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Abstract 
 
Distributed Simulation (DS) is a method in operational system analysis that has gained interest 

due to its claimed benefits, including model reusability and interoperability. DS allows the 

exploitation of geographically distributed resources such as equipment and people. However, 

the cost of high-performance computing resources, technical skills, and special training 

required to design, develop, and use DS is an ongoing concern. These are the long-standing 

challenges that have prevented the broader adoption of parallel and distributed simulation 

technology. Cloud computing offers an alternative approach to address these issues using the 

pay-as-you-go economic model, eliminating considerable investments in the required 

hardware and software.  

 

DS has the potential to benefit Modelling and Simulation (M&S). Nevertheless, relatively 

limited attention has focused on developing a framework and deployment architecture to 

enable analysts to run DS experimentation on the cloud. A more in-depth study is needed to 

understand how modellers will run cloud-based DS and how the cloud platforms will perform 

with variant parameter inputs. The literature established that DS development is a complex 

process and requires expertise with immense courage to undertake. This thesis investigated 

how the cloud can be used to connect geographically distributed federates to analyse 

operational systems. To achieve that, a deployment architecture is proposed and 

experimented with potentials benefit modellers. Furthermore, a development methodology is 

proposed to guide analysts at every step of the cloud-based distributed simulation (CBDS) 

implementation - from concept to cloud execution.  

 

The experimental results indicate that it is feasible to connect and run geographically 

distributed simulation using cloud infrastructure. The research further finds that running a 

federation on a single cloud performs differently than federation execution on multiple cloud 

platforms. The significant differences are primarily attributed to how each cloud service 

provider handles network traffic and the overall communication overheads found on the 

Internet. This research has contributed to the CBDS approach and focussed more on 

analysing operational research systems by less technical modellers. The principal 

contributions of this work include a proposed scalable CBDS deployment architecture - 

DIstributed simulation Cloud Architecture for Experimentation (DICE). DICE becomes 

the foundation of this research, providing technical specifications and guiding analysts on 

deploying DS on various cloud platforms.  
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Chapter 1 Introduction 
 

1.1 Chapter Overview 

This section introduce the reader with a high-level overview of the work submitted. It 

begins with an introduction to the research background, context, motivation, and the questions 

this thesis is out to address. The aims and objectives are presented as a vehicle to design, 

execute and complete the research. Furthermore, this chapter also gives a brief overview of 

the succeeding sections. 

 

1.2 Research Context 

From the beginning of the electronics era, many inventions were recorded. These 

include the first general-purpose electronic computer's appearance – ENIAC (Burks and 

Burks, 1981) in the late 1940s. Subsequently, this period saw the development of the first 

general-purpose simulator - the General Simulation Program (GSP) by Keith Douglas Tocher 

(1963) and the first English-like simulation language – SIMSCRIPT by Harry Rice and his team 

(Rice et al., 2005) in the late ‘50s and early ‘60s respectively. The GSP is designed to allow 

the systematic building of a simulation of an industrial plant that comprises machines with 

busy, failed, and idle states. In GSP, machine states and the next action times define the 

plant's state (Tocher, 1963). The world is witnessing many simulation languages, tools, 

environments and approaches, and techniques from that development. Today, organisations 

use Modelling and Simulation (M&S) is one realistic way to analyse existing or proposed 

systems or processes. The method uses computer models to predict how a real-life system 

will behave, given a set of conditions, parameters, values, and domain-specific data. 

 

Luo et al. (2015) believes that in M&S domain, simulation is increasingly the only method 

capable of analysing, designing, evaluating, or controlling the large-scale, complex, uncertain 

systems in which we are interested. Analyst uses M&S to investigate complex dynamic 

systems. The practice usually involves creating a system model and experiment with different 

scenarios under varied conditions (Law, 2015). A typical simulation, analysts build a model 

and run experiments sequentially on a single computer system. This approach exposes 

modellers to practical limitations such as processing power and time. 

 

The evolution in M&S brought about the Distributed Simulation (DS), which uses parallel 

and distributed computing techniques and multiple computers to speed up a simulation 
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program's execution or link together simulations to support reusability (Fujimoto, 2001).  Other 

benefits of DS include speedup experiment, model reuse, data privacy, data consistency, and 

interoperability (Wu et al., 2007; Anagnostou and Taylor, 2017a; Taylor, 2018). These benefits 

facilitate distributed experimentation. However, DS development is a complex and 

multidisciplinary task (Taylor et al., 2014).  

 

Analysts uses modelling and simulation and the community of practice is vying for high-

speed experimentation methodology. Researchers and modellers are likely to benefit by 

composing models from interoperating new or reused ones that reduce model development 

time. In large models, those interoperating subsystem models can be reused in other 

simulations running on-premises simulation platforms locally or remotely accessible via the 

Internet. With the advent of Industry 4.0, inter-organisation simulation models can be loosely 

coupled through DS, which allows sharing information without compromising information and 

data security. 

 

Among the significant challenges attributed to DS, is the high-performance computing 

resources and infrastructure and the amount of time required to execute experimentations 

(Fujimoto, 2016). These come with the high cost of hardware, configuration, and maintenance. 

Furthermore, Anagnostou and Taylor (2017) reported that developing DS can be highly 

complex due to the experience, technologies, and multiple disciplines involved, coupled with 

a lack of established architecture and guidelines to use. These make it cumbersome and 

probably, seen as the least alternative by some analysts. 

 

Having some of the challenges identified the cloud concept provides a promising 

alternative. Cloud Computing enables on-demand network access to shared configurable 

resources (Mell and Grance, 2011). The cloud services come in three primary models (Mell 

and Grance, 2011; Qaisar, 2012); Software as a Service (SaaS) - The capability provided to 

the consumer is to use the provider's applications running on a cloud infrastructure. Platform 

as a Service (PaaS) - The capability provided to the consumer is to deploy onto the cloud 

infrastructure. Infrastructure as a Service (IaaS) - The consumer's capability is to provision 

processing, storage, networks, and other fundamental computing resources. All these 

concepts are detailed in chapter two. 

 

Fujimoto, Malik and Park (2010) reported that cloud computing services are offered to 

users through the Internet, which reduces the burden associated with managing computing 

resources and facilities.  
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Having some of the challenges identified the cloud concept provides a promising 

alternative. Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction (Mell and Grance, 2011). Cloud computing 

models are composed based on five essential characteristics, three service models, and four 

deployment models. The essential characteristics are;  

 

On-demand self-service - A consumer can unilaterally provision computing capabilities, 

such as server time and network storage, as needed automatically without requiring human 

interaction with each service provider. Broad network access - Capabilities are available over 

the network and accessed through standard mechanisms that promote use by heterogeneous 

thin or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations). 

Resource pooling - The provider's computing resources are pooled to serve multiple 

consumers using a multi-tenant model, with different physical and virtual resources 

dynamically assigned and reassigned according to consumer demand. There is a sense of 

location independence in that the customer generally has no control or knowledge over the 

exact location of the provided resources but may be able to specify location at a higher level 

of abstraction (e.g., country, state, or datacentre). Examples of resources include storage, 

processing, memory, and network bandwidth. Rapid elasticity - Capabilities can be elastically 

provisioned and released, in some cases automatically, to scale rapidly outward and inward 

commensurate with demand. To the consumer, the capabilities available for provisioning often 

appear to be unlimited and can be appropriated in any quantity at any time. Measured service 

- Cloud systems automatically control and optimize resource use by leveraging a metering 

capability at some level of abstraction appropriate to the type of service (e.g., storage, 

processing, bandwidth, and active user accounts). Resource usage can be monitored, 

controlled, and reported, providing transparency for both the provider and consumer of the 

utilized service. 

 

The cloud services come in three primary models (Mell and Grance, 2011; Qaisar, 

2012); Infrastructure as a Service (IaaS) - The consumer's capability is to provision 

processing, storage, networks, and other fundamental computing resources. Platform as a 

Service (PaaS) - The capability provided to the consumer is to deploy onto the cloud 

infrastructure. Software as a Service (SaaS) - The capability provided to the consumer is to 

use the provider's applications running on a cloud infrastructure. This work will immensely 

benefit from the cloud characteristics, service, and deployment models to build DICE 

architecture for CBDS. The characteristics are where the thesis will answer the research 
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questions with the aim to address the challenges identified during the literature review. The 

Cloud concept has this potential, and Fujimoto, Malik and Park, (2010) reported that cloud 

computing services are offered to users through the Internet, which reduces the burden 

associated with managing computing resources and facilities. 

 

Despite the challenges reported above which forestalls the adoption of DS, the literature 

has not given an authoritative definition of Cloud-Based Distributed Simulation (CBDS) 

infrastructure; at the time of writing this thesis. However, some publications gave an extended 

meaning based on concepts they present such as Simulation as a Service – SIMaaS (Tsai et 

al., 2011; Azevedo, Rossetti and Barbosa, 2015; Shekhar et al., 2016), Modelling and 

Simulation as a Service – MSaaS (Fujimoto, Malik and Park, 2010; Buora, Giusti and Barbina, 

2014; D’Angelo, 2014; NATO, 2015; Wang and Wainer, 2016; Prochazka and Hodicky, 2017) 

and Distributed Simulation as a Service – DSaaS (Rajaei, Alotaibi and Jamalian, 2017).  

 

Some examples of these concepts are SIMaaS - a simulation platform where many 

independent simulation instances can be executed in parallel. The number of such simulations 

can vary elastically to satisfy specified confidence intervals for the results (Shekhar et al., 

2016). MSaaS - delivers value to customers to enable or support modelling and simulation 

(M&S) user applications and capabilities and provide associated data on demand without the 

ownership of specific costs and risks (NATO, 2015). DSaaS - is a cloud service for simulation, 

especially targeting extensive simulations requiring parallel executions of simulation modules 

(Rajaei, Alotaibi and Jamalian, 2017). 

 

For this research, therefore, CBDS deployment architecture for modelling and simulation 

is defined and used as; 

 

A technique that enables the execution of multiple distributed simulations run 
across multiple, on-demand, and configurable cloud infrastructure, platforms, 
and software for the user to use as a service, over WAN or the Internet.  

 

However, apart from a few concepts reported later in this thesis, there are very few 

cloud-based distributed simulation infrastructures in research. This identified gap suggests the 

following research questions. 

 

RQ1 - How can you deploy distributed simulation on the cloud? 

RQ2 - What are the factors affecting the interoperability of distributed simulation on the 

cloud? 
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RQ3 - What are the factors affecting cloud-based distributed simulation 

experimentation speed? 

 

1.3 Research Aim and Objectives 

This research aims to investigate cloud-based federate development framework and 

multi-cloud deployment architecture for Distributed Simulation (DS). 

 

The objectives below will be met to achieve the aim and address the research questions 

posed earlier. 

 

Objective 1: To review the literature and uncover the theoretical perspective on the 

issue of cloud and distributed simulation. Also, look at the challenges in developing 

cloud-based distributed simulation infrastructure that can be used in operational 

research. 

Objective 2: Identify a suitable methodology to apply to address the research questions, 

which will help achieve the thesis’ aim. 

Objective 3: Design and develop theoretical framework for could-compatible federate 

development and CBDS deployment architecture for experimentation by operational 

researchers. 
Objective 4: Implement and test the feasibility of the proposed development 

framework and cloud deployment architecture using an appropriate case study. 
Objective 5: To evaluate the proposed framework and deployment architecture using 

the experimentation results analysis. 

 

1.4 Research Contribution  

Distributed Simulation (DS) is used to analyse operational systems such as 

manufacturing and engineering. DS requires enormous computing resources (huge amount 

of hardware such as CPU, memory, and storage) and high technical skills to run experiments. 

This discourages analysts from adopting it. Cloud computing presents an alternative by 

offering on-demand network access to commodity hardware resources using the pay-as-you-

go model. Therefore, the main contribution of this research to the field of M&S, DS, and Cloud-

Based distributed simulation is the Distributed Cloud Architecture for Experimentation (DICE). 

It is designed and proposed to ease the conceptualising, design, building, deployment, and 

execution of Cloud-Based Distributed Simulation (CBDS). DICE will enable non-technical and 

other domain modellers to conduct distributed simulation experiments using cloud resources. 

A prototype distributed and complex hybrid emergency medical service model was used to 



Introduction 

Page 23 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

test its feasibility. The precise steps in the framework make it easy to follow and iterate sub-

activities until the development is complete, and the experiment is successful. To the best of 

the author's knowledge, this is the only architecture and methodology for developing and 

deploying CBDS.  

 

1.5 Significance of the Study  

In theory, research creates new or extends existing knowledge, methods, or approaches 

to doing things in our lives. In the same vein, this work presents a new method of conducting 

DS experimentation using cloud infrastructure for non-technical modellers who may not have 

software engineering background. This brings the dual benefits of cloud and DS closer to the 

research community, which will enable them to join the early adopters of cloud-based 

distributed simulation for system analysis.  

 

Some CBDS benefits were presented above and Fujimoto, Malik and Park (2010) 

argues that cloud computing lowers the barrier to begin exploiting these technologies. The 

authors further claim that it eliminates the need to purchase, and more importantly, operate 

and maintain high-performance computing equipment at the local site. As reported in chapter 

two, the existing literature recorded attempts to put the simulation experiment in the cloud, 

and its potential benefits. However, the research community comprising a significant number 

of non-technical analysts are exposed to the sophisticated technical knowledge required to 

design, develop, and deploy simulation models to the cloud, especially in the distributed 

environment.  

 

1.6 Outline of the Thesis 

This document is organised in chapters from one to seven. Table 1-1 gives an overview 

and which objective, each chapter addresses. 

 

Table 1-1: Thesis outline mapped to objectives 

 
 

Highlights Objective Served 

Chapter One  

Introduction, research context, 

aim, objectives and research 

questions. 
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Chapter Two  

Background study in the 

literature used to identify the 

knowledge gap. 

 

Objective One  

Chapter Three  

Identifies the methodology to be 

used to achieve the research 

aim. 

 

Objective Two  

Chapter Four  
Conceptual design of the DICE 

architecture. 

 

Objective Three  

Chapter Five  
Implement the architecture using 

a case study prototype. 

 

Objective Four  

Chapter Six  
Evaluating the architecture. 

 
Objective Five  

Chapter Seven  

Conclusions, revisiting the 

research questions, limitations, 

and future research direction. 

 

 

  

Individual chapter overviews are now presented to prepare the reader. 

 

Chapter 1: Introduction 
This section presents the reader with an overview of the research. It begins with an 

introduction to the research background, context, motivation, and the questions this thesis is 

aiming to address. The aim and objectives are presented as a basis to design, execute and 

complete the research. 

 

Chapter 2 (Objective 1): Literature Review 
The second chapter reports the theoretical perspectives found in the relevant literature. 

The review leads to identifying the gap in cloud-based distributed modelling and simulation in 

the context of operational research. Various methodologies were explored; simulation 

concepts and techniques, available tools, standards, and technologies are also explained. 

 

Chapter 3 (Objective 2): Methodology 
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Part three explains the rationale behind the research methodological approach for 

designing, experimenting, and analysing data. The justified reasons for choosing the hybrid 

EMS model for this project are the challenges in analysing complex systems using 

simulations. 

 

Chapter 4 (Objective 3): Architecture Development 
The thesis contribution starts here. This section explains how the research design and 

proposed DICE build on Distributed Simulation Engineering and Execution Process (DSEEP), 

a well-established method. The proposed architecture for cloud-based DS aims to ease 

simulation development and execution by connecting geographically distributed models. This 

takes advantage of the high-performance computing resources offered by cloud infrastructure. 

Overall, the chapter expatiates on the architecture technical components, strengths, and 

limitations. 

 

Chapter 5 (Objective 4): Implementation and Testing 
During implementation, the London Emergency Medical Services (EMS) model is used 

to implement and test the proposed DICE architecture. It is initially developed by Anastasia 

Anagnostou (2014) as a hybrid distributed simulation model combining two simulation 

paradigms – Agent-Based Simulation (ABS) and Discrete Events Simulations (DES). It is used 

as a case study in this thesis by reconfiguring and upgrading cloud-based deployment and 

experimentation. The chapter explains the tools used, and the justifications are presented 

here. Recursive Porous Agent Simulation Toolkit (RePAST) Symphony, the opensource, 

cross-platform modelling, and simulation toolkit is presented. The model collaboration layer, 

poRTIco run-time infrastructure (RTI), is also an open-source component that forms part of 

this chapter. The chapter also narrates the experiment design, execution, and the results 

accumulated for analysis in the succeeding parts. 

 

Chapter 6 (Objective 5): Results and Evaluation 
Here, architecture testing results are shown and analysed by comparing the inputs and 

measuring the performance concerning earlier implementations reported in the literature for a 

single machine, networked environment, and related cloud implementations. The chapter 

presented an evaluation report, and the literature underpinning the validity claimed. 

 

Chapter 7: Conclusion and Future Work 
The concluding section summarises the work, how the research questions were 

addressed, the scope, alternative approaches, and research hypothesis. It gives a cue on the 

future direction where further work is needed and the potential research opportunities. 
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1.7 Chapter Recap 

This section introduces the research field, context, and the questions to be addressed. 

Limitations and significance of the study were presented, and it ends with all section’s 

overviews. The next part will go further into the literature and the various concepts to aid this 

research. The background study will help identify and apply the right methodology for the 

investigation. 
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Chapter 2 Review of the Literature 
 
2.1 Chapter Overview 

The previous chapter introduced the research and its context for this thesis. It presented 

the problems that motivated this work, and the hypothesis that development framework and 

deployment architecture will bring CBDS closer to analysts was established. It also presented 

the project aim, research questions, and the objectives it’s set to achieve. Further, it discussed 

the contribution and significance of the study, and finally, the thesis outline was tabulated, and 

each chapter overview presented. 

 

This chapter reviews the recently published research in Distributed Simulation, 

Distributed Simulation, and Cloud-based Simulation and identifies the gap in the literature. 

Moreover, the section gives the reader history and general concepts of simulation, types of 

modelling, world views, approaches, and experimentation. It introduces some essential 

aspects of CBDS; the high-level architecture (HLA), time in simulation, and time management 

(synchronisation). The chapter also analyses, and reports simulation methodologies related 

to this thesis from both on-premises and cloud infrastructures. Then relates how that relates 

to the M&S research communities of practice. 

 

Overall, sections in this chapter are dedicated to detail the theoretical perspective for 

various modelling and simulation approaches; discrete event, agent-based, hybrid, and 

system dynamics. Finally, the cloud computing concept, cloud-based simulation, and how it is 

used is discussed in detail and presents the potential benefit to the broader M&S researchers.  

 

2.2 History of Simulation 

Modern computers allow the analyst to explore the whole range of feasible options in a 

decision problem. Some of these options could be examined without a computer. However, 

the process and the problem may well change significantly before a satisfactory solution is 

produced (Pidd, 1984). This journey began in the early stage of the electronic era and 

understood the perspective of simulation. It is valuable to understand the history of simulation. 

Goldsman et al. (2009) notes the two significant developments that set the stage for the 

rapid growth of the field of simulation in the mid-1940s. The construction of the first general-

purpose electronic computers such as the ENIAC and the work of Stanislaw Ulam, John Von 

Neumann, to use the Monte Carlo method on electronic machines. These tried to solve 
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specific problems in neutron diffusion that arose in the design of the hydrogen bomb, and that 

were (and still are) analytically intractable. 

In Computer Science (CS), computer-based modelling and simulation, has become the 

third research methodology, complementing experiment and theory (Dodig-Crnkovic, 2002). 

Many projects can use simulation methods. (Mohannad and Ayash, 2013) argued complex 

phenomena, such as the evolution of the universe that cannot be implemented in laboratories, 

using the simulation method. Researchers today, are witnessing sophisticated computing 

environments and methods that are powerful enough to enable them to tackle problems of 

enormous complexity. Some authors believe that CS can further be divided into Theoretical, 

Experimental and Simulation - three methodologically distinct areas. Modelling, however, is 

one method that is common for all three. Modelling is a process that often occurs in science, 

where it is an abstraction, and the phenomenon of interest is simplified, to be investigated or 

studied. Relevant features of a phenomenon are taken into account while building a model. 

Because in science, there are some theoretical grounds available in the literature and industry, 

it is crucial to know which features are relevant to the system under investigation (SUI). 

 
Figure 2-1 Modelling in its purest form 

In CS, the model of a phenomenon has a description, which enables analysts to predict 

measurable consequences of a given change in system behaviour over time. Figure 2-1 

illustrates how new or modified models are systematically compared (or benchmarked) with 

existing ones and analyse their relation, and relative strength or weakness. The earlier three; 

theory, experiment, and simulation work with models of phenomena. 

A professor of Operations Research at the University of Southampton by the name Keith 

Douglas Tocher developed the GSP (General Simulation Program). It is the first general-

purpose simulator (Goldsman et al., 2009) to be used as a tool to systematically construct a 

simulation model for industrial plants. The program uses a set of machines with a transition 

between states (e.g., failed, unavailable, busy, or idle). Douglas’ contributions to simulation 

technique include The Art of Simulation, a pioneering textbook on simulation and the Activity 

Cycle Diagram (ACD) in 1964. Figure 2-2 shows an ACD for healthcare operation. The ACD 

Real World: 
Modelled 

Phenomena 

Comparison: 
Does it 
Work? 

Simplified  
Model 
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became a cornerstone of simulation teaching in the UK and the core of research in program 

generators during the 1970s. 

 
Figure 2-2 Activity Circle Diagram showing a health clinic model (Adapted from Pidd, 1984) 

Simulation, from this view, is one of the most widely used, in literature as the preferable 

quantitative methods due to its flexibility and presents many statistical results helping decision-

makers take the right direction towards improving as reported by (Balachandran, 2000);  

"Simulation is extensively being used as a tool to increase production capacity. 

Simulation software used by Cymer Inc. (a leading producer of laser illumination 

sources), increased the production capacity from 5 units/month at the beginning of 1999 

to 45/month at the end of 1999, an increase by around 400%." 

2.2.1 Modelling and Types of Models 

Modelling is the process of producing a model (Anu, 1997). A model in a simulation 

project is a representation feature or behaviour of a system of interest. One purpose of 

a model is to enable the analyst to predict the effect of changes to the system. Earlier 

than Maria’s contribution, (Pidd, 1984) stated that models are representations of the 

system of interest and are used to investigate improvements in the real system or to 

discover the effect of different policies on that system. From the M&S perspective, 

models are built, and experiments are conducted to analyse operational systems, 

uncover bottlenecks, improve processes, or test proposed new systems against 

established criteria. There are two fundamental types of modes; deterministic models 

and stochastic models (North and Macal, 2007).  

 

Deterministic - models always produce the same outputs given the same inputs, since 

each of the agents involved always acts the same way given identical inputs. In these 

models, there are no random variables and usually contains equations. Designers use 

known inputs and outputs, which can be used to capture natural process. Stochastic – 

models can produce different outputs when they are repeatedly run identical inputs. 

Stochastic models can produce different output because they include agent behaviours 



Review of the Literature 

Page 31 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

or environmental response based on random or probabilistic elements. Pidd & Michael 

also revealed that this type of model’ behaviours could not be entirely predicted. 

 

 
Figure 2-3 Model Taxonomy (Adapted from Law and Kelton, 1991) 

Figure 2-3 is a model taxonomy proposed by (Law and Kelton, 1991). The authors 

show that models can be either deterministic or stochastic. They believe stochastic 

types are more complex and better represent actual systems than deterministic models. 

 

2.2.2 Simulation World Views 

The evolution of modelling and simulations tools focused more on balancing between 

flexibility and ease-of-use. A worldview is a modelling framework that a modeller uses 

to represent a system and its behaviour. The main terminology and concepts include 

systems and models, system state variables, entities and their attributes, lists, 

resources, events, activities and delays (Carson, 1993). On another note, (Pegden, 

2010; Chan and Pegden, 2017) reveals that over the 50-year history of simulation, there 

have been three distinct worldviews in use. They are event, process, and objects1. The 

objective remains similar; a worldview provides a definitive set of rules for advancing 

time and changing the discrete or contiguous states of the model under investigation. 

 

2.2.3 Time in Simulation 

Simulation deals with time in two ways; simulation time and run time. Analysts require 

run times small enough to get a result within the resources available. However, the 

simulation time is more critical in terms of the result and how the simulation is organised 

(Garrido, 1999). On the other hand, event time is used in simulation projects to monitor 

various events. Therefore, this research work uses simulation time as the time on the 

simulation clock - the virtual time or logical time in the simulated world, runtime, the 

amount of processor time consumed, and event time as the simulation time at which an 

event occurs. 

 

 
1. These terms will be explained later. 
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2.3 Discrete Event Simulation (DES) 

Discrete Event Simulation (DES) is a technique that refers to the process of codifying 

the behaviour of a system as an ordered sequence of well-defined event series. A discrete 

event simulation model assumes the system being simulated only changes state at discrete 

points in simulated time. The simulation model jumps from one state to another upon the 

occurrence of an event (Fujimoto, 1990). DES is also seen as a tool that quantitatively 

represents the real world, simulates its dynamics on an event-by-event basis, and generates 

a detailed performance report (Babulak and Wang, 2010). This means DES is used to model 

a system with a changing state at a specific (discrete) point in time. During DES execution, 

every event occurs at a particular point in time and marks a state change in the system (Kiran, 

2019). DES has some properties worth noting (Lucas et al., 2015); DES can be stochastic 

(probabilistic) where inter-arrival times and service times are random variables and have 

cumulative distribution functions. DES has discrete intervals of time, which separate 

instantaneous events. The state variables change instantaneously at separate points in time. 

The system can change at only a countable number of points in time, and these points are the 

ones at which an event occurs. Lastly, DES has a dynamic property that changes over time. 

It uses a simulation clock to track the current value of simulated time as the simulation 

proceeds—a mechanism to advance simulated time from one value to another.  

 

 

Figure 2-4 Concept of Discrete Event Simulation (Adapted from Lara, Guerra et. al., 2012) 

DES possess certain features which are used to design a discrete model. These 

features are used to capture information about various components of the system under study. 

Briefly, the features include Activities - Where things happen to entities during some time 

(which may be governed by a probability distribution). Queues - entities wait an undetermined 

time. Entities - Wait in queues or get acted on in activities. Attributes - defines entities like 
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kind, weight, due date, and priority. Simulation clock - is a variable giving the current value of 

simulated time. Event list - a list containing the next time when each type of event will occur. 

Statistical counters - are variables used for storing statistical information about system 

information. Figure 2-4 illustrates the arrival of two messages: m1 at time t1, m2 at t2 and their 

dispatch via a channel with a single capacity. This means message m2 must wait while m1 is 

using the channel. This concept shows that a message may perform two activities: waiting in 

a queue or moving through the channel. The figure also shows events and states with two 

parameters (<number of messages in the channel>, <number of messages waiting in the 

queue>. To process these messages, the system performs the two activities in sequence (de 

Lara et al., 2014). 

 

As the DES started to gain ground, three concepts were defined to help programmers, 

and developers implement DES in an event, activity, and process-oriented approaches 

(Fishman, 1973; Nance, 1993). Event Scheduling approach offer primitives to describe events, 

future events, and their effect on the current state. Here, simulation time advancing to the next 

event occurrence is used to manage time efficiently. Activity Scanning focuses on describing 

the starting condition of activities. They are less efficient because they advance the time using 

a small discrete increment and check at each time whether new activities can be started. 

Process Interaction, which provides constructs to describe the life cycle (the processes) of 

each active entities of the system under study. 

 

The features of DES listed above makes it applicable in many domains such as factories 

where entities in this context can be products, people, transporters, tools. Activities may be 

fabrication and assembly. Queues can be implemented at conveyors or warehouses. If 

highways are considered another example, then their entities are emergency booths, cars, 

trucks, and cops. Activities are, go, stop, rage, and switch lanes. Queues can be formed on 

highways ramps, rest stops, and traffic at maintenance spots. Other aspects of DES are the 

Parallel and Distributed Simulation of DES, which is explained in detail late in this chapter. 

 

2.4 Agent-Based Modelling and Simulation (ABMS) 

Agent-based modelling offers a way to model social systems that are composed of 

agents who interact with and influence each other, learn from their experiences. Agents adapt 

their behaviours, so they are better suited to their environment (Macal and North, 2010). An 

agent is simply regarded as an entity, notion, or software abstraction similar to the well-known 

programming specifications such as objects, methods, procedures and functions. An element 

or object abstraction wraps the methods and attributes of a software module (Abar et al., 

2017).  
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Figure 2-5 Structure of Agent showing attributes, methods, and interactions (Adapted from Macal and North (2010) 

In ABMS, entities are referred to as agents and their behaviour defined. Example of 

agents, depending on the context, include household, equipment people, vehicles, products, 

corporation or whatever is related to the system under investigation (SUI). In Figure 2-5, Agent 

name is an example of a static attribute while memory and resources are dynamic. Behaviour 

is categorised as a method, for instance, move, fly and so forth. The modeller establishes 

connections between the agents, sets the necessary environment variables and simulations 

run. This allows the SUI dynamics to emerge from the interactions of the many behaviours. It 

is believed that anything that can choose in a business or system can be viewed as an agent. 

Agents are identified as an individual with a set of attributes which defines what they are and 

behavioural characteristic like what they do.  

 

2.4.1 Structure of Agent-Based Modelling and Simulation (ABMS) 

A model developer must identify, model, and program these elements to create an 

agent-based model. A computational engine for simulating agent behaviours and agent 

interactions is then needed to make the model run (Macal and North, 2011). An agent, 

as shown in Figure 2-6, relationship, and environment are the three essential elements 

found in an agent-based model: first, a set of agents, their attributes, and behaviours. 

Secondly, agent relationships and interaction methods are the underlying topologies of 

connectedness, which defines how and with whom agents interact. The environment is 

where agents interact with their environment in addition to other agents. 
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Figure 2-6 An Agent with its properties (Adapted from Macal and North, 2011) 

Everything associated with agents in the ABMS model is either methods or attributes. 

Attributes can be static (does not change at runtime) or dynamic, which changes as 

simulation progress. 

 

2.4.2 Agent-Based Modelling and Simulation (ABMS) Methods 

There are many approaches to implementing ABMS. Usually, when designing and 

developing an agent-based model, it is important to pose a series of questions. The 

answers will form an essential part of the ABMS design process (Macal and North, 

2010). These questions include What specific problem should be solved by the model? 

What specific questions should the model answer? What value-added would agent-

based modelling bring to the problem that other modelling approaches cannot bring? 

What should the agents be in the model? Who are the decision-makers in the system? 

What are the entities that have behaviours? What data on agents are merely descriptive 

(static attributes)? What agent attributes would be calculated endogenously by the 

model and updated in the agents (dynamic attributes)? 

 

Agent-based modelling can be implemented using general, all-purpose software or 

programming languages. It can also be done using specially designed software and 

toolkits that address agent modelling particular requirements. Agent modelling can be 

done in the small, on the desktop, or large, using large-scale computing cluster, or it can 

be done at any scale in-between these extremes. Projects often begin small, using one 

of the desktops ABMS tools, and then grow in stages into the larger-scale ABMS toolkits. 

Often, one begins developing the first agent model using the approach that one is most 

familiar with. It could be the approach that one finds easiest to learn given their 

background and experience. Regardless of the specific design methodology selected, 

a range of services may be required for implementing small or large-scale models that 
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include real data and geospatial environments. These are becoming more prevalent. 

Some of the more common capabilities include project specification services; agent 

specification services; input data specification and storage services; model execution 

services; results storage and analysis services; and model packaging and distribution 

services. 

 

Finally, ABMS’s ability to capture emergent phenomena has been claimed as a distinct 

feature that makes it suitable for various purposes and applications. Publications 

revealed that agent-based models are developed for a wide range of different purposes. 

For simplicity (Rixon, Moglia and Burn, 2005) classified them as ABMS for Constructive 

Learning such as companion modelling, resource management, and environmental 

modelling. ABMS can be implemented as virtual laboratories for theory development, 

building exercises or economic investigations. ABMS is used in technological and 

engineering applications such as those relating to optimisation and distributed problem-

solving. 

 

2.5 Hybrid Simulation 

Growing globalisation, rising outsourcing, deepening of information technology, 

sophisticated products, expanding horizontal integration and increasing customer demands 

are some of the reasons contributing to complexity in the world (North and Macal, 2007). This 

makes the systems that need to be analysed increasingly complex too. To analyse large and 

complex systems, the idea of combining more than one simulation technique – the Hybrid 

Simulation (HS), has a strong practical appeal for the research community. Scholars 

contributed several different modelling methods, combined in various ways. Most real-world 

problems and systems are complex. With many different features and characteristics, and 

very rarely is one single method ideally suited to capture all of them (Brailsford et al., 2019). 

 

From the M&S perspective, HS can mean several things (Shanthikumar and Sargent, 

1983). For example, models that are simultaneously implemented on both analogue and 

digital computers, contain both discrete and continuous variables, or models that combine 

simulation with an analytical method such as optimisation. In this project, HS refers to models 

that combine more than one simulation paradigm.  
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Figure 2-7 Diagram of a hybrid simulation model of a Theme Park integrating ABS into DES (Adapted from Dubiel and 

Tsimhoni, 2005) 

Research communities have been experimenting and proposing solutions by using HS 

such as ABS-DES (Wang, Zheng and Zhao, 2013), DES-SD (Viana et al., 2014), ABS-SD 

(Djanatliev et al., 2014), and ABS-DES-SD (Block, 2018). Let us look at a scenario related to 

this work. AutoMod (Rohrer, 2002; Muller, 2011) simulation package was used by (Dubiel and 

Tsimhoni, 2005) and developed a Theme Park model where a new visitor wanders around, 

walks to the information centre, and asks for a location map. The visitor has the option to 

either use a tram - a discrete movement or walks around the parks, which is in the form of 

ABS. The model illustrated in Figure 2-7, predicts arrival patterns to the discrete parts of the 

system - tram or ques. The model also aims to identify location, signs, quantity of maps and 

inform park employees to minimise travel time of visitors and maximise flow around parks. 

 

The decades of the recorded exponential growth of HS makes it an attractive system 

analysis technique of choice within M&S in the areas of healthcare, manufacturing, and supply 

chain management. This thesis uses the healthcare system to investigate HS feasibility and 

performance in a Cloud-Based Distributed Simulation (CBDS). 

 

2.6 Parallel & Distributed Simulation (PADS) 

Sharing common challenges and overlapping issues, parallel and distributed simulation 

are two different simulation methods, each with its research community that emerged in the 

‘70s and ‘80s (Fujimoto, 2015a). Parallel Discrete Event Simulation (PDES) practitioners are 

concerned with accelerating discrete-event simulations by exploiting high-performance 

computing platforms. Distributed Simulation (DS) came from defence efforts and is more 

interested in linking up individually developed simulation executing on computing resources 

interconnected local or wide area network environments. This thesis's core contribution is 
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directly connected to the latter – the DS and explained more in-depth. Meanwhile, below is an 

introduction to both PDES and DS. 

 

2.6.1 Parallel Discrete Event Simulation (PDES) 

The parallel Discrete Event Simulation is a concept where a single simulation run is 

distributed over many processors associated with high-performance computing 

platforms. During simulation execution, the PDES program, Figure 2-8 uses several 

sequential discrete event simulations that interact by exchanging time-stamped 

messages, which is referred to as a logical process (LP). The messages exchange 

happens in the form of events. PDES contributes to significant success in simulating 

large systems in defence, computer systems design, and smart urban environments. 

 

 
Figure 2-8 Parallel Discrete Event Simulation (PDES) 

The parallel concept in PDES uses computing platforms equipped with shared-

memory multiprocessors, which fits the main goal - to speed up the simulation execution. 

PDES is typically composed of sequential discrete event simulations interacting with 

messages. Each message is representing a scheduled event between simulators or LPs 

as they are called in the literature. By collecting together sequential DES for parallel 

execution, PDES should produce the same result or very close in some cases to 

sequential DES (Fujimoto, 2016). However, PDES is expected to produce results faster. 

