsequent iterations. 

We test the effect that the adoption of individual-group has on the model. 
In Table 3, we can intuitively see the difference between the model using 
clustering based on Euclidean distance and the model using joint distance, 
which highlights the positive impact on the overall quality of pseudo-label 
generation. It shows that it is defective to only use the Euclidean distance 
between samples as the standard of union. This is because the Euclidean 
distance can only consider the spatial distance between the two samples, and 
ignore the different label groups in which the two samples are located. It 
did not consider the difference of the two label groups or the surrounding 
environment of their samples and fail to take the similarity of their "class" 
level into consideration. Therefore, we added the influence based on the 
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Figure 6: Ablation experiments and Comparison results on Market. 

surrounding environment of the sample, and added the control of sample 

balance to form the joint distance. It is worth noting that the sample balance 

idea performs well in the person re-identification datasetes, but it needs to 

be adjusted in other general datasets. 

Finally, we try to find out how each similarity affects the individual-group 

distance. In Table 4, we conduct ablation experiments on the proposed simi­

larity distance from single similarity to joint similarity. From experimenting 

with only Euclidean distance, to adding surrounding information or adding 

dataset constraints, the overall return is positive. At the end, the individual­

group distance we proposed reaches the best state. It is worth mentioning 

that in the comparison between adding surrounding information and adding 

dataset constraints, although we can see that the effect of adding dataset 

constraints is more prominent, the factor that we cannot ignore is that the 

ablation experiment was carried out on the person re-identification dataset 

of Market, and the distribution of the dataset itself tends to be balanced, so 

the effect will be more advantageous. 
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Table 4: Ablation experiments and Comparison results about the Individual­

group Similarity. "d1": Euclidean distance. "d2": surrounding information. 

"d3 ": dataset constraints. 

model mAP Rank-1 Rank-5 Rank-10 
d1 30.1 60.3 74.7 79.9 
d1 + d2 32.8 62.0 76.2 81.4 
d1 + d3 33.4 62.8 76.0 81.2 
d1 + d2 + d3 35.0 63.8 76.9 82.1 

Table 5: Comparision results on image clustering of unsupervised learning 

methods. "+": Used k-means. 

Methods MNIST STLlO 
JULE[41] 96.4 27.7 
DEC[40] 84.3 35.9 
DAC[42] 97.8 47.0 
ADC[43] 99.2 53.0 
IIC[44] 98.4 59.8 

Random CNN+ 48.1 20.1 
Triplets+[45] 52.5 24.4 
AE+[46] 81.2 30.3 
Sparse AE+ [4 7] 82.7 32.0 
Denoising AE+ [48] 83.2 30.2 
Variational Bayes AE+[49] 83.2 28.2 
SWWAE+[50] 82.5 27.0 
DCGAN+[51] 82.8 29.8 
DeepCluster+[4] 65.6 33.4 
PAD[33] 98.2 46.5 
Ours 95.0 58.7 

4, 6. Comparisons with State-of-the-art Methods 

4, 6.1. General Dataset 

CIFARlO CIFARlO0 
27.2 13.7 
30.1 18.5 
52.2 23.8 
32.5 16.0 
57.6 25.5 
18.6 10.3 
20.5 9.9 
31.4 16.5 
29.7 15.7 
29.7 15.1 
29.1 15.2 
28.4 14.7 
31.5 15.1 
37.4 18.9 
62.6 28.8 
63.5 39.2 

In Table 5, we compare the proposed method with two different types of 
methods. The first representation method is based on clustering. The second 
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4- 6. 2. Person Re-identification Dataset

Table 6 shows the comparison between our method and the most advanced 
methods on the image retrieval dataset. We use the person re-identification 
task based on the Market and Duke datasets as our experimental evalu­
ation criteria for image retrieval. And in these two datasets our proposed 
method reaches current optimal level. For BOW, OIM* and other experimen­
tal data are derived from BUC*. On the Market dataset, our method reaches 

mAP=35.0%, Rank-1=63.8%. It is better than the most advanced unsuper­
vised methods by 5% and 2% respectively, such as BUC* and UPRSSL. 
Similarly, improvements of 9% and 12% were obtained on the duke dataset. 
It is worth mentioning that for UPRSSL, we chose a model without the prior 
knowledge of camera id and block. Because we don't use these techniques to 
optimize. 

We also compare our experimental results with the last two popular meth­
ods. The first is to use cross-domain learning methods between different 
datasets under the same task conditions, such as UMDL, PUL, SPGAN 
and T J-AIDL. Furthermore, we implement experiments on one-shot meth­
ods which use a very small number of labeled samples and a large number 
of unlabeled samples, such as EUG*. The numerical comparison between 
mAP and Rank-k proves that the proposed model has greater advantages 
than these methods. At the same time, it highlights that our method can 
achieve better feature representation without supervision. 

5. Conclusion

In this paper, we propose an unsupervised visual feature network based on 
similarity guidance, aiming to solve the problem of image feature generation 
under the unsupervised manner. The essence is to use a variety of similarities 
to enrich the similarity measurement between samples, and then use multi­
stage network training to jointly optimize the pseudo-label quality and the 
neural network. It achieves state of the art on two person re-identification 
datasets, and competitive performance on four general classification datasets. 

The focus of future work lies in three aspects. Firstly, we will focus on 
exploring and using more similarity measurement for feature learning of high­
dimensional features. Secondly, how to apply our method to massive data 
is also one of our future research directions. Thirdly, we consider to apply 
the idea of adversarial learning in self-supervision manner to our proposed 
framework to obtain a better pre-training model in the early stage. 
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