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Abstract—Influence maximization (IM) in complex networks
tries to activate a small subset of seed nodes that could maximize
the propagation of influence. The studies on IM have attracted
much attention due to their wide applications such as item recom-
mendation, viral marketing, information propagation and disease
immunization. Existing works mainly model the IM problem as
a discrete optimization problem, and use either approximate or
meta-heuristic algorithms to address this problem. However, these
works are hard to find a good tradeoff between effectiveness and
efficiency due to the NP-hard and large-scale network properties
of the IM problem. In this article, we propose an evolutionary
deep reinforcement learning algorithm (called EDRL-IM) for IM
in complex networks. First, EDRL-IM models the IM problem as
a continuous weight parameter optimization of deep Q network
(DQN). Then, it combines an evolutionary algorithm (EA) and
a deep reinforcement learning algorithm (DRL) to evolve the
DQN. The EA simultaneously evolves a population of individuals,
and each of which represents a possible DQN and returns a
solution to the IM problem through a dynamic markov node
selection strategy, while the DRL integrates all information
and network-specific knowledge of DQNs to accelerate their
evolution. Systematic experiments on both benchmark and real-
world networks show the superiority of EDRL-IM over the state-
of-the-art IM methods in finding seed nodes.

Index Terms—Complex Networks, Influence Maximization,
Deep Reinforcement Learning, Evolutionary Algorithm, Opti-
mization

I. INTRODUCTION

THE last decades have witnessed that the advance of
Internet and Web2.0 greatly promotes information com-

munication and propagation, and produces tremendous appli-
cations for various complex systems, especially for online
social systems such as Facebook, Wechat, Tencent, Tmail,
JDmail, Twitter and Microblog. For example, in Internet,
individuals can easily communicate with each other by various
online social systems, and these systems can be used as online
platforms for the promotion and recommendation of news,
brands, ideas, products and behaviors via the “word-of-mouth”
and “viral marketing” effects [1], [2]. Complex networks are
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very simple but effective models to represent these systems,
where nodes denote entities while links represent information
communications between entities, and the network analyses
are essential to understanding the information propagation and
application extension of systems [1], [3], [4].

Influence maximization (IM) in complex networks is a
fundamental problem for the understanding of information
propagation in real-world systems, which tries to activate a s-
mall subset of seed nodes that could maximize the propagation
of information or influence [5]–[7]. This problem was first pro-
posed by Domingos and Richardson to analyze the influence of
market users in marketing fields [8], and then it was introduced
into the field of complex networks by Kempe et al. [6]. Then,
the studies on IM in networks have attracted much attention
due to their wide applications in various domains such as item
recommendation, viral marketing, rumor blocking, political
election, traffic dispatch, information diffusion, truth discovery
and disease immunization. For example, in the recent COVID-
19 pandemic, the study on the IM can effectively identify
super spreaders, and achieve targeted immunization to reduce
the spread of COVID-19 [9]–[11]. However, the solution to
the IM problem is challenging as this problem is a discrete
NP-hard problem under various diffusion models such as the
independent cascade (IC) [12], linear threshold (LT) [13] and
time-aware diffusion (TD) [14] models, and the evaluation
of seed influence is computationally complex. Moreover, the
effectiveness and scalability of the solution are hard to be
maintained with the increased scale, heterogeneity and accu-
racy of real-world systems [6].