 

2.6.2 Distributed Simulation (DS) 

Unlike PDES where the processors needed to run the simulation are usually in very 

close proximity, distributed simulations in Figure 2-9 take the idea of running 

experiments on computing resources geographically distant from one another. DS’s are 

interconnected via local, wide area networks or the Internet. DS focuses mainly on the 
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use of many resources and parallel and distributed computing approaches to speed up 

the execution of simulation applications and links individually developed simulations that 

facilitate model reusability (Fujimoto, 2000). Among the many reasons encouraging DS 

are reduction in execution time by dividing a large and complex model into many 

submodules that can execute simultaneously over multiple processors. Another reason 

is the geographic distribution where computing resources can be lactated on different 

physical sites and linked up via communication networks. DS also allows computing 

resources from different vendors to be able to interact using the standardised protocol 

such as High-Level Architecture HLA - discussed below. 

 
Figure 2-9 Distributed Simulation Running on Networked PCs 

As the DS field grows and researchers work increasingly lean towards 

interoperability between simulations and among simulation applications, standards 

organisations put together resources and develop and publish standards to enable 

developers to interconnect simulations using established guidelines. Some of the DS 

standards include the High-Level Architecture (HLA) standardised as IEEE Std. 1516-

2010, Distributed Interactive Simulation (DIS) standardised as IEEE Std. 1278-1995, 

and Distributed Simulation Engineering and Execution Process (DSEEP) standardised 

as IEEE Std. 1730-2010. This thesis leverages the HLA and DSEEP standards which 

are explained here and other sections as well. 

 

The High-Level Architecture (HLA) 
One form of DS in the market today is High-Level Architecture (HLA). The HLA 

IEEE 1516-2010 (Pedrielli et al., 2012) is a well-known and accepted standard that 
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provides a distributed infrastructure in which each simulation unit runs on an 

independent computer (in general, geographically distributed) and communicates with 

the others in a typical simulation scenario (IEEE Std. 1516-2010). HLA was developed 

by the DoD Modelling and Simulation Coordination Office (M&S CO) in the period 

1995-1996 as a general architecture to facilitate the integration of distributed 

simulation models within a common simulation environment (Falcone, Garro, Taylor, 

et al., 2017). To facilitate interoperability and reusability, HLA differentiates between 

the simulation functionality provided by the members of the distributed simulation and 

a set of basic services for data exchange, communication, and synchronisation 

(Straßburger, 2006). Figure 2-10 shows a functional overview of a federation using 

HLA standard implementation. 

 

 
Figure 2-10 HLA: Functional View of a DS (Adapted from Straßburger, 2006) 

Federation is a term used in the HLA to denote the composition of individual 

simulation models called federates. These federate communicates with each other via 

a Runtime Infrastructure (RTI)'s defined protocol. The RTI manages the interaction 

and exchange of messages among the connected federates. However, it is argued in 

(Möller et al., 2016) that building complex and extensive distributed simulations, 

especially those based on the HLA standard, is usually a challenging task and requires 

considerable development experience in distributed systems, simulation, middleware, 

and software programming. 

 

The HLA Framework and Rules 
Contained in the IEEE Standard 1516-2010 official document, the standard 

provided five rules for federation and five rules for federates (altogether ten rules). 
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These enforce specific structure and responsibilities to make sure DS simulation 

models can be reused across applications. 

 

Framework Rules for Federation: 
a. Federations shall have an HLA FOM, documented in accordance with the HLA 

OMT. 

b. In a federation, all simulation-associated object instance representation shall be in 

the federates, not in the RTI. 

c. During a federation execution, all FOM data exchange among joined federates 

shall occur via the RTI. 

d. During a federation execution, joined federates shall interact with the RTI in 

accordance with the HLA interface specification. 

e. During a federation execution, an instance attribute shall be owned by at most one 

joined federate at any given time. 

 

Framework Rules for Federation: 
a. Federates shall have an HLA SOM, documented in accordance with the HLA OMT.  

b. Federates shall be able to update and/or reflect any instance attributes and send 

and/or receive interactions, as specified in their SOMs. 

c. Federates shall be able to transfer and/or accept ownership of instance attributes 

dynamically during a federation execution, as specified in their SOMs. 

d. Federates shall be able to vary the conditions (e.g., thresholds). They provide 

updates of instance attributes, as specified in their SOMs. 

e. Federates shall be able to manage local time in a way that will allow them to 

coordinate data exchange with other members of a federation. 

 

The HLA Interface Specification 
In HLA DS, communication, and data exchange pass through the RTI. The 

interface specification defined seven services used by the federates to interact with 

the RTI - the federation communication layer. These service groups were summarised 

by (Huiskamp and van den Berg, 2016) and quoted as follows; 

 

a. Federation Management. These services allow for the coordination of federation-

wide activities throughout the life of a federation execution. Such services include 

federation execution creation and destruction, federate application joining and 

resigning, federation synchronisation points, and save and restore operations. 
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This, for example, can be used to create "snapshots" of the simulation to resume 

execution at a later stage.  

b. Declaration Management. These services allow joined federates to specify the 

types of data they will supply to, or receive from, during the federation execution. 

This process is done via a set of publication and subscription services along with 

some related services. 

c. Object Management. These services support the objects' life-cycle activities, and 

interactions used by the joined federates of a federation execution. These services 

provide for registering and discovering object instances, updating, and reflecting 

the instance attributes associated with these object instances, deleting, or 

removing object instances as well as sending and receiving interactions and other 

related services.  

d. Ownership Management. These services are used to establish a federates-

specific privilege to provide values for an object instance attribute. It also facilitates 

the dynamic transfer of this privilege (ownership) to other joined federates during 

a federation execution. 

e. Time Management. These services allow joined federates to operate with a logical 

concept of time and maintain a distributed virtual clock jointly. These services 

support discrete event simulations and assurance of causal ordering among 

events.  

f. Data Distribution Management. These services allow joined federates to specify 

further the distribution conditions (beyond those provided via Declaration 

Management services) for the specific data they send or ask to receive during a 

federation execution. The RTI uses this information to route data from producers 

to consumers in a more tailored manner, for example, to receive only updates from 

objects that are in the geographical vicinity in the simulated world.  

g. Support Services. This group includes miscellaneous services utilised by joined 

federates for performing such actions as name-to-handle and handle-to-name 

transformations, the setting of advisory switches, region manipulations, and RTI 

start-up and shutdown.  

 

The HLA Object Model Template (OMT) 
At federation execution runtime, data exchange between federates is defined in 

the object model template. OMT describes the state and interactions during simulation 

events. The template contains three sub-models in HLA implementation - FOM, SOM 

and MOM (Falcone, Garro, Taylor, et al., 2017). 
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a. Federation Object Model (FOM) - is created in line with the OMT and contains 

object classes, interaction classes and data types. Optionally, FOM can contain 

federation-wide information for efficient data distribution.  

b. Simulation Object Model (SOM) - provides details of the object attributes and 

interactions of what the federates send or receive. 

c. Management Object Model (MOM) - a group of predefined constructs in HLA that 

supports monitoring and managing the federation execution. 

 

Runtime Infrastructure (RTI) 
The RTI controls the simulation execution during an experiment. It provides the 

federation with management functions and services using an XML file formatted FOM. 

RTI decides the kind of data that can be exchanged by the participating models within 

the federation. In the proposed DICE, the simulation requirements call for the use of 

RTI in the project design. Determining which RTI package to use depends on the 

objective and expected outcome. Many RTI implementations are available for free or 

commercially developed by vendors, academic institutions, and government agencies. 

Table 2-1 from Huiskamp and Berg (2016) gives a few examples of known 

implementations. 

 
Table 2-1 RTI known implementations with HLA supported versions (Adapted from Huiskamp and Berg, 2016) 

Vendor URL Standard Binding License 

Pitch http://pitch.se HLA 1.3 C++, Java Commercial 

IEEE 1516-2000 C++, Java 

IEEE 1516-2010 C++, Java 

MÅK http://www.mak.co

m 

HLA 1.3 C++, Java Commercial 

IEEE 1516-2000 C++, Java 

IEEE 1516-2010 C++, Java 

CERTI http://savannah.no

ngnu.org/projects/c

erti 

HLA 1.3 (partial) C++, Java Open source: 

GPL 

(sources) and 

LGPL 

(libraries) 

IEEE 1516-2000 

(partial) 

C++ 

IEEE 1516-2010 

(partial) 

C++ 

poRTIco http://porticoproject

.org 

HLA 1.3 (partial) C++, Java Open source: 

CDDL 1.0 IEEE 1516-2000 

(partial) 

C++ 
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IEEE 1516-2010 

(partial) 

C++, Java 

Open 

HLA 

http://sourceforge.n

et/projects/ohla 

HLA 1.3 (partial) Java Open source: 

Apache 

Licence 2.0 
IEEE 1516-2000 

(partial) 

Java 

IEEE 1516-2010 

(partial) 

Java 

 

RTI also provides the seven services listed under the interface specification 

section above. These facilitate easy integration of existing models with different 

applications and platforms such as Windows, Linux and Mac OS. RTIs are known for 

having a standard interface for communication using different programming languages 

such as Java, C++, and Python. In Figure 2-11, the FederateAmbassador is used to 

deliver information to federates using callbacks and RTIAmbassador instances 

invoked by federates to access RTI services. 

 

 
Figure 2-11 Federation with RTI implementation (Adapted from Wikipedia) 

This project utilises the HLA, as shown in the EMS simulation Scenario in chapter 5. 

 

Interoperability 
Since 1996 the Simulation Interoperability Standards Organization (SISO) has 

been at the fore of reporting developments (Wilcox, Burger and Hoare, 2000). SISO 

gives directions for groups in defence and non-defence who are interested in 

developments by promoting modelling and simulation interoperability and reuse for the 

benefit of a broad range of communities including developers, procurers, and users 

worldwide (Serna et al., 2010). 

 

With the growing emphasis in the area of DS to enhance inter-operability 

amongst simulation applications separately developed, (Fujimoto, 2015a) revealed 
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that a substantial amount of effort has focused on developing standards to interconnect 

simulations. The Distributed Interactive Simulation (DIS) - IEEE Std 1278.1-1 995 

1995; IEEE Std 1278.2-1995 1995 and the High-Level Architecture (HLA) - IEEE Std 

1516-2010 20 10; IEEE Std 1516.1-2010 2010; IEEE Std 1516.2-2010 2010 (Open-

DIS) and (Mccall and Murray, 2010) standards. 

 

Moreover, the research communities work on solving not only the problems 

caused by interoperability issues but the underlying causes. A few examples of these 

developments in the DS are simulation methodology by (Banks et al., 2013) and (Tolk 

and Muguira, 2003; Wang, Tolk and Wang, 2009)’s levels of conceptual interoperability 

model (LCIM). Figure 2-12, promotes composability via the application of engineering 

methods and principles, easing the transition out of the ad-hoc approaches. A short 

description is also given below the figure. 

 

 
Figure 2-12 The Levels of Conceptual Interoperability Model (Adapted from Wang, Tolk and Wang, 2009) 

The Figure above shows layers of conceptual Distributed simulation model 

interoperability discussed above in section 2.10.2. A quick run-through; Level 0 (No): 

Models built with this layer have no interoperability of any kind - internal or external. 

Level 1 (Technical): Data is exchanged between systems with the presence of 

technical connections between them. Level 2 (Syntactic): At this layer, models and 

systems have an agreement on a protocol to exchange the right data in a particular 

order but the meaning is not established yet. Level 3 (Semantic): Systems 

interoperating with this level can exchange terms that can be parsed semantically 

between them. Level 4 (Pragmatic): Systems interoperating here are fully aware of the 
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system state, processes, and meaning of data being exchanged. Level 5 (Dynamic): 

As the simulation time increases, a system with this level of interoperability can re-

orient data consumed and produced based on the understood changing meanings. 

Level 6 (Conceptual): At the highest level, systems are interoperating with full 

knowledge of each other’s processes, information, modelling assumptions, and 

contexts. 

 

Within the distributed simulation theory, model composability is where the 

analyst selects various systems components, combined to fulfil simulation project 

requirements. (Petty and Weisel, 2003) defined it as "the ability to combine and 

recombine components into different simulation systems for a different purpose." To 

make M&S an entirely scientific area of discipline, a body of knowledge is required to 

be in place, which comprises methods in engineering and standards to follow in 

operations. 

 

The interoperability issue will be among the main factors in the core proposed 

architecture for the cloud-based distributed simulation. The SISO put efforts in the 

M&S direction as we see in Taylor (2018) – the SISO-STD- 006-2010 Standard for 

COTS Simulation Package Interoperability Reference Models (IRMs) which is 

designed explicitly with Operational Research/Management Science (OR/MS) in mind. 

 

Time Management  
Time Management is one of DS's significant features, and it is a technique used 

to determine proper distributed simulation execution with required synchronisation. 

Notably, the DS uses three types of time. When referring to time management, it can 

be a physical, simulation, or wallclock time (Fujimoto, 1998). Physical Time refers to 

the time in the physical system, i.e., the system being modelled by the simulation. For 

example, in a simulation of the attack on Pearl Harbour, physical time might extend 

from midnight until 6 p.m. on December 7, 1941. Simulation Time refers to the 

simulator’s representation of time. In the Pearl Harbour simulation, simulation time 

might be represented as a double-precision floating-point value that can hold values 

in the interval [0.0, 18.0] where a unit of simulation time corresponds to an hour of 

physical time. Wallclock Time refers to a time when the simulator is executed. For 

example, the Pearl Harbour simulator might require three and a half hours to execute. 

If it were executed in the afternoon of September 10, 1996, wallclock time might extend 

from 1330 until 1700. 
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Typically, it assumes that a simulation is composed of a set of Logical 

Processes (LPs) representing different components of a physical system, which 

communicates via time-stamped messages. A process in LP is described as a 

sequence of states and events, which change state in response to events that can be 

generated internally or arrived from another process (Nutaro and Sarjoughian, 2004). 

Figure 2-13 from Rizvi (2013) show several LPs interact through a communication 

medium. Simulation applications use Simulation Executives and interfaces to send and 

receive messages using a finite simulation time Ts. 

 

 
Figure 2-13 LP Architecture in Simulation Model (Adapted from Rizvi, 2013) 

There are several processes in a physically distributed system and are 

connected via a directed channel. In DS, the concept is called a logical process that 

executes sequential code using two commands: send and receive (Misra, 1986). LPs 

uses send command to define the outgoing message and the channel to follow to a 

destination in sequence as they are sent. The sent messages have predefine time to 

reach their designation, which is determined arbitrarily. When LP is ready to receive, 

it waits until a message arrived from the incoming channels. 

 

2.6.3 Distributed Simulation (DS) Methodologies 

DS uses several LPs which are distributed over multiple computers and interconnected 

via a LAN, MAN, or WAN. Due to time management or synchronisation during DS 

execution and communication between these subprocesses, problems do occur and 

poses some challenges. For example, a network may be down, and data may be lost 
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alongside. The DS simulation coordinating centre must find a way to continue from a 

downtime using some recovery mechanisms. These mechanisms are spelt out in the 

DS implementation approaches, including conservative, optimistic, and real-time. 

 

Conservative Approach – This approach resulted from algorithms developed in the 

late '70s by Chandy and Misra (1979), and Bryan (1977). It is referred to as Chandy-

Misra-Bryant (CMB) and laid the foundation for parallel and distributed simulation. 

Conservative techniques are based on the idea of determining when it is safe to process 

an event. Suppose a process contains an unprocessed event with time-stamp T. That 

process can determine that it is impossible for it to later receive another event with a 

time-stamp smaller than T. In that case, the process can safely process that event. 

Processes containing no safe events must be blocked, which can lead to a deadlock 

situation, in general. 

 

This approach has many sub-units. Those relevant to this research include the 

Deadlock Avoidance technique where null messages are exchanged among LPs 

during simulation run to avoid deadlock situations. Null messages do not usually 

represent or correspond to any physical system activity under study but are used for 

synchronization purposes. For example, when a null message with a timestamp of Tnull 

is sent to LPB from LPA, it indicates a promise by LPA that it will not send a message to 

LPB with a timestamp less than Tnull. Another one is the Deadlock Detection and 
Recovery mechanism developed by Chandy and Misra (1981). It is similar to deadlock 

avoidance only that this does not use or exchange null messages. This technique is 

used to detect when a simulation is in a deadlock. Another mechanism is sent to break 

the deadlock and free the simulation. The mechanism breaks the simulation deadlock 

by observing and making messages having the smallest timestamp that is safe to be 

processed. Last but not least is Lookahead, which refers to the ability to predict what 

will happen in a distributed simulation. The common form of lookahead is the minimum 

timestamp increment of an LP for processing any event. 

 

Optimistic Approach - Contrast to conservative algorithms, optimistic algorithms 

allow causality errors to occur and then recover from them so that all events are correctly 

processed in order by the end of the simulation. The aim is to generate more parallelism 

to process the simulation faster. Time Wrap is a well-known and used optimistic protocol 

(Jefferson, 1985). With Time Warp, a mechanism detects causality error whenever an 

event message arrives and contains a smaller timestamp than that of the process clock 

(Jefferson and Sowizral, 1982) which is the timestamp of the last processed event. It 
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uses an event that causes a rollback and is called a straggler (Fujimoto, 1990). 

Recovery is achieved by reversing the effects of all events that were processed before 

the due time by the process receiving the straggler. The affected events are those with 

timestamps larger than that of the straggler. 

 

Real-time Approach - In a DS, multiple simulations need to interact with multiple 

"players" and their responses, as close to real-time as possible. This goal requires 

different approaches to balancing processing and communication. Taylor (2018) 

revealed that these are classed as "Real-Time Approaches" and do not use time 

management as described above. 

 

Several kinds of research in distributed simulation, especially the discrete-event area such as 

Jha and Bagrodia (1994), Fujimoto (2003), Park, Fujimoto and Perumalla (2004), Tang et al. 

(2005), Xu and McGinnis (2006) Wang et al. (2004), and Carothers and Perumalla (2010) are 

found to be focusing on performance evaluation of either conservative and optimistic 

approaches or both on various types of applications. Table 2-2 below shows a summarised 

comparison between conservative and optimistic approaches by the first two techniques (Vee 

and Hsu, 1999). It is noticed that the authors compared features implementation strategies 

such as parallelisation, synchronisation, lookahead, deadlock and others. 

 
Table 2-2 A comparison between conservative and optimistic approaches (Vee and Hsu, 1999) 
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Applications of Distributed Simulation (DS) 
Based on his discussions with distributed simulation enthusiasts and personal 

experience with the available literature, Professor Stewart Robinson of Warwick 

Business School in the UK, over a decade ago carefully categorised (Robinson, 2005) 

the application of DS into four main headings; Model Execution, Data Management, 

experimentation, and Project Processes. The following Table 2-3 gave an overview of 

what falls under which category. 

 
Table 2-3 Application areas of Distributed Simulation (Robinson, 2005) 

Category Application 
 
Model Execution  

 
- Distributing Model Execution 
- Linking Separate Models 

 
Data 
Management 
 

 
- Linking to databases and other software 
- Linking to Real-time Systems 

 
Experimentation 
 

 
- Gaming 
- Distributed Multiple Applications 
- Distributed Multiple Scenarios 

 
Project 
Processes 

 
- Sharing Models 
- Applications Sharing 
- Virtual Meetings 
- Searching for Model Components 

 
 

2.7 Modelling and Simulation in Cloud Computing 

DS research communities have been working in the areas of interoperability, model 

reuse, networked distributed simulation, and cloud-based simulation applications. This project 

reviews over a decade and recent publications in three different areas: Distributed Simulation, 

and Cloud-based Simulation. Moreover, the thematic areas reviewed are used to uncover the 

gap in the literature, which this research aims to address. 

 

Strassburger, Schulze, and Fujimoto (2008) conducted a study to understand the 

relevance and economic potentials of distributed simulation. The survey collected 

practitioners' opinions concerning the current state-of-the-art and research challenges that 

need to be addressed. At the time of this publication, the Distributed Simulation/Distributed 

Virtual Environment (DS/DVE) adoption was limited. Nevertheless, the survey results show 

that the DS/DVE is believed to have high practical relevance for improving organisational 

processes and the overall product life cycle. Moreover, the ultimate practical relevance is 



Review of the Literature 

Page 51 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

linking and integrating (possibly heterogeneous) computing resources for conducting large 

and complex distributed simulations as well as virtual distributed training sessions.     

 

Distributed simulation (DS) is concerned with the execution of simulations over 

computing platforms that span a much broader geographic extent than parallel computers 

(Fujimoto, 2015). His paper introduces the concepts of parallel and DS and focuses on the 

concurrent execution of discrete-event simulation programs. The paper further gave the M&S 

field background that evolved and grew from its origins in the '70s and '80s and its active 

research opportunities today. The author gave an overview of parallel, and distributed 

research is presented ranging from a few works in the field aimed at addressing some 

identified problems such as synchronisation to recent research in executing large-scale 

simulations on supercomputing platforms. The article suggests directions for future research 

in the field of both parallel and DS.   

 

Distributed Agent-Based and DES simulation of Emergency Medical Services (EMS) 

was proposed by (Nouman, Anagnostou and Taylor, 2013). The authors demonstrated how 

to develop a DS using the RePAST (https://repast.github.io) simulator and poRTIco 

(http://porticoproject.org) middleware opensource tools. The paper uses the SISO's COTS 

interoperability reference models (IRM) (Morse et al., 2010) to connect discrete event 

simulation (DES) accident & emergency (A&E) model with an agent-based simulation (ABS) 

ambulance service model. A simplified version of the London Ambulance Service is used as 

a case study for applying the distributed ABS-DES architecture. The experiment is conducted 

under a controlled setting to maintain consistent communication between models (federates). 

They use HP desktop computers each equipped with a 1GBPS network card, Core i5-2500 

processor at 3.30GHz, and 4GB of RAM. Each machine is loaded with MS Windows 7 OS, 

Java v1.7 JRE, poRTIco, and RePAST Symphony simulator. Each experiment scenario ran 

for a one-month simulation time and presented results of an average of five runs. 

 

Ficco et al. (2016) developed a framework for integrating local and distributed hybrid 

simulation environments, which are widely used to simulate large-scale critical systems. The 

paper presents a simulation and emulation-based subsystems integration framework. Due to 

the challenges posed by the difference in time domains, a large number of involved entities, 

and communication overhead, the authors used HLA and performed integration in a more 

robust and standardised scenario. The experimentation adopts a cloud-based virtualisation 

platform to reasonably reproduce the architecture of a complex system on an adaptive and 

elastic controlled testbed. 
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The performance of DS strategies is examined (Fujimoto, 1989) using deadlock and 

avoidance detections. The author further investigates the recovery techniques using synthetic 

and actual workloads. The DS experiment consists of four key components; the application 

package that simulates the real system, the distributed simulators responsible for executing 

the application package. Next is the software to implement the system functions such as inter-

process communications—lastly, the multiprocessor hardware on which the application 

package executes. The late '80s research demonstrated that distributed simulation algorithms 

could provide significant speedups over sequential event list implementations for some 

workloads.  

 

Guan et al. (2019) propose a multi-layered cloud-based scheme to enable DS standards 

such as Distributed Interactive Simulation (DIS) and HLA. The authors give reasons to migrate 

DS to the cloud among which are Resource Sharing - where computing resources are 

provided on-demand during runtime. Virtualisation – Cloud computing virtualisation cover both 

the soft and hardware layers providing better isolation and manageability. Scalability – Cloud 

infrastructure often offers automatic resizing of virtual hardware. Payment – User can 

configure cloud resources on-demand using pay-as-you-go options. The work proposes a 

multi-layer cloud platform comprising of a five-layer stack, the raw resources layer, the 

integration and virtualisation layer, the simulation function layer, the user management layer, 

and the deployment layer. This scheme claims to address the challenges modellers face by 

hiding the management of the underlying cloud resources. During the experiment, a prototype 

of the proposed platform is implemented on a cluster, a single machine, and Amazon's EC2. 

Based on the experimental results, the paper concludes that the use of cloud technologies is 

a promising method to facilitate distributed simulations, especially when the network 

environment demands efforts towards optimisation and performance.    

 

Concerning OR, Taylor (2018) reports a DS state-of-the-art. Various attempts by 

researchers in investigating the use of the cloud for simulation were presented. Examples 

include CloudSME, WS-PGRADE, mobile devices as a platform for DS in terms of energy 

consumption. The work argues the potential benefits and advantages of DS in the context of 

Operational Research (OR). The author also discusses future challenges such as those 

coming from Cyber-physical systems, Digital Twins, Industry 4.0, and Smart Environments. 

 

A distributed simulation methodological framework for Operations Research and 

Management Science (OR/MS) was proposed by Anagnostou and Taylor (2017b). It attempts 

to bridge the gap between DS and OR/MS communities. The authors use an Emergency 

Medical Services (EMS) model to demonstrate how the framework eases the DS 
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implementation by non-technical OR/MS modellers. The research work employed the London 

Ambulance Service (LAS) as a case study. The models (federates) are built using High-level 

Architecture (HLA). The experiment involves Ambulance Service and Accident & Emergency 

(A&E) departments. The Ambulance is an Agent-Based Simulation (ABS) federate, and the 

A&E is a Discrete Event Simulation (DES) model. The author uses homogenous computing 

resources connected via Local Area Network (LAN). Each node is loaded with Microsoft 

Windows 7, 4GB RAM, Intel 3.30GHz Java 1.7 JRE, and portico v2.0. The work concludes 

that approaching DS from OR/MS point of view, it will make a massive experiment widely 

attractive to non-technical modellers. 

 

HLA Development Kit Framework (DKF) was developed (Falcone, Garro, Taylor, et al., 

2017) to reduce the complexity associated with HLA-based distributed simulations. The 

framework allows for easy conceptualisation, definition, and build of HLA DS. In the tutorial 

paper, the authors guide developers through the required steps to defining and creating an 

HLA-based simulation for experimentation. The DKF aids modellers by allowing them to focus 

on their federate-specific needs and leave the HLA technicalities, which are taken care of by 

the framework. DKF aim to spontaneously coordinate the interaction between federates, 

simulation management, publish/subscribe. This framework has successfully experimented in 

the Simulation Exploration Experience (SEE) (Wei et al., 2018) project since the 2015 edition. 

DKF can be placed and run on the existing HLA/RTI implementation, such as Pitch RTI (Pitch 

Technologies – Pitch pRTI – a Certified HLA RTI, 2017) and VT MÄK (MAK RTI - VT MAK). 

DKF is IEEE 1516-2010 compliant, and this allows developers to operate under the paradigm 

"write once and run anywhere" - its primary benefit. To promote DKF implementation, a 

domain-specific extension called SEE HLA Starter Kit (SEE-SKF) is developed by (Garro et 

al., 2015). Finally, the paper compares developing HLA-based federates with and with DKF.  

 

Carillo et al. (2018) presented Simulation exploration and Optimisation Framework for 

the cloud (SOF) - a framework that allows analysts to run and collect results for two kinds of 

optimisation scenarios; Simulation Optimisation (SO) and Parameter Space Exploration 

(PSE). The framework leverages the computing power of a cloud computing environment to 

accomplish effective and efficient simulation optimisation strategies for DS. The authors claim 

that SOF provides a set of functionalities that allows developers to construct their simulation 

optimisation strategy. The main objectives of the framework are Zero Configuration - the 

framework uses only Hadoop and SSH, and neither requires the installation of any additional 

software to the hosting platform. Ease of Use - the tool is transparent to the users, and they 

are unaware that the system operates in a distributed environment. Programmability - the 

simulation and the SO functionalities can be implemented using different toolkits, e.g., 
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NetLogo or MASON or different programming languages supported by the hosting platform. 

Efficiency - can execute several independent simulations concurrently by adequately 

exploiting hosting platform available resources.  

 

Cloud-Based Simulation (CBS) offers reliability, availability and scalability capable of 

executing simulations on the Cloud. Adapting this advancement poses challenges such as 

synchronisation, virtualisation and multi-tenancy overhead. In an attempt to mitigate these,  

Distributed Simulation for Cloud Computing (DSC) is proposed by Rajei et al. (2017). The 

multi-layer platform includes middleware and High-Performance Computing - HPC as a 

Service (HPCaaS). This proposal gave birth to Distributed Simulation as a Service (DSaaS) - 

a cloud service for large simulations that requires parallel executions of modules. DSaaS has 

many layers and implemented on the Platform as a Service (PaaS) which paved the way to 

cloud implementation and execution of PADS applications. 

 

Chaudry et al. (2016) investigated a cloud-based framework for distributed simulation 

using WS-PGRADE workflows (Farkas, Hajnal and Kacsuk, 2014). The workflow uses 

CloudSME Simulation Platform (CSSP) to support the execution of varied sizes of the 

federation using a single large instance on the cloud. The authors test and verify the 

framework feasibility using a hybrid distributed simulation model of an Emergency Medical 

Service (EMS). The federation consists of one Ambulance (ABS) and six Accident and 

Emergency departments (DES) in the study area. 

 

Another closest research effort towards cloud-based distributed simulation architecture 

is the MiCADO - Microservice-based Cloud Application-level Dynamic Orchestration 

framework proposed by Visti et al. (2016). The framework places microservices in lightweight 

virtualisation containers in worker nodes, and the orchestration and coordination mechanism 

is required to enable service discovery and performance management. The MiCADO generic 

architecture definition in this regard is to identify a modular and pluggable framework where 

different functionalities can be delivered by different components on-demand, and where 

these components can be easily substituted. The authors claim this solution to be technology-

neutral that will not be depending on one particular component implementation.  

 

A web-enabled High-Level Architecture (HLA) federate is proposed (Tu, Zacharewicz 

and Chen, 2011) after the release of the IEEE Standard 1516-2010. The research uses the 

poRTIco middleware tool with the idea to improve interoperability between components and 

agility. The paper explains the benefits found in the new standard such as fault tolerance 

support services, Extended XML support for FOM/SOM, Web Services (WSDL) support/API, 
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Encoding helpers, Modular FOMs, Smart Update rate reduction. The simulation of 

WebServiceFederate is used to facilitate the enterprise data exchange simulation, which fulfils 

one of the new features specified in HLA 1516-2010. 

 

Guidelines for experimentation in the cloud was presented by NATO's MSG-131 team 

(NATO, 2015). They proposed the MS Software as a Service (MS-SaaS) - allows the MSaaS 

Consumer to use the MSaaS Provider’s applications running on a cloud infrastructure. MS 

Platform as a Service (MS-PaaS) - allows the MSaaS Supplier to deploy onto the cloud 

infrastructure own-created or acquired applications created using programming languages, 

libraries, services, and tools supported by the MSaaS Provide. MS Infrastructure as a Service 

(MS-IaaS) - allows a consumer to utilise processing, storage, networks, and other fundamental 

computing resources. It allows the consumer to deploy and run arbitrary software.  

 

Brito et al. (2016) proposed, designed, developed, and evaluated a distributed 

simulation platform. The research combines heterogeneous simulators and middleware - 

runtime infrastructure that are HLA-based. The authors assessed the platform with different 

scenarios using discrete event simulation. The proposed solution was aimed at DS 

environments executing high-performance large-scale heterogeneous and complex 

embedded systems. The experimental results indicate successful application in the power 

estimation of circuit design, robotic simulation, and wireless sensor networks. The hybrid 

platform combines many aspects of distributed simulation, such as network architecture and 

computation among many others. 

 

Researchers in the DS field are promoting efficient ways to analyse systems using plug-

and-play model components instead of building simulation models. Such an example is 

published by Jeffrey et al. (2007). The paper proposes an Open System Architecture for 

Modelling and Simulation (OSAMS). The primary motivation is to standardise the use of 

component-based interoperability technology to drastically lower the cost of development, 

operation, maintenance of next-generation models. The authors identify five technical areas 

crucial in establishing the SOAMS: flexible hierarchical composition structure, standard 

modelling framework, abstract polymorphic methods, distributed object techniques, 

consolidated trace file generation, and data logging. The publication discussed how OSAMS 

could be integrated with traditional distributed simulation standards such as HLA, TENA, and 

DIS. Targeted at defence and military applications, the architecture can well suit industry 

applications. 

 



Review of the Literature 

Page 56 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

HLA is used with cloud-based services by Azevedo et al.  (2015) proposed an agent-

directed transportation management simulation platform to overcome the interoperability 

issues when combining several simulation tools and concepts to analyse systems. The 

proposal used HLA for interoperability among simulators. The paper aims to enable experts 

to diagnose complex problems cutting across domains, allowing co-simulation from different 

application domains. 

 

Furthermore, other publications try to enable the integration of simulation resources 

amongst distributed models which are geographically separated. This leads to the 

development of DS standards such as DIS - a standard networking protocol for exchanging 

information among various simulation applications (https://www.mak.com/), DSEEP - a 

generalized systems engineering process for building and executing distributed simulation 

applications (https://www.sisostds.org/), and HLA - a more recent standard for interoperability 

among simulations, with interoperability and model reusability at the core. Non-software 

engineering modellers like those in operational research (Anagnostou and Taylor, 2017), 

however, may find it challenging to work with a distributed system for simulation project due 

to ever-evolving types of computing resources, network, and other technical components. 

 

Cloud infrastructure is used to tackle the technical details, configuration, and 

maintenance of simulation environments where simulation applications run. Guan, Grande 

and Boukeriche (2019) proposed a multi-layered scheme to enable M&S based on different 

DS standards. The authors developed a deployment model aiming to ease technical 

installation, migration, configuration, and replication of simulation platforms. They proposed a 

self-managed lightweight terminal that can be used by modellers to manage simulation 

resources for direct usage. This simulation cloud architecture is composed of Deployment 

Layer, User Management Layer, Simulation Function Layer, Integration and Virtualisation 

Layer, and Raw Resource Layer. This work is also reported in the literature review section of 

this thesis. 
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Figure 2-14 A multi-layered Cloud Simulation Framework (Adapted from Guan et al., 2019) 

As shown in Figure 2-14 is from each layer in the framework proposes to ease the CBDS 

experimentation. The main layers in this framework are Deployment Management Layer – 

Fast and automatic deployment and migration of the proposed scheme in new environments 

is a priority. To achieve this, the Simulation Resource Deployer, the Virtual Resource 

Deployer, and the Cloud Infrastructure Deployer (as depicted in the Deployment Management 

Layer of Figure 2-14) cooperate to backup the current platform status. It packs and transmits 

core resources to new environments, and deploys the platform based on its previously saved 

status. User Management Layer - This layer focuses on security issues in the cloud 

environment. In this layer, an authentication and access control mechanism are proposed. 

The idea is to protect users against threats from within and outside the cloud. Besides, this 

layer also provides a web-based graphic portal and a command-line interface. Using it, users 

can access the simulation resources and the computing capability of the proposed cloud 

simulation platform. This user portal enables users to design, code, analyse and test complex 

distributed simulations via lightweight terminals such as laptops, tablets, or even smartphones. 



Review of the Literature 

Page 58 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

Simulation Function Layer - This layer provides core functions and services that naturally 

enable and support different types of distributed simulation standards. It supports HLA (High-

Level Architecture), DIS (Distributed Interactive Simulation), and DDS (Data Distributed 

Service). Others include the Distributed Simulation Workbench, the Simulation Resource 

Manager, and the Virtual Resource Manager. Integration and Virtualisation Layer - To utilise 

the raw computing capacity from diverse resources, the Integration and Virtualization Layer is 

a designed environment. The Compute Resource Manager deals with the establishment of 

virtual instances based on the selected scheduling algorithm and the characteristics of the 

user-defined virtual instances. The Image Manager handles the operating system and 

simulation-related soft-layer issues. Raw Resource Layer – This is a pool of untreated 

resources, such as computing resources, storage resources, and network resources. The 

whole cloud simulation platform is built on top of these resources. In this layer, physical hosts 

are not configured and coordinated, as they contain only an operating system and essential 

software that such an operating system brings.  

 

As established in chapter one, section 1.2, many simulation projects require high-

performance computing (HPC) resources and a lot of time for experimentation execution. 

Acquiring HPC can be expensive for Small and Medium Enterprise (SMEs). Cloud computing 

concept presents an alternative to the HPC investment in hardware and software. 

Furthermore, developing cloud-based simulation application is demanding and costly too, for 

SMEs and non-technical modellers. In an attempt to overcome this challenge (Taylor , 2018) 

designed and proposes the CloudSME Simulation Platform (CSSP). 

 
Figure 2-15 The Layered CloudSME Simulation Platform (Adapted from Taylor, 2018) 

Figure 2-15 shows the CSSP, a layered architecture, which is created from existing 

technology; CloudBroker (www.cloudbroker.com), WS-PGRADE/gUSE (Gottdank, 2014) and 

extended to have CloudSME AppCenter. The generic CSSP is aimed at commercial vendors 
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and consulting companies offering simulation software services. Though it can be used for 

research, it is targeted at scenarios supporting different types of simulation software 

applications. For example, it works well with process simulation, computational fluid dynamics 

(CFD), and computer-aided design (CAD). A useful feature of the layered design in Figure 2-

15 is the CSSP. It allows commercial vendors to utilise different cloud providers, which means 

they port their applications once and switch between multiple cloud resources or use them 

simultaneously. The three layers in this deployment are Simulation Applications Layer that 

allows software vendors to deploy and present simulation products to end-users as Software 

as a Service (SaaS) in a wide range of scenarios and deployment models. Cloud Platform 

Layer that provides access to multiple heterogeneous cloud resources and supports the 

creation of complex application workflows — a Platform as a Service (PaaS) to create and 

execute cloud-based simulations. Cloud Resources Layer represents the Infrastructure as a 

Service (IaaS) clouds connected to the platform.  

 

These publications presented many aspects of distributed simulation run locally and in 

the cloud. However, a gap in the literature is exposed due to a lack of evidence of study on 

how the cloud environment can be used to deploy, submit jobs and run multiple DS runs. 

Those challenges listed in chapter one, section 1.2 presents a barrier and probably 

discourages analyst from simulating large-scale systems. This could be due to the complexity 

in cloud infrastructures (Avram, 2014) such as dependencies, network environment, protocols, 

and other resources management.  

 
Figure 2-16 Framework for identifying research gaps in literature reviews (Adapted from Müller-Bloch, C., & Kranz, J. 

(2015)) 

Müller-Bloch and Kranz (2015) developed a framework for identifying gaps in the 

literature review show in Figure 2-16. The figure illustrates that research gap identification is 

separated from the localisation of the research gap. The authors refer to localisation as 

information suggesting a gap, derived from the literature review but require further research 
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to be resolved. At the same time, identification has broad meaning comprising localisation, 

characterisation, verification, and presentation. 

 

While there is clear evidence on the reviewed literature that there has been much 

research into the distributed and cloud-based simulations, no single cloud-based deployment 

architecture or cloud-compatible federate (stepwise) development framework was reported, 

exposing a theoretical literature gap in the study. This project employs the framework 

mentioned above. It evaluates the contributions based on the selected and domain-relevant 

criteria. As they appear in Table 2-4, the comparison criteria are Cloud-Base DS, Simulation 

Paradigm, Architecture/Framework, Standard and Domain. None of the reported works 

provides methodological framework with steps to build cloud-based DS or CBDS deployment 

architecture as can be seen from the comparison table below. This is important to modellers 

as researchers believe that building DS is challenging, and when the cloud is targeted, the 

difficulty increases, which discourages them from adapting CBDS. To bridge the identified 

gap, this research proposes a development framework and scalable cloud-based deployment 

architecture. The table is purely based on the reported publications as the author could not 

find an authorised criteria on how to sort and point out research gap in a tabular form. 

 
Table 2-4 A comparison of some reviewed publications with components of CBDS 

Source DS/Cloud 
Simulation 

Simulation 
Paradigm 

Has 
Architecture/ 
Framework? 

Standar
d Domain 

(Ficco et al., 

2016) 
 

Hybrid 

(ABS/DES) 
 HLA General 

(Guan, Grande 

and 

Boukerche, 

2019) 

Cloud-

based DS 
 

Layered 

Architecture 
HLA/ DIS General 

(Nouman, 

Anagnostou 

and Taylor, 

2013) 

LAN-Based 

DS 

Hybrid 

(ABS/DES) 
 HLA Health  

(Fujimoto, 

1989) 

LAN-Based 

DS 
   General 

(Falcone, 

Garro, Taylor, 

et al., 2017) 

LAN/WAN  
Development 

Framework 
HLA General 



Review of the Literature 

Page 61 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

(Carillo et al., 

2018) 
  

Simulation 

Optimization 

Framework 

 General 

(Anagnostou 

and Taylor, 

2017b) 

LAN-Based 

DS 

Hybrid 

(ABS/DES) 

Developed 

Framework 
HLA Health 

(Rajaei, 

Alotaibi and 

Jamalian, 

2017) 

DSaaS    General 

(Chaudhry et 

al., 2016) 

Cloud-

Based DS 
Hybrid  HLA Health 

(Visti et al., 

2016) 

Cloud-

Based 

Simulation 

 

Microservices-

Based 

Framework 

HLA General 

proposed (Tu, 

Zacharewicz 

and Chen, 

2011) 

Cloud-

Based DS 
  HLA General 

(NATO, 2015) MS-SaaS    General 

(Taylor et al., 

2018) 

Cloud-

Based 

Simulation 

 
Layered 

Architecture 
 General 

(Brito et al., 

2016) 

LAN-Based 

DS 
  HLA 

Electroni

cs 

(Jeffrey et al., 

2007) 
  

Open System 

Architecture 

HLA, 

TENA, 

DIS 

Military 

and 

Industry 

(Rossetti and 

Barbosa, 

2015) 

  
Simulation 

Platform 
HLA General 

 

Although several cloud-based simulation tools, methods, and concepts are reported in 

the literature review, Researchers such as Fowley, Phal and Zhang (2013) believe that 

choosing an existing or developing cloud architecture or development framework depends on 

the research problem to solve. Therefore, this project proposes a novel DIstributed Simulation 
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Cloud Architecture for Experimentation (DICE), which extends the established development 

concepts of running DS on a local environment or single cloud (running single federation on a 

single cloud) to the multiple distributed cloud (running single federation on many clouds) 

infrastructures. From the M&S perspective, non-technical modellers can benefit from the 

proposed deployment architecture and the development framework. The new approach 

attempts to ease the development, deployment, and execution of distributed simulation on the 

cloud using existing technologies and cloud deployment models. 

 

2.8 Reiterating the Research Questions 

Conducting successful experiments with simulation models requires careful planning, 

which allows analysts to understand the result more effectively. What is the purpose of a 

simulation project? What should the output performance measure be? What is optimal system 

configuration? And measuring how changes in the input affects the output are some of the 

questions modellers ask when designing a simulation experiment (Kelton and Barton, 2003). 

 

Systems study using design simulation techniques carefully can yield a useful result, 

and that helps organisations make informed decisions. There are established experimental 

methods, framework and architecture for both physical and nonphysical experimentations. 

Researchers reported simulation-specific experiment design approach such as perturbation 

analysis (Johnson and Jackman, 1989). Frequency-Domain Method (Crum et al., 1998; 

Chavez et al., 2010; Mistry et al., 2019), (Donohue, 1994). The IEEE recommended 

Distributed Simulation Engineering and Execution Process (DSEEP) (IEEE, 2011), and 

experimentation applications such as CloudSME (Taylor et al., 2018). This research featured 

the last two, which are closely related; DSEEP and the CloudSME layered architecture for 

simulation experimentation. 

 

2.9 Simulation Study Life Cycle 

Designing and developing M&S can be a complicated activity. This phenomenon 

continues to pose challenges to simulation project stakeholders and other domains such as 

system analysts, developers, project managers, and engineers. Researchers have proposed 

and developed some stepwise guidance on how to execute a simulation project, starting from 

the project initiation stage, moving through conceptualisation, design, development, 

execution, result, and experimentation report stages. For example, Anu Maria (1997) 

explained 11 steps for the schematic simulation study in their paper. How developers go 

through the stages and iteration, depends on the system under study. Figure 2-17 shows the 

real-world system and the simulation study, which altered the former. 
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Figure 2-17 Steps in Simulation Study (Adapted from Maria, 1997) 

The 11 steps; Identifying the problem, Formulate the problem, Collect and process real 

system data, Formulate and develop a model, Validate the model, Document model for future 

use, Select an appropriate experimental design, Establish experimental conditions for runs, 

Perform simulation runs, Interpret and present results, and Recommend a further course of 

action. As seen in the figure, these steps are categorised into Simulation Model, Simulation 

Experiment, Simulation Analysis, and Conclusions. Robinson (2001) is among the authors 

who published stepwise simulation lifecycle in Figure 2-18. In this paper, he reported DES 

perceived as 'hard' technique. The author used DES model to help improve user support 

helpline service at Warwick Business School. The work adopted a methodology with three 

main stages: sub-activities and validation are performed from the start of the project to the 

end.  The author did not reveal the framework's details. However, the key stages clearly show 

the fundamental activities carried out in a simulation project. The stages are conceptualisation, 

model development, and facilitation. These will be dealt with in later sections. 

 
Figure 2-18 Summary of a Model Development Steps (Adapted from Robinson, 2001) 
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Banks et al. (2013) in a book presented basic steps in simulation study illustrated by 

Figure 2-19. The framework implementation may vary depending on the system under review 

and the objective of the study. Some steps in this flow can be repeated until the analyst 

achieves the desired outcome. The first items on the chart are the Problem Formulation, where 

the analyst and the simulation sponsoring organisation define the problem or system to study 

for improvements. When an agreement is reached, and objectives are set, the designers can 

concurrently carry out conceptualisation and data collection simultaneously and translate them 

into simulation models for the study. The simulation development steps continue. Some are 

repeated until the final implementation where the project may be terminated for another cycle. 

 

 
Figure 2-19 Steps in Simulation Study (Adapted from Banks et al., 2013) 

 

The "More runs?" step strangely have two "Yes" branches. The book author explains 

that this is based on the analysis of runs that have been completed. The analyst determines 

whether additional runs are needed or follow another design those additional experiments 

should follow. 
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Moreover, Balci (2012) proposed a detailed simulation life cycle framework that enables 

analysts to view simulation project design and development from four critical perspectives. 

These are the process, product, people, and the project itself. In Figure 2-20, it can be 

observed that each step is accompanied by quality assurance and verification and validation. 

The nine steps involved are problem formulation, requirements engineering, conceptual 

modelling, architecting, design, implementation, experimentation, and presentation. These 

stages are not strictly sequential. Depending on the situation, there is flexibility for a step or 

set of steps to be repeated when the need arises. Balci used notations to flows to indicate 

which activity happens at every step as the project progress. 

 

 
Figure 2-20 Modelling and Simulation Life Cycle (Adapted from Balci, 2012) 

 

From another perspective, developing DS is a demanding and complex task. In 2003, 

the Simulation Interoperability Standard Organization (SISO) sponsored the IEEE Standards 

Association to develop recommended practice for DSEEP. The updated standard document 

– the IEEE Std 1730-2010 states that DSEEP describes a high-level framework for developing 

and executing distributed simulation environments. The DSEEP intends to specify a set of 

guidelines for the development and execution of these environments that stakeholders can 

leverage to achieve the needs of their application (IEEE, 2011). 
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Figure 2-21 Engineering and Execution Process (DSEEP), Top-level Process Flow (Adapted from IEEE, 2011) 

The seven DSEEP steps shown in Figure 2-21 (Topçu et al. 2016) began with the 

name Federation Development and Execution Process (FEDEP) ("IEEE Recommended 

Practice for Hig- Level Architecture (HLA) Federation Development and Execution Process 

(FEDEP)" 2003. Today, it can be implemented with various DS interoperability standards like 

Test and Training Enabling Architecture (TENA) (Noseworthy, 2011), High-Level Architecture 

(HLA) (Falcone, Garro, Taylor, et al., 2017), and Distributed Interactive Simulation (DIS) 

(Mccall and Murray, 2010). The standard’s seven steps can be executed in a linear, spiral, or 

iterative fashion depending on the DS project is being studied. Table 2-5 tabulates the seven 

iterative steps. Introductory description of activities at each stage is as follows. 

 
Table 2-5 Tabular view of the DSEEP (Adapted from IEEE, 2011) 

  
 

Step 1 - Define simulation environment objectives. The user, the sponsor, and the 

development/integration team define and agree on a set of objectives and document what 
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must be accomplished to achieve those objectives. Step 2 - Perform conceptual analysis. The 

development/integration team performs scenario development, conceptual modelling and 

develops the simulation environment requirements based on the characteristics of the problem 

space. Step 3 - Design simulation environment. Existing member applications that are suitable 

for reuse are identified. Design activities for member application modifications and/or new 

member applications are performed. Required functionalities are allocated to the member 

application representatives, and a plan is developed for the development and implementation 

of the simulation environment. Step 4 - Develop a simulation environment. The simulation data 

exchange model (SDEM) is developed. Simulation environment agreements are established, 

and new member applications and/or modifications to existing member applications are 

implemented. Step 5 - Integrate and test the simulation environment. Integration activities are 

performed, and testing is conducted to verify that interoperability requirements are being met. 

Step 6 - Execute simulation. The simulation is executed and the output data from the execution 

is pre-processed. Step 7 - Analyse data and evaluate results. The output data from the 

execution is analysed and evaluated, and results are reported back to the user/sponsor. 

 

DSEEP is a well-established methodology for designing and executing DS. The 

framework guides modellers on how to run simulations on local and networked machines. To 

deploy the same framework on the cloud, there are many factors and challenges to consider, 

such as IP addressing, security, WAN networking, and data exchange protocol. Extending 

DSEEP to cloud infrastructure is the focus of this project and are captured in the thesis' 

objectives number three and four as presented in chapter one, section 1.3. The design, 

development, and execution steps to achieve are presented in the next section - chapter four. 

Meanwhile, cloud-based simulation has been studied, and references are given above. For 

this thesis, CloudSME layered architecture is particularly interesting and academically linked 

to the proposed cloud infrastructure architecture and framework produced in this work. 

 

The above M&S and DS development processes, the author believed to be systematic 

frameworks for actions, activities, and multiple sub-tasks that are required to conceptualise, 

design, build, and successfully execute simulation experiments within acceptable quality 

bounds. 

 

2.10 Simulation Using Cloud Infrastructure within the Context of the RQs 

Cloud computing offers the ability to provide computing services remotely to users via 

the Internet, easing them of the burden caused by managing computing resources and 

facilities (Fujimoto, Malik and Park, 2010). Cloud infrastructures provide means for an 

organisation to lease and conduct sequential simulation without spending enormously on 
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buying and maintaining high-performance computing resources. This opens more 

opportunities for parallel and distributed simulation communities that can exploit distributed 

computing technology by leveraging the available flexible computing platforms. There are 

reasons for DS to use clouds such as resource sharing, virtualisation, scalability, and flexible 

payment models. First, let us look at the cloud computing concept and then cloud-based 

simulation. 

 

2.10.1 Cloud Computing 

Cloud computing can be defined as the use of new or existing computing hardware 

and virtualisation technologies to form a shared infrastructure that enables web-based 

value-added services (Gibson et al., 2012). Figure 2-22 shows different types of cloud 

deployment models where each fits particular user needs. The three models; 

infrastructure, platform, and software-as-a-service, are given below from the same 

author: Software-as-a-Service (SaaS) - Gives subscribed or pay-per-use users access 

to software or services which reside in the cloud and not on the user's device. Platform-

as-a-Service (PaaS) - Offer access to APIs, programming languages, and development 

middleware which allows subscribers to develop custom applications without installing 

or configuring the development environment. Infrastructure-as-a-Service (IaaS) - Is the 

use of servers, storage, and virtualisation to enable utility-like services for users. 

Security is a big concern within IaaS, especially considering that the rest of the cloud 

service models run on top of the infrastructure and related layers.  

 

 
Figure 2-22 Cloud deployment models; Private, Community, Public & Hybrid 

Elasticity is the main concept of Cloud Computing. That is, the use of computational 

resources, storage, applications, etc. that can be instantly increased according to user 

needs and ceases when the user does not need these services (Mell and Grance, 2011; 

Taylor and Anagnostou, 2014). Because cloud computing attempts to provide 

convenient access to on-demand computing resources, minimal management effort, or 

service provider interaction, the authors opined that simulation could be implemented 

as a cloud service using licences running on cloud computers on a "pay-as-you-go" 

basis. However, while this is a potentially excellent deal for the end-user, the simulation 

company would still need the expensive in-house expertise to provide this.  



Review of the Literature 

Page 69 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

 

2.10.2 Cloud-Based Simulation 

Researchers and developers come up with the Cloud-based Simulation platform for 

Manufacturing and Engineering (CloudSME). The project attempted to make cloud 

computing more feasible for M&S. It is still a strong belief that the use of computing 

infrastructure, such as cloud computing, opens opportunities to reduce computation time 

by distributing the workloads over the cloud, on-demand (Hwangbo and Lee, 2016). 

Further than that, to promote composable models and speed up the simulation, 

researchers are optimistic in achieving that even better with Modelling & Simulation as 

a Service (MSaaS). 

 

Liu et al. (2012) presented their proposal on the Cloud-based Simulation (CSim) 

architecture. It covers the software involved in the whole process of M&S by providing 

the Modelling as a Service (MaaS), the Execution as a Service (EaaS), the Analysis as 

a Service (AaaS) and the reuse of available simulation resources with the aid of the 

Simulation Resource as a Service (SRaaS). These innovative leaps will go a long way 

in easing cloud simulation service provision and attracts more practitioners in the 

domain. 

 

Cloud-Based Distributed Simulation (CBDS) as indicated earlier, appears to be an 

understudied technique. However, some publications have given some basis to the 

concept such as Simulation as a Service – SIMaaS (Tsai et al., 2011; Azevedo, Rossetti 

and Barbosa, 2015; Shekhar et al., 2016), Modelling and Simulation as a Service – 

MSaaS (Fujimoto, Malik and Park, 2010; Buora, Giusti and Barbina, 2014; D’Angelo, 

2014; NATO, 2015; Wang and Wainer, 2016; Prochazka and Hodicky, 2017) and 

Distributed Simulation as a Service – DSaaS (Rajaei, Alotaibi and Jamalian, 2017). 

 

2.10.3 Cloud-Based Simulation Method 

Cloud computing is a trend in IT that moves applications and data away from traditional 

desktop and portable personal computers into large "invisible" data centres. Dikaiakos 

et al. (2009) defined cloud computing as applications delivered as services over the 

internet. Also, the actual cloud infrastructure — the systems software and hardware in 

data centres that are providing these services. With these facilities gaining wider 

acceptance serving many purposes, the simulation research communities began to 

explore the benefits offered by the cloud concept as contained in (Mell and Grance, 

2011); on-demand self-service, elasticity, and broad network access. 
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As discussed in chapter one, above, research involving distributed simulation has 

attracted many researchers and publications are coming with a solution to different 

problems. Some notable cloud-based simulation works include; (Fujimoto, Malik and 

Park, 2010; Tsai et al., 2011; Buora, Giusti and Barbina, 2014; D’Angelo, 2014; 

Azevedo, Rossetti and Barbosa, 2015; NATO, 2015; Shekhar et al., 2016; Wang and 

Wainer, 2016; Prochazka and Hodicky, 2017; Rajaei, Alotaibi and Jamalian, 2017). This 

research is added to these efforts in using cloud infrastructure for large and complex 

experimentation for operational system analysis. 

   

2.10.4 Cloud-Based Simulation  

Modelling and Simulation (M&S) is one of the techniques used by analysts for decision 

support in many domains. Research communities have seen implementation of DS 

applications, usually for predictive and perspective analytics (Lustig and Dietrich, 2010). 

M&S community uses DS to gain information without interrupting existing or proposed 

new system, understanding the systems operational behaviours under various 

conditions and as a test tube before a new system or policy implementation. DS allows 

researchers to design, build and run multiple simulations. 

 

Recently, cloud computing technologies are making an impact on modelling and 

Distributed Simulation (DS) by enabling on-demand network access to a variety of 

computing resources and services via the Internet. Authors, Onggo and Selviaridis 

(2017) have noted that the cloud-based M&S (CBMS) literature has focused on how to 

use existing technologies to develop CBMS tools. As published, despite its potential 

benefits, some researchers community rarely uses DS in areas such as healthcare and 

manufacturing. There are factors affecting adoption by users. For example Anagnostou 

and Taylor (2017) identified two main reasons; technical complexity required for 

implementation and the difference between the world views DS and M&S communities. 

World views were discussed in section two. 

 

Arguably, some modellers lack software engineering training, which makes it 

challenging to adapt DS during analysis due to the extensive technical training and 

experience required to implement. When cloud technology is added to the DS 

sophistication, it will become even more challenging. However, pieces of evidence have 

shown that scholars contributed solutions to enable modellers to use the cloud for 

simulation. For example, Delen and Demirkan (2013) presented how service-oriented 

decision support systems (DSS) can be developed and run on cloud infrastructure. The 
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work mimics the three cloud service models; Data as a Service (DaaS) allows 

organisations to have on-demand access to data over the cloud. Information as a 

Service (IaaS) delivers information from multiple sources using cloud services. Lastly, 

Analytics as a Service (AaaS) helps organisations use simulation models in the cloud 

as a component of decision-making. 

 

Furthermore, cloud-based simulation possibility for M&S community is backed by 

(Fujimoto, Malik and Park, 2010) who believed the clouds offer the potentials to make 

parallel and distributed simulation capabilities more accessible to non-technology expert 

users. While implementing cloud-based simulation, certain aspects need to be 

addressed that are key to successful and useful adoption by modeller. For example 

Johnson and Tolk (2013) identified five of those concerns; technical view, governance 

view, business view, security view, and conceptual view. This thesis focuses on the 

technical view, which deals with requirements such as the protocol, cloud 

infrastructures, interoperability, data exchange formats, and networking environment. 

 

2.10.5 Potential Benefits of Cloud-Based Simulation 

Research publications suggest that simulation is one of the system evaluation methods 

of choice in many fields. Systems are getting more complicated due to several reasons 

listed in item 3.6.3 above. One way of coping up with the increasing power-demand 

coming from the simulation scenario nowadays is to make use of more processor units, 

running on different architectures and dispersed around a larger area (Mihai, Valentin 

and Legrand, 2011). The idea behind DS is to use a set of execution units in a 

simulation. These execution units are responsible for a part of the simulation (a subset 

of the entities that compose the simulated system) and their interactions (D’Angelo and 

Bracuto, 2009). Moreover, the high-performance computing resources needed to 

effectively run a DS require, among many other things, a considerable investment in 

hardware and software. Cloud computing services present a viable alternative DS 

modeller through the on-demand network access to configurable resources (Mell and 

Grance, 2011) and pay-as-you-go payment option (Barbosa and Charão, 2012). 

 

Using cloud infrastructure for distributed simulation is a relatively new field. It has not 

been studied in-depth as this work intends to. This research believes that the Cloud-

Based Distributed Simulation (CDBS) will offer benefits to practitioners. For over two 

decades, researchers have identified and classified potential benefits of Web-based, as 

it is earlier called, to modellers. These include (Whitman, Huff and Palaniswamy, 1998; 

Leong et al., 2000; Rao and Wilsey, 2000; Kuljis and Paul, 2001; Miller et al., 2001; 
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Yücesan et al., 2001; Byrne, Heavey and Byrne, 2010; Guan, Grande and Boukerche, 

2019; Sokolowski et al., 2019). These publications mostly agree on the following. 

 

a. Model Reuse - One of the claimed benefits of DS is the reuse of the existing model. 

Through the HLA and appropriate middleware configuration, the web can support 

linking and exchanging data between models within simulation experiments.  

b. Interoperability - Through the Application Programming Interface (APIs) web-

based DS can seamlessly integrate and interoperate with existing and future cloud 

applications residing on local or remote servers. 

c. Ease of use – Web enables easy navigation and use to obtain data and 

information by most users. Many web applications hide the underlying technical 

complexities to the user, and this characteristic makes web activities familiar to 

interact with and control, such as web-based DS.  

d. Collaboration - Developing CBDS in some cases may require collaboration by a 

team located in separate geographical locations. With web technologies growing, 

modellers can communicate and develop a large simulation model, which may 

reduce the model design and development time and cost. 

e. License and Deployment - Through cloud concepts, many applications are 

accessible using a browser. Web-based simulation services can be rented for a 

certain period such as Application Service Provider (ASP) and Software as a 

Service (SaaS). This saves in the then prohibitive investment of time and money. 

f. Cross-Platform Capability - CBDS developers can focus on the model logic and 

do not have to worry about the client's platform. Web-based simulation may be 

configured to be accessible from any device, any operating system or any browser 

with required network access. 

g. Control Access - Access Control List (ACL) can be used to keep an inventory of 

CBDS users and grant them permission to access a whole or a portion of the 

model, simulation, or application. 

h. Wide Availability - CBDS can be accessed 24/7/365 and from any device with 

internet connectivity. This means CBDS management and control can be done 

within and outside working or office hours. 

i. Visioning and Maintenance - Web-based simulations can be modified and 

instantly update models - real-time. With cloud unlimited storage capability, 

versions of experiments can be kept and roll-back when the need arises. 

 

Many trends are contributing to the increase in complexity, reductions in inventory, 

rising outsourcing deepening information technology, expanding horizontal integration, 
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ever more sophisticated products, and escalating demands of customers. Each of 

these trends increases the range of possible outcomes that must be considered by 

decision makers, while simultaneously reducing the time available for choices (North 

and Macal, 2007). This project further identified more advantages of CBDS to the 

community of practice based on the current technology trend and innovations. These 

include but not limited to the following. 

 

a. Easy integration to industry 4.0 tools and technologies for broader experimental 

capabilities 

b. Enable real-time on-demand access to distributed simulation models for 

collaboration 

c. Update to simulation models and data can happen anywhere, anytime. 

d. Further, reduce the technical complexity faced by non-technical modellers. 

e. Enable on-demand access scheduled and deadline-based computing resources 

for scalability and elasticity. 

 

Naturally, some of the authors gave the downside of the web-based simulation such 

as loss in speed, Graphical User Interface (GUI) limitations, Security vulnerability, 

licence restrictions, and simulation application stability. Though these are areas of 

concern and can be useful research challenges in the field of CBDS, this thesis did not 

cover them in the aim and scope. 

  

2.11 Chapter Recap 

This chapter presented related works published in various academic, governmental, and 

industry platforms. The section acquaints the reader with the gap identified in the literature, 

which makes this research in Cloud-Based distributed simulation a worthy academic 

endeavour. The work aims to come up with a cloud-based architecture to address, at least, 

one of the challenges mentioned above in the simulation field. Various history, timelines, 

terminologies, technologies, approaches, and concepts in M&S, DS, and Cloud were 

presented. The next chapter will report the research methodology employed to achieve the 

project aim. Perspectives, outputs, and justification for the chosen methods were discussed. 

 

Once again, let us reiterate that there is very few cloud-based distributed simulation in 

research. This identified gap suggests the following research questions.  

 

• RQ1 - How can you deploy distributed simulation on the cloud?  
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• RQ2 - What are the factors affecting the interoperability of distributed simulation 

on the cloud?  

• RQ3 - What are the factors affecting cloud-based distributed simulation 

experimentation speed? 

 
 It is observed that the challenges in the literature on distributed simulation is still 

standing and has gained less attention from researchers. Therefore, this work aims to address 

the RQs to fill in the identified knowledge gap. 
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Chapter 3 Research Approach: Design Science Research Methodology 
 

3.1 Chapter Overview 

The preceding chapter explains simulation and its rudiments, it identifies the challenges 

researchers have not yet addressed through a literature review and the various simulation 

tools available for analysis. This section of the thesis states the research design approach and 

offers possible alternatives to address the questions posed from the academic perspective. It 

also describes data collection and experimentation tools, methods of result analysis, and 

justifications for the chosen methods.  The chapter further explains the cloud architecture 

development approach taken in this work and the case study method adapted to implement 

and evaluate the proposed framework and architecture.   

 

3.2 Research Approach 

Having previously identified a gap in the literature, the next step in answering the 

research questions is to establish a suitable methodology. This will be done by taking outputs 

from the previous section and the methodological approach in this work. Therefore, a 

discussion on the research problem, data, tools, and analysis method will lay a foundation that 

further builds the chapter. 

 

The Problem  
This research investigates how cloud infrastructures connect and run geographically 

distributed simulation experiments. It aims at addressing the practical challenges faced by the 

modellers.  On the one hand, the complex technical skills and training required to design, 

develop, and run distributed simulations for large-scale system analysis are high. On the other 

hand, distributed simulation requires a high amount of computing resources for experiments, 

which are expensive to acquire and maintain. This thesis proposes a distributed simulation 

development framework as a guide and deployment architecture to run DS on the cloud, 

offering on-demand access to high-performance computing resources using pay-as-you-go 

models. 

 

Data Collection 
A suitable operational system case study is an emergency medical service prototype 

which is used to validate and evaluate these two proposals and run numerous cloud-based 

distributed simulations. The experiment is designed to run multiple cloud infrastructures with 

different configurations, that generate a considerable amount of quantitative data, precise 
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execution time in minutes for performance, and scalability analysis. This helps the researchers 

to understand the characteristics of the cloud infrastructure under various conditions and 

configurations. The work focuses on cloud performance when running the distributed 

simulation using a single cloud, multiple clouds or even a mixture of cloud and physical 

systems. For example, one experiment set up routes for all simulation traffic through a physical 

system where the WAN router is configured with all source and destination federates.  

 

Experimental Tools 
Opensource software and runtime environment tools are used to run experiments and 

generate exciting results. The model is developed using object-oriented Java on an eclipse 

development environment customised by the RePAST Symphony team. The runtime 

environment uses an opensource called poRTIco runtime infrastructure, which serves as the 

middleware to control the federation execution. The cloud platforms used for the fundamental 

research are CloudSigma, DigitalOcean, Amazon EC2, Scaleway, and Google Cloud 

Computing. Each has its characteristics which can be configured in the model to run 

successful simulation runs. 

 

Method of Analysis 
Tabulation of execution times are used to report and illustrate the results, they are purely 

experiments, execution time and federates scaling. The scope of this thesis also includes the 

measurement how long it takes to run distributed simulation models under varied 

configurations, such as running experiments on a single cloud or distributing over multiple 

cloud platforms. This is addition to the RQ2 and RQ3 is enquiring to address. Furthermore, 

another metric is how the traffic is affected when the simulation datagram traffic is routed 

purely on the internet or through a local (on-premises) router. 

 

3.3 Research Paradigms 

Research work always has a philosophical underpinning paradigm. The literature 

reported some of these paradigms but here, only four are reported that are relevant for the 

discussion - the positivist, interpretive, critical, and design research. Below is a brief 

introduction to each of these methods. 

 

Positivist: In a generic sense, positivism is an ideology that adheres to the knowledge 

facts gained through some measurements and observation. Creswell (2011) believes it 

promotes that anything that cannot be observed or measured has little or no importance. 

Therefore, scientific knowledge is gained from accumulating data obtained from observation - 

theory-free and value-free." Bryman and Bell (2011) view positivism as an epistemological 
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position that advocates the application of the methods of natural science to the study of social 

reality and beyond. 
 

Interpretive: Interpretivism argues that truth and knowledge are subjective, culturally, 

and historically based on lived experiences and understanding them (Ryan, 2018). A 

researcher can never be separate from their own experience, values, and beliefs. Therefore, 

these may inevitably influence how research data is collected, processed, and analysed the 

results. 
 

Critical: This paradigm is based on the transformation of the condition of humanity 

amongst people. It assumes that reality is socially constructed. Research employing this 

approach aims to critique the status quo through structural contradictions with social systems, 

and in the process, restrictive social conditions are said to be alienated. 
 

3.3.1 Design Science Research (DSR) 

The DSR paradigm has its roots in the sciences and engineering of the artificial 

(Simon, 1996). It is fundamentally a paradigm that aims to solve problems. DSR seeks 

to increase human knowledge with the generation of design knowledge and the creation 

of innovative artefacts using innovative solutions to real-world problems (Hevner et al., 

2004). DSR research paradigm, as such, has generated an upsurge of interest in the 

past two decades, precisely due to its potential contribution to the innovative capabilities 

of organisations. Moreover, it contributes to the much-needed sustainability 

transformation of society (vom Brocke et al., 2020). With the opportunity presented in 

this approach, by DSR approach, this thesis used it to design and propose the 

Distributed Simulation Cloud Architecture for Experimentation (DICE). 

 

3.3.2 The DSR Framework  

Using DSR as a research project aims to extend the boundaries of organisational and 

human capabilities by designing novel and innovative artefacts represented by models, 

constructs, methods, and instantiations of what they represent (Gregor and Hevner, 

2013). This indicates that DSR aims to create a knowledge of how it should be 

constructed or arranged - designed by humans to achieve a desired set of goals. 
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Figure 3-1 Design Science Research Framework (Adapted from Hevner et al. 2004) 

 

For researchers to conduct design science research to scholarly standards, a DSR 

conceptual framework is published by Hevner et al. (2004) as shown in Figure 3-1 to 

help understand, execute, and evaluate DSR. The environment defines the problem 

space where the phenomena of interest are placed, which is a composition of people, 

organisations, and planned or existing technologies. It contains the problems, goals, 

tasks, and opportunities that define the needs perceived by an organisation's 

stakeholders. Needs are evaluated in the context of organisational structure, existing 

work processes, strategies, and culture, positioned in relation to existing infrastructure, 

applications, development capabilities, and communication architectures. These define 

the perceived research problem from the researcher point of view. The knowledge base 

section provides the "raw materials" from which the DSR is accomplished. The 

knowledge base is a combination of Foundations and Methodologies. Published 

research results from various disciplines provide foundational theories, frameworks, 

instruments, constructs, models, methods, and instantiations used in the build phase of 

a research study. Methodologies provide the guidelines on how to evaluate the 

research. Finally, Rigor is achieved by appropriately applying existing foundations and 

methodologies.  

 

This research is linked to the “need” for CBDS deployment architecture solutions to be 

empirically investigated with case studies in modelling and simulation using cloud 
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infrastructure technology. In context, the DSR in this work also analyses the already 

available knowledge to solve a problem of interest. Such knowledge is established 

throughout this thesis in the form of frameworks, theories, or design artefacts - models, 

constructs, methods. The research is applied and guided by the design science research 

methodology (DSRM). 

 

3.3.3 DSR Processes  

Peffers, Tuuanen, Rothenberger, & Chatterjee (2007) proposed and published the 

most widely referenced model shown in Figure 3-2. The DSRM process model has six 

steps - (1) problem identification and motivation, (2) definition of the objectives for a 

solution, (3) design and development, (4) demonstration, (5) evaluation, and (6) 

communication. The authors also include four possible entry points - (1) problem-

centred initiation, (2) objective-centred solution, (3) design and development-centred 

initiation, and (4) client/context initiation. A brief description of the activities is reported 

by vom et al. (vom Brocke et al., 2020) and reproduced as follows: 

 

 
Figure 3-2 DSR Methodology Process Model (Adapted from Peffers et al. 2007) 

Activity 1. Problem identification and motivation. This activity defines the 

specific research problem and justifies the value of a solution. Justifying the value of a 

solution accomplishes two things: it motivates the researcher and the research 

audience to pursue the solution and helps the audience appreciate the researcher’s 

understanding of the problem. Resources required for this activity include knowledge 

of the state of the problem and the importance of its solution. 

Activity 2. Define the objectives for a solution. The objectives of a solution can 

be inferred from the problem definition and knowledge of what is possible and feasible. 

The objectives can be quantitative, e.g., terms in which a desirable solution would be 

better than current ones, or qualitative, e.g., a description of how a new artefact is 
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expected to support solutions to problems not hitherto addressed. The objectives 

should be inferred rationally from the problem specification. 

Activity 3. Design and development. An artefact is created. Conceptually, a 

DSR artefact can be any designed object in which a research contribution is embedded 

in the design. This activity includes determining the artefact’s desired functionality and 

its architecture and then creating the actual artefact. 

Activity 4. Demonstration. This activity demonstrates the use of the artefact to 

solve one or more instances of the problem. This could involve its use in 

experimentation, simulation, case study, proof, or other appropriate activities. 