To address the aforementioned issues, many works have
been proposed for solving the IM problem in complex net-
works. Most of them first model the IM problem as a dis-
crete seed optimization problem under a specific influence
diffusion model, and then present either approximate or meta-
heuristic algorithms to address this optimization problem.
The approximate algorithms attempt to find quickly near-
optimal solutions with an approximation guarantee toward the
global optimum by using individual-based greedy strategies.
Representative approximate algorithms include Greedy [6],
CELF [6], CELF++ [15], CGA [16] and CI [5]. Greedy [6] first
calculated the marginal gain of each node under the IC model,
and then iteratively selected the node with the maximum
marginal gain into the seed set. It can guarantee the solution
performance approximated to at least 63% of optimal for the
IM problem. CELF [6] combined the Greedy algorithm with
submodularity and lazy-forward optimization to improve the
solution efficiency. CELF++ [15] improved the performance of
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CELF by introducing the submodularity of the spread function
into IC model to decrease the repetitive influence calculation.
CGA [16] and CI [5] introduced the community information
and network percolation into the IM problem, and present-
ed community-aware and collective influence-aware greedy
algorithms to select seed nodes. These works [5], [6], [15],
[16] were further extended by taking the GPU acceleration
[17], signed influence [18], adaptive influence [19], target-
aware holistic influence [20] and information privacy [21]
into consideration. Although they facilitate solution efficiency,
these approximate algorithms [5], [6], [15], [16] are easy to
get trapped into local optima.

Compared with the approximate algorithms, the metaheuris-
tic algorithms try to find the global optimum by using
population-based evolutionary strategies inspired by natural
phenomena. Representative metaheuristic algorithms for the
IM problem include CMA-IM [7], DPSO-IM [22], GWO-IM
[23], DDSE [24], MA-IMmulti [25] and IICEA [26]. CMA-IM
[7] first modeled the IM problem as an optimization of 2-
hop influence spread, and then presented a memetic algorithm
with a genetic algorithm and a local search to find seed
nodes. Following CMA-IM, DPSO-IM [22] and GWO-IM [23]
employed the discrete particle swarm and grey wolf optimizers
to solve the IM problem, respectively. DDSE [24] combined a
degree-aware greedy algorithm and an evolutionary algorithm
to quickly find influential nodes. MA-IMmulti [25] extended
CMA-IM for tackling the IM problem by taking the multiplex
links of networks into consideration. IICEA [26] combined a
local-global influence indicator and an evolutionary algorithm
for solving the IM problem, which enables to promote the evo-
lution of solutions. These meta-heuristic algorithms [7], [22]–
[26] facilitate solution exploration, but they lack efficiency and
are hard to find good solutions within limited computational
capacity for large-scale networks.

Deep reinforcement learning (DRL) has recently attracted
much attention in the tasks of network analyses such as the
minimum vertex cover, maximum cut, traveling salesman and
IM problems due to its good performance in solving combi-
natorial optimization problems [27]–[31]. DRL incorporates
a deep learning framework and an agent markov decision
process into the solution of problems, which enables the
agent to learn automatically the strategy that optimizes the
objective [28]–[31]. Representative DRL works for network
analyses include S2V-DQN [28], GCOMB [29], DISCO [30]
and FINDER [31]. S2V-DQN [28] first learned the low-
dimensional node features of networks through structure2vec
(S2V), and then trained a deep Q network (DQN) through
a DRL with these node features to solve the minimum
vertex cover, maximum cut and IM problems in complex
networks. GCOMB [29] extended S2V-DQN by using a DQN
to prune bad nodes and learning the low-dimensional node
features in a supervised manner, which enables to reduce the
computational complexity for training the DQN. DISCO [30]
further extended S2V-DQN by using sub-graphs to train the
DQN, which enables to solve the combinational optimization
problems for large-scale networks. FINDER [31] incorporated
inductive network presentation learning to represent network
states, and employed a DRL to solve the IM problem in

networks. Although some progress has been made in using
the DRLs to tackle the IM problem, these works find it hard
to obtain a good tradeoff between effectiveness and efficiency
due to the limited training and optimization of the DRLs.