Activity 5. Evaluation. The evaluation measures how well the artefact supports 

a solution to the problem. This activity involves comparing the objectives of a solution 

to actual observed results from the use of the artefact in context. Depending on the 

nature of the problem venue and the artefact, evaluation could take many forms. At 

the end of this activity, the researchers can decide whether to iterate back to step three 

to improve the artefact's effectiveness or to continue communication and leave further 

improvement to subsequent projects. 

Activity 6. Communication. Here all aspects of the problem and the designed 

artefact are communicated to the relevant stakeholders. Appropriate forms of 

communication are employed depending upon the research goals and the audience, 

such as practising professionals. 

 

3.4 Design Science Research Methodology for DICE  

Presented in the preceding sections, DSR output is in the form of the development of 

software innovations - artefact. Artefacts can take several forms, such as models, constructs, 

frameworks, architectures, methods, design principles, and instantiations. March and Smith 

(1995) published the classification of DSR output as a possible outcome of a research and 

are described below: 

 

Constructs are the conceptual vocabulary of a problem/solution domain. Constructs 

arise during the conceptualisation of the problem and are refined throughout the design 

science research cycle. Since a functional design (artefact) consists of a large number 

of entities and their relationships, the construct set for a design science research 

experiment may be larger than the equivalent set for a descriptive (empirical) 

experiment.  

 

A model is “a set of propositions or statements expressing relationships among 

constructs.” The authors identify models with problem and solution statements. They 
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are proposals for how things should be and presented in terms of what it does, and a 

theory described in terms of construct relationships. 

A method is a set of steps (an algorithm or guideline) used to perform a task. "Methods 

are goal-directed plans for manipulating constructs so that the solution statement model 

is realised". The problem and solution statement expressed in the construct vocabulary 

is implicit in a design science research method.  

An instantiation is the operationalisation of constructs, models, and methods. It is the 

realisation of the artefact in an environment. 

 

Method, instantiation, construct, and model are found in this thesis; therefore, they fit 

the research methodology for DICE. The final output of this research work is in the form 

of a method of deploying distributed simulation on cloud infrastructure. Moreover, other 

DSR outputs are presented, such as instantiation and constructs produced while 

developing the final artefact - DICE. 

 

Method: Established above, a method is a set of steps (an algorithm or guideline) used 

to perform a task. Deploying distributed simulation on the cloud requires the analyst to 

follow some guidelines on designing, developing, deploying, and executing 

experimentation. There is none in existence, and this work aims to design and propose 

two artefacts; (1) Cloud-based distributed simulation development framework, which will 

be a step-by-step process to develop cloud-compatible federate for execution in a 

geographically distributed federation running over WAN or the Internet. (2) The 

deployment architecture to the server as a template on how to organise the computing 

resources in order to run CBDS successfully. The first research question (RQ1) enquires 

about "How do we deploy distributed simulation on the cloud?" This method is sufficient 

enough to address this question. 
Construct: Constructs arise during the conceptualisation of the problem and are refined 

throughout the design science research cycle. This will be used during the model 

conceptualisation and facilitates the relationships between entities on the deployment 

architecture and the cloud-based federate development framework. The second 

research question (RQ2) can be answered using the relationship between components 

used to define interoperability and issues during experimentation on the cloud.  
Model: The proposed deployment architecture is a composition of artefacts that were 

modelled to solve a problem. This model will define the relationship between the 

constructs and the method to be applied to solve the problem of interest. 
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Instantiation: The last research question (RQ3) seeks to understand the factors 

affecting cloud-based distributed simulation experimentation speed. The two proposals, 

the CBDS development framework and the deployment architecture, is set to undergo 

a feasibility test. A suitable case study prototype will run experimentation, collect some 

results, and analyse for different measurements. This is the ultimate goal of a DSR 

instantiation output. 
 

3.5 Justification for Choosing Design Science Research 

This study aimed to design and propose a development framework, Distributed 

Simulation Cloud Architecture for Experimentation (DICE) and examine their feasibility and 

performance; hence, the DSR approach was the most appropriate choice. In the Design 

Research paradigm, knowledge and understanding of a problem domain and its solution are 

achieved in the building and application of the designed artefact; hence it can be called 

exploring by building. It is inherently a problem-solving process (Vaishnavi and Kuechler, 

2015) . 

 
Table 3-1 Design-Science Research Guidelines (Adapted from Sudha et al., 2004) 

 
 

The learning through the building (creation) of an artefact is what defines DSR. 

Researchers reveal that the DSR cycle maps well with the three different research types - 
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Design and Development, Exploratory, and Reflective Evaluation, as well as the seven 

guidelines in Table 3-1 for constructing an artefact which was suggested by Hevner et al. 

(2004). DSR appears to be the most suitable research methodology that can be used to 

address the research types presented above. In addition to the artefacts, design research 

offers two more research contributions; (1) Reproducible Knowledge - a novel artefact 

consisting of the different DSR outputs used to improve the existing knowledge base further. 

(2) Methodologies and Theories present ways to support the phenomena of interest-based on 

the development and use of the novel artefact (Purao, 2002). DSR is the implementation of 

artefacts that could well be used to improve theories and serve as a significant research 

contribution.  

 

We have established the DSR methodology, which is employed to address all the 

different types of research types and the research questions posed in chapter one. DSRM is 

sufficiently supported by the seven guidelines by Von Hevner et al. (2004). The idea is to be 

used for a successful building and evaluation of artefacts, in this case, development 

framework and DICE, and therefore, provides a strong rationale for its adoption. 

 

Other Methods 
In contrast, there are other research methods; quantitative, qualitative, and mixed mode, 

which combine both the qualitative and quantitative strengths to achieve the given research 

objectives. In this work, quantitative research is best suited based on philosophical 

assumptions and deductive research approach. This choice is well defended by Mujis (2011) 

qualitative research which argues that there is no pre-existing reality while quantitative 

assumes that there exists a reality about conditions that cannot be influenced by researchers 

in any way. Furthermore, qualitative research is often used when there is little to no knowledge 

of a phenomenon. Quantitative research is employed to find the cause and effect of the 

relationship between variables to either nullify or verify some hypothesis or theory (Creswell, 

2002; Yvonne Feilzer, 2010). 

 

Therefore, in this section, the researcher observes from the available literature in 

chapter two and decides on research methodology. The research community has not 

represented a cloud architecture for distributed simulation. To achieve the aim of this work, 

there is a need to produce one. Again, to design and propose the new cloud-based 

architecture, certain aspects, must be considered, including cloud infrastructure, distributed 

simulation, and development methodology. Looking at these terms in research leads to 

architecture development. 

 



Research Approach: Design Science Research Methodology 

Page 85 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

Based on the methodological perspective of the research method using a framework, 

the prominent influencers are already reported in chapter two in detail. According to the 

established research guidelines and DS domain-specific principles, this study is conducted, 

and generalisation is not the primary aim. The principal purpose of this work is to design and 

experiment DICE feasibility. While this can be applied to other related DS-related fields, 

broader and in-depth work needs to be carried out with success to ascertain its adoption. 

 

3.6 Cloud-Based Simulation Architecture Development Methodology 

In the previous sections, DS challenges were identified, and cloud computing potentials 

were also presented. This work proposes a methodological framework to ease the design, 

development, and deployment of CBDS for large-scale simulation projects. The CBDS 

deployment architecture - the DICE is a novel proposal that aims to guide the analysts on how 

to deploy DS on cloud infrastructure. Experiments in M&S usually begin with "what", a question 

that the analyst poses, simulates, and analyses results to find answers. As in other study 

domains, M&S modellers should carefully consider the methodological framework for their 

system study. In this case, it should serve as a guidance and approach for structuring how 

CBDS should be performed. 

 

There are a few methodologies for developing a framework (Johnson, 1997) such as 

one reported by Nance (1987), King et al. (2017), Mustapha et al. (2010), Santa-Eulaila et al. 

(2011), Dai et al. (2014), and one developed by Anastasia and Taylor (2017).  

 

Most of these methods start with a bottom-up approach to identify abstractions. This 

begins by examining existing solutions to get the basic concepts and tradition, hence the 

review previously proposed and published solutions including those reported above; DSEEP 

(IEEE, 2011), Guan, Grande and Boukerche (2019) and Taylor (2018). Figure 4-1 in chapter 

4.2 shows the extended DSEEP framework upgraded with cloud implementation components. 

 



Research Approach: Design Science Research Methodology 

Page 86 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

 
Figure 3-3 Classical Cloud Layered Architecture (Adapted from Dong et al., 2018) 

 
Development Process 

The development process involves four phases of inter-related activities shown in 

Figure 3-4. The phases are analysis, development, prototyping, testing and evaluation. This 

multiphase process is a continuous circle of developments, adjustments, and refinements. 

 

 

 
Figure 3-4 Iterative design process used in developing the CBDS Framework 

 
Phase One - analyses the DS and Cloud-Based M&S domains and how DS 

applications and models are built. 
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Phase Two - is the actual framework development. 

 

Phase Three - build DS prototype model using the new framework guidelines. 

 

Phase Four - the framework is tested, evaluated and areas of further work are 

identified and presented. 

 

Both the cloud-compatible federate development framework and the cloud deployment 

architecture for CBDS follows the same development phases; the testing and evaluation will 

be designed accordingly. Details of the framework (Figure 4-1) and deployment architecture 

(Figure 4-3), components, and how they work are given in the next chapter. 

 

3.7 Simulation Model Design in Research 

The field of simulation and model design has grown to incorporate existing research 

methods. Figure 3-5 shows a contribution regarding how generic simulation projects exhibit 

particular system imitation, system context, and the problem identified to be solved by the 

simulation (Chan et al., 2015). The authors also argue that the system does not have to be 

existing or physical; it can be an idea, concept, or proposal. The one mandatory requirement 

needed to design a simulation project experiment is the "behaviour over time". 

 
Figure 3-5 States of a modelling and simulation study (Adapted from Chan et al., 2015) 

 

Here, the modelling process starts with the Problem Description stage; a crucial task 

of the modelling & simulation analyst is developing a problem description document. This 

primary document evolves from the embellishment of the necessary information received from 
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the user. This depends on the project requirements and team, in this case, using qualitative 

and quantitative methods of data collection for the SUI. 

 

Finally, Project Goals stage the last in the study circle is regarded as the formulation of 

goals for the simulation project, which turns out to be the first step in the refinement process 

that will transform the problem description into a conceptual model. It is also believed that 

achieving some set of clearly defined project goals will coincide with the problem solution. 

Goals are classically stated in terms of policy options (including details of the experimentation 

during which these are manipulated) or parameters, and output variables observed during 

experimentation (Chan et al., 2015). 

 

3.8 Case Study Method 

Zainal (2007) states that a case study method enables researchers to examine the data 

within a specific context carefully. In most cases, a case study method selects a small 

geographical area or a minimal number of individuals as study subjects. In their true essence, 

case studies explore and investigate contemporary real-life phenomena through detailed 

contextual analysis of a limited number of events or conditions and their relationships. From 

another perspective, a case study is seen "as an empirical inquiry that investigates a 

contemporary phenomenon within its real-life context; when the boundaries between 

phenomenon and context are not evident; and in which multiple sources of evidence are used" 

(Yin, 2014). 

 

In defining a research approach, the first step is choosing a suitable methodology. A 

decision has been made to use a deductive approach for this work. The fundamental 

processes involved are illustrated in Figure 3-6. To validate this research with empirical, an 

Emergency Medical System (EMS) model is used as a case study research method, which 

allows an in-depth analysis of the identified research problem. Furthermore, Case study 

provides a means to test whether a proposed theory applies to real-world phenomena. 

Processes involved in case study methods are shown in Figure 3-6 according to (Yin and 

Campbell, 2018). 
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Figure 3-6 Phases in Case Study Research (Adapted from Yiun and Campbell, 2018) 

 

In his book, Case Study Research: Design and Methods, Yin also gave three categories 

of a case study research approach. Thus, exploratory research explores any phenomenon in 

the data that serves as a point of interest to the researcher—descriptive, set to describe the 

natural phenomena that occur within the data in question. Finally, descriptive case studies 

examine the data strictly both at a surface and profound level to explain the data's phenomena. 

 

3.9 Chapter Recap 

This chapter reported some research approaches in M&S. The chosen method is 

presented - the Design Science Research (DSR) and backed by the published literature in the 

domain. The method presented an overview and DSR framework. The chapter gave a detailed 

process for typical DSR activities. The section also shows how the chosen research method 

designs and produces the development framework and CBDS deployment architecture. The 

chapter is the second step, after a literature review on how to address the first research 

question - the RQ1. A justification of presented as the rationale behind choosing DSR for this 

work. 

 

The section prepared ground for EMS; the case study prototype used to test the 

proposed architecture's feasibility – the DICE. The data collection method is also presented 

alongside the research design used to answer posed questions in chapter one. Next, chapter 

four will discuss the DICE development process, architecture, and technical requirements 

needed for implementation and testing in chapter five. 
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Chapter 4 Proposed Architecture Development - DICE 
 

4.1 Chapter Overview 

The preceding section reports the research methodology employed, rationale, 

justification of choice, discussed the cloud architecture development approach, model design 

in research, and case study method used. It also analyses the current architecture as practised 

in cloud-based simulation, which guides the development of the proposed solution to allow 

easy understanding and adoption by practitioners.  This chapter presents the proposed 

architecture and framework development processes and explains possible implementation 

schemes used in the following chapter to test, analyse results, evaluate, and validate the 

proposed architecture's feasibility. 

 

4.2 The Distributed Simulation Cloud Architecture for Experimentation (DICE) 

As noted in chapter two, the cloud-based DS aims to link simulation models to form a 

larger model. There are many attempts to design, develop, and propose cloud solution for 

simulation modelling and distributed approach such as Falcone et al. (2017), D’Angelo and 

Morzolla (2014), Medel et al. (2017), Chaundry et al. (2016), and Riley et al.  (2004). 

 

In the works mentioned above, the cloud-based techniques try to improve the elapsed 

time simulations for large ABS and DES models by distributing the application to connect and 

communicate with concurrent Logical Processes (LP) (Taylor, 2018). Some simulation 

platform's KPIs are usually evaluated based on the execution time and the required resources 

to complete the simulation run. Additionally, cloud computing platforms with a pay-per-use or 

pay-as-you-go model have costs attached to resources for a successful run. 

 

The proposed CBDS architecture – DICE also inherits the design principles of cloud 

computing's "layered cake" in Figure 3-4 in chapter 3.6, as presented in (Dong et al., 2018). 

The author explains each of the three layers; the service delivery layer, which is visible and 

used by the users. The middle layer houses the cloud management facility and links the 

infrastructure, and the service delivery layers. Finally, the bottom is the infrastructure layer 

that holds other computing resources such as storage, networking, software, and hardware. 

 

Using the method earlier described, the following framework is due to a combination of 

three methods: the framework development process, Distributed Simulation Engineering and 

Execution Process (DSEEP), and the simulation DS methodology. The IEEE (2011) published 
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the DSEEP recommended practice (IEEE Std 1730-2010) which defines the processes and 

procedures that should be followed by users of distributed simulations to develop and execute 

their simulations; it is intended as a higher-level framework into which low-level management 

and systems engineering practices native to user organizations can be integrated and tailored 

for specific uses. Moreover, the scope in this work is expanded to include the cloud-based 

aspects of DS experimentations. 

 

 
Figure 4-1 Proposed Cloud-Based DS Methodological Framework 
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The developers of IEEE Std 1730-2010 allow flexibility during implementation. This 

gives room for the extension of its capability and improvements to adapt to state-of-the-art 

demand. Figure 4-1 is the proposed methodological framework designed to design and run 

DS using a cloud environment and its associated technical requirements. Steps three, four, 

five, and six are the affected sections to accommodate the cloud infrastructure requirements, 

which will be explained more shortly. In the subsections that follow, the activity description for 

each framework step is given and broken down into three broader phases – planning, 

development, and experimentation phases. 

 

4.2.1 Planning Phase 

Simulation Project Planning 
Step one is where the problem to be analysed is defined. This is the appropriate time 

to decide with project sponsors whether the simulation is an appropriate analysis 

method for the system under investigation (SUI). 

  

Furthermore, the analyst and all stakeholders ought to define the project objectives, 

performance measurement criteria (KPIs), project goal, the needed resources to 

perform experiments, technology requirements - in the case of DS the environment 

suitable for the SUI, project timeline, and other requirements. 

 

4.2.2 Development Phase 

Perform Distributed Conceptualisation 
In the distributed conceptualisation step, the conceptual model of the whole system 

should be delivered. This involves the component models (federates) and their 

interactions. At this stage, it is not necessary to include the details of each model. The 

critical elements are the subsystems that each model will represent and the 

communication among them. The individual models, therefore, can be represented as 

black boxes. 

 

The outputs of this step are the design of the high-level components of the SUI. It 

shows the models representing each part of the system to analyse and the data 

exchange between the subsystem units. Also, at this step, the type of interaction IRM 

standards (Taylor et al., 2012) should be defined if the system calls for a hybrid 

simulation approach. For example, the use of both ABS and DES in one investigation. 
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Due to the complicated nature of the hybrid DS, the semantic relationship between the 

combined paradigms must be explicitly identified to avoid conflicting outputs.  

 

For cloud-based DS, there may be a scenario where the data exchange between 

federates needs to be centralised or otherwise, hence the need to identify the central 

hub connecting the federation. A middleware implementation tool that supports 

distributed simulation over a WAN environment and gateway settings for communication 

between geographically dispersed federate need to be defined at this step. 

 

Build Models (federates) 
At this level, if some or all of the models already exist in DS form, these can be 

recycled. Reusing the model helps avoid duplication of initial effort. 

 

Model Conceptualisation - The modeller at this stage should use IRMs. IRMs define 

the data accessibility within the federation, between federates and external entities that 

need to interact with the simulation project via the RTI. The variables are also to be 

defined, such as global, private, shared, and ownership. 

 

Data Collection - DS projects often require facts and data describing the SUI, which 

guides the researcher to the successful analysis of the problem to be investigated. 

This activity is carried out simultaneously with the distributed conceptualisation step, 

which is inherently informed by the gathered data.  

 

Model Realisation - Realisation involves turning the concept into a computer-readable 

form using suitable simulation language and tool, as discussed in chapter 2. The by-

product, which is the code produced would undergo a validation process.  

 

Define Time Advance Strategy 
Here, the project designer will decide which time management is suitable for the SUI. 

The two main categories are the Time Advanced Request (TAR) used by time-stepped 

federates and Next Event Request (NER) used in an event-driven federates, which both 

are applicable depending on the simulation technique. It is used for various federates. 

There are two synchronisation protocols for federated communications – the optimistic 

and conservative approach. The former has a recovery mechanism, and the latter does 

not allow recovery in the event of failure. 
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Middleware Implementation  
In HLA, the central backbone of simulation execution is the RTI. A few of the required 

components in the RTI are listed below. The middleware is subject to validation and 

verification after all models and RTI building is complete. The RTI uses components 

such as FOM, SOM LRC, CRC   to coordinate the federation. The Federation Object 

Model (FOM) must be present in all federates and it defines how the interaction takes 

place in the federation based on objects attributes and transparency level. The 

Simulation Object Model (SOM) defines what and how they can exchange information 

with other federates in the federation. The individual federate uses the SOM to publish 

what it wishes others to subscribe to and vice-versa. Local RTI Components (LRC) are 

libraries used by the federates in DS experiments. Centralised RTI Components (CRC), 

an executable or a sort of gateway that interacts with the LRC for the federation 

execution.  The federate ambassador is a class which the RTI uses to relay information 

to all federate call-back method. The RTI Ambassador is the point through which the 

program uses API to invoke services using a call to an instance of RTI ambassador 

connecting the federation. 

 

To run HLA-based DS in the cloud, a CBDS Middleware with web-enable APIs is 

required. This is where users define the main RTI responsible for starting and 

maintaining the federation execution over the cloud environment. All traffic will be routed 

to this central RTI, and, in turn, it delivers messages to destination federates/federation 

using pre-configured IP addresses. 
 

CBDS Configuration 
Cloud providers usually give infrastructure and allow users to configure the hardware 

(hypervisor) and software elements of a cloud environment. This ensures that they 

communicate and inter-operate effectively with various internal and external client 

services. 

 

Communication Gateway 
When there are federates in one region or cloud instance that communicate locally 

using a multi-cast mode, one should be dedicated to acting as the gateway to the larger 

(distributed) federation. The federate assigned as the gateway will receive traffic from 

a distant federate and distribute it to "local" federates and vice-versa. The gateway 

configuration can be a file loaded while starting the federation's main RTI. 
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CBDS Connection 
CBDS runs on distributed cloud computing resources. Federates can reside in one 

cloud provider or different providers located in the same region or distant. Connecting 

these in a WAN mode requires IP addresses that identify each VM or node in the 

federation. These addresses can be configured as dynamic or permanent, based on 

what the provider supports. The middleware package will be notified with the various 

VM addresses to allow them to join the federation and receive and send traffic during 

simulation execution. 

 

Users also decide and define the privacy of data within and outside the cloud 

environment, such as the public Internet or Virtual Private Networking (VPN). The 

security protocols should also be defined to transport data securely during DS 

execution over the World Wide Web (WWW) such as Secured Security Layer (SSL), 

Transport Security Layer (TLS), or other forms of network data security mechanism.  

  

4.2.3 Experimentation Phase 

Experimental Design  
As in conventional simulation projects, CBDS analysts determine the experimental 

setup parameters such as the simulation scenarios, input data, amount of runs and the 

associated random seeds needed for the desired output for analysis. Other simulation 

experiment concerns include how long the experiment should run, input parameters, 

initialisation conditions, warm-up periods, length, and resources. 

 

DS Cloud Infrastructure Setup 
Some cloud service providers allow users to subscribe and define scalability triggers. 

They may configure to scale, up or down depending on the executing workload or 

simulation experiment data. They can define cloud-based VM recourses such as CPU, 

storage, memory, operating system image, etc. More models join or leave the 

federation. 

 

Result and Analysis 
In many simulation projects, the final report includes a result presentation using 

statistical and graphical KPI’s analysis, sensitivity analysis, and recommended 

solutions. DS allows the analyst to have insights into how subsystem performance 

affects the whole system. 
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4.3 DICE Deployment Architecture 

The cloud computing concept gives users on-demand network access to a shared pool 

of configurable hardware and software resources (Mell and Grance, 2011). Therefore, DICE 

architecture is designed to fit into this principle. The cloud layered model separates hardware 

software and other services from which the user chooses during configuration. This is backed 

by existing solutions published by authors who adopt the existing layering to deploy simulation 

and DS applications for experimentation. Some examples are presented in chapter two and 

others like (Calheiros et al., 2011; Nuñez et al., 2011; Liu, Qiu, et al., 2012; Núñez et al., 2012; 

Rossetti and Chen, 2012; Islam, Shaikh and Sheikh, 2016; Wang and Wainer, 2016; 

Kousalya, Balakrishnan and Raj, 2017; Salama, Elkhatib and Blair, 2019). The basic 

requirements to run distributed simulation on the cloud are computing resources, client 

infrastructures such as FTP, and user interface. This research aims to ease the development 

of CBDS by non-technical modellers and having fewer layers will make project design and 

execution relatively less complicated. The more layers, the more expertise, and experience 

are required to run DS experimentation in the cloud.  

 

Requirements for the new Architecture 
Before developing the architecture, let us look at the fundamentals and what is required 

to design and propose one for this thesis's purpose. Generally, this research recognised 

several options for deployment, and this work focuses on two prominent example schemes 

that are explained a little later in this section. To run the identified use cases that align with 

these example deployments, architecture needs to possess some elements as presented in 

Figure 4-2 by (Grobauer, Walloschek and Stöcker, 2011).  

 

 
Figure 4-2 Cloud Reference Architecture (Adapted from Grobauer, Walloschek, and Stöcker 2011) 
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Cloud computing architectures are divided into two parts - front-end and back-end 

(Jadeja and Modi, 2012) which are connected via a network such as a wide area network or 

the Internet in many cases. The front-end is where the user application is found and used to 

access the cloud services - the SaaS model. The backend is the actual on-demand computing 

resources offered by the provider the IaaS with a pool of storage, servers, and networking, for 

example. Due to evolution taking place in business organisations in the 1990s, the internet-

based ecosystem moved to a horizontal structure from previously vertical, which was more 

challenging to test, use, and maintain (Seda et al., 2019). Moreover, the need to continuously 

deliver services leads to migration from monolithic to microservices and service-oriented 

architecture (Endrei et al., 2004). 

 

Layered architectures are commonly used in designing hardware and software systems. 

The layering provides flexibility to make changes in one layer without affecting the rest. This 

makes the idea approachable where the system offers a different level of services and 

functionalities. Some examples of common layers found in this type of architecture stack are 

presented in a book (Sheriff, 2006), which comprises the data access layer, business logic 

layer, web services layer, and user interface layer. Some benefits of this separation are that it 

enables designers to distribute functions, allows independent layer implementation, and 

quickly replaces it with a different approach. Furthermore, layered system architectures can 

be implemented in one-tier, two-tier, three, or more tier depending on the needs, and each 

has its good and downside trade-offs. Therefore, to develop a layered architecture for cloud-

based systems from the above fundamentals, this work considered four requirements and split 

into sections:  

 

• The resource layer: The layer is where the user configures computing hardware and 

software resources at the IaaS level. The cloud computing model usually charges 

users based on the selected resource and "rent" period. 

• The cloud access layer: This is an option for the user to choose between public or 

private cloud setup. Furthermore, these analysts can choose different cloud service 

providers based on cost, availability, datacentre location, etc. 

• The management layer: The is part of the core function where the user can manage 

the application running on the cloud platform.  

• The client access layer: User or client applications are the interfaces that enable the 

user to access the network configurable computing resources in the cloud.  
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Other requirements are explained in the DSEEP development framework in chapter two. 

It is essential to mention that building architecture for cloud ought to consider some more 

factors such as cost of use and pricing model, general speed factors, cloud platform portability 

which is the ability to move to federate from one cloud platform to another with fewer 

complications, and data security on the simulation traffic traversing WAN/Internet 

environment. All these may be important but are not the focus of this thesis. The idea here is 

to prove how the principle works, and overall keep the layer stack as simple as possible from 

the user point of view - in this case, the analyst who are not profoundly technical experts. The 

proposed architecture is illustrated in Figures 4-3, and versions of services offered are 

explained concerning this thesis. 

 

These layers above are arranged and designed and brought together to create the layered 

architecture to bring functions and services that are found missing in chapter two, Table 2-1. 

Moreover, research papers and books such as (Zhang, Wang and Li, 2019) on the cloud, DS, 

frameworks, and deployment architecture were examined. This is to ensure that the proposed 

architecture addresses the current and probably potential future CBDS challenges. Following 

the established cloud architectural styles, the resulting architecture in Figure 4-3 is composed 

of four layers: application, distributed simulation management, cloud platform, and VMs layers. 

 

 
Figure 4-3 DICE deployment architecture with four layers 
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4.3.1 Layer 4: Application 

Client Infrastructure 
This is the front-end which contains the client interface applications required to access 

the cloud computing resources for DS experimentation setup and execution. 

 

User Terminal - This is the application used by a thin or thick client to interact with the 

cloud services. This can be a GUI-based web browser or command line terminal. 

Different devices can be used for client access, such as tablets, PCs, phablets, 

intelligent terminals, etc.  

  

FTP Access - DS experimentation preparation involves uploading a model and data 

files to the cloud storage and downloading the results output for further analysis. 

Depending on the environment design, the user uses a file transfer protocol (FTP) to 

achieve this activity. 

 

4.3.2 Layer 3: DS Management 

Federation Management 
This layer accommodates the DS management components. It manages the 

federation setup, network and middleware, and overall experiment management. 

 

Networking - This defines the network environment needed to execute the federation. 

The gateway is defined here, where all traffic will go through from source to destination 

federates during execution time. 

     

Federate Manager - This is where individual models will be configured with necessary 

networking and synchronisation parameters to join the federation. Here, the 

RTIambassador services and FederateAmbassador CallBack are defined. 

  

Middleware (RTI) - The Run-Time Infrastructure (RTI) provides services through 

information exchange standards between federates and synchronisation. The RTI also 

is used for the overall federation management in a DS project.  

     

Experiment Manager - This subsection allows modellers to submit and launch an 

experiment through a parameter (federates IP address, cloud host, etc.) passing. 
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Experiment Specification can be defined and developed using suitable 

programming languages like Ansible's Playbook to automate the submission of 

simulation experiment jobs to the cloud.  

 
Job Monitor can be integrated, such as Grafana to monitor experiment 

execution start and end timings, performance, and other desired KPIs. 

 

4.3.3 Layer 2: Cloud Provider  

Cloud Platform Access 
Users can choose a cloud provider to use for the DS experiment depending on the 

simulation requirements defined in steps 4 and 5 of Figure 4-1 above. The different cloud 

service provider offers various services ranging from payment model and computing 

resources such a CPU, memory operating system, etc. 
 

4.3.4 Layer 1: Cloud Instances (VMs) 

User-Defined Resources 
In this layer, the user defines the cloud virtual machine instance (VM) configuration 

needed for the DS experiment. Computing infrastructure resources are subscribed 

based on the experiment needs and are scalable in many public and private clouds. A 

basic VM setup may include CPU, Memory, Storage, Networking, and OS. 

 

4.4 CBDS Experimentation Procedure with DICE 

To run a cloud-based distributed simulation (CBDS), DICE architecture defines the 

resource layers that are combined to build a cloud infrastructure. In this architecture, 

resources are pooled and configured using virtualisation and shared across single or multiple 

cloud platforms via a network. The components of a CBDS architecture include the Client 

Infrastructure, Federation Management, Cloud Access, and user-defined resources. These 

are organised to prepare and run experimentation in three phases: preparation, execution and 

monitoring, results from analysis and reporting. Details of each phase are as follows. 

 

4.4.1 Preparation Phase 

Preparation of the experiment begins with defining, conceptualising, developing, and 

validating the model of the system under study. The model may be developed with any 

simulation technique such as ABS, DES, System Dynamics, or Hybrid (a combination 

of more than one technique). The analyst prepares the inputs scenarios for the 

experimentation. In this thesis, a hybrid Emergency Medical Service prototype model is 
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used. It consists of two techniques ABS (the ambulance federate) and DES (hospitals 

federates), which uses an Interoperability Reference Model (IRM) to interact with one 

another. More details were given in chapter four. 

  

The analyst uses the top-most application layer to upload the model(s), input files and 

prepare the job launch script for execution. This comes after deciding on the cloud 

platforms, computing resources, and networking protocol for the CBDS project. The 

options available at this layer can be a web browser, FTP client, text-based command 

terminals, and mobile devices as facilitated by the edge computing concepts. Different 

cloud services present different characteristics in terms of user access, configure, and 

use the on-demand resources. 

  

While preparing for the CBDS, the modellers should choose which cloud services 

provider fits the simulation design requirements. There are many public clouds 

platforms, each with different characteristics, and those reported by the literature may 

be preferable to use for the research experimentation and can be benchmarked during 

results and results analysis. Layer two of the proposed DICE deployment architecture 

enables analysts to choose their prepared cloud service or services in the case of 

multiple platforms. Clouds usually provide the user with an interface to configure the on-

demand computing resources, such as the processors, memory, storage, and 

networking. This work uses five cloud services - Amazon Web Services (EC2), Google 

Cloud Platform, CloudSigma, DigitalOcean, and Scaleway. All of these infrastructures 

were used to run single and multiple experimentations on single or multiple clouds. 

 

Layer three - the Distributed Simulation Management layer is the main back-end 

component of the DICE deployment architecture. This is where the middleware is 

configured for the federation to run on the cloud. The Run-time Infrastructure is defined 

using the FOM is and SOM. Federates communicates and exchange data during the 

federation execution; therefore, a network protocol is also defined and configured with 

necessary IP addresses and port numbers. This communication varies according to the 

cloud service provider's environment structure and configuration policies, which means 

the analyst must consider this factor when configuring the networking services for each 

cloud platform. For example, using poRTIco middleware in CloudSigma, federates may 

be hosted on different instances and communicate using a multicast network protocol. 

On CloudSigma, the analyst does not have to specify IP addresses to communicate. 

Whereas the case is very different with AWS as they do not support multicast at the time 
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of writing this report, which means the user must create a virtual private cloud (VPC) to 

configure and communicate between federates on different instances. 

 

Moreover, this layer has an Experiment Manager section where the CBDS can be 

submitted using a script file written in Ansible. The file contains steps to execute the 

experimentation, including starting the federation's central component and federates, 

collecting and putting the outputs in the specified directory for the user to download 

and analyse. This Manager also monitors the execution and notifies the analyst when 

their federation crashes or is destroyed. It also logs the simulation starting and ending 

times for execution time performance metrics. 

 

4.4.2 Execution and Monitoring Phase 

After the detailed preparation phase, the actual execution starts. First, the participating 

clouds are initiated and assigned public IP addresses. Depending on the chosen cloud 

service providers in the preparation stage, the assigned IP address can be a dynamic 

address that is lost when the node shut down or restarted or static which is retained until 

the user releases it back to the pool. This IP is used to route messages exchanged 

between federates during federation execution and will be explained on one of the 

implementation approaches. 

 

The launch script (experiment specification) is used under the Experiment Manager 

sub-layer to submit, start the DS, and collect results in layer three. The script contains 

parameters essential for the execution, including IP addresses (where applicable), cloud 

hosts, models, and input/output directories. The script also produces a real-time log 

showing the status while running, terminated, completed, destroyed, or a federate 

crashed and exited during the execution. This implementation only indicates the failure 

at the federation level. The user has to investigate the cause as it may be due to an 

instance being down or the network failing. 

 

The analyst can integrate advanced job monitoring tools to measure various KPIs 

such as network traffic between federates, execution time, CPU performance, and 

storage use. CBDS can be executed on Windows or Linux operating systems, and 

each has several tools to capture run-time statistics for a different purpose. This 

research runs on the Ubuntu server version, and the focus is to measure performance 

and scalability; therefore, the script is used to capture starting and ending times for all 

experimentations reported in the next chapter. Grafana 

(https://github.com/grafana/grafana) is one example of an open-source monitoring and 



Proposed Architecture Development - DICE 

Page 105 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

analytics tool that gives the user a detailed interactive visualisation of various 

components of the data sources. 

 

4.4.3 Preparation Phase 

Upon successful experimentation run, the launch scripts detect, record the execution 

end-time, prepare the outputs to the specified directory, and shut down the nodes 

(optional). In the current implementation, if the user wants to run more experiments, 

they have to submit the jobs again as there is no job queue facility at the time of this 

report. The analyst uses the model outputs and the captured metrics for further 

analysis according to the CBDS simulation project-set goals. 

 

4.5 DICE Deployment Sequence 

The principle of the proposed architecture would allow flexibility during implementation 

on cloud environment (private/public/hybrid), connection, management, and flow control. With 

middleware support, this architecture can be used in a variety of ways. The design of the DICE 

service for CBDS is composed of four decoupled services layers: application (client 

infrastructure), DS Management (Federation Management), Cloud Provider (Cloud Access), 

and Cloud VMs (User-Defined Resources). The CBDS provisioning services are depicted by 

the deployment sequence diagram in Figure 4-4 and described below. 
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Figure 4-4 DICE Architecture Deployment Sequence - Single Cloud 
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In DICE architecture, cloud infrastructure is accessed on-demand. DICE takes 

advantage of Cloud Computing data and elastic resource provisioning to acquire the compute 

nodes from public or private cloud platforms. As presented in the sequence diagram above, 

the Client Infrastructure object provides a service interface by Analyst (actor) with Federate 

Manager and Cloud Platform objects. Computing resources are accessed and configured on-

demand through the cloud provider's user interface, which can be a browser, FTP or 

command-line terminal. The sequence diagram is divided into three parts. The first section is 

the Experiment Preparation that is in charge of setting up the CBDS execution environment, 

which includes access credentials, configuring resources (CPU, memory, storage and 

networking), starting and stopping virtual machines throughout the experimentation period. In 

most cloud services, the resource-associated costs are determined by the computing 

resources selected and how long the CBDS takes to run. 

 

Next is Experimentation Execution starting from sequence number 7: where the 

Analyst prepares the federation and federates for execution. FOM, OMT, and SOM are some 

of the configurations at this stage required for the RTI implementation. The Analyst uploads 

the models and input files (when necessary) and sends the launch script from the Federate 

Manager sublayer to start the CBDS experimentation. After executing the experiment for the 

given scenario, the infrastructure sends completion notification to the Analyst. Sequences 21: 

to 28: can be repetitive when the scenario calls for replications or reruns with different input 

files. The analyst must submit this manually after each run due to this implementation's lack 

of queueing facility. 

 

Finally, Reporting and Analysis section, the CBDS finishes execution, and the 

Analyst receives the experiment report from the cloud services and the output results ready 

for download and further analysis. Depending on the cloud platform and service setup, the 

computing resources are released back to the pool at the end. As introduced in the previous 

sections, the computing resources refer to conventional compute services found in the market, 

such as CloudSigma, Amazon EC2, Google Cloud Platform (GCP), Scaleway, and those used 

in this research DigitalOcean. The proposed DICE architecture builds on top of these platforms 

to provide virtual machines and run experiments. 

 

The above explains a series of sequences to prepare, execute and report CBDS 

experiments using DICE - all for a single platform where the middleware, federation, and 

federates are hosted on nodes within one cloud. One of the main contributions of this thesis 

is running CBDS across multiple clouds, and DICE deployment architecture is designed to 

enable analysts to connect multiple cloud platforms and run experimentation. Connecting 



Proposed Architecture Development - DICE 

Page 108 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

multiple clouds require the modeller to define a central WAN router where all the data traffic 

passes through from source to destination at runtime. 

 

 
Figure 4-5 DICE Architecture Deployment Sequence - Multiple Clouds 
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Figure 4-5 is the modified sequence diagram showing the potion where the router 

configuration is introduced to connect and run multi-cloud CBDS. Specifically, sequence no. 

5: 6: 7: and 8: are where the analyst defines the router and gets the selected instance 

specifications - public IP and port number. Moreover, the router can be on-cloud or off-cloud 

(on-premises), and in either case, the exact specification is required to connect multiple cloud 

services. The WAN router settings are updated when configuring the federation and all 

participating federates. During execution, federates from different cloud platforms interact and 

exchange simulation data; therefore, all federates require the main router address to forward 

the messages for relay to the intended destinations. However, some cloud environments may 

require analysts to define router and gateway even when running experimentations on a single 

cloud platform example is Amazon EC2 due to its flexible but complex networking services. 

 

4.6 DICE Implementation Approaches 

The Cloud computing concept brings about flexibility to users. DICE deployment 

architecture exploits this opportunity by offering at least six options to deploy CBDS 

experimentation. It is designed to allow an analyst to run single or multiple experiments on 

single or multiple cloud instances from single or multiple cloud service platforms (providers). 

Table 4-1 is a matrix of possible DICE's schemes - approaches to CBDS. 

 
Table 4-1 DICE Deployment Matric - Possible Implementations Approaches 

 
 

Scheme 1: Single Cloud - Single Experiment allows running a single CBDS 

experiment on a single cloud infrastructure at a time. Example Amazon EC2. 

 

Scheme 2a: Multiple Clouds - Single Experiment is where analysts run a single 

CBDS experiment on several cloud infrastructures from different providers. Example running 

one federation with federates hosted on Amazon EC2, CloudSigma, and DigitalOcean cloud 
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services. The traffic is traversing between clouds using a cloud-based WAN router (a cloud 

instance equipped with a gateway to relay traffic between the participating cloud platforms) 

 

Scheme 2b: Multiple Clouds - Single Experiment is where analysts run a single 

CBDS experiment on several cloud infrastructures from different providers. Example running 

one federation with federates hosted on Amazon EC2, CloudSigma, and DigitalOcean cloud 

services. In this case, the traffic is routed between the participating cloud platforms via an 

offline router (a physical device on-premises that receives the incoming traffic and relay them 

to the destination cloud instance). This may be due to different design decisions by the analyst, 

such as security or close monitoring purposes. It also presents the opportunity to integrate 

IoT, Digital Twin devices for Industrial 4.0 connectivity in the CBDS execution circle. 

 

Scheme 3: Single Cloud - Multiple Experiments. This approach enables the modeller 

to execute multiple federations in parallel on a single infrastructure from a single cloud provider 

such as CloudSigma. 

 

Scheme 4a: Multiple Clouds - Multiple Experiments. The analyst can run multiple 

CBDS experiments on several cloud infrastructures from different providers in parallel. For 

instance, running multiple federations with federates spread across Amazon EC2, 

CloudSigma, and DigitalOcean cloud services. The traffic is routed between the connected 

clouds using a cloud-based WAN router as in Scheme 2a above. 

 

Scheme 4b: Multiple Clouds - Multiple Experiments. In this approach, multiple CBDS 

experiments run on several cloud infrastructures from different cloud providers. For example, 

running multiple federations with federates hosted on Amazon EC2, CloudSigma, and 

DigitalOcean cloud services. Here, the traffic exchange between federates is routed between 

the participating cloud platforms using an offline router as presented in Scheme 2b. 

 
Though there are six different ways to implement CBDS using the proposed DICE 

architecture, this thesis uses and reported only three approaches from the matrix - Schemes 

1, 2a, and 4a. This is due to the cost associated with the cloud infrastructure and the time to 

complete various experimentation scenarios to measure the performance and scalability of 

CBDS deployed with DICE. These schemes are presented in detail below and the essential 

components used on Figures 4-2, 4-3, and 4-4 are; 

 

• Federate – A term referring to a simulation model in an HLA-based distributed 

simulation project. 
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• RTI – Runtime infrastructure is a middleware. It is a fundamental component of 

HLA-based DS that coordinates federate their operation and data exchange.  
• Configuration File – It is a file containing the gateway router’s IP address and port 

number for data exchange during federation execution. 
• FEDambassador – This is a class instance used by the RTI to deliver information 

to federates using callbacks. 
• RTIambassador – This is the class through which the federate communicates with 

the RTI. 
• Router – An instance is serving as the wide-area network router connecting the 

distributed federates when the cloud does not support multicasting. It can be 

implemented on the cloud or on-premises. 
• Arrows – Indicates the flow of data in and out of components. 

 

4.6.1 SCHEME 1: Single Cloud – Single Experiment 

This scheme allows an analyst, depending on the runtime infrastructure, to connect 

federates directly to one another using a multicast protocol as illustrated by Figure 4-6. 

Again, various cloud platform service providers have various ways of dealing with 

network traffic. Users in some clouds such as Amazon EC2 have to use a specialised 

local gateway configuration file to be able to route traffic even on a single cloud. The 

configuration file should contain the datagram protocol, queuing and buffer flow control, 

IP address of the gateway federate, and the federation management rules. 

 

 
Figure 4-6 Single Cloud – Single Experiment Implementation 

 
4.6.2 SCHEME 2a: Multiple Clouds – Single Experiment 

The second approach is designed to centralise all traffic relay to a specific cloud 

instance via a "WAN router". The router receives incoming packets and forwards them 

to the intended federate. Figure 4-7 shows how multiple clouds can be used to run a 

single experiment using one geographically distributed federation. The federation 
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central component can be initiated by any cloud platform depending on the project 

design and execution. 

 

 
Figure 4-7 Multiple Clouds – Single Experiment Implementation 

 

4.6.3 SCHEME 4a: Multiple Clouds – Multiple Experiments (Parallel) 

In this approach, an analyst can run multiple experiments in parallel using multiple 

cloud platforms.  All traffic is relayed to a specified cloud instance via a "WAN router". 

Figure 4-8 illustrated the experiment design approach with multiple clouds forming 

multiple geographically distributed federations. Each federation's central component 

can be initiated from the specified cloud platform depending on the DS design and 

execution. Moreover, no pattern is followed in the distribution of federates over cloud 

platforms. The figure only demonstrated a moderately complex experiment design.  

 

 
Figure 4-8 Multiple Clouds – Multiple Experiments Implementation 

 

The three schemes presented above are a few possible implementations. Analysts have 

the architectural flexibility to design a more complex experiment to achieve the set objectives. 

Due to cost and time constraints, only schemes one and two will be used in the experimental 
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stage of this thesis presented in the next chapter and subsequent discussions in the 6th 

chapter – the analysis and evaluation of the results. 

 

4.7 Chapter Recap 

We have seen the DICE design process, architecture, and a few deployment schemes 

for CBDS. The "layered cake" architecture is composed of various services from both cloud 

and distributed simulation perspectives. The layers and the components involved were 

explained, and the relationship between them was established. The chapter demonstrates 

CBDS implementation sequence diagram using the proposed architecture. According to the 

scenario, analysts have deployment scheme options as to how the cloud-based federation 

environment is designed to run the experiment. Chapter five takes DICE to the cloud using an 

EMS prototype which puts the solution to the test. Experimental results were generated and 

were analysed, discussed, and evaluated in detail in chapter six. 
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Chapter 5 DICE Implementation Case Study 
 

5.1 Chapter Overview 

The previous chapter presents the aspects of the proposed framework and architecture 

development process and possible cloud implementation schemes. It also presents a detailed 

explanation of various components found in both the CBDS development framework and 

deployment architecture.  

 

This chapter starts by presenting simulation approaches of ABS and DES, then dives 

into the experimentation environment setup. The setup includes the cloud infrastructure 

provider, computing resources, network services, experiment submission, monitoring, and 

result collection procedure. The following section introduces the case study prototype – the 

Medical Emergency Service (EMS) and its components comprising an ambulance and 

hospital accident & emergency (A&E). The interactions between the ambulance, the A&E, the 

interoperability reference model used, and the time management are all discussed in detail. 

Moreover, the section presents how the EMS is adapted to the proposed architecture for 

evaluation. In the end, the reader will find the software tools selected for the experiment based 

on the research design. 

 

Finally, the chapter reports the EMS model technical specifications, validation, and 

verification approach, cloud experiment configuration, and execution procedure. Moreover, 

result collection and performance testing are presented and discussed in detail. A quantitative 

result is generated, and a comparison is made between the possible implementation schemes 

from chapter four. This thesis focuses mainly on performance metrics and the technical 

requirements that affect the execution. 

 

5.2 Simulation Approaches - ABS and DES 

As reported earlier in chapter two, section 2.5 and 2.6, the agent-based and discrete 

event simulations are widely used simulation paradigms. Others include System Dynamics 

(SD) and PetriNets, but these are not part of this research focus. The hybrid prototype case 

study of the emergency medical system combines the ABS and DES approaches. The 

federates are divided into an ambulance service as the central component and accident and 

emergency department – the hospitals receive severe emergency incidence and walk-in 

patients. All these will be explained further in the coming sections. Before that, let us 
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investigate the low-level implementation of the proposed architecture using a befitting case 

study. 

 

The various layers of architecture provide services, and some of them to the user. To 

run a distributed simulation experiment on the cloud, the analyst should decide on the type of 

cloud services needed – private or public, networking environment, and the software tools 

required for the work.  

 

5.3 Environment Setup 

There is a phase in the CBDS architecture implementation that involves the simulation 

environment setup and submitting the experiment job for execution. The choice of the cloud 

provider and submission methods are identified in the following sub-sections. 

 

5.3.1 Cloud Infrastructure 

Simulation analysis in the cloud provides benefits to analysts in many organisations 

compared to on-premises expensive computing infrastructure. Cloud computing is 

attractive due to its virtualisation (Barrett and Kipper, 2010) technology, allowing easy 

isolation of applications within a shared hardware platform (Menascé and Ngo, 2009). 

In preparing to test the proposed architecture, there are many aspects considered in 

choosing the cloud platform; the experiment's objective, testing strategy (as described 

in section 5.7), infrastructure configuration, provider services, and reliability, and result 

monitoring.   

 

Layer 3 in the architecture is specified as a cloud provider when it provides the 

infrastructure to set up the computing resources required for the distributed simulation 

experimentation. In this research, CloudSigma (https://CloudSigma.com), Amazon EC2 

(Amazon Web Services (AWS)), Scaleway (Scaleway Cloud services), Google GCP 

(Cloud Computing Services), and DigitalOcean (DigitalOcean – The developer cloud) 

are the public cloud provider platforms used for testing and evaluation. 

 

5.3.2 Cloud Computing Resources 

After the identification of the cloud providers, the next step is configuring the storage, 

memory, CPU, and networking facility requirements for the experimentation. There is a 

10GB storage, 1CPU, 1 GB memory, and one IP address to communicate with the 

instance in all of the clouds identified for this research. Some cloud providers like 

DigitalOcean and Scaleway maintain the assigned IP after shutting down for a short 
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time. Others like Amazon EC2 and CloudSigma, assign dynamic IP every time an 

instance is shut down or restarts. The federation runs over the Internet/WAN protocol, 

and the cloud relies on the instance IP addresses to keep the flow of data exchanged 

during the execution. IP-related failure may cause problems such as federation crashes 

and deadlock, especially when running multi-cloud experiments where computing nodes 

span over several geographic locations. Moreover, when an IP is configured to connect 

to IoT or Industry 4.0 devices, each time an IP fails or is lost due to shut down or server 

reset, each connected device had to be reconfigured with the new acquired IP to be 

able to join the federation execution. 

 

5.3.3 Networking Service 

For this thesis, a virtual private cloud network environment was set up to manage the 

participating federates' traffic sent and received. Some implementation schemes and 

approaches may require a central router to direct traffic from source to destination. In 

contrast, others, depending on the RTI used, can use the multicast protocol to 

communicate and exchange data during experimentation execution. The analyst 

decides the network topology during model design and conceptualisation, which aligns 

with the system's organisational goal under study. 

 

5.3.4 Experiment Specification (Job Submission) 

Another contribution of this thesis is providing a facility to submit DS experimentation 

jobs to the cloud for execution easily. The process involves defining experiment 

specifications and a sequence of activities to manage the simulation. DS technology is 

generally challenging, especially to modellers who are not mainly software developers. 

Therefore, automating simulation submission and management tasks is believed to 

encourage using the proposed cloud-based DS. 

 

Ansible’s Playbook is chosen to automate repetitive experimentation tasks. Ansible is 

an open-source automation technology engine. It dramatically improves the 

consistency, scalability, and reliability of the ICT environment (Ansible IT Automation, 

2020).  The automation can be applied to environments hosted on bare metal servers, 

the cloud, or other virtualisation platforms. It also automates the configuration of systems 

and resources ranging from storage, databases, security firewalls, and networks. 

 

This thesis uses and covers a few Ansible script functions sufficient enough to evaluate 

the CBDS architecture. Ebert et al. (2016) believe that Ansible is the easiest to 
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implement. After all, it does not require installing agents on the client machines because 

it uses SSH (Secure Shell) to push configurations, which is based on Python. Ansible’s 

configuration is coded in YAML files, thereby reducing the learning curve. This 

automation tool has recorded successful implementation such as Singh et al. (2016), 

Masek et al. (2018), Spiga et al. (2018), and Cruz and Casquillho (2019). A script 

algorism and implementation scenarios are explained in chapter six – the evaluation. 

 

5.4 Testing Schemes and Execution 

Six possible implementation approaches with detailed descriptions and figures was 

reported in chapter four, section 4.6. The DICE was tested against the three schemes due to 

cost and time constraints: single cloud – single experiment, multiple clouds – single 

experiment, and multiple clouds – multiple experiment. Each of the schemes will run some 

federate, and the results were generated, recorded, and analysed accordingly. 

 

5.5 Experiment Monitoring 

Another feature in the proposed architecture is experimentation monitoring and logging. 

This gives useful insights into what is happening with the simulation and computing resources 

during each run. The user can use Linux internal statistics or install a third-party tool that best 

suits the objective of the analysis. Here we capture starting and end-time for each run for 

performance analysis and evaluation purposes. 

 

5.6 Result Collection 

In each of the chosen schemes, the experiment result was collected for one month with 

three replications. The average was used to analyse the performance and scalability using the 

proposed DICE. Results were discussed after analysis, and this section presents the future 

research direction for the architecture improvements. 

 

Due to cloud infrastructure cost and experimentation time constraints, this research  

reported an average of three runs for each scenario as recorded based on the existing 

literature (Miller et al., 2001; Anagnostou, Nouman and Taylor, 2013; Anagnostou and Taylor, 

2017c). Taylor et al. (2009) report that there are DS studies by authors who present results 

for a single run such as Lendermann et al. (2003), Riley et al. (2004), and Liu, Zou and Ye 

(2015). 
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5.7 Client Infrastructure 

The topmost layer in the proposed architecture provides an interface between the user 

and the cloud infrastructure. Here, a browser can be used to access the cloud services 

provider’s platform and set up the on-demand computing resources. FTP clients are used to 

uploading model data files and download experimentation results. A user command line 

terminal provides SSH access to the cloud resources for setup and configuration. 

 

Emergency medical services (EMS) is becoming an increasingly well-known operational 

system used as a benchmark for distributed simulation approaches. With the EMS, running 

federation involves the development of a specific launch script to run the distributed simulation 

over different network topologies. 

 

5.8 The Emergency Medical Service (EMS) 

A healthcare case study prototype is used - the Emergency Medical Service (EMS), to 

test the feasibility and evaluate the proposed CBDS architecture. The distributed simulation 

comprises an Ambulance and several Accidents and Emergency (A&E) hospital department 

models (federates). The ambulance component is developed using the ABS approach due to 

its conditional, dynamic response nature. The A&E federates process-driven, which 

progresses according to events in time, and therefore, written as DES. The federates use 

interoperability standards and exchange data during simulation runtime. 

 

Many authors propose and present how the EMS model works such as Pinto, Silva and 

Young (2015). In their model, a solid line represents the model, and dashed lines show multi-

location dispatch where an ambulance can be dispatched from one scene to another when it 

becomes available to increase response time efficiency. This project makes use of 

components, interactions, events, protocols, and standards found in medical systems. 

 

As acknowledged in chapter one, the EMS was initially developed by Anastasia 

Anagnostou (2014), published in OR journal (Anagnostou and Taylor, 2017c), and 

subsequently published by Nouman, Anagnostou and Taylor (2013), and Chaundhry et el. 

(2016). The base federates, and the middleware is restructured, upgraded for cloud-based 

deployment, and used in all experimentations. Throughout this research, references and 

acknowledgment are given where credit is due according to the university and academic 

ethical requirements. 
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5.8.1 EMS Interactions  

The ambulance federate is the central component of the EMS model, which finds and 

communicates with DES-based hospital departments within the defined coverage area. 

The department represented with the accident and emergency (A&E) models receives 

patients brought by ambulance or walk-ins. An event-driven process continues within 

the department until the simulation ends. The high-level architecture (HLA) Std. IEEE-

1516e (Scrudder et al., 2010), as reported earlier, is a widely used DS standard mainly 

used in the military. HLA DS standard is used in this research for its data and time 

synchronisation capability. The runtime infrastructure (RTI) is the centrepiece of HLA, 

which uses the standardised rule to coordinate information exchange and the 

interactions between federates, synchronisation, and overall federation management. 

Figure 5-5 presents the graphical view of interactions using the RTI as the central 

component. 

 

5.8.2 Interoperability Reference Model (IRM) in EMS 

There are enormous interactions that happen between the ambulance, and the A&E 

federates in this scenario. For example, A&E departments advertise their availability to 

the ambulance model. This information is kept. When an ambulance wants to transfer 

the patient from an incident scene, it searches based on the available A&E with 

necessary treatment facilities and resources. The ambulance federate begin moving the 

patient for further medical attention. Basically, there are three interactions. 

 

a. Interaction One - A&E departments communicate their availability to the ambulance 

model.  

b.  Interaction Two – The patient (an agent in ABS) is transferred from ambulance to 

DES A&E department, which receives it as an entity. A conversion of the patient 

object from ABS agent to DES entity occurs. 

c. Interaction Three – After the ambulance model decides which A&E department to 

take the patient, it notifies that department to reserve the resources to avoid conflicts, 

delay, or denial. 
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Figure 5-1 IRM used in EMS (Adapted from Anagnostou 2014)  

In this study, the IRM facilitates the interactions between the two paradigms used in 

the EMS hybrid model. The Ambulance Service (ambulance model) is Agent-Based 

Simulation and several Accident & Emergency Departments (hospital models), which 

are Discrete Event Simulations. Specifically, the IRM interaction mechanism adopted 

for EMS is IRM Type (general entity transfer, shared event, shared data structure) or 

IRM Type (A.1, C, D), and Figure 5-3 shows the IRM model representation. 

 

5.8.3 Data Exchange Protocol and Time Management in EMS 

Among the many published DS standards reported in chapter two, HLA protocol is 

used for time synchronisation and data communication in this work. DS experiments are 

composed of two or more models (federates) linked together to form a larger simulation 

called the federation controlled by the RTI middleware of choice. 

 

 
Figure 5-2 DICE HLA conceptualisation (Adapted from Anagnostou 2014) 
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DICE HLA concept is illustrated in Figure 5-4. The RTI provides federation 

management services such as data exchange between federates and synchronisation. 

Both the ambulance (ABS) and the regional hospitals (DES) federates communicates 

with each other via the RTI as the central controller. Within the federation, several 

independent hospitals federates all of which communicate with the ambulance model 

for updates on their availability. More details on the technical functions of RTI will be 

presented in section 5.5.1 below. 

 

5.9 Adapting EMS to DICE 

5.9.1 EMS Model Conceptualisation 

Going through the framework implementation, model conceptualisation is a crucial part 

of the distributed simulation project. It deals with developing the appropriate 

representation of the real-world domain that applies to the defined problem in the 

presented scenario. These concepts will be transformed into specific requirements that 

will later be used during experimental design, testing, execution, results analysis, and 

evaluation. The EMS conceptualisation in this project comes in two forms, Figure 5-5. 

The ambulance service federate was developed with ABS and hospital federate in DES.  

 

 
Figure 5-3 Hybrid Distributed EMS Conceptual Model (Simulation Scenario) (Adapted from Anagnostou 2014) 

  

The Ambulance Service Conceptual Model 
Emergency ambulance service is usually land-based. Though some scenarios require 

air ambulance when time is of the essence, or the incident scene is not accessible by 

road. In any case, land or air, the ambulance service station coordinates calls, vehicle, 
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and crew deployment based on the reported situation. When an emergency call comes 

in, the respondent assesses the severity of the accident and decides what vehicle, 

equipment, and crew to dispatch. The dispatch crew configuration can either be Basic 

Life Support (BLS) who deals with non-life-threatening cases or Advanced Life Support 

(ALS) to treat on-scene life-threatening incidents. 

 

When the crew arrives at a scene, they offer the needed services. Depending on their 

judgement, they may transfer the patients to the hospital for further treatment or release 

them immediately after the on-site treatment. The ambulance federate has three main 

periods/states; waiting, service, and response time, as depicted in Figure 5-6, used by 

the ambulance organisation as the key performance indicators (KPIs). Waiting for a 

state is the time span between when the emergency call comes in, and the attendant 

finds an available ambulance vehicle. Service state is the time when an ambulance 

vehicle departs the station and ends in the hospital after patient transfer. It may end at 

the accident scene when no patient is resealed after on-site treatment. Response time 

starts when an emergency call is received and ends when the ambulance arrives at the 

incident scene. 

 
Figure 5-4 Timelines for ambulance service model (Adapted from Fitzsimmons, 1973)  

 
5.10 Justifying the use of EMS 

While evaluating the proposed DICE, emergency medical service (EMS) is chosen for 

having the level of complexity and interoperability needed to test the architecture's feasibility 

on various cloud infrastructures. EMS is a classic operational research (OR) system that non-

technical analysts can use such as medical doctors. I acknowledged that other operational 

systems might have some level of these characteristics, such as manufacturing or transport 

systems; the EMS used here have been validated with two simulation paradigms - ABS and 

DES. This calls for carefully managed object interactions between the two approaches, which 

put the cloud services to task and significantly affect the result generated from all the 

experiments conducted. Furthermore, the distributed simulation literature has reported that 

researchers using these kinds of model to investigate lingering issues and extend knowledge, 

and for more example of EMS in the literature in addition to those reported in chapter two, 

Tanika et al. (2017), Pinto, Silva and Young (2015), and Yang et al. (2019). 
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5.11 Software Tools 

Computer-based modelling and simulation make extensive use of software tools. Many 

programming languages exist; some are general purpose, while others are domain-specific 

(Pidd, 1984). One this is clear that there is no one-size-fits-all. Depending on the system to 

simulate, many factors need to be considered, such as process, entities, interaction, network, 

data exchange, and security. To test and evaluate DICE, this project uses a well-established 

DS standard, the HLA Std 1516e. An open-source Java-based simulator and a free and open-

source middleware software package are explained in chapter two and more on 

experimentation-specific details below.  

 

5.11.1 High-Level Architecture (HLA) Distributed Simulation Standard 

HLA is one of the matured distributed simulation standards that uses advanced 

computer technologies to ease simulation development (Ficco et al., 2016). As 

highlighted in chapters two and four, sections 2.6.3 and 4.4.3, respectively, HLA protocol 

standard was first conceived and mainly used for military application. As the system gets 

more complicated, its use is extended and applied in non-military domains. Through 

HLA, DS allows modellers to develop large simulation model from composing smaller, 

reusable, independent sub-models. Instead of building a vast monolithic large model 

from scratch, DS provides an alternative for integrating and interoperating multiple 

models, each with its own language, operating system, and features. 

 

Federation is the term used for HLA-based distributed simulation, and participating 

models are called federates. Federates interact with one another using the runtime 

infrastructure (RTI) middleware that provides services and protocols to manage 

communication and data exchange within the federation (Falcone, Garro, Taylor, et al., 

2017). HLA uses objects, the datasets that are exchanged between federates and 

events are the interactive communication in the federation (Rainey and Tolk, 2014).  

 

Reusability and interoperability are among the significant challenges in modelling and 

simulation. Basically, when modellers want to develop large simulation, they have to 

modify existing code, if available, or develop from scratch, which presents a substantial 

technical challenge and make simulation project cumbersome. HLA has a specification 

feature that offers a typical architecture for distributed modelling and simulation. Some 

HLA implementation produced by some vendors has in-build support for WAN 
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connectivity, which technically has support for cloud federation execution. In other 

cases, the analyst may have to program the API to support the WAN protocol for CBDS. 

 
Figure 5-5 HLA Federation Structure with RTI services (Adapted from Gorecki et al., 2018) 

  

A classical HLA provides APIs specification for communication in the federation. 

Gorecki et al. (Gorecki et al., 2018) explain how the RTI manages federation using 

various services, as illustrated in Figure 5-5. According to the HLA federate interface 

document (Scrudder et al., 2010), the federation and interaction and the RTI 

management services are defined. Typically, in an HLA-based DS, there are three 

components (Huiskamp and Berg, 2016) involved - the HLA Framework and Rules, 

Federate interface Specification, and object model template (OMT). 

 

5.11.2 Simulator 

This project uses an open-source Recursive Porous Agent Simulation Toolkit 

(RePAST) Symphony (https://repast.github.io) simulator. RePAST is the leading free 

and open-source large-scale agent-based modelling and simulation library. Users build 

simulations by incorporating Repast library components into their own programs or using 

the visual scripting environments (Macal and North, 2006). Its effectiveness in large-

scale modelling and simulation of social phenomena has been assessed (Tobias and 

Hofmann, 2004). Other successful implementation includes Chaudhry et al. (2016), 

Minson and Theodoropoulos (2008), Garro et al. (2015), Crooks (2007), and 

Anagnostou and Taylor (2017a), and Collier and North (2013). 

 

5.11.3 Middleware 

CBDS proposed architecture is a new proposal and requires continued support, 

research, and development. Therefore, a flexible and modular RTI implementation is 

highly desirable, and poRTIco opensource RTI fulfils this criterion. Licensed under the 

Common Developer and Distribution License (CDDL), poRTIco project was initially 
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developed by Tim Pokorny and Michael Fraser in 2005 and 2007. The project received 

funding and support from the Australian Defence Simulation Office (ADSO) (Portico 

History, 2008).  Since then the literature recorded successful use by authors such as 

(Tu, Zacharewicz and Chen, 2011; Anagnostou, Nouman and Taylor, 2013; Chaudhry 

et al., 2016; Akram, Sarfraz and Shoaib, 2019).  

 

PoRTIco is selected for this research to support the defence and IEEE distributed 

simulation networking standard - the High-Level Architecture (HLA) 1.3 and 1516e 

(Evolved). The proposed DICE test will run on a cloud. The latest poRTIco v2.1 release 

has built-in support of wide area network (WAN) bridging capability (Portico Over a 

WAN, 2020). This feature allows for both UDP and multicast data exchange 

mechanisms. 

 

5.12 Verification and Validation (VV) 

To ensure we are building the simulation models the right way, Verification and 

Validation (VV) activities are essential. Caughlin (1995) describes verification as the process 

of determining whether the model accurately represents the conceptual design, specifications, 

and behaves as intended. During verification, model outputs are compared with the design 

specification and expectations. This process is repeated, as illustrated in Figure 5-8 until the 

computerised model is satisfactory (Sargent, 2013). 

 

On the other hand, the validation of activity is used to determine how well a model 

represents the real-world system it was intended to simulate. Successful validation adds 

credibility to a model and its output (Robinson, 1997). 

 
Figure 5-6 Model Development Process with Verification and Validation (Adapted from Sargent, 2013) 
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EMS Verification - EMS development process includes iterative verification checks in 

both ambulance and A&E federate conceptual design and translation. The model is 

interrogated continuously to make sure they conform with the conceived design specifications. 

 

EMS Validation - A test run is conducted in local machines before deploying to the 

cloud server. This is to make sure it is doing and displaying the correct intended behaviours. 

This is confirmed in the coming section, during result analysis, where the output corresponds 

to the NHS UK's targets.  

 

Furthermore, the middleware implementation is verified and validated while 

programming the models. The poRTIco RTI used is developed and tested to be in working 

condition. EMS is coded to implement the various HLA and RTI interface APIs. These allow 

interaction between participating federates during the simulation run. Figure 5-9 shows the 

sequence of interactions between models in the federation via the RTI serving as the 

coordination layer during the CBDS experiment. 

 

 
Figure 5-7 Sequence diagram of the interactions using the poRTIco middleware (RTI) 

 
5.13 Experiment Setup 

Experimentation executes the simulation runs, collecting results, and using statistics to 

compare the various configuration scenarios used to check the system performance. In this 

project, the proposed DICE, as reported earlier in chapters four and five, maybe implemented 

using three possible schemes. Each implementation has slightly different configuration 

settings described below. 
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5.13.1 Cloud Instance and Network Settings 

As explained earlier, the proposed architecture is tested for feasibility using two main 

testing categories – performance of execution time and scalability testing. The second 

scenario increases the number of federates at each run to upscale the DS. This test 

observes the scalability behaviours of the proposed architecture. The experiment was 

executed in a well-controlled cloud computing environment to maintain consistent data 

exchange and interaction in the federation. Table 5-1 summarises the cloud-based DS 

experimentation setup. 

 
Table 5-1 CBDS Experiment Settings 

Component Package/Service Remark 
Simulator RePAST Symphony v2.1 Opensource Java Simulation 

Package 

Runtime 

Infrastructure 

poRTIco v2.1 Opensource middleware with 

HLA IEEE 1516e support 

DS Standard High-Level Architecture (HLA) 

Evolve 

IEEE Std. 2010-1516e 

Cloud 

Infrastructure 

CloudSigma, Amazon EC2, 

Scaleway, Google GCP, and 

DigitalOcean Instances each with. 

- 10 GB SSD Storage 

- 1 GHz CPU 

- 1GBRAM 

Public Cloud Platform 

Operating 

System 

Linux-Based Ubuntu 18.0.4 LTS 

and 20.04 LTS 

Opensource OS 

Programming 

Runtime 

Headless JRE from OpenJDK 

version 11 

Works for both the Simulator 

and the Middleware 

Security Incoming: SSH, TCP, UDP 

Outgoing: All Traffic 

Only the allowed IP and port 

numbers in the federation 

configuration file are allowed 

Networking Wide Area Network (WAN), Virtual 

LAN (VLAN), Internet 

IPv4 Public Addressing 

 

The cloud instances configuration in Table 5-1 shows allocated resources for this 

experimentation purpose. Each instance contains one federate (a distributed model). 
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For example, the first run with three federates comprises three cloud instances. Each 

instance holds one federate during the simulation run.  

 

CloudSigma, Amazon EC2, Google Cloud Platform, DigitalOcean, and Scaleway 

providers were selected for the test. Because of the number of simulation runs and 

replications needed for DS, executing large-scale DS experiments on cloud or LAN 

requires a vast computing resource. The requirements for CBDS may be complicated 

due to the regional networking involved. CloudSigma infrastructure is used by 

researchers with success, for example, Anagnostou et al. (2019), Kovacs et al. (2020), 

Visti et al. (2016), and Kovács, Kacsuk and Emődi (2018). 

 

5.13.2 Execution Procedure 

A few logical steps are followed to launch the CBDS experiment in this work. These 

are. 

 
Step 1: Start cloud instances and get assigned IP addresses. 

Step 2: Prepare and upload data files to the input directory of each federate participating 

in the DS. 

Step 3: Create a federation by starting the EMS ambulance sub-model and synchronise 

participating federates using the IP addresses.  

Step 4: Prepare the launch script with parameters such as cloud instance IP address, 

WAN router gateway configuration, and execution time logs. 

Step 5: At the end of each simulation run, download CSV-based results from the model 

output directory and clear it (optional) for the next run. 

Step 6: Perform analysis on the overall results. 

 

 
Figure 5-8 Example EMS Cloud Instances Setup with sample IP Addresses 
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Figure 5-10 shows an example of an EMS federation scenario where each federate is 

assigned a dynamic IP address provided by CloudSigma. It is worth noting that the IP 

address is renewed (change) whenever an instance shuts down. To maintain an IP 

address in many cloud service providers, including CloudSigma, users need to purchase 

a static or dedicated IP address.  Users can assign them to various federates in the 

CBDS project. 

 

5.14 Experimental Results 

The experiment generates results from three replications for each scenario to evaluate 

the DICE implementation scheme. It is reported that three iterations are a good number to 

use, which reduces the variance due to the operating system and communications network 

effects (Taylor et al., 2009). The experimented scenarios were conducted with 17 federates, 

as earlier demonstrated for performance and scalability testing and analysis. The fifth column 

– Ave. Time (minutes) in Table 5-3 shows that each run during the experiment took an average 

time between 75.4 and 106.2 minutes as the federates increased. Succeeding sections 

presents the results along with discussions and findings. 

 

5.14.1 Performance and Scalability 

Three types of experiments have been designed to test and observe the performance 

and scalability of the distributed simulation federates using various cloud computing 

environments. This is important because the failure of applications due to performance-

related issues can be prevented with pre-deployment performance testing (Sarojadevi, 

2011). In this project, results were collected from the DICE’s three schemes as reported 

in chapter five. The following graphs present variant results from the three runs for each 

combination of federates. It is important to note that the execution run times are 

recorded and reported in minutes; seconds are ignored to have a less complex and 

more evident analysis. All results are an average of four weeks collection period. Tables 

showing the values for each run and the calculated average can be found in the 

appendices.  

Figure 5-11 Y-axis represents simulation execution time in minutes. The X-axis shows 

the number of federates during each run. From the Figure, as the number of federates 

scales up, the execution time increases. As expected of cloud-based simulations, the 

execution time difference between the number of federates raises steadily with 

deviations. This is traced to performance analysis of distributed systems (Teo and Tay, 
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1996), where the workload may increase communication overheads resulting in a longer 

simulation elapsed time. 

 

 
Figure 5-9 Scheme 1: Average of 3 Runs in Minutes 

  

 

 
Figure 5-10 Scheme 1: 3 Individual Iterations in Minutes 

  

With this experiment setup, the single federation simulation execution time 

starts from 75 minutes for three federates and goes up to 108 minutes with 17 

federates, i.e., one ambulance and 16 hospitals. Considering the average time plotted 
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in Figure 5-11, the time difference dropped noticeably. This is visible between seven 

federates lasting for 83.6 minutes while nine federates averages at 80.8 minutes. 