In this article, we propose a metaheuristic evolutionary
DRL algorithm (called EDRL-IM) for solving the IM problem
in complex networks, aiming to train efficiently an optimal
DQN that is used to make decisions for the selection of seed
nodes. To this end, EDRL-IM first combines a DQN and a
dynamic markov node selection strategy to select seed nodes,
and then models the IM problem as a continuous weight
parameter optimization of DQN. Then, EDRL-IM combines
an evolutionary algorithm (EA) and a DRL algorithm to
optimize the DQN. More specifically, EDRL-IM designs the
EA to evolve a population of individuals simultaneously,
each of which represents a DQN that can be used to make
decisions for the selection of seed nodes, while it devises the
DRL to accelerate the evolution by integrating all network-
specific knowledge and DQNs’ training information. EA and
DRL facilitate exploration and exploitation for continuous
optimization problems, respectively, which enable EDRL-IM
to obtain a good tradeoff between effectiveness and efficiency.
The main contributions of this article are shown as follows:

1) We model the IM problem as a continuous parameter op-
timization of DQN, and combine a DQN with a dynamic
node activating strategy to select seed nodes. These
guarantee the effectiveness of the proposed metaheuristic
algorithm in solving the IM problem.

2) We propose the novel metaheuristic EDRL-IM algorithm
for solving the continuous parameter optimization of
DQN. EDRL-IM combines an EA algorithm and a DRL
algorithm, and incorporates the network-specific knowl-
edge and DQNs’ training information. These enable
EDRL-IM to obtain a good tradeoff between effective-
ness and efficiency in optimizing the DQN.

3) Extensive experiments on the two GN and two LFR
benchmark networks and ten real-world networks show
that EDRL-IM outperforms the state-of-the-art IM algo-
rithms in terms of effectiveness and efficiency.

The rest of the article is organized as follows. Section II
gives the formulation of the IM problem. Section III and IV
introduce our continuous DQN parameter optimization model
and algorithm solution (EDRL-IM), respectively. Section V
shows experimental results, while Section VI provides some
concluding remarks and future works.

II. PROBLEM FORMULATION

In this section, the influence propagation model is first intro-
duced, and then the IM problem is presented and formulated.

Notations: We use italic lower-case, italic upper-case and
block upper-case letters to represent scalars, vectors and
matrices, respectively, while adopt decorated letters to denote
sets. Moreover, we use · in the index to represent the index
set that spans all the row or column indices of a matrix. In
addition, we use the operator |.| to evaluate the number of
elements in a set.

We let G = {V, E} be an undirected complex network,
which consists of sets of nodes V = {vi}n and edges
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E = {eij}m, where eij denote an edge between nodes vi
and vj , while n and m are the numbers of nodes and edges
of G, respectively. The edges E of G can be mathematically
represented by an adjacent matrix B = [bij ]i,j∈V , where each
element bij ∈ {0, 1} denotes a possible link state between
nodes vi and vj . Formally, bij is represented as follows:

bij =

{
1 if nodes vi and vj are linked,
0 otherwise.

For each node i ∈ V , we let Ti = {j ∈ V|bij = 1} denote its
neighbor that is composed of the set of nodes linked with i.

A. Influence Propagation Model
The influence propagation model describes the influence

propagation (node activating) processes through a complex
network triggered by an initial node set S ∈ V . Classical
influence propagation models include the IC [1], [25], LT [13]
and TD [6], [14]. Here, we mainly consider the IC model, and
our work can be extended to the LT and TD models.

The IC model is motivated by the “word-of-mouth” effects,
i.e., individuals may be influenced by the opinions, ideas
and decisions of their friends, and influenced individuals may
further influence their neighbors. The main ideas behind the
IC model are that each node, once activated, has the ability
to active its neighbors based on the propagation probability
of edges and this propagation is iteratively and independently
occurred until no further node is activated. Accordingly, in
the IC model, each node vi ∈ V has two possible states
si ∈ {1, 0}, where si = 1 represents an active node i, and
si = 0 denotes otherwise. Moreover, each eij ∈ E has a
probability pij which determines the propagation probability
of node vi to active node vj .

Given an initial seed set S, the IC model works as follows:
Initialization: We let St be the active node set after the tth

propagation step, and let It be the node set that is activated
by the tth propagation step. In this case, we have S0 = S and
I0 = S. Moreover, we set t← 0.