Moreover, 15 federates takes 106.2 minutes on average, while 17 federates spent 

102.8 minutes. Figure 5-12 compares the three individual iterations (Run 1, Run 2, and 

Run 3), and it shows an interesting behaviour with 13 federates where all the three 

runs executed at the different timeframe. Other combinations have closer execution 

time. 

 

 Scheme 2a of the proposed DICE implementation also executes one 

experiment in a single federation. Here, multiple cloud platforms are connected using 

an on-cloud Wide Area Network (WAN) router where all participating federates relay 

datagram traffic from source to destination. Because this scheme employs more than 

one cloud platform, the runtime starts well over two hours. Precisely, it starts at 216 

minutes for three federates and up to 442 minutes for 17 federates. The standard 

deviation presents a high variability starting with 1.73 minutes for three federates, rise 

as high as 30.09 and 41.40 minutes for seven federates and drastically fall back to 

1.73 minutes for 17 federates.  

 

 
Figure 5-11 Scheme 2a: Average of 3 Runs in Minutes 

1XPEHU�RI�)HGHUDWHV

(
[H
FX
WLR
Q�
7L
P
H�
�0
LQ
XW
HV
�

����

�����

������

������

������

������

������

������

������

������

� � � � �� �� �� ��

0XOWLSOH�&ORXGV�����,WHUDWLRQV�$YHUDJH



DICE Implementation Case Study 

Page 133 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

 
Figure 5-12 Scheme 2a: 3 Individual Iterations in Minutes  

In Figures 5-13 and 5-14, like previous figures, Y-axis represents simulation 

average execution time recorded in minutes while the X-axis shows the number of 

federates during each scenario runs. As shown in Figure 5-13, the beginning time falls 

for the first three scenarios and heavily rises between seven and nine federates. The 

time increases as the number of federates go up. However, looking at the individual 

iterations in Figure 5-14 reveals that only the first iteration experiences a dramatic fall 

between the three and five federates. The remaining iterations go up steadily with 

recorded variations. The behaviours can be caused by different responses from 

various inter-connected cloud infrastructure. 

 

In contrast, scheme three is designed to compare with the second scheme, 

which has a traffic router on the cloud. Here, the router is configured locally on a 

physical machine on a non-dedicated Internet and has no specific resource 

requirements besides the basic networking setup. Due to the high rate of network 

failure observed from this scheme, only three scenarios experimented - the three, five, 

and seven federates combinations. However, the result shows a significant effect of 

on-cloud and off-cloud routing. The concept considered a DS where the analyst 

designed to route traffic down to physical infrastructure for management, security, or 

integration with digital twin systems. The Figure shows that simulation run time starts 

from 139 minutes for three federates and 195 minutes for seven federates. The 

deviations between the scenarios were 1.53 minutes on the lower side and 6.43 

minutes being the highest. 
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Figure 5-13 Scheme 4a: Average of 3 Runs in Minutes 

 

 
Figure 5-14 Scheme 4a: 3 Individual Iterations in Minutes 

 
It is clear from Figure 5-15; this experiment's execution time goes up from the 

start as against the previous scheme. However, the standard deviation falls and rises 

again on the third set of iteration. The three scenarios ran with centralised traffic routing 

through a physical machine; hence the consistent and steady increases as the number 

of federates grew. Furthermore, the individual iterations in Figure 5-16 present the 

consistency from one combination to another. They are almost identical in the 

execution time on average. 
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Figure 5-15 Comparison between three scenarios of the three schemes 

SC = Single Cloud MC = Multiple Cloud 
 

Going deeper in analysing how the cloud infrastructures perform with different 

scheme configurations, Figure 5-17 combines and compares the three schemes' 

average for the first three scenarios, i.e., three, five, and seven federates. The graph 

in Figure 5-17 illustrates the data showing schemes one and three starts at the 

beginning and increases as more federates are added. Interestingly schemes two start 

and the time drops and then rise significantly, as seen in Figure 5-13. This is an 

interesting finding, and it is elaborated in the discussion chapter. 

 

 
Figure 5-16 Average execution time between schemes one and two 
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Executing distributed simulation with all federates on nodes within a single 

cloud platform performs differently from when the experiment is distributed over 

multiple cloud service providers. Similarly, Y-axis represents simulation average 

execution time recorded in minutes, while the X-axis shows the number of federates 

during each scenario. The plotted data in Figure 5-18 visually compare the two 

schemes where the DS execution time on the single cloud rises from the beginning 

and continues to go up as more federates are added to each succeeding scenario. 

Noticeably, the multiple cloud runtime falls initially and then significantly rises between 

seven and nine federates. It continues to rise steadily as the federate scale up.  

 

 
Figure 5-17 Execution time Standard Deviation (SD) for the three schemes 

  

Figure 5-17 presents the standard deviations for the three schemes. The standard 

deviations are calculated based on the three iterations for each scenario, i.e., three 

iterations of 3, 5, 7, 9, 11, 13, 15, and 17 federate. Though scheme three shows only up 

to seven federate, the figure shows the differences in variation between iterations when 

distributed simulation is executed on single, multiple clouds, or multiple clouds with local 

on-premises WAN router. Here schemes two and three appeared to be deviating within 

a close time range while the multiple clouds execution with on-cloud router shows a 

significant variation in time. 
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The result presentation above concludes the chapter, and thorough discussions and 

findings are presented in the next section.  

 

5.15 Chapter Recap 

The preceding chapter explains the proposed architecture and framework development 

process. It also shows the layered architecture, which aims to ease the use of CBDS by both 

technical and non-technical experts’ analysts. This chapter moves further to implement the 

architecture using the EMS prototype model. The chapter describes in depths the model 

components, including sub-models, interoperability, interactions, and simulation events. This 

section also shows how the model is adapted to the cloud-based architecture for 

experimentation and analysis. Importantly, this chapter presents the experimental results and 

the technical specification used for the environment. The case study model is explained and 

adapted to the proposed framework. 

 

The next chapter interprets and discusses the results, presents findings, evaluation, 

and research limitations. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DICE Implementation Case Study 

Page 138 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

 

 
 

 

 

 

CHAPTER  
SIX 

      

DISCUSSION AND 
EVALUATION 

 



Discussion and Evaluation 

Page 139 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

 

Chapter 6 Discussion and Evaluation 
 

6.1 Chapter Overview 

The previous chapter explained the proposed architecture, the design, and the 

development process. It also presented the experimentation setup, the case study prototype 

used, and the choice of software tools for the evaluation. Moreover, it explained the Model 

Realisation stage, where the models to be used for experimentation are defined and 

configured. Results from the experimentations were processed and presented as-is. 

 

This chapter revisit the research problem and presents the key findings from the result 

analysis. It also discusses the results in more detail. The sections are organised as to how the 

results relate to previous research. The findings differ from other studies, how the results and 

findings confirm some existing theories, and the practical implications and the contributions to 

the field. Finally, the chapter evaluated the DICE architecture from the research perspective. 

 

6.2 Research Problem and Key Findings 

6.2.1 Revisiting the Research Problem 

Established in chapter one, DS is a method in operational system analysis that has 

gained interest due to its claimed benefits, including model reusability and 

interoperability. DS allows the exploitation of geographically distributed resources such 

as equipment and people (Fujimoto, 2015b). However, the cost of high-performance 

computing resources, technical skills, and special training required to design, develop 

and use DS is an ongoing concern. These are the long-standing challenges that have 

prevented the broader adoption of parallel and distributed simulation technology 

(Fujimoto, 2016). 

 

The cloud computing concept offers an alternative approach to address the issues 

mentioned above using the pay-as-you-go economic model, eliminating considerable 

investments in the required hardware and software. DS evidently have the potential to 

benefit M&S. Nevertheless, relatively limited attention has focused on the development 

framework and deployment architecture to enable analysts to run DS experimentation 

on the cloud. Therefore, a more in-depth study is needed to understand how modellers 

will run cloud-based DS and how the cloud platforms will perform with variant parameter 

inputs. This research has studied, identified the gap from the literature, designed and 

proposed a development framework and deployment architecture. An emergency 
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medical services prototype model was developed and used to run various 

experimentation on selected cloud infrastructures where performance data was 

collected and presented in the previous chapter. 

 
6.2.2 Key Findings 

It is a general belief that Distributed Simulation (DS) development is a complex process 

and requires expertise with immense courage to undertake. However, a proposed 

architecture is introduced and experimented with potential benefits for modellers. The 

cloud-based development methodology guides analysts at every step of the cloud-

based distributed simulation (CBDS) implementation - from concept to cloud execution. 

Almost all the results collected indicated a higher experimentation time. As literature 

such as (Fujimoto, Malik and Park, 2010) reported, this behaviour is expected and 

explained why it takes longer in the cloud than running the same model on local 

machines. Ultimately, the experiment proved it is feasible to study a large-scale DS 

using cloud infrastructure. 

 

The results indicate that it is feasible to connect and run geographically distributed 

simulation experiments using cloud infrastructure. Furthermore, the research finds that 

running a federation on a single cloud performs differently than federation execution on 

multiple cloud platforms. The significant differences are primarily attributed to how each 

cloud service provider handles network traffic and the overall communication overheads 

found on the Internet. These results are explained in detail from the following section 

onwards. 

 

6.3 CBDS Experimentation Result Summary 

The three schemes are executed in line with the performance testing of the distributed 

EMS simulation model. The first scheme involves two cloud platforms: CloudSigma and 

Amazon EC2. The former hosts the ambulance model, and the latter holds two hospitals. In 

scheme 2a, CloudSigma, Google Cloud Platform, and Amazon EC2 were used. Lastly, in 

scheme 4a, five providers were used: CloudSigma, Amazon EC2, DigitalOcean, Google Cloud 

Platform, and Scaleway. Each scenario runs thrice and for 30 days simulation time.  
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Table 6-1 Results summary of Schemes 1, 2a and 4a. 

DICE 

Implementation 

Approaches 

Scheme 

1 

Scheme 

2a 

Scheme 

4a 

Execution 

Time 

Avg. 

(mins) 
SD 

Avg. 

(mins) 
SD 

Avg. 

(mins) 
SD 

3 federates  75.4 0.55 217.00 1.73 141.33 3.21 

5 federates  78.6 1.67 211.33 16.50 177.67 1.53 

7 federates  83.6 2.51 206.67 41.40 190.33 6.43 

9 federates  80.8 11.08 327.33 30.09   

11 federates  90.2 4.49 360.00 2.00   

13 federates  99.8 6.26 380.00 3.00   

15 federates  106.2 7.16 407.33 14.15   

17 federates 102.8 5.07 441.00 1.73   

 
 
The results are shown in Table 6-1 are the average and the standard deviation of three 

runs. The shadowed grey areas indicate that running the CBDS experiment with an off-the-

cloud WAN router was challenging due to network reliability issues with local devices 

connecting to the internet. The simulation fails after a more extended time. It is observed that 

the three, five, and seven federates works well because the execution time is not much. 

However, running with nine or more federates, the execution time gets longer, increasing the 

change between failure (MTBF). The results also infer that the DS has insignificant variation 

in execution time as the number of federates increases. 

 

6.4 Discussion 

Figures 5-11 to 5-19 in chapter five, section 5.14.1 presented the results of the DICE's 

three implementation schemes and the standard deviations for each scheme. In each 

scenario, the hybrid Emergency Medical Service (EMS) model is used. The EMS is comprised 
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of an ambulance service as an ABS sub-model interacting with several accidents and 

emergency hospitals as DES sub-models. The detailed activities performed during the 

federation execution were discussed earlier. Experiments are performed on public cloud 

infrastructures; CloudSigma, DigitalOcean, Scaleway, and Google Cloud Platform. Ansible 

automation tool was used to monitor and log the initiation and execution time. The results in 

the tables show individual scenario iteration time, average execution time and standard 

deviation. For this research, only the average time is used to evaluate the performance as 

depicted using the line-graph figures. Three additional graphs combine the three schemes' 

average time, the second compares scheme one and two, and the third one presents the 

standard deviations of the three schemes. 

 

In line with the objectives, the results collected and analysed shows that modellers can 

design, develop, and run distributed simulation experimentation using cloud infrastructures. 

Presented in the previous chapter, the results are plotted using line-based statistical graphs, 

and the figures gave the data visualisation of how the cloud raise and fall performance using 

different scenarios and environment setup. The first research question in this study is 

concerned with how cloud services can deploy and run DS. Based on background review; this 

research has identified the technical components required to design and develop a 'cloud-

aware federate (a distributed sub-model). Using an established method, these components 

were used effectively in creating a DS development framework, which guides the analyst on 

the necessary (iterative) steps required to develop and successfully run a distributed 

simulation experimentation project on cloud infrastructure. Overall, the CBDS aims to save 

time and investment on the high-performance computing resources needed to analyse 

medium and large-scale operational systems. Figures 5-11 and 5-12 indicated that as the 

federation workload and/or federates scales up, the execution time is affected with variant 

standard deviations. 

 

The deployment schemes presented in chapter four calls for different environmental 

setups for the experimentation stage of this research. For example, scheme one, single cloud 

- single experiment, all federates reside on a single cloud platform. The regions may differ, but 

the infrastructure has the same architecture and behaviours unless the user configured 

otherwise. In this case, virtual machines were created on the CloudSigma platform and 

configured to route traffic using a gateway federate. The participating federates interact with 

the interoperability reference model (IRM) presented in the proceeding chapters. The data 

exchange was not affected by running experimentation through the wide area 

network/Internet, but the speed is affected by the internet protocols and communication 

overheads supported by the literature. This addressed the second research question seeking 
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to know the factors affecting the interoperability amongst distributed models in a cloud-based 

federation. 

 

From scheme two, multiple clouds - single experiment, Figures 5-13 and 5-14 illustrated 

the data for average three scenarios iterations and individual scenarios iterations, 

respectively. The reliability of the result can be seen from the consistent pattern among the 

combined average and individual execution times measured in minutes. However, the 

significant differences between a scenario with seven and nine federates is believed to have 

been caused by several incoming requests and load balancing (Fayoumi and Arabia, 2011), 

resource allocation and release timing  (Losup et al., 2009) and the number of I/O operations 

affecting the network (Mei et al., 2013) which are among the established cloud performance 

evaluation criteria. 

 

The third research question seeks to answer what factors are affecting the cloud-based 

DS experimentation speed. This poser directly relates to many factors uncovered during the 

experiment design. These include the availability of computing resources at a given point in 

time, network configuration, workload, scalability, and VM location. Also, authors such as 

(Khanghahi and Ravanmehr, 2013; Khalid, Abdullah and Rashid, 2016) in their publication, 

lists the following as potential factors affecting cloud performance; security, recovery, service 

level agreement, network bandwidth, memory capacity, buffer capacity, disk capacity, fault 

tolerance, and a number of users. Likewise, the cost is often contributing to cloud 

performance; even though this was not studied extensively, it was only realised during the 

purchase/subscription of cloud services used during experimentations.  

 

This research, therefore, established that performance and speed of a cloud-based DS 

can be negatively affected by overheads, and the literature confirms that contention in virtual 

machines operating on a shared infrastructure brings noticeable performance overhead (Xu 

et al., 2014). Furthermore, cloud-based DS can benefit analysts more when executing a 

specialised high-performance computing infrastructure (HPCI). Nowadays, cloud service 

providers begin to introduce HPC instances (Liu et al., 2012) specialised for high-performance 

applications such as CBDS applications, for example, Amazon's HPC (AWS High 

Performance Computing (HPC)), Google Cloud Platform HPC (Google High Performance 

Computing (HPC) ), Oracle Cloud Infrastructure HPC (Oarcle High Performance Computing 

(HPC)), and Azure HPC (Microsoft High-performance computing). However, it is beyond the 

scope of this study to deploy and perform experimentations using this kind of infrastructure to 

evaluate DICE or the DS development framework. Nonetheless, DICE architecture is 
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designed with flexibility and technical capability to deploy DS on any IaaS, though 

performance may depend on many factors as indicated above. 

 

Finally, cloud performance and experimentation speed in cloud-based distributed 

simulation project is a critical issue.  As established in this study, it depends on many factors. 

The objective of this study is to initiate a deep enquiry into the problems. For now, this work 

has designed and proposed a deployment architecture - DICE, which open doors for further 

research in the factors affecting general simulation and DS on cloud environments.  

 

6.5 Results Implication 

The various experiments carried out in this research provides new insight (cloud 

performance and scalability based on the experimentation scenarios) into the use of cloud 

infrastructures to deploy geographically distributed simulation federates. This includes how 

the cloud computing nodes behave during DS experimentation. It also uncovers the critical 

components, networking, middleware, gateway, router, etc., that are required to set up CBDS 

infrastructure for large-scale operational system analysis. Moreover, the empirical research 

has practical implications and has contributed to the cloud-based distributed simulation 

(CBDS) approach and focussed more on analysing operational research systems by less 

technical modellers. The principal contributions of this thesis are: 

 

• It proposes a scalable CBDS deployment architecture - the Distributed Simulation Cloud 

Architecture for Experimentation (DICE). DICE becomes the foundation of this thesis 

research, which provides technical specifications and guides analyst on how to deploy DS 

on various cloud platforms. 

• It introduced a cloud-compatible distributed simulation federates development framework, 

which has origin in the Distributed Simulation and Engineering and Execution Process 

(DSEEP), an IEEE standard. 

• In chapter five, section 5.16.1 presented the experimentation results, this work exploits 

and demonstrated how network communication and interference affect execution time and 

overall cloud performance. 

 

6.6 Evaluation 

The proposed architecture - DICE was born out of a gap identified from the literature 

review and has been conceptualised, designed, and developed. To evaluate and 

subsequently release it to the research arena, validation is required. It was carefully carried 

out using a befitting prototype case study - the EMS. DICE maps the research objectives and 
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questions. Furthermore, a new CBDS development methodology was introduced and used to 

develop the prototype. The two proposals development framework and the CBDS deployment 

architecture are open to external evaluation, where practitioners who are the primary target 

end-user could explore more perspective based on their use cases.  

 

The CBDS architecture in this research follows the layered cake model of a cloud 

computing concept. The approach separates the application, the underlying cloud 

infrastructure and resource management complexity. This was explained in chapter four. The 

following phases are applied to EMS prototype development and execution with the modified 

established process guide. 

 

When compared with DSEEP earlier, the framework reported three main development 

phases: planning, development, and experimentation. The planning phase is the same for 

almost all approaches, including stand-alone, LAN-based and Cloud-Based DS. The 

distributed simulation project planning stage involves problem definition by analysts and 

whether DS is a suitable analysis method. This part is used to evaluate the RQ1, which 

enquires about deploying DS on the cloud. The implementation and running of the EMS using 

the proposed architecture expose the components needed to deploy CBDS. To define the 

problem, the objective must be clearly specified by the client which can be internal or external 

to the organisation responsible for the study's execution Ülgen, Johnsonbaugh and Klungle 

(2000) and BK and Ezhil (2019). 

 

The CBDS development phase slightly differs from LAN-Based DS and is hugely 

distinct from stand-alone simulation projects. In DS, federates are built from scratch or 

modified (existing models) to be able to run independently and have the interoperability to be 

linked together and exchange data in a federation. One of the fundamental differences is in 

the communication mode between the LAN and Cloud environments. In local networks, DS 

federates can exchange traffic using the best-effort multicast communication mode. The RTI 

will relay them from the source to intended destinations. For cloud-based DS, the federation 

must have a router or a gateway to direct inbound and outgoing TCP packets and UDPs. This 

calls for having to deal with IP addresses and port numbers at each level of communication 

during federation execution. This phase contributes to RQ2 and RQ3. The first aims to uncover 

the factors affecting interoperability, and the latter inquire about CBDS execution speed. 

Communication and the internet overhead are the factors affecting the overall simulation 

execution performance. During the validation and verification stage of development, IP 

address and port numbers were checked in each federate. The middleware implementation 

can send and receive traffic using the configured addresses. Network and security settings for 
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federates residing on different cloud platforms may vary based on the models' complexity. 

They may also vary on how they are linked together to form a more extensive cloud-based DS 

simulation. For example, Amazon EC2 and CloudSigma. 
 

This thesis's proposed execution phase also introduced a few extra steps where 

federates configuration and federation settings are passed as a parameter in a predefined 

launch script. The popular Ansible Playbook is used to submit a job to multiple cloud platforms 

selected by the analyst. In this thesis, DICE implementation has three options, as explained 

in previous chapters. Traffic can traverse through a cloud-based router or configure on a local 

node for security and other project design objectives. Because federates on the Internet 

communicates, connection reliability is a component to consider and factor into the 

environment design.  

 

Overall, the framework provides an alternative to developing simple and complex CBDS 

to study large operational systems in health, manufacturing, engineering, and military 

domains. Indeed, the proposed EMS has been pre-developed using DSEEP recommended 

practice, and in this work, DSEEP has been extended to implement CBDS. This study has 

been performed using the framework to investigate the performance and scalability of the 

cloud. The hybrid model adapted to the framework was used to experiment with different 

scenarios on single and multiple cloud infrastructure. These runs have shown that both the 

framework and the deployment architecture are feasible and presents opportunities for more 

research work. This is the first and is open to extension and improvements by research 

communities and industry to the author's knowledge. 

 

6.7 Chapter Recap 

This chapter began with an overview of the research problem and the key findings from 

the experimentation. It has presented an in-depth discussion of the results shown in the 

previous chapter. Moreover, the result implication and how that contributed to the existing 

knowledge was explained. Finally, the proposed development and deployment architecture 

was evaluated and compared with its initial design objective to answer the research questions 

(RQ1, RQ2, and RQ3). The next chapter is the last one, which concludes the research, 

highlights issues found in the process, and gives potential future work on DICE. 
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Chapter 7 Conclusions and Future Work 
 

7.1 Chapter Overview 

Chapter six reviewed the research problem, discussed the experimentation results, 

presented the findings and the evaluation discussion of the proposed framework and 

architecture.  

 

Chapter seven concludes the research journey. It has subsections that give a summary 

of the entire research—then followed by a part dedicated to showing how the research 

questions are addressed throughout the previous chapters—furthermore, this part recaps the 

research contribution, limitations, and possible future work area. A reflections section is added 

to narrate the author’s experience throughout the project's lifetime exceeding three years due 

to the rippling effects of the mysterious COVID-19 pandemic, which took the world by surprise. 

 

7.2 Summary of the Thesis 

The research community is continually searching for ways and means to improve large-

scale systems using suitable technology. M&S is a tool that allows them to analyse systems 

behaviour over time, analyse the result, and present options to organisational management 

for decision-making. However, modellers are confronted with the discouraging challenge of 

using DS as an analysis tool of choice for reasons such as it being too technical and steep 

learning curves. This thesis is conceived and prepared to take on the challenge of investigating 

how to make it adaptable even by non-technical analysts. 

 

The author begins by asking; why the need for cloud-based distributed simulation in 

operational research? After reviewing related literature in the field, the answer indicates 

evolution, advancements in technology, and by extension, economics. Researchers uses 

M&S as a promising system analysis method, and today, organisations are becoming more 

sophisticated with complex horizontal integrations. This means a conventional M&S may not 

suit large-scale system simulation analysis. The research community introduced DS, which 

provides an alternative to the traditional computer simulation approach where single analyst, 

runs a single simulation model on a single processor. Unfortunately, DS comes with its 

challenge, that require interoperability amongst interoperating models, which may be 

developed with different simulation technique and significant amount of computing resources 

- which equals money, and additionally, it is complex and cumbersome. As information and 

communications technology advances, the cloud computing concept developed, and it 
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provides an enticing alternative to traditional DS. Cloud computing offer pay-as-you-go 

network access to configurable computing resources where users pay for what they use or 

rent for a certain period of time. This was a relief to the huge investment usually required for 

conventional DS. 

 

Up to the time of writing this project report, there is no known methodology, framework, 

or guide on how to design, build, and deploy cloud-based DS. This was identified in the 

literature and therefore becomes a motivating factor to investigate and propose a feasible 

solution at least to M&S communities in the first instance. An architecture is designed and 

proposed in the research work – A DIstributed Simulation Cloud Architecture for 

Experimentation (DICE). A CBDS methodology was designed. A prototype EMS model was 

used to test and evaluate the proposal. The experimental result is encouraging. Though it did 

not significantly speed up experimentation, the author believes it could pave the way to 

upgrades and improvements through research by traditional DS and stand-alone simulations 

using the cloud infrastructure. 

 

The test results showed that the cloud-based DS experiment execution time increases 

against the local area network (LAN)-based DS and single computer foun in the literature. In 

this work, the proposed technique solves some of the challenges non-technical modellers face 

due to software and hardware engineering involved in simulation projects. One of this thesis's 

contributions is the DICE, which aims to extend the distributed simulation engineering and 

execution process (DSEEP) concept. This means, from running DS on a local environment to 

the distributed cloud infrastructures. It is a step-by-step guide to the non-technical modellers 

in the M&S community. It will allow them to focus more on the analysis rather than the 

underlying technical complexities involved in the design and development processes. 

 

7.3 Addressing the Research Questions 

To bridge the literature gap, this research aims to investigate cloud-based federate 

development framework and multi-cloud deployment architecture for Distributed Simulation 

(DS). Further, research questions (RQs) were formulated to achieve the said aim: How can 

you deploy distributed simulation on the cloud? What are the factors affecting the 

interoperability of distributed simulation on the cloud? What are the factors affecting cloud-

based distributed simulation experimentation speed? 

 

A set of objectives was then decided to answer the questions, and these objectives form 

the main parts of this thesis. The following is a repeated list from the first chapter, section 1.6. 
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Objective 1: To review the literature and uncover the theoretical perspectives on 

cloud, distributed simulation, and the challenges of the use of modelling and simulation 

in operational research.  

Objective 2: Identify a suitable methodology to apply to address the research 

questions, which will help achieve the thesis aim. 

Objective 3: Design and develop a cloud-based methodological framework for 

distributed simulation of a large-scale system. 

Objective 4: To use a prototype EMS model to implement and test the proposed 

architecture's feasibility. 

Objective 5: To evaluate the architecture via experimentation results analysis with an 

in-depth discussion. 

 

The objectives were used. They adequately address the research questions as 

discussed and mapped into chapters two, three, four, five, and six, respectively. Below is a 

summary of the answers. 

 

RQ1 - How can you deploy distributed simulation on the cloud? 

Modellers are used to following an established development framework; none exist for 

cloud-based. This thesis proposes both development framework and CBDS 

deployment architecture in chapter four sections 4.2 and 4.3, respectively. Both were 

used in the design, development, and testing of the prototype case study to evaluate 

the proposed solution.   

 

RQ2 - What are the factors affecting the interoperability of distributed simulation 
on the cloud? 

Cloud computing resources configuration, networking, security settings are factors 

identified to affect extending large-scale simulation and how the model involved can 

interoperate and exchange simulation information. Besides, the middleware 

implementation must have the facility for distributing TCP/UDP data over a WAN and 

the Internet.   

 

RQ3 - What are the factors affecting cloud-based distributed simulation 
experimentation speed? 

Authors in the -cloud-based domain are working already on this issue and have 

published some findings of what could affect cloud-based DS speed. For example, 

(Buyya et al., 2009; Mehmi, Verma, & Sangal, 2017; Visti et al., 2016). This has been 

confirmed in this thesis when analysing results. When designing CBDS, modellers 
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should take the communication and network protocols into account when deciding 

simulation execution time. 

 

7.4 Research Contribution 

The main contribution of this research to the field of M&S is A DIstributed Simulation 
Cloud Architecture for Experimentation (DICE) designed and proposed to ease the 

conceptualising, design, building, deployment, and execution of CBDS by non-technical 

analyst and by extension, other domain modellers. A prototype distributed and complex hybrid 

emergency medical service model was used to test its feasibility. The precise steps in the 

framework make it easy to follow and iterate sub-activities until the development is complete, 

and the experiment is successful. Until this time, this is the only framework and methodology 

for developing Cloud-Based Distributed Simulation (CBDS). 

 

Furthermore, CBDS experimentation architecture is proposed and tested. Job 

submission to the cloud environment can be daunting even for the experienced technical user. 

This research produced a simple, configurable script to submit CBDS experiment jobs to 

single or multiple clouds through a single user terminal for easy monitoring and control. For 

the first time, this research has connected and run five different cloud infrastructures 

(CloudSigma, Amazon EC2, Scaleway, DigitalOcean, and Google Cloud Platform) to conduct 

CBDS experimentation. Playbook from Ansible was used to design the launch of the script in 

this thesis. With a dedicated experimentation management section of the proposed layered 

architecture, other server automation engines and or scripts can be used according to the 

project requirements and developer choice. 

 

Before this work, the author could not find an authoritative definition of Cloud-Based 

Distributed Simulation (CBDS). It is a relatively new field of research compared to the widely 

studied M&S. As reported in the first chapter, section 1.2, this research has given a definitive 

meaning to the new cloud-based distributed simulation concept for this research and possibly 

future ones. The CBDS defined and used it as; 

 

A technique that enables the execution of multiple distributed simulations run 
across multiple, on-demand, and configurable cloud infrastructure, platforms, 
and software for the user to use as a service, over WAN or the Internet. 
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7.5 Research Challenges 

The challenges faced during this research were mostly technical. For example, when 

deploying the distributed simulation federation in the cloud, many commercial, public cloud 

providers were selected. These include Amazon EC2, CloudSigma, Microsoft Azure, IBM 

Cloud, Scaleway, Google Cloud Platform, and DigitalOcean. Of the list, only five have a 

relatively straightforward configuration at the infrastructure level. Others have a super complex 

setup resource and networking facilities, which may defeat the goal of this research of making 

it easier for the analysts. This requires the author to spend significant time studying them in 

detail and then design CBDS experiment to run from them. 

 

Another obstacle is the cost attached to cloud computing resources. EMS scenarios to 

test the proposed architecture require an enormous amount of time to run the desired average 

of five runs for each scenario multiplied by two architecture deployment schemes. This comes 

as a financial constraint to the author as a research student. 

 

Historically, the experimentation stage of this thesis was affected by the COVID-19 

pandemic breakout. The national lockdown imposed, as a result, barred access to simulation 

labs for several months. This is an indirect effect on the overall research. 

 

7.6 Research Limitations 

Like many Ph.D. theses, this has its limitations, and the following are some of the 

shortfalls identified at the end of this research. 

 

• The architecture is evaluated using a single prototype case study, which is the EMS 

model. The hybrid model has two components; the ambulance service model 

developed using ABS simulation paradigm. The other is the A&E department which 

is a process-driven DES model. A different simulation paradigm was not tested, such 

as System Dynamics in combination with the rest. 

• The prototype model uses data for the London coverage area only, which may not 

provide enough ground for generalising its findings. This is a case study-related 

limitation. 

• The literature underpinning the research is based on M&S that focuses more on non-

technical modellers with no software engineering experience. 

• In the current implementation of CBDS using the proposed framework and 

deployment architecture, if one instance is down, there is no recovery mechanism 

put in place to restart or prevent the failed model from affecting the federation run. 



Conclusions and Future Work 

Page 153 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

Moreover, where a dynamic IP address is used for the cloud infrastructure, the IP is 

lost when the instance is turned off. A new IP is assigned in most providers, which 

means reconfiguring the launch script and RTI middleware components to work 

correctly for the next experimentation. 

• When configuring the virtual machines on the cloud, region and physical location are 

not considered, however, that did not affect the main objective of this research. 

• Experiments are submitted manually with minimal automation during execution and 

logging. 

 

7.7 Research Future Work 

The author believes this is a novel endeavour in terms of Cloud-Based DS. Therefore, 

it may serve as a steppingstone to many feature enhancements and to improve upon what is 

presented here. Firstly, this work was carried out entirely headless (command line terminal) 

with no graphical user interface (GUI). Future work can bring the complexity under the hood 

and provide a more intuitive, user-friendly interface with a touch of modern user experience 

(UX) principle. Mobile cloud computing is gaining significance (Shiraz et al., 2012; Amoretti, 

Grazioli and Zanichelli, 2015; Bahwaireth et al., 2016) and bringing CBDS capability using 

mobile devices is an attractive feature. 

 

For flexibility, accessibility, and reproducibility, this research uses open-source software 

tools - simulator, middleware, and programming language to develop the model and deploy it 

for testing. Interoperability with commercial packages can do excellent future research.  It will 

attract the M&S research community to embrace the concept if they know CBDS can 

interoperate with commercial packages or even with legacy systems.  

 

Lastly, all the issues raised in sections 7.5 and 7.6 above need to be addressed. A 

recovery mechanism for a failed experiment execution will save cost as cloud instances are 

"rented", and the cost adds as the clock ticks.  

 

7.8 Reflections 

There are many aspects that this thesis should have covered. For example, rather than 

sending input parameters through command line interface to the cloud instance, a visual 

interface would make a great way of understanding the simulation run and processes involved. 

Another thing is the deployment on multiple clouds to form a regional federation, making it a 

broader geographically distributed environment. However, there was a constrained financial 

limitation on the author’s part. The time needed to explore the various cloud providers' 
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technical configurations and adapt the DICE prototype for multi-cloud testing was also limited. 

The three years is not enough for that. Unfortunately, the COVID-19 lockdown bedevils some 

effort to cover these missing aspects of this ambitious project. 

 

7.9 Chapter Recap 

This chapter culminates the research report for this thesis. It revisited the proposed 

architecture, the project's aim, how the research questions were addressed, objectives used 

in the process, and research contributions. The section also presents the research limitation, 

issues identified and possible future work to expand the proposed solution even beyond M&S 

domain consumption. Let us review the thesis as a whole from the beginning. 

 

Chapter one introduces the reader to a high-level overview of the work submitted. It 

begins with an introduction to the research background, context, motivation, and the questions 

this thesis is out to address. The aims and objectives are presented as a vehicle to design, 

execute and complete the research. Furthermore, this chapter also gives a brief overview of 

the succeeding sections. Chapter two reviews the recently published research in Distributed 

Simulation, Distributed Simulation, and Cloud-based Simulation and identifies the gap in the 

literature. 

 

Moreover, the section gives the reader history and general simulation concepts, types 

of modelling, world views, approaches, and experimentation. It introduces some essential 

aspects of CBDS; the high-level architecture (HLA), time in simulation, and time management 

(synchronisation). The chapter also analyses, and reports simulation methodologies related 

to this thesis from both on-premises and cloud infrastructures. Then relates how that relates 

to the M&S research communities of practice. 

 

Chapter three of the thesis states the research design approach and offers possible 

alternatives to address the questions posed from the academic perspective. It also describes 

data collection and experimentation tools, methods of result analysis, and justifications for the 

chosen methods.  The chapter explains the cloud architecture development approach taken 

in this work and the case study method adapted to implement and evaluate the proposed 

framework and architecture. Chapter four presents the proposed architecture and framework 

development processes and explains possible implementation schemes used in the following 

chapter to test, analyse results, evaluate, and validate the proposed architecture's feasibility. 

Chapter five presents the simulation approaches of ABS and DES, then dives into the 

experimentation environment setup. The setup includes the cloud infrastructure provider, 

computing resources, network services, experiment submission, monitoring, and result 
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collection procedure. The following section introduces the case study prototype – the Medical 

Emergency Service (EMS) and its components comprising an ambulance and hospital 

accident & emergency (A&E). The interactions between the ambulance, the A&E, the 

interoperability reference model used, and the time management are discussed in detail. 

Moreover, the section presents how the EMS is adapted to the proposed architecture for 

evaluation. In the end, the reader will find the software tools selected for the experiment based 

on the research design. 

 

Chapter six revisits the research problem and presents the key findings from the result 

analysis. It also discusses the results in more detail. The sections are organised as to how the 

results relate to previous research. The findings differ from other studies, how the results and 

findings confirm some existing theories, and the practical implications and the contributions to 

the field. Finally, the chapter evaluated the DICE architecture from the research perspective. 

 

Each chapter above is presented with sub-sections and aims to achieve the set 

objectives. The external examiner thoroughly reviewed the thesis and gave more than 200 

comments on how to improve the thesis. This help make the arguments in work more 

convincing and more pleasant to read. 
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Appendices 

Appendix 1: EMS Case Study Prototype Model 
 
Components 

The ambulance federate (Anagnostou, 2014) has emergency vehicles with 

paramedic crews and emergency call centres. Call operators at these centres respond to 

distress calls, assess the severity of the incident, use the information to find the available 

vehicle closest to the site, and send with the appropriate crew. When the paramedics arrive 

at the scene, they give the necessary on-site treatment and then decide whether the victim 

needs to transfer to the hospital for further medical attention or release from the scene. If the 

situation calls for transfer to a hospital, the crew searches to find the fastest routes to the 

closest available hospital capable of handling the patient's situation. The ambulance scenario 

illustrates many interactions with various system entities based on conditions and dynamic 

behaviours. The characteristics identified can be accurately captured with the ABS simulation 

technique. This is backed by literature publications reported in chapter two. 

 

The Ambulance Federate Logical Flowchart 
Simulation runs have a starting time and predefined ending time where the simulation 

collects results and stops automatically. Similarly, the ambulance federate is triggered by 

incoming emergency calls. The processes continue until the end of the calling procedure, as 

seen in Figure 5-1. The following flowchart explains the decisions and activities from call to 

hospital transfer of a patient.  
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Figure 0-1 Ambulance Federate Flowchart 

 
When the simulation begins, the EMS process starts from the top of the flowchart 

depicted in Figure 5-1. The numbers attached to the diagram symbols correspond with the 

process details, and the logical relationship is shown.  

 

1. Simulation Start: The federation goes live and federates acquire the 

requirements. For example, the federation public IP address and port number 

are some of the information needed by each federate in the CBDS to join, 

interact and exchange data through the RTI. 

2. Emergency Call-in: An emergency call is generated, and the ambulance model 

schedules the next call generation. It then generates a patient at a specific 

location.  
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3. Search Ambulance: The system then begins searching for the closest available 

ambulance. If an ambulance vehicle is found, the system moves to the next 

logical process. If not, it will wait and search again until it finds one. 

4. Send Ambulance: When a suitable vehicle is found, its attribute is set to change 

to Availability = FALSE. The model then calculates the distance and travel time 

between the ambulance location and the incident scene and begins treating the 

victim.  

5.  Transfer to Hospital? If the paramedic attending to the patients assess the 

situation and see the need to be transferred to the hospital for further attention, 

the searching subprocess starts. Find the Closest Available Hospital: After 

finding the suitable hospital, the system sets the on-scene treatment time and 

calculates the distance and travel time between the scene and the chosen 

hospital. Before the vehicle leaves the scene, the paramedics contact the 

selected hospital, book the patient, and eventually reserve the required 

resources. The model moves the patient and the vehicle to the hospital using 

the current time + treatment time + travel time to the hospital. On a successful 

transfer, it calculates the distance and travel time from that hospital to the 

ambulance location. At this point, the ambulance goes back to its station, and 

its attribute change to Availability = TRUE. Release Patient On-Scene: If the 

patient is found to be fine at the scene, and no need for hospitalisation, the 

patient is released, and treatment time is recorded. The ambulance moves to its 

station at the current time + treatment time and its attribute change to Availability 

= TRUE. 

6. The model exits the loop when either the paramedics release the patient on-

scene or transfer the patient to the hospital. Finally, the vehicle goes back to the 

station and becomes available for the next emergency request. 

 

As seen from the logical descriptions above, the ambulance federate makes decisions 

based on certain conditions which is the reason the model is designed and built with ABS 

paradigm to accommodate unfixed behaviours. 

 

The A&E department federates the hospital part of the EMS model. Patients’ arrival at 

the A&E can either be walk-in or transfer from the incident site by ambulance. In any case, the 

receiving reception decides treatment based on the patient's condition and the attention 

required. The patients go through the various treatment activities depending on the availability 

of the resources required for each step. Resources can be a nurse, doctor, bed, or equipment. 

The patients wait in a queue if the resources needed are busy. DES is used for the A&E 
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department based on the process-driven nature of the patient handlined characteristics. 

Typical DES has a series of activities with resources attached. Entities join queues and enter 

activity for processing only, when necessary, resources become available. They then move 

from the first activity to the next logical one until they exit the system model. Entities or objects 

in DES change states depending on the system activity. They do not change on their own as 

in the ABS.  

 

The Hospital (A&E) Federate Logical Flowchart 
A&E federate can run in a stand-alone mode or distributed mode in a federation. When 

in a stand-alone, both the walk-in and ambulance arrival are scheduled. However, in a 

distributed run, only the walk-in is scheduled using the normal distribution, the ambulance 

arrival is decided by the ambulance service federate. Also, from Figure 5-1, the following figure 

further shows patients' logical movement as they arrive from the two entry points; walk-in or 

brought by an ambulance. 
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Figure 0-2 Hospital (A&E) Federate Flowchart  

When the simulation begins, the EMS process starts from the top of the flowchart 

depicted in Figure 5-2. The numbers attached to the diagram symbols grouping corresponds 

to the process details, and the logical relationship is shown.  

 

1. Simulation Start: The federation goes live and federates acquire the 

requirements. For example, the federation public IP address and port number 
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are some of the information needed by each federate in the CBDS to join, 

interact and exchange data through the RTI. The A&E model schedule the next 

walk-in arrival in the DES engine. 

2. Determine Walk-in Arrival: The model checks the patient, whether it is a walk-in 

or ambulance arrival. If it is a walk-in patient, they are added to the triage queue. 

The patients wait in the queue until the required resources become available. As 

the resources become available, the triage service starts by seizing resources 

and releasing them after the service is complete. The resource availability is 

updated for the next patient in the queue. After the triage service, the patient 

exits the system or is sent further to either minors’ or majors’ unit queue at the 

current time + triage treatment time. After triage, the patients join majors’ or 

minor’s depending on how serious their cases are.  

3. Ambulance-Arrival Patients: The Patients are sent to majors' or minors' 

according to their entry condition. These patients do not have to seize resources 

before starting the major or minor service because the ambulance has already 

booked and reserved them before arriving at the hospital. After the minor or 

major service, resources are released. Their availability is updated in the system 

for both the ambulance service and A&E federate. This information is then used 

for the next scheduled event according to the input data files' scenarios. 

4. The model exits the loop when the predetermined end time is reached.  

 

We can reasonably deduce that A&E federate uses essential components; for 

example, there is only one single resource type. This is used as a nurse, doctor, and lab 

technician. Many intermediary processes were cut-out. E.g., laboratory test, x-ray scans, 

optical test, etc., do not compromise, but to make the model simpler to analyse the architecture 

feasibility in the cloud DS environment. 

 

Prototype Model Realisation 
This part of the project takes the EMS from concept into prototype realisation. From the 

EMS scenarios explained in earlier sections, there are variable, local, and global, and updating 

them is embedded in the design stage. The prototype has two kinds of federates: ambulance 

(ABS) and hospital (DES). The federates should be able to run independently. They can also 

be linked up to form a large-scale CBDS using the proposed DICE. 

 

Ambulance Federate 
The previous chapter explains the EMS model's ambulance component where all the 

events, interactions with its environment, and other models in the federation were presented 
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at the conceptual level. Active and passive agents, space topology, were identified and 

included in the prototype building. An ambulance vehicle is one of the active agents that live 

in the federation environment. Ambulance stations and hospital locations are some of the 

stationary passive agents and do not carry out any autonomous activity. Both the ambulance 

and hospital stations have location and capacity attributes. The grid topology uses X, and Y 

Cartesian coordinates to define either hospital or ambulance station. The ambulance capacity 

shows how many ambulance vehicles are there in a given location. In contrast, hospital A&E 

department capacity is calculated using Equation 5-1. 

 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 
Equation 0-1 Hospital A&E availability 

 

In DS, when the A&E model first joins the federation, the capacity and location data are 

sent to the ambulance federate. The ambulance uses the information to search for the nearest 

available A&E to transfer patients with severe medical cases.  

 

A&E Department Federate 
Naturally, due to a higher population, urban-based Accident and Emergency 

departments such as the London area are busy with a beehive of clinical activities around the 

clock. As explained in previous sections, the EMS model captures essential components. This 

research focuses on the interoperability and feasibility of the proposed DICE. In this work, 

there is one ambulance federate, and several A&E federates. All the A&Es are identical in 

every conceivable aspect – duplicated for experimentation. From the published data, freely 

accessible from the NHS UK, the scaled-down A&E model is designed and developed with 

three procedures. The first is triage – walk-in patients get advice only and exit the system. 

Walk-in patients with injuries go through triage first and then join the minors’ or majors’ unit 

queue, depending on how severe their conditions are. Patients arriving with an ambulance, 

skip any queue and are taken directly to minors’ or majors’ unit, which was reserved by 

paramedic even before leaving an incidence scene. 

  

All the participating federates in the CBDS federation generate comma-separated 

values (.csv) and store it in the default model directory as programmed to do so. In both 

ambulance (ABS) and hospital (DES) federates, agents and entities ID, condition, and events 

timestamp are collected respectively. 
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EMS Model Specifications 
Defining model specifications for each federate is part of the steps taken for a successful 

study in this research. Existing data is gathered, and it fits the theoretical distribution used 

during the model design stage. For example, the patient's arrival rate at an A&E, resources, 

number of emergency calls per given time, and so forth. The following are specifications for 

both the EMS sub-models and the combined summary are tabulated in Table 5-1. 

 

The Ambulance Service Federate Specification 
This federate gets input from the data published by the DoH about containing the 

London Ambulance Service (LAS) monthly performance measure from April 2011 to March 

2012 (England NHS Statistics, 2011). In the scenario used from the data, LAS has 998 

vehicles, out of which 375 are emergency ambulances. Up to writing this thesis, LAS service 

coverage is 620mi2, 70 ambulance stations, five headquarters, and 32 A&E departments (LAS 

Coverage, 2020). 

 

In this prototype EMS, the emergency calls were distributed equally, instead of having 

more calls from London crowded areas and less from less populated areas. Also, the average 

vehicle speed is uniform for both in and outside London's busy roads. For this simulation 

experiment, the following are specifications for the ambulance federate. 

 

Emergency Call Arrival Rate = 23.80 per hour 

Coverage Area    =  150mi2 

Ambulance Stations  = 14 nos  

Ambulance Vehicles  = 75 nos 

Travel Speed   = 15mph 

Number of A&E Depts.   =  6 

 

The Hospital A&E Federate Specification 
The dataset used for the A&E departments is from the same reporting period as the 

ambulance service model. Similarly, the data is aggregated and distributed normally across 

the A&E departments in the coverage area, making all the A&Es have the same capacity 

(capacity based on average A&E in London), workload, and resources. Specifications for the 

A&E departments are as follows.   

 

Walk-in Arrivals   =  12.60 per hour  
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Triage Beds   = 5 

Minors Beds   = 12 

Majors Beds    =  24 

Clinical Staff    =  15 

 
Table 0-1 EMS Model Data Specification and Distribution Summary 

Ambulance Federate 
 
Inter-Arrival Time  
Normal 
Distribution 
Mean 2.52 

SD 0.09 

 
Patient Condition 
 

Minors 26% 

Majors 74% 

 
Average Speed  

Correction Factor  
Coverage Area  

Ambulance Stations  

Ambulances Per 
Station  

Hospitals  

 

15mph 

1.32 

150sqmi 

14 

9*5+5*6 

6 

 

 

 
Time On-scene 
(min)  
Normal 
Distribution 
Mean 22.52 

SD 10.54 

 
Need Transfer to 
A&E 
 

Yes 62% 

No 38% 

 

Ambulance Federate 
 
Walk-in Inter-Arrival Time  
Normal Distribution 
Mean 4.81 

SD 0.59 

 
Patient Condition 
 

Minors 35% 

Majors 65% 

 
Time in Triage  
Normal Distribution (with staff) 
mean 7.00 

SD 2.00 

 

Need Treatment 
 

Yes 60% 

No 40% 

 
Time in Minors  
Normal Distribution (with staff) 

 
Number of Staff  
Triage Capacity  

 

15 

5 
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Mean 30.00 

SD 10.00 

Minors Capacity  
Majors Capacity  

12 

24 

 

 
 
Time in Majors  
Normal Distribution (with staff) 
Mean 40.00 

SD 10.00 

   

 
 
Experimentation Results – Table 

The tables show the number of federates in each scenario, experimental run iterations 

in minutes, and calculated average time and standard deviation both in minutes. The following 

formula calculates the federates composition (first column) in each results table. 

 

1!"# +	𝑁!&" 
Equation 0-2 EMS federates composition formula 

 
Where AES (Ambulance Emergency Service) is the ambulance service model, and 

A&E is a hospital Accident & Emergency model. Backed by the literature, the federation is 

incremented by two federates as the experiment progress. For example, in Table 5-3, N = {2, 

4, 6, 8, 10, 12, 14, 16}. The first data row with 3 federates, run one ambulance model and two 

accidents and emergency hospital models. 

 
Table 0-2 Experimental Results of Scheme 1 Runtime in Minutes 

No. of 
Federates 

Run 1 Run 2 Run 3 
Ave. Time 
(minutes) 

Std. Dev.  
(SD) 

3 76 75 75 75.4 0.55 
5 80 76 78 78.6 1.67 

7 83 83 88 83.6 2.51 

9 86 86 85 80.8 11.08 

11 87 88 88 90.2 4.49 

13 104 92 98 99.8 6.26 

15 100 101 106 106.2 7.16 

17 107 104 108 102.8 5.07 
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Table 5-3 shows the number of federates with corresponding average execution time 

in minutes under each simulation run. 

 
Table 0-3 Scheme 2a: Multiple Clouds – Single Experiment Runs in Minutes (with cloud-based router) 

No. of 
Federates 

Run 1 Run 2 Run 3 
Ave. Time 

(mins) 
Std. Dev.  

(SD) 
3  219 216 216 217.00 1.73 
5  225 193 216 211.33 16.50 

7  160 221 239 206.67 41.40 

9  312 308 362 327.33 30.09 

11  358 362 360 360.00 2.00 

13  383 380 377 380.00 3.00 

15  415 391 416 407.33 14.15 

17  442 442 439 441.00 1.73 

 

 
Table 0-4 Scheme 4a: Multiple Clouds – Single Experiment Run Time in Minutes (on-premises router) 

No. of 
Federates 

Run 1 Run 2 Run 3 
Ave. Time 

(mins) 
Std. Dev.  

(SD) 
3 145 139 140 141.33 3.21 

5 178 179 176 177.67 1.53 

7 193 195 183 190.33 6.43 

 

 
Table 0-5 Comparison of the average three scenarios of three schemes 

No. of Federates Scheme 1 Scheme 2 Scheme 3 

3 75.4 217.00 141.33 

5 78.6 211.33 177.67 

7 83.6 206.67 190.33 

 

 
Table 0-6 Average execution time comparison between schemes one and two 

No. of Federates Scheme 1 Scheme 2 

3 75.4 217.00 

5 78.6 211.33 

7 83.6 206.67 

9 80.8 327.33 

11 90.2 360.00 
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13 99.8 380.00 

15 106.2 407.33 

17 102.8 441.00 

 

 
Table 0-7 Standard Deviation for the Three Schemes 

No. of Federates Scheme 1 Scheme 2 Scheme 3 

3 0.55 1.73 3.21 

5 1.67 16.50 1.53 

7 2.51 41.40 6.43 

9 11.08 30.09  

11 4.49 2.00  

13 6.26 3.00  
15 7.16 14.15  

17 5.07 1.73  

 

 
Appendix 2: DICE Implementation Code Fragments 
 
Steps: Adding New Instance (computing node) 

1. Please use CS-EMStestKey.pem while creating VM on CloudSigma  
2. For any VM created on any other cloud service provider add the content of 

~/.ssh/authorized_keys of HOS1/HOS2 at the bottom of the file placed at the 
same location of the newly created VM  

3. If ~/.ssh/authorized_keys file does not exist on the newly created VM, create 
one with the content described in previous step and set file permission to 600 using 
command below  

4.    $ chmod 600 ~/.ssh/authorized_keys 
5. Once the previous step is complete you should be able to login to the newly created 

system manually with the provided username and the IP address and the CS- 
EMStestKey.pem key  

6. If manual login is successful add host info to ~/ansible/hosts file on 
EMS_master machine. Your hosts file could look something like below,  

7.    [amb_group] 
8.    amb ansible_host=212.147.209.140 

[hos_group] 
hos1 ansible_host=212.147.209.64 
hos2 ansible_host=212.147.209.13 
hos3 ansible_host=212.147.209.145 
hos4 ansible_host=139.59.75.11 ansible_ssh_user=root hos5 
ansible_host=18.216.110.157 ansible_ssh_user=ubuntu  
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9. For test purpose you might need to manually copy and paste 
MyModels/hospitalmodel/hospitalOutput_ID(<host_id>).csv file from an old VM  

 
WAN Gateway Configuration 
 
# 5. WAN Connection Options 
# ========================================= 
 
# (5.1) WAN Mode Enable/Disable 
#       If true, WAN mode will be enabled and this federate will act as 
both a 
#       local participant, and also as a bridge for all the local 
federates. 
#       Messages exchanged on the local JGroups channel will be forwarded 
to a 
#       central router (see 5.2) to be reflected out to other sites. 
Messagest 
#       received from the router will be pushed out to the local JGroups 
channel 
#       so everyone here can process them. 
# 
#       Note that this mode does not support bundling. If enabled in the 
RID, it 
#       will be active on the local JGroups network, but ignored for the 
WAN. 
#       Note: Router must be running before federate startup. If not - 
federates 
#             will fail to start. 
#       Default: false      
 portico.wan.enabled = true 
 
# (5.2) Router Address/Port 
#       Specifies the address and port of the WAN router to use. Note that 
the 
#       syntax is "address:port". 
#       Default: 127.0.0.1:23114 
 portico.wan.router = 80.225.173.77:23114 
 
# (5.2) Enable / Disable Bundling 
#       Bundling enables higher throughput by grouping together a number of 
#       smaller messages and sending them as one. This makes much more 
efficient 
#       use of the network and provides considerable improvements to 
throughput 
#       at a minor cost to latency. 
#       If enabled, the subsequent options will control how it is applied. 
#       Default: true 
# portico.wan.bundle.enabled = true 
 
# (5.3) Max Bundle Size 
#       Messages sent over the WAN will be grouped into bundles and sents 
as 
#       a batch when their total size exceeds this value. Specify a size 
with 
#       a suffix of 'b', 'k' or 'm' (or 'g' if you dare!) 
#       Default: 64k 
# portico.wan.bundle.maxsize = 64K 
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# (5.4) Max Bundle Timeout 
#       The maximum amount of time we will hold messages in the bundler for 
while 
#       waiting for more messages to arrive and bundle together. From the 
time that 
#       a message is received, the bundler will hold it for no longer than 
this 
#       value (specified in milliseconds). 
#       Default: 20 
# portico.wan.bundle.timeout = 20 
 
 
Ambulance Federate (ambulance.xml) 
 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<objectModel xsi:schemaLocation="http://standards.ieee.org/IEEE1516-
2010 http://standards.ieee.org/downloads/1516/1516.2-2010/IEEE1516-DIF-
2010.xsd" xmlns="http://standards.ieee.org/IEEE1516-2010" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
<modelIdentification> 
        <name>Ambulance and Hospital model</name> 
        <type>FOM</type> 
        <version>1.0</version> 
        <modificationDate>2013-05-07</modificationDate> 
        <securityClassification>Unclassified</securityClassification> 
        <releaseRestriction>Other organizations not related to 
Ambulance and A&amp;E</releaseRestriction> 
        <purpose>To define a combine module for a Ambulance and A&amp;E 
federation comunication</purpose> 
        <applicationDomain>Ambulance operations</applicationDomain> 
        <description>Comunication module for the Ambulance and 
A&amp;E</description> 
        <useLimitation>Derived models must reference this 
document</useLimitation> 
        <useHistory>Originally used as an example in the HLA 
IEEE1516.2-2000 specification (MIM information stripped 
out)</useHistory> 
        <useHistory>Used in the previous model of Ambulance and A&amp;E 
with HLA 1.3 implementaion</useHistory> 
    
        <keyword> 
            <taxonomy>NHS Taxonomy</taxonomy> 
            <keywordValue>Ambulance</keywordValue> 
        </keyword> 
        <keyword> 
            <taxonomy>NHS Taxonomy</taxonomy> 
            <keywordValue>Hospital A&amp;E</keywordValue> 
        </keyword> 
        <poc> 
            <pocType>Supervisour </pocType> 
            <pocName>Dr. Simon Taylor </pocName> 
            <pocOrg>Brunel University</pocOrg> 
            <pocTelephone>018-952-74000</pocTelephone> 
            <pocEmail>simon.taylor@brunel.ac</pocEmail> 
        </poc> 
        <poc> 
            <pocType>Author</pocType> 
            <pocName>Mr. Athar Nouman</pocName> 
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            <pocOrg>Brunel University</pocOrg> 
        </poc> 
        <other>NA</other> 
  <glyph alt="Restaurant" width="74" height="74" 
type="jpg">NA</glyph> 
  </modelIdentification> 
    <objects> 
        <objectClass> 
   <name>HLAobjectRoot</name>  
   <sharing>Neither </sharing> 
 <attribute> 
            <name>HLAprivilegeToDeleteObject</name> 
            <dataType>HLAtoken</dataType> 
            <updateType>Static</updateType> 
            <updateCondition>NA</updateCondition> 
            <ownership>DivestAcquire</ownership> 
            <sharing>PublishSubscribe</sharing> 
            <transportation>HLAreliable</transportation> 
            <order>TimeStamp</order> 
         </attribute> 
             <objectClass>  
     <name>Ambulance</name>  
     <sharing>PublishSubscribe</sharing>  
     <semantics>NA</semantics> 
     <attribute> 
      <name>aa</name> 
      <dataType>HLAinteger32BE 
</dataType> 
      <updateType>Conditional 
</updateType> 
      <updateCondition>NA 
</updateCondition> 
     
 <ownership>NoTransfer</ownership> 
     
 <sharing>PublishSubscribe</sharing> 
      <dimensions>NA 
</dimensions> 
 <transportation>HLAreliable</transportation> 
      <order>TimeStamp</order> 
      <semantics>NA</semantics>  
     </attribute> 
     <attribute> 
      <name>ab</name> 
      <dataType>HLAinteger32BE 
</dataType> 
      <updateType>Conditional 
</updateType> 
      <updateCondition>NA 
</updateCondition> 
 <ownership>NoTransfer</ownership> 
 <sharing>PublishSubscribe</sharing> 
      <dimensions>NA 
</dimensions> 
 <transportation>HLAreliable</transportation> 
      <order>TimeStamp</order> 
      <semantics>NA</semantics>  
     </attribute> 
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     <attribute> 
      <name>ac</name> 
      <dataType>HLAinteger32BE 
</dataType> 
      <updateType>Conditional 
</updateType> 
      <updateCondition>NA 
</updateCondition> 
 <ownership>NoTransfer</ownership> 
     
 <sharing>PublishSubscribe</sharing> 
      <dimensions>NA 
</dimensions> 
 <transportation>HLAreliable</transportation> 
      <order>TimeStamp</order> 
      <semantics>NA</semantics>  
     </attribute> 
     <attribute> 
      <name>ad</name> 
      <dataType>HLAinteger32BE 
</dataType> 
      <updateType>Conditional 
</updateType> 
      <updateCondition>NA 
</updateCondition> 
 <ownership>NoTransfer</ownership> 
     
 <sharing>PublishSubscribe</sharing> 
      <dimensions>NA 
</dimensions> 
 <transportation>HLAreliable</transportation> 
      <order>TimeStamp</order> 
      <semantics>NA</semantics>  
     </attribute> 
     <attribute> 
      <name>ae</name> 
      <dataType>HLAfloat32BE 
</dataType> 
      <updateType>Conditional 
</updateType> 
      <updateCondition>NA 
</updateCondition> 
 <ownership>NoTransfer</ownership> 
 <sharing>PublishSubscribe</sharing> 
      <dimensions>NA 
</dimensions> 
 <transportation>HLAreliable</transportation> 
      <order>TimeStamp</order> 
      <semantics>NA</semantics>  
     </attribute> 
            </objectClass> 
        </objectClass> 
    </objects> 
    <interactions> 
        <interactionClass> 
   <name>HLAinteractionRoot</name> 
   <sharing>PublishSubscribe</sharing> 
   <dimensions>NA</dimensions> 
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   <transportation>HLAreliable</transportation> 
   <order>Receive</order> 
   <interactionClass> 
    <name>X</name> 
    <sharing>PublishSubscribe</sharing> 
    <dimensions>NA</dimensions> 
 <transportation>HLAreliable</transportation> 
    <order>TimeStamp</order> 
    <semantics>NA</semantics> 
     <parameter> 
      <name>xa</name> 
 <dataType>HLAinteger32BE</dataType> 
      <semantics>NA</semantics> 
     </parameter> 
     <parameter> 
      <name>xb</name> 
 <dataType>HLAinteger32BE</dataType> 
      <semantics>NA</semantics> 
     </parameter> 
     <parameter> 
      <name>xc</name> 
 <dataType>HLAinteger32BE</dataType> 
      <semantics>NA</semantics> 
     </parameter> 
    <interactionClass> 
     <name>Y</name> 
     <sharing>PublishSubscribe</sharing> 
     <dimensions>NA</dimensions> 
 <transportation>HLAreliable</transportation> 
     <order>TimeStamp</order> 
     <semantics>NA</semantics> 
      <parameter> 
       <name>ya</name> 
 <dataType>HLAinteger32BE</dataType> 
 <semantics>NA</semantics> 
      </parameter> 
      <parameter> 
       <name>yb</name> 
 <dataType>HLAinteger32BE</dataType> 
 <semantics>NA</semantics> 
      </parameter> 
      <parameter> 
       <name>yc</name> 
 <dataType>HLAinteger32BE</dataType> 
 <semantics>NA</semantics> 
      </parameter> 
    </interactionClass> 
   </interactionClass> 
  </interactionClass> 
 </interactions> 
    <dimensions>     </dimensions> 
    <time> 
        <timeStamp>  
   <dataType>HLAfloat64BE</dataType>  
   <semantics>Time in seconds </semantics> 
  </timeStamp>  
  <lookahead>  
   <dataType>HLAfloat64BE </dataType>  
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   <semantics>Time in seconds </semantics> 
  </lookahead> 
    </time> 
    <tags> 
    </tags> 
    <synchronizations> 
        <synchronization>  
   <label>StartTest</label>  
   <dataType>NA</dataType>  
   <semantics>NA</semantics> 
        </synchronization>  
  <synchronization> 
   <label>EndTest</label> 
   <dataType>NA</dataType>  
   <semantics>NA </semantics> 
  </synchronization>  
    </synchronizations> 
    <transportations> 
        <transportation> 
            <name>HLAreliable</name> 
            <description>Provide reliable delivery of data in the sense 
that TCP/IP delivers its data reliably </description>  
  </transportation> 
        <transportation> 
            <name>HLAbestEffort</name> 
            <description>Make an effort to deliver data in the sense 
that UDP provides best-effort delivery </description>    
  </transportation> 
    </transportations> 
    <switches> 
  <autoProvide>Disabled </autoProvide> 
        
<conveyRegionDesignatorSets>Disabled</conveyRegionDesignatorSets> 
        <attributeScopeAdvisory>Disabled</attributeScopeAdvisory> 
        
<attributeRelevanceAdvisory>Disabled</attributeRelevanceAdvisory> 
        
<objectClassRelevanceAdvisory>Disabled</objectClassRelevanceAdvisory> 
        
<interactionRelevanceAdvisory>Disabled</interactionRelevanceAdvisory> 
        <serviceReporting>Disabled</serviceReporting> 
 </switches> 
    <dataTypes> 
        <basicDataRepresentations> 
            <basicData> 
                <name>HLAinteger16BE</name> 
                <size>16</size> 
                <interpretation>Integer in the range [-2^15, 2^15 - 1] 
</interpretation> 
                <endian>Big</endian> 
                <encoding>16-bit two's complement signed integer. The 
most significant bit contains the sign.</encoding> 
   </basicData>    
   <basicData> 
                <name>HLAinteger32BE</name> 
                <size>32</size> 
                <interpretation>Integer in the range [-2^31, 2^31 - 1] 
</interpretation> 
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                <endian>Big</endian> 
                <encoding>32-bit two's complement signed integer. The 
most significant bit contains the sign.</encoding> 
   </basicData> 
   <basicData> 
                <name>HLAinteger64BE</name> 
                <size>64</size> 
                <interpretation>Integer in the range [-2^63, 2^63 - 1] 
</interpretation> 
                <endian>Big</endian> 
                <encoding>64-bit two's complement signed integer. The 
most significant bit contains the sign.</encoding> 
   </basicData> 
            <basicData> 
                <name>HLAfloat32BE</name> 
                <size>32</size> 
                <interpretation>Single-precision floating-point number 
</interpretation> 
                <endian>Big</endian> 
                <encoding>32-bit IEEE normalized single-precision 
format (see IEEE Std. 754-1985).</encoding> 
   </basicData> 
    <basicData> 
                <name>HLAfloat64BE</name> 
                <size>64</size> 
                <interpretation>Double-precision floating-point number 
</interpretation> 
                <endian>Big</endian> 
                <encoding>64-bit IEEE normalized double-precision 
format (see IEEE Std. 754-1985).</encoding> 
   </basicData> 
   <basicData> 
                <name>HLAoctetPairBE</name> 
                <size>16</size> 
                <interpretation>16-bit value</interpretation> 
                <endian>Big</endian> 
                <encoding>Assumed to be portable among hardware 
devices.</encoding> 
   </basicData>           
   <basicData> 
                <name>HLAinteger16LE</name> 
                <size>16</size> 
                <interpretation>Integer in the range [-2^15, 2^15 - 
1]</interpretation> 
                <endian>Big</endian> 
                <encoding>16-bit two's complement signed integer. The 
most significant bit contains the sign.</encoding> 
   </basicData>  
   <basicData> 
                <name>HLAinteger32LE</name> 
                <size>32</size> 
                <interpretation>Integer in the range [-2^31, 2^31 - 
1]</interpretation> 
                <endian>Little</endian> 
                <encoding>32-bit two's complement signed integer. The 
most significant bit contains the sign.</encoding> 
   </basicData>            
            <basicData> 
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                <name>HLAinteger64LE</name> 
                <size>64</size> 
                <interpretation>Integer in the range [-2^63, 2^63 - 
1]</interpretation> 
                <endian>Little</endian> 
                <encoding>64-bit two's complement signed integer. The 
most significant bit contains the sign.</encoding> 
   </basicData>  
   <basicData> 
                <name>HLAfloat32LE</name> 
                <size>32</size> 
                <interpretation>Single-precision floating-point 
number</interpretation> 
                <endian>Little</endian> 
                <encoding>32-bit IEEE normalized single-precision 
format (see IEEE Std. 754-1985)</encoding> 
   </basicData>            
   <basicData> 
                <name>HLAfloat64LE</name> 
                <size>64</size> 
                <interpretation>Double-precision floating-point 
number</interpretation> 
                <endian>Little</endian> 
                <encoding>64-bit IEEE normalized double-precision 
format (see IEEE Std. 754-1985).</encoding> 
   </basicData>  
   <basicData> 
                <name>HLAoctetPairLE</name> 
                <size>16</size> 
                <interpretation>16-bit value</interpretation> 
                <endian>Little</endian> 
                <encoding>Assumed to be portable among hardware 
devices.</encoding> 
   </basicData>  
            <basicData> 
                <name>HLAoctet</name> 
                <size>8</size> 
                <interpretation>8-bit value</interpretation> 
                <endian>Big</endian> 
                <encoding>Assumed to be portable among hardware 
devices.</encoding> 
   </basicData>          
        </basicDataRepresentations> 
        <simpleDataTypes> 
            <simpleData> 
    <name>HLAASCIIchar</name> 
    <representation>HLAoctet</representation> 
    <units>NA</units> 
    <resolution>NA</resolution> 
    <accuracy>NA</accuracy> 
    <semantics>Standard ASCII character (see 
ANSI Std. X3.4-1986).</semantics> 
   </simpleData> 
   <simpleData> 
    <name>HLAunicodeChar</name> 
 <representation>HLAoctetPairBE</representation> 
    <units>NA</units> 
    <resolution>NA</resolution> 
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    <accuracy>NA</accuracy> 
    <semantics>Unicode UTF-16 
character</semantics> 
   </simpleData> 
  </simpleDataTypes> 
        <enumeratedDataTypes> 
            <enumeratedData>  
    <name>HLAboolean</name> 
                <representation>HLAinteger32BE</representation> 
                <semantics>Standard boolean type.</semantics> 
     <enumerator>  
      <name>HLAfalse</name> 
      <values>0</values> 
     </enumerator> 
     <enumerator> 
      <name>HLAtrue</name>  
      <values>1 </values>  
     </enumerator> 
            </enumeratedData> 
        </enumeratedDataTypes> 
        <arrayDataTypes> 
            <arrayData> 
    <name>HLAASCIIstring</name> 
                <dataType>HLAASCIIchar</dataType> 
                <cardinality>Dynamic</cardinality> 
                <encoding>HLAvariableArray</encoding> 
                <semantics>ASCII string representation.</semantics>  
   </arrayData> 
   <arrayData> 
    <name>HLAunicodeString</name> 
                <dataType>HLAunicodeChar</dataType> 
                <cardinality>Dynamic</cardinality> 
                <encoding>HLAvariableArray</encoding> 
                <semantics>Unicode string representation.</semantics>  
   </arrayData>            
        </arrayDataTypes> 
        <fixedRecordDataTypes> 
            <fixedRecordData> 
    <name>ExampleStruct</name>  
    <encoding>FixedRecord</encoding>  
    <semantics>NA</semantics> 
             <field>  
     <name>FieldOne</name>  
     <dataType>HLAinteger32BE</dataType>  
     <semantics>NA</semantics> 
    </field> 
    <field>  
     <name>FieldTwo</name>  
     <dataType>HLAboolean</dataType>  
     <semantics>NA</semantics> 
    </field> 
    <field>  
     <name>FieldThree</name>  
     <dataType>HLAfloat64BE</dataType>  
     <semantics>NA</semantics> 
    </field> 
            </fixedRecordData> 
        </fixedRecordDataTypes> 
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    </dataTypes> 
</objectModel> 
 

 
Hospital Federate (parameters.xml) 
 
<?xml version="1.0" encoding="UTF-8" ?> 
<parameters> 
<parameter name="randomSeed" displayName="Default Random Seed" 
type="int"  
      defaultValue="0"  
      isReadOnly="true"  
 converter="repast.simphony.parameter.StringConverterFactory$IntC
onverter"/> 
    <parameter name="clinicalStaffCapacity" 
displayName="Number of Clinical Staff" type="int"  
      defaultValue="15"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$IntC
onverter"/> 
    <parameter name="warmup" 
displayName="Warmup Period" type="double"  
      defaultValue="0.0"  
      isReadOnly="true"  
     
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="majorsSD" 
displayName="Majors Service Time SD" type="double"  
      defaultValue="10.0"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="triageSD" 
displayName="Triage Service Time SD" type="double"  
      defaultValue="2"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="endTime" displayName="End 
Time" type="double"  
      defaultValue="43200"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" 
          
  /> 
    <parameter name="triageMean" 
displayName="Triage Service Time Mean" type="double"  
      defaultValue="7"  
      isReadOnly="false"  
     