Propagation: We set t← t+1. For each node vi ∈ It−1 and
each node vj ∈ Ti, the node vj is activated with a propagation
probability pij . More specifically, for each such a pair of vi
and vj , if a randomly generated value rij is higher than pij ,
the node vj is added into It (i.e., sj ← 1). Then, we set
St ← St−1 ∪ It.

Termination: The propagation step is iteratively and in-
dependently executed until no further node is activated, i.e.,
|It| = 0.

Note that, for a large-scale network, it is time-consuming to
execute the above IC propagation processes as the final t at the
termination step may be very large and it is hard to determine
the final t value a priori. To simplify the propagation process-
es, Lee and Chung proposed a fast approximation IC model,
in which the influence ability of seed nodes is limited within
their 2-hop range (such as neighbors’ neighbor). In this case,
the final t value is no greater than 2. Fig. 1 gives a schematic
illustration of the approximation IC model. Extensive studies
and experiments have shown that the fast approximation IC
model can effectively evaluate the influence spread of the IC
model [32].

B. Problem Formulation for IM under a Discrete Optimization
Model

Given a complex network G = {V, E} and the predefined
size k of seed node set, the IM problem tries to find an
optimal seed node set S with |S| = k, so as to maximize the
propagation of influence under the approximation IC model.
This IM problem can be formulated as the following discrete
optimization problem:

max F(S) =
∑
vi∈S

F(vi)−
( ∑
vi∈S

∑
vj∈Ti∩S

pij · (τ(vj)− pji)
)

−
∑
vi∈S

∑
vj∈Ti−S

∑
vk∈Tj∩S

pijpjk
,

(1)
where F(vi) and F(S) evaluates the number of nodes (the 2-
hop influence spread) that can be influenced by the node vi and
node set S under the approximation IC model, respectively,
and τ(vj) denotes the 1-hop influence spread of node vj
that can be computed as τ(vj) = 1 +

∑
vk:vk∈Tj pkj . As

shown in (1), F(S) is evaluated based on three parts. The
first part evaluates the sum of influence spread of all nodes
in S, while the second and third parts compute the redundant
1-hop and 2-hop influence spread caused by different seed
nodes, respectively. The F(S) value is in the range of k to n,
and a high value corresponds to a good solution S to the IM
problem.

In the optimization problem, S can be represented by a
n − bit binary variable x or a k − bit real variable y. More
specifically, we let x = {xi ∈ {0, 1}}n denote the seed set
of nodes V of G, where xi = 1 represents that the node vi
is the seed node; and xi = 0 otherwise. We let y = {yi ∈
[1, 2, . . . , n]}k,∀i 6= j, yi 6= yj denote the seed set of nodes V
of G, where yi = a represents that the node va is the seed node.
In this case, the optimization problem in (1) can be modeled
as classical discrete combinational optimization problems with
variables x or y.

Note that, this discrete optimization problem is a NP-hard
problem and has wide solution space (such as 2n or nk

possible solutions). In this case, classical approximate or meta-
heuristic IM algorithms [22]–[26] find it hard to obtain a
good tradeoff between effectiveness and efficiency. To solve
this issue, we first model the IM problem as a continuous
parameter optimization of DQN (see Section III), and then
propose an evolutionary DRL algorithm (EDRL-IM).

III. OUR WORK: THE CONTINUOUS DQN PARAMETER
OPTIMIZATION PROBLEM MODEL FOR THE IM PROBLEM

In this section, we design a problem-specific DQN for the
selection of seed nodes for the IM problem, and transform
the discrete optimization IM problem in (1) into a continuous
DQN parameter optimization problem.

The problem-specific DQN (see Fig. 2) consists of three
modules: network embedding, DQN and markov seed se-
lection modules. The network embedding module learns the
potential features of nodes; the DQN module gives node scores
based on the node features; and the markov seed selection
module uses the markov decision processes of a reinforcement

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TETCI.2021.3136643, IEEE Transactions on Emerging Topics in Computational Intelligence



4

t t
S

Fig. 1. A schematic illustration of the spreading processes of influence spreading under the approximation IC diffusion model. We let S = S0 = I0 = {3, 6}
be the seed node set. Then, the nodes in I0 will activate their neighbors nodes j ∈ {1, 2, 4, 7, 5, 8, 9} according to the propagation probability. Here, nodes
I1 = {2, 7, 9} were successfully activated, and S1 = S0 ∪ I1 = {2, 3, 6, 7, 9}. Subsequently, the above activation steps are iteratively occurred until no
further nodes can be activated. The final influenced nodes under S0 = {3, 6} are nodes {1, 2, 3, 5, 6, 7, 9}.
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Fig. 2. Schematic illustration of the problem-specific DQN.

learning (RL) and a DQN to choose seed nodes. With these
modules, the IM problem in (1) can be well transformed into
a continuous DQN parameter optimization problem.

A. Network embedding module

The network embedding module tries to embed a high-
level network representation B into a low-dimensional node
representation H = [hik]n·d, vi ∈ V , which enables to extract
the potential features of nodes and transform a discrete net-
work representation into a continuous feature representation,
where d is the predefined number of embedding dimension
and hik ∈ [−1, 1] is the k-th feature value of node vi.
These features can be well used for network tasks such as
community detection, link prediction, influence propagation,
and item recommendation.

In recent years, certain representative network embedding
methods have been proposed to extract the low-dimensional
features of nodes for networks, including DeepWalk [33],
Node2vec [34], SDNE [35], and Line [36]. Here, we choose
the Line method due to its low computational complexity, good
scalability and good performance in preserving both the 1-hop
and 2-hop node influence of networks.

The Line method first models the network embedding
problem as an optimization of information similarity objective
that preserves both the first and second node proximities
of networks, and then adopts an asynchronous stochastic
gradient algorithm [37] to optimize the objective. The first
and second node proximities reflect the one-hop and two-
hop node influence of networks, respectively. Subsequently, to
tackle large-scale networks, the Line method proposes an edge
sampling technique to improve effectiveness and efficiency.
Finally, it returns the low-dimensional node representations H

of networks. The details of the Line method could be found
in [36].

Accordingly, given the Line method (Line()), the network
embedding module can be formulated as follows:

H← Line(B, d),H = [hik]n·d, hik ∈ [−1, 1]. (2)

Moreover, we let HD ← [H D] that contains the learned local
link features H and the global node degree feature D of nodes.

B. DQN Module

The DQN module uses a three-layer fully connected DQN
with size (d+1)/l/1 (see Fig. 2) to integrate the features HD

of nodes into a composite feature, aiming to approximate to
the state-activation value function Q(S, a) in the RL, where
S = {Si ∈ [0 1]}n denotes the seed state of nodes while
a ∈ [1, n] represents the activation of choosing a seed node.
Here, for each i ∈ {1, 2, . . . , n}, Si = 1 represents that node
vi is the seed node, and Si = 0 denotes otherwise. Moreover,
a = j denotes that the node vj is chosen as a seed node.
More specifically, the state-activation value function Q(S, a)
evaluates the possible reward when taking action a at state S,
and it can be evaluated by the DQN as follows:

Q(S, a) = DQN(W1,W 2,HD, S)

= Relu(H(HD, S) ·W1) ·W 2
, (3)

where the function DQN represents the DQN which generates
an output Relu(H(HD, S) ·W1) ·W 2, while W1 and W 2 are
the weigh parameters of the DQN at the first and second layers,
respectively (see Fig. 2). H denotes a node feature chosen
function. For each i, H(HD

i. , Si) is evaluated as follows:

H(HD
i. , Si) = HD

i. · (1− Si).
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The H function tries to eliminate the influence of seed nodes,
which enables to choose the most influential nodes among
the rest of non-active nodes. Moreover, Relu is an activation
function which tries to eliminate negative feature values by
setting the variables with negative values to zero.

C. Markov Seed Selection Module

The markov seed selection module aims to use the markov
decision processes of RL and a DQN to choose seed nodes
for the IM problem. Here, a markov decision process of
RL is a discrete time decision process defined as a 4-touple
(St, at, rt, St+1), where St and St+1 are the seed states of
nodes at time t and t + 1, respectively, while at and rt are
the seed node activation and the reward after at at time t,
respectively.