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="minorsMean" 
displayName="Minors Service Time Mean" type="double"  
      defaultValue="30.0"  
      isReadOnly="false"  
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 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="walkInMean" 
displayName="Walk In Arrival Mean" type="double"  
      defaultValue="4.81"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
   <parameter name="walkInSD" displayName="Walk In 
Arrival SD" type="double"  
      defaultValue="0.59"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="replications" 
displayName="Replications" type="int"  
      defaultValue="1"  
      isReadOnly="true"  
 converter="repast.simphony.parameter.StringConverterFactory$IntC
onverter" /> 
    <parameter name="triageCapacity" 
displayName="Number of Triage Service Stations" type="int"  
      defaultValue="5"  
      isReadOnly="false"  
     
 converter="repast.simphony.parameter.StringConverterFactory$IntC
onverter" /> 
    <parameter name="minorsCapacity" 
displayName="Number of Minors Service Stations" type="int"  
      defaultValue="12"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$IntC
onverter" /> 
    <parameter name="majorsMean" 
displayName="Majors Service Time Mean" type="double"  
      defaultValue="40"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="majorsCapacity" 
displayName="Number of Majors Service Stations" type="int"  
      defaultValue="24"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$IntC
onverter" /> 
    <parameter name="minorsSD" 
displayName="Minors Service Time SD" type="double"  
      defaultValue="10.0"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
    <parameter name="ambLamda" 
displayName="Ambulance Arrival Lamda" type="double"  
      defaultValue="0.05"  
      isReadOnly="false"  
 converter="repast.simphony.parameter.StringConverterFactory$Doub
leConverter" /> 
  </parameters> 
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Ambulance Federate (FederateAmbulance.java) 
 
package ambulanceservicemodel; 
 
 
import repast.simphony.util.collections.IndexedIterable; 
import hla.rti1516e.AttributeHandle; 
import hla.rti1516e.AttributeHandleValueMap; 
import hla.rti1516e.FederateHandleSet; 
import hla.rti1516e.InteractionClassHandle; 
import hla.rti1516e.LogicalTime; 
import hla.rti1516e.NullFederateAmbassador; 
import hla.rti1516e.ObjectClassHandle; 
import hla.rti1516e.ObjectInstanceHandle; 
import hla.rti1516e.OrderType; 
import hla.rti1516e.ParameterHandle; 
import hla.rti1516e.ParameterHandleValueMap; 
import hla.rti1516e.SynchronizationPointFailureReason; 
import hla.rti1516e.TransportationTypeHandle; 
import hla.rti1516e.encoding.DecoderException; 
import hla.rti1516e.encoding.HLAinteger32BE; 
import hla.rti1516e.exceptions.FederateInternalError; 
import hla.rti1516e.time.HLAfloat64Time; 
 
/** 
 * This class handles all incoming callbacks from the RTI regarding a 
particular 
 * {@link ExampleJava1Federate}. It will log information about any 
callbacks it 
 * receives, thus demonstrating how to deal with the provided callback 
information. 
 */ 
public class FederateAmbassador extends NullFederateAmbassador 
{ 
 //---------------------------------------------------------- 
 //                    STATIC VARIABLES 
 //---------------------------------------------------------- 
 
 //---------------------------------------------------------- 
 //                   INSTANCE VARIABLES 
 //---------------------------------------------------------- 
 // these variables are accessible in the package 
 protected double federateTime        = 0.0; 
 protected double federateLookahead   = 1.0; 
  
 protected boolean isRegulating       = false; 
 protected boolean isConstrained      = false; 
 protected boolean isAdvancing        = false; 
  
 protected boolean isAnnounced        = false; 
 protected boolean isReadyToRun       = false; 
 //private String[]  onames; 
 private Federate federate; 
 //---------------------------------------------------------- 
 //                      CONSTRUCTORS 
 //---------------------------------------------------------- 
 



Appendices 

Page 213 of 230 
 

Nura Tijjani Abubakar, Brunel University London – June 2021 

 public FederateAmbassador(Federate federate) 
 { 
  this.federate = federate; 
 } 
 //---------------------------------------------------------- 
 //                    INSTANCE METHODS 
 //---------------------------------------------------------- 
 private void log( String message ) 
 { 
  System.out.println( "FederateAmbassador: " + message ); 
 } 
 ////////////////////////////////////////////////////////////////
////////// 
 ////////////////////////// RTI Callback Methods 
////////////////////////// 
 ////////////////////////////////////////////////////////////////
////////// 
 @Override 
 public void synchronizationPointRegistrationFailed( String 
label, 
SynchronizationPointFailureReason reason ) 
 { 
  log( "Failed to register sync point: " + label + ", 
reason="+reason ); 
 } 
 @Override 
 public void synchronizationPointRegistrationSucceeded( String 
label ) 
 { 
  log( "Successfully registered sync point: " + label ); 
 } 
 @Override 
 public void announceSynchronizationPoint( String label, byte[] 
tag ) 
 { 
  log( "Synchronization point announced: " + label ); 
  if( label.equals(Federate.READY_TO_RUN) ) 
   this.isAnnounced = true; 
 } 
 @Override 
 public void federationSynchronized( String label, 
FederateHandleSet failed ) 
 { 
  log( "Federation Synchronized: " + label ); 
  if( label.equals(Federate.READY_TO_RUN) ) 
   this.isReadyToRun = true; 
 } 
 /** 
  * The RTI has informed us that time regulation is now enabled. 
  */ 
 @Override 
 public void timeRegulationEnabled( LogicalTime time ) 
 { 
  this.federateTime = ((HLAfloat64Time)time).getValue(); 
  this.isRegulating = true; 
 } 
 @Override 
 public void timeConstrainedEnabled( LogicalTime time ) 
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 { 
  this.federateTime = ((HLAfloat64Time)time).getValue(); 
  this.isConstrained = true; 
 } 
 @Override 
 public void timeAdvanceGrant( LogicalTime time ) 
 { 
  this.federateTime = ((HLAfloat64Time)time).getValue(); 
  this.isAdvancing = false; 
 } 
 @Override 
 public void discoverObjectInstance( ObjectInstanceHandle 
theObject, 
                                     ObjectClassHandle 
theObjectClass, 
                                     String objectName ) 
     throws FederateInternalError 
 { 
  log( "Discoverd Object: handle=" + theObject + ", 
classHandle=" + 
       theObjectClass + ", name=" + objectName ); 
 } 
 @Override 
 public void reflectAttributeValues( ObjectInstanceHandle 
theObject, 
                                     AttributeHandleValueMap 
theAttributes, 
                                     byte[] tag, 
                                     OrderType sentOrder, 
                                     TransportationTypeHandle 
transport, 
                                     SupplementalReflectInfo 
reflectInfo ) 
     throws FederateInternalError 
 { 
   // just pass it on to the other method for 
printing purposes 
   // passing null as the time will let the other 
method know it 
   // it from us, not from the RTI 
   reflectAttributeValues( theObject, 
                           theAttributes, 
                           tag, 
                           sentOrder, 
                           transport, 
                           null, 
                           sentOrder, 
                           reflectInfo ); 
 } 
 @Override 
 public void reflectAttributeValues( ObjectInstanceHandle 
theObject, 
                                     AttributeHandleValueMap 
theAttributes, 
                                     byte[] tag, 
                                     OrderType sentOrdering, 
                                     TransportationTypeHandle 
theTransport, 
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                                     LogicalTime time, 
                                     OrderType receivedOrdering, 
                                     SupplementalReflectInfo 
reflectInfo ) 
     throws FederateInternalError 
 { 
  try 
  { 
   int msg=-1; 
   int minorHosAvailability=-1; 
   int majorHosAvailability=-1; 
   int HospitalID=-1; 
   for( AttributeHandle attributeHandle : 
theAttributes.keySet() ) 
   { 
    if( 
attributeHandle.equals(federate.aaHandle) ) 
    { 
 msg=decodeInt(theAttributes.get(attributeHandle)); 
    } 
    if( 
attributeHandle.equals(federate.abHandle) ) 
    {      
 minorHosAvailability=decodeInt(theAttributes.get(attributeHandle
)); 
    } 
    if( 
attributeHandle.equals(federate.acHandle) ) 
    {      
     majorHosAvailability= 
decodeInt(theAttributes.get(attributeHandle)); 
    } 
    if( 
attributeHandle.equals(federate.adHandle) ) 
    { 
     HospitalID= 
decodeInt(theAttributes.get(attributeHandle)); 
    } 
   } 
   //log("Received Attributes from Hospitals are"+" 
MSG:"+msg + ", Hospital ID :"+ HospitalID +", Majors:"+ 
majorHosAvailability +", Minor:"+minorHosAvailability );  
  
    if (msg== 0 ) 
    { 
   IndexedIterable<Object> hospitals= 
federate.context.getObjects(Hospital.class); 
     Hospital choosenHos; 
     for(int i=0; i < 
hospitals.size();i++) 
     { 
      choosenHos = (Hospital) 
hospitals.get(i); 
      if 
(choosenHos.getHospitalID()== HospitalID) 
      { 
 //log("ChosenHospital :" + choosenHos.getHospitalID()); 
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 choosenHos.setHosAvailability(minorHosAvailability,majorHosAvail
ability); 
       break; 
      } 
        
     } 
      
    } 
   } 
   catch( Exception e ) 
   { 
    log( "Exception processing received 
reflection" ); 
    e.printStackTrace(); 
   } 
 } 
 
 @Override 
 public void receiveInteraction( InteractionClassHandle 
interactionClass, 
                                 ParameterHandleValueMap 
theParameters, 
                                 byte[] tag, 
                                 OrderType sentOrdering, 
                                 TransportationTypeHandle 
theTransport, 
                                 SupplementalReceiveInfo 
receiveInfo ) 
     throws FederateInternalError 
     { 
   // just pass it on to the other method for 
printing purposes 
   // passing null as the time will let the other 
method know it 
   // it from us, not from the RTI 
   this.receiveInteraction( interactionClass, 
                            theParameters, 
                            tag, 
                            sentOrdering, 
                            theTransport, 
                            null, 
                            sentOrdering, 
                            receiveInfo ); 
  } 
 @Override 
 public void receiveInteraction( InteractionClassHandle 
interactionClass, 
                                 ParameterHandleValueMap 
theParameters, 
                                 byte[] tag, 
                                 OrderType sentOrdering, 
                                 TransportationTypeHandle 
theTransport, 
                                 LogicalTime time, 
                                 OrderType receivedOrdering, 
                                 SupplementalReceiveInfo 
receiveInfo ) 
     throws FederateInternalError 
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 { 
  StringBuilder builder = new StringBuilder( "Interaction 
Received:" ); 
  // print the handle 
  builder.append( " handle=" + interactionClass ); 
  if( interactionClass.equals(federate.servedHandle) ) 
  { 
   builder.append( " (DrinkServed)" ); 
  } 
  // print the tag 
  builder.append( ", tag=" + new String(tag) ); 
  // print the time (if we have it) we'll get null if we 
are just receiving 
  // a forwarded call from the other reflect callback above 
  if( time != null ) 
  { 
   builder.append( ", time=" + 
((HLAfloat64Time)time).getValue() ); 
  } 
  // print the parameer information 
  builder.append( ", parameterCount=" + 
theParameters.size() ); 
  builder.append( "\n" ); 
  for( ParameterHandle parameter : theParameters.keySet() ) 
  { 
   // print the parameter handle 
   builder.append( "\tparamHandle=" ); 
   builder.append( parameter ); 
   // print the parameter value 
   builder.append( ", paramValue=" ); 
   builder.append( 
theParameters.get(parameter).length ); 
   builder.append( " bytes" ); 
   builder.append( "\n" ); 
  } 
  log( builder.toString() ); 
 } 
 @Override 
 public void removeObjectInstance( ObjectInstanceHandle 
theObject, 
                                   byte[] tag, 
                                   OrderType sentOrdering, 
                                   SupplementalRemoveInfo 
removeInfo ) 
     throws FederateInternalError 
 { 
  log( "Object Removed: handle=" + theObject ); 
 } 
 //---------------------------------------------------------- 
 //                     STATIC METHODS 
 //---------------------------------------------------------- 
 private int decodeInt( byte[] bytes ) 
 { 
  HLAinteger32BE value = 
federate.encoderFactory.createHLAinteger32BE(); 
  // decode 
  try 
  { 
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   value.decode( bytes ); 
  } 
  catch( DecoderException de ) 
  { 
   log( "Decoder Exception: "+de.getMessage()); 
  } 
  return value.getValue(); 
 } 
 private double decodeFloat(byte[] bytes ) 
 { 
  HLAinteger32BE value = 
federate.encoderFactory.createHLAinteger32BE(); 
  // decode 
  try 
  { 
   value.decode( bytes ); 
  } 
  catch( DecoderException de ) 
  { 
   log("Decoder Exception: "+de.getMessage()); 
  } 
  return value.getValue(); 
 } 
} 
 
 
Hospital Federate (HospitalFederate.java) 
 
package hospitalmodel; 
import hla.rti1516e.AttributeHandle; 
import hla.rti1516e.AttributeHandleSet; 
import hla.rti1516e.AttributeHandleValueMap; 
import hla.rti1516e.CallbackModel; 
import hla.rti1516e.InteractionClassHandle; 
import hla.rti1516e.LogicalTime; 
import hla.rti1516e.ObjectClassHandle; 
import hla.rti1516e.ObjectInstanceHandle; 
import hla.rti1516e.ParameterHandleValueMap; 
import hla.rti1516e.RTIambassador; 
import hla.rti1516e.ResignAction; 
import hla.rti1516e.RtiFactoryFactory; 
import hla.rti1516e.encoding.EncoderFactory; 
import hla.rti1516e.encoding.HLAfloat64BE; 
import hla.rti1516e.encoding.HLAinteger16BE; 
import hla.rti1516e.encoding.HLAinteger32BE; 
import hla.rti1516e.exceptions.FederatesCurrentlyJoined; 
import hla.rti1516e.exceptions.FederationExecutionAlreadyExists; 
import hla.rti1516e.exceptions.FederationExecutionDoesNotExist; 
import hla.rti1516e.exceptions.RTIexception; 
import hla.rti1516e.time.HLAfloat64Interval; 
import hla.rti1516e.time.HLAfloat64Time; 
import hla.rti1516e.time.HLAfloat64TimeFactory; 
 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.InputStreamReader; 
import java.util.Random; 
import java.net.MalformedURLException; 
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import java.net.URI; 
import java.net.URL; 
import java.util.ArrayList; 
import java.util.Iterator; 
import java.util.List; 
 
import repast.simphony.context.Context; 
import repast.simphony.engine.environment.DefaultRunEnvironmentBuilder; 
import repast.simphony.engine.environment.RunEnvironment; 
import repast.simphony.engine.environment.RunListener; 
import repast.simphony.engine.environment.Runner; 
import repast.simphony.engine.schedule.Schedule; 
import repast.simphony.engine.schedule.ScheduleParameters; 
import repast.simphony.engine.schedule.ScheduledMethod; 
import repast.simphony.engine.watcher.Watch; 
import repast.simphony.engine.watcher.WatcherTriggerSchedule; 
import repast.simphony.essentials.RepastEssentials; 
import repast.simphony.relogo.Utility; 
import repast.simphony.space.continuous.ContinuousSpace; 
import repast.simphony.space.grid.Grid; 
 
public class HospitalFederate { 
 //---------------------------------------------------------- 
  //                    STATIC VARIABLES 
  //------------------------------------------------------- 
  /** The number of times we will update our attributes and 
send an interaction */ 
  public static int majors,minors; 
  /** The sync point all federates will sync up on before 
starting */ 
  public static final String READY_TO_RUN = "ReadyToRun"; 
  private double timestep = 1.0; //time increment/jump used 
by RTI 
  protected ObjectInstanceHandle objectHandle; 
  //------------------------------------------------------- 
  //                   PUSH&SUBSCRIB HANDLERS 
  //------------------------------------------------------- 
  protected ObjectClassHandle classHandle; 
  protected AttributeHandle aaHandle; 
  protected AttributeHandle abHandle; 
  protected AttributeHandle acHandle; 
  protected AttributeHandle adHandle; 
  protected AttributeHandle aeHandle; 
  protected InteractionClassHandle servedHandle; 
  //------------------------------------------------------- 
  //                   INSTANCE VARIABLES 
  //------------------------------------------------------- 
  private RTIambassador rtiamb; 
  private HospitalFederateAmbassador fedamb; 
  private HLAfloat64TimeFactory timeFactory; // set when we 
join 
  protected EncoderFactory encoderFactory;     // set when 
we join 
  public Context<Object> context; 
  //------------------------------------------------------- 
  //                      CONSTRUCTORS 
  //------------------------------------------------------- 
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  //------------------------------------------------------- 
  //                    INSTANCE METHODS 
  //------------------------------------------------------
 //////////////////////////////////////////////////////////////// 
 ////////////////////////// Main Simulation Method  
 /////////////////////////////////////////////////////////////// 
   * This is the main simulation loop. It can be thought of 
as the main method of 
   * the federate. For a description of the basic flow of 
this federate, see the 
   * class level comments 
   */ 
  ////////////////////////////// constructor 
///////////////////////////////// 
  public HospitalFederate(Context<Object> 
context,ContinuousSpace<Object> space,Grid<Object> grid,String 
federateName) throws Exception 
  { 
   this.context=context; 
   ///////////////////////////////////////////////// 
   // 1 & 2. create the RTIambassador and Connect // 
   ///////////////////////////////////////////////// 
   log( "Creating RTIambassador" ); 
   rtiamb = 
RtiFactoryFactory.getRtiFactory().getRtiAmbassador(); 
   encoderFactory = 
RtiFactoryFactory.getRtiFactory().getEncoderFactory(); 
   // connect 
   log( "Connecting..." ); 
   fedamb = new HospitalFederateAmbassador(this); 
   rtiamb.connect( fedamb, CallbackModel.HLA_EVOKED 
); 
   ////////////////////////////// 
   // 3. create the federation // 
   ////////////////////////////// 
   log( "Creating Federation..." ); 
   // We attempt to create a new federation with the 
Ambulance.xml 
   try 
   { 
    URL[] modules = new URL[]{ 
      (new 
File("ambulance.xml")).toURI().toURL()     
    }; 
    rtiamb.createFederationExecution( 
"AmbulanceFederate", modules ); 
    log( "Created Federation" ); 
   } 
   catch( FederationExecutionAlreadyExists exists ) 
   { 
    log( "Didn't create federation, it already 
existed" ); 
   } 
   catch( MalformedURLException urle ) 
   { 
    log( "Exception loading one of the FOM 
modules from disk: " + urle.getMessage() ); 
    urle.printStackTrace(); 
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    return; 
   } 
   //////////////////////////// 
   //  4. join the federation // 
   //////////////////////////// 
   URL[] joinModules = new URL[]{ (new 
File("ambulance.xml")).toURI().toURL() }; 
   rtiamb.joinFederationExecution( federateName,            
// name for the federate 
     "AmbulanceFederateType",   // 
federate type 
     "AmbulanceFederate",     // name of 
federation 
     joinModules );           // modules 
we want to add 
   log( "Joined Federation as " + federateName ); 
   // cache the time factory for easy access 
   this.timeFactory = 
(HLAfloat64TimeFactory)rtiamb.getTimeFactory(); 
   //////////////////////////////// 
   // 5. announce the sync point // 
   //////////////////////////////// 
   // announce a sync point to get everyone on the 
same page. if the point 
   // has already been registered, we'll get a 
callback saying it failed, 
   // but we don't care about that, as long as 
someone registered it 
   rtiamb.registerFederationSynchronizationPoint( 
READY_TO_RUN, null ); 
   // wait until the point is announced 
   while( fedamb.isAnnounced == false ) 
   { 
    rtiamb.evokeMultipleCallbacks( 0.1, 0.2 ); 
   } 
   // WAIT FOR USER TO KICK US OFF 
   // So that there is time to add other federates, 
we will wait until the 
   // user hits enter before proceeding. That was, 
you have time to start 
   // other federates. 
   waitForUser(); 
 /////////////////////////////////////////////////////// 
   // 6. achieve the point and wait for 
synchronization // 
 /////////////////////////////////////////////////////// 
   // tell the RTI we are ready to move past the 
sync point and then wait 
   // until the federation has synchronized on 
   rtiamb.synchronizationPointAchieved( READY_TO_RUN 
); 
   log( "Achieved sync point: " +READY_TO_RUN+ ", 
waiting for federation..." ); 
   while( fedamb.isReadyToRun == false ) 
   { 
    rtiamb.evokeMultipleCallbacks( 0.1, 0.2 ); 
// changed need to investigate by Athar 
   } 
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   ///////////////////////////// 
   // 7. enable time policies // 
   ///////////////////////////// 
   // in this section we enable/disable all time 
policies 
   // note that this step is optional! 
   enableTimePolicy(); 
   log( "Time Policy Enabled" );   
   ////////////////////////////// 
   // 8. publish and subscribe // 
   ////////////////////////////// 
   // in this section we tell the RTI of all the 
data we are going to 
   // produce, and all the data we want to know 
about 
   publishAndSubscribe(); 
   log( "Published and Subscribed" ); 
   ///////////////////////////////////// 
   // 9. register an object to update // 
   ///////////////////////////////////// 
   this.objectHandle = registerObject(); 
   log( "Registered Object, handle=" + 
this.objectHandle ); 
   //////////////////////////////////// 
   // 9. do the main simulation loop // 
   //////////////////////////////////// 
   // here is where we do the meat of our work. in 
each iteration, we will 
   // update the attribute values of the object we 
registered, and will 
   // send an interaction. 
   // 9.1 update the attribute values of the 
instance // 
   majors = getMajorHosAvailability();   
   minors = getMinorHosAvailability(); 
   updateAttributeValues(); 
    // 9.2 send an interaction 
   // sendInteraction(); 
    // 9.3 request a time advance and wait 
until we get it 
   //advanceTime();  
   log( "Time Advanced to " + fedamb.federateTime ); 
  } 
  ////////////////////////////// Destructor  
 //////////////////////////////////////////////////////////////// 
  public void finalize()  throws RTIexception//Destructor 
function  
  {    
   ////////////////////////////////////// 
   // 11. delete the object we created // 
   ////////////////////////////////////// 
   deleteObject( objectHandle ); 
   log( "Deleted Object, handle=" + objectHandle ); 
   //////////////////////////////////// 
   // 12. resign from the federation // 
   //////////////////////////////////// 
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   rtiamb.resignFederationExecution( 
ResignAction.DELETE_OBJECTS ); 
   log( "Resigned from Federation" ); 
   //////////////////////////////////////// 
   // 13. try and destroy the federation // 
   //////////////////////////////////////// 
   // NOTE: we won't die if we can't do this because 
other federates 
   //       remain. in that case we'll leave it for 
them to clean up 
   try 
   { 
    rtiamb.destroyFederationExecution( 
"ExampleFederation" ); 
    log( "Destroyed Federation" ); 
   } 
   catch( FederationExecutionDoesNotExist dne ) 
   { 
    log( "No need to destroy federation, it 
doesn't exist" ); 
   } 
   catch( FederatesCurrentlyJoined fcj ) 
   { 
    log( "Didn't destroy federation, federates 
still joined" ); 
   } 
  } 
  /** 
   * This is just a helper method to make sure all logging 
it output in the same form 
   */ 
  private void log( String message ) 
  { 
 System.setProperty("java.util.Arrays.useLegacyMergeSort","true")
; 
   System.out.println( "ExampleFederate   : " + 
message ); 
  } 
  /** 
   * This method will block until the user presses enter 
   */ 
  private void waitForUser() 
  { 
 log( " >>>>>>>>>> Press Enter to Continue <<<<<<<<<<" ); 
   BufferedReader reader = new BufferedReader( new 
InputStreamReader(System.in) ); 
   try 
   { 
    reader.readLine(); 
   } 
   catch( Exception e ) 
   { 
 log( "Error while waiting for user input: " + e.getMessage() ); 
    e.printStackTrace(); 
   } 
  } 
////////////////////////////// Helper Methods 
////////////////////////////// 
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 /////////////////////////////////////////////////////////////// 
  /** 
   * This method will attempt to enable the various time 
related properties for 
   * the federate 
   */ 
  private void enableTimePolicy() throws RTIexception 
  { 
   // NOTE: Unfortunately, the 
LogicalTime/LogicalTimeInterval create code is 
   //       Portico specific. You will have to alter 
this if you move to a 
   //       different RTI implementation. As such, 
we've isolated it into a 
   //       method so that any change only needs to 
happen in a couple of spots  
   HLAfloat64Interval lookahead = 
timeFactory.makeInterval( fedamb.federateLookahead ); 
   //////////////////////////// 
   // enable time regulation // 
   //////////////////////////// 
   this.rtiamb.enableTimeRegulation( lookahead ); 
   // tick until we get the callback 
   while( fedamb.isRegulating == false ) 
   { 
    rtiamb.evokeMultipleCallbacks( 0.1, 0.2 ); 
   } 
   ///////////////////////////// 
   // enable time constrained // 
   ///////////////////////////// 
   this.rtiamb.enableTimeConstrained(); 
   // tick until we get the callback 
   while( fedamb.isConstrained == false ) 
   { 
    rtiamb.evokeMultipleCallbacks( 0.1, 0.2 ); 
   } 
  } 
  /** 
   * This method will inform the RTI about the types of 
data that the federate will 
   * be creating, and the types of data we are interested 
in hearing about as other 
   * federates produce it. 
   */ 
  private void publishAndSubscribe() throws RTIexception 
  { 
   //////////////////////////////////////////// 
   // publish all attributes of ObjectRoot.Ambulance  
   //////////////////////////////////////////// 
   // before we can register instance of the object 
class ObjectRoot.Ambulance and 
   // update the values of the various attributes, 
we need to tell the RTI 
   // that we intend to publish this information 
 
   // get all the handle information for the 
attributes of ObjectRoot.Ambulance 
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   this.classHandle = rtiamb.getObjectClassHandle( 
"HLAobjectRoot.Ambulance" ); 
   this.aaHandle = rtiamb.getAttributeHandle( 
classHandle, "aa" ); 
   this.abHandle = rtiamb.getAttributeHandle( 
classHandle, "ab" ); 
   this.acHandle = rtiamb.getAttributeHandle( 
classHandle, "ac" ); 
   this.adHandle = rtiamb.getAttributeHandle( 
classHandle, "ad" ); 
   this.aeHandle = rtiamb.getAttributeHandle( 
classHandle, "ae" ); 
   // package the information into a handle set 
   AttributeHandleSet attributes = 
rtiamb.getAttributeHandleSetFactory().create(); 
   attributes.add( aaHandle ); 
   attributes.add( abHandle ); 
   attributes.add( acHandle ); 
   attributes.add( adHandle ); 
   attributes.add( aeHandle ); 
   // do the actual publication 
   rtiamb.publishObjectClassAttributes( classHandle, 
attributes ); 
 ///////////////////////////////////////////////////////// 
   // subscribe to all attributes of 
ObjectRoot.Ambulance // 
 ///////////////////////////////////////////////////////// 
   // we also want to hear about the same sort of 
information as it is 
   // created and altered in other federates, so we 
need to subscribe to it 
   rtiamb.subscribeObjectClassAttributes( 
classHandle, attributes ); 
 ///////////////////////////////////////////////////// 
   // publish the interaction class 
InteractionRoot.X // 
 ///////////////////////////////////////////////////// 
   // we want to send interactions of type 
InteractionRoot.X, so we need 
   // to tell the RTI that we're publishing it 
first. We don't need to 
   // inform it of the parameters, only the class, 
making it much simpler 
   servedHandle = rtiamb.getInteractionClassHandle( 
"InteractionRoot.X" ); 
   // do the publication 
   rtiamb.publishInteractionClass(servedHandle); 
 ///////////////////////////////////////////////////////// 
   // subscribe to the FoodServed.DrinkServed 
interaction // 
 ///////////////////////////////////////////////////////// 
   // we also want to receive other interaction of 
the same type that are 
   // sent out by other federates, so we have to 
subscribe to it first 
   rtiamb.subscribeInteractionClass(servedHandle); 
  } /** 
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   * This method will register an instance of the class 
ObjectRoot.A and will 
   * return the federation-wide unique handle for that 
instance. Later in the 
   * simulation, we will update the attribute values for 
this instance 
   */ 
  private ObjectInstanceHandle registerObject() throws 
RTIexception 
  { 
   return rtiamb.registerObjectInstance( classHandle 
); 
  } 
  /** 
   * This method will update all the values of the given 
object instance. It will 
   * set each of the values to be a string which is equal 
to the name of the 
   * attribute plus the current time. eg "aa:10.0" if the 
time is 10.0. 
   * <p/> 
   * Note that we don't actually have to update all the 
attributes at once, we 
   * could update them individually, in groups or not at 
all! 
   */ 
  public void updateAttributeValues() throws RTIexception 
  { 
   /////////////////////////////////////////////// 
   // create the necessary container and values // 
   /////////////////////////////////////////////// 
   // create a new map with an initial capacity - 
this will grow as required 
   AttributeHandleValueMap attributes = 
rtiamb.getAttributeHandleValueMapFactory().create(4); 
   //sends hospital id and minor and major capacity 
of the hospital to the ambulance model. 
   // create the collection to store the values in, 
as you can see 
   // this is quite a lot of work. You don't have to 
use the encoding 
   // helpers if you don't want. The RTI just wants 
an arbitrary byte[] 
   // generate the value for the number of cups 
(same as the timestep) 
   HLAinteger32BE aaValue = 
encoderFactory.createHLAinteger32BE( 0 ); 
   HLAinteger32BE abValue = 
encoderFactory.createHLAinteger32BE(getMinorHosAvailability()); 
   HLAinteger32BE acValue = 
encoderFactory.createHLAinteger32BE( getMajorHosAvailability() ); 
   HLAinteger32BE adValue = 
encoderFactory.createHLAinteger32BE(HospitalBuilder.HOS_ID); 
   attributes.put( aaHandle, aaValue.toByteArray() 
); 
   attributes.put( abHandle, abValue.toByteArray() 
); 
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   attributes.put( acHandle, acValue.toByteArray() 
); 
   attributes.put( adHandle, adValue.toByteArray() 
); 
  // log("Sending Attributes from Hospitals" + 
"Hospital ID :"+ HospitalBuilder.HOS_ID +", Majors:"+ 
getMajorHosAvailability() +", Minor:"+getMinorHosAvailability() ); 
   ////////////////////////// 
   // do the actual update // 
   ////////////////////////// 
   //rtiamb.updateAttributeValues( objectHandle, 
attributes, generateTag() ); 
   // note that if you want to associate a 
particular timestamp with the 
   // update. here we send another update, this time 
with a timestamp: 
   HLAfloat64Time time = timeFactory.makeTime( 
fedamb.federateTime+fedamb.federateLookahead ); 
   rtiamb.updateAttributeValues( objectHandle, 
attributes, generateTag(), time);    
  } 
  /** 
   * This method will send out an interaction of the type 
InteractionRoot.X. Any 
   * federates which are subscribed to it will receive a 
notification the next time 
   * they tick(). Here we are passing only two of the three 
parameters we could be 
   * passing, but we don't actually have to pass any at 
all! 
   */ 
  public void sendInteraction(int status) throws 
RTIexception 
  { 
   ////////////////////////// 
   //  send the interaction // 
   ////////////////////////// 
   ParameterHandleValueMap parameters = 
rtiamb.getParameterHandleValueMapFactory().create(0); 
   rtiamb.sendInteraction( servedHandle, parameters, 
generateTag() ); 
   // if you want to associate a particular 
timestamp with the 
   // interaction, you will have to supply it to the 
RTI. Here 
   // we send another interaction, this time with a 
timestamp: 
   HLAfloat64Time time = timeFactory.makeTime( 
fedamb.federateTime+fedamb.federateLookahead ); 
   rtiamb.sendInteraction( servedHandle, parameters, 
generateTag(), time ); 
  } 
  /** 
   * This method will request a time advance to the current 
time, plus the given 
   * timestep. It will then wait until a notification of 
the time advance grant 
   * has been received. 
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   */ 
  @ScheduledMethod(start = 1, interval = 1, priority = 
ScheduleParameters.LAST_PRIORITY) 
  public void advanceTime()  throws RTIexception 
  { 
   // request the advance 
   if ((majors!=getMajorHosAvailability()) || 
(minors!=getMinorHosAvailability())) 
   { 
    majors=getMajorHosAvailability(); 
    minors=getMinorHosAvailability(); 
    updateAttributeValues(); 
   } 
   fedamb.isAdvancing = true; 
   HLAfloat64Time time = timeFactory.makeTime( 
fedamb.federateTime + timestep ); 
   rtiamb.timeAdvanceRequest( time ); 
   // wait for the time advance to be granted. 
ticking will tell the 
   // LRC to start delivering callbacks to the 
federate 
   while( fedamb.isAdvancing ) 
   { 
    rtiamb.evokeMultipleCallbacks( 0.1, 0.2 ); 
   } 
  } 
  /** 
   * This method will attempt to delete the object instance 
of the given 
   * handle. We can only delete objects we created, or for 
which we own the 
   * privilegeToDelete attribute. 
   */ 
  private void deleteObject( ObjectInstanceHandle handle ) 
throws RTIexception 
  { 
   rtiamb.deleteObjectInstance( handle, 
generateTag() ); 
  } 
  private byte[] generateTag() 
  { 
   return ("(timestamp) 
"+System.currentTimeMillis()).getBytes(); 
  } 
  //------------------------------------------------------- 
  //                     STATIC METHODS 
  //------------------------------------------------------- 
  public int getMinorHosAvailability(){// gives us the 
minor capacity to be send to ambulance model by athar  
   int minhos=0; 
   int minors = 
HospitalBuilder.minorsR.getnumServers()-
HospitalBuilder.minorsR.getnumBusy(); 
   int staff = 
HospitalBuilder.clinicalStaffR.getnumServers()-
HospitalBuilder.clinicalStaffR.getnumBusy(); 
   minhos = Math.min(minors, staff); 
   return minhos; 
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  } 
  public int getMajorHosAvailability(){ // gives us the 
major capacity to be send to ambulance model by athar  
   int majorhos=0; 
   int majors = 
HospitalBuilder.majorsR.getnumServers()-
HospitalBuilder.majorsR.getnumBusy(); 
   int staff = 
HospitalBuilder.clinicalStaffR.getnumServers()-
HospitalBuilder.clinicalStaffR.getnumBusy(); 
   majorhos = Math.min(majors, staff); 
   return majorhos; 
  } 
} 
 
Appendix 3: CBDS Launch Script - Ansible PlayBook 
 
- name: ansible automation for amb hosts 
  hosts: amb_group 
  gather_facts: no 
  tasks: 
    - name: Ensure output folder exists 
      file: 
        path: ~/output 
        state: directory 
    - name: Ensure out.txt file exist for logging activities 
      copy: 
       dest: ~/output/out.txt 
       content: "{{ lookup('pipe','date +%Y-%m-%d-%H-%M-%S') }}: 
Starting program !" 
    - name: starting with the first VM for the amb 
      shell: "./amb.sh --federate-name Ambulance --peers Hospital1 >> 
~/output/out.txt" 
      args: 
        chdir: ~/amb 
      async: 1000 
      poll: 0 
    - name: AMB - check on task string 
      wait_for: 
       path: ~/output/out.txt 
       search_regex: 10Sec Waiting for Hospitals to Join 
- name: ansible automation for hos hosts 
  hosts: hos_group 
  gather_facts: no 
  tasks: 
    - name: Ensure output folder exists 
      file: 
        path: ~/output 
        state: directory 
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    - name: joining hos to the AMB 
      shell: "./hos.sh --federate-name Hospital{{ inventory_hostname 
| regex_replace('[^0-9]','') }} --peers Ambulance > ~/output/out.txt" 
      args: 
        chdir: "~/{{ inventory_hostname }}" 
      async: 1000 
      poll: 0 
      register: amb_sleeper 
- name: record end time 
  hosts: amb_group 
  gather_facts: no 
  tasks: 
    - name: AMB - wait till the program exits 
      wait_for: 
        path: ~/output/out.txt 
        search_regex: "FederateAmbassador: Object Removed: handle" 
    - name: Ensure out.txt file exist for logging activities 
      lineinfile: 
       path: ~/output/out.txt 
       insertafter: EOF 
       line: "{{ lookup('pipe','date +%Y-%m-%d-%H-%M-%S') }}: 
Experiment Finished!" 
    - name: Copy the simulation output to ~/output folder - AMB 
      copy: 
        src: 
~/amb/MyModels/ambulanceservicemodel/ambulanceOutput.csv 
        dest: ~/output 
        remote_src: yes 
        force: yes 
- name: ansible automation for hos hosts 
  hosts: hos_group 
  gather_facts: no 
  tasks: 
    - name: Copy the simulation output to ~/output folder - HOS 
      copy: 
        src: "~/{{ inventory_hostname 
}}/MyModels/hospitalmodel/hospitalOutput_ID({{ inventory_hostname | 
regex_replace('[^0-9]','') }}).csv" 
        dest: ~/output 
        remote_src: yes 
        force: yes 
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