To avoid the influence overlapping of seed nodes, we present
a dynamic markov seed selection strategy to choose seed
nodes (see Algorithm 1). This strategy consists of k discrete
time decision processes, and each process first uses a DQN
to compute the state-activation value function Q(St, a), and
then adds the node with the highest value in Q(St, a) into
the seed set. Moreover, each process will return a 4-touple
(St, at, rt, St+1) through a DQN. Formally, for each time t,
the markov seed decision process is represented as follows:

Q(St, a) = DQN(W1,W 2,HD, St), (4)
Q(St, at) = max

a
Q(St, a), (5)

at = arg max
a

Q(St, a), (6)

St+1 = St, St+1(at+1) = 1, (7)
rt = F(O(St+1))− F(O(St)), (8)

where the function DQN represents the DQN. Moreover, the
function O(S) transforms a vector S to a seed node set S .
More specifically, O(S) is computed as follows:

O(S) = S = {vi ∈ V : Si = 1}.

(4) computes the state-activation value of an agent under state
St at time t; (5) evaluates the maximum state-activation value
under all possible a at state St; (6) executes the activation
at that chooses the node vat with the highest state-activation
value at time t as the seed node; (7) updates the seed state
St+1 at time (t + 1); and (8) computes the 2-hop influence
objective reward when the activation at is executed.

D. Continuous DQN Parameter Optimization Model for the
IM problem

With the aforementioned models, we can use a DQN with
weight parameters [W1 W 2] to choose seed nodes, and adopt
the objective in (1) to evaluate their influence propagation. In
this case, each possible DQN returns a seed set for the IM
problem. To obtain an optimal seed set, we can model the IM
problem as a continuous DQN weight parameter optimization
problem which can be represented as follows:

max F(O(Sk)) = F(W1,W 2)

s.t. DQN(W1,W 2,HD, S),
(9)

Algorithm 1 Markov seed selection strategy
1: Input: A DQN with W1 and W 2, size of seed set k, and

the feature HD

2: Output: Seed set S and a set of markov decision processes
{(St, at, rt, St+1)}k

3: Set t← 1 and St ← [ ].
4: while (t ≤ k) do
5: Compute Q(St, a) based on (4).
6: Compute at based on (5) and (6).
7: Compute St+1 and rt based on (7) and (8), respec-

tively.
8: t← t+ 1.
9: end while

Genetic operation: 

Crossover and Mutation

Selection

Output: the best seed set

Initialization

No If the termination 

is reached?

Deep Reinforcement Learning

Network embedding

DQN 

Fitness Evaluation

Markov node selection 

Yes

Fig. 3. The flowchart of EDRL-IM framework.

where S = [ ] is the initial seed node state at time t = 0, while
Sk is the final seed node state computed by the aforementioned
markov seed selection strategy.

IV. OUR WORK: THE PROPOSED EDRL-IM ALGORITHM
FOR THE IM PROBLEM

In this section, an evolutionary deep reinforcement learning
algorithm (called EDRL-IM) is proposed, aiming to find an
optimal DQN for the IM problem in (1).

EDRL-IM combines an EA and a DRL to evolve the DQN.
The EA simultaneously evolves a population of individuals,
each of which represents a DQN and returns a solution to the
IM problem through the aforementioned seed selection strat-
egy, while the DRL integrates all information and network-
specific knowledge of DQNs to accelerate their evolution.

The framework of EDRL-IM is shown in Algorithm 2,
and the flowchart is shown in Fig. 3. More specifically,
EDRL-IM first generates an initial population P(0) with
size np by using the initialization (Initialization()), and then
uses the evolutionary operations such as genetic operation
(Genetic Operation()) and selection (Selection()) and the
reinforcement learning operation (DRL()) to evolve the popu-
lation. Generally, the evolutionary operations facilitate explo-
ration, while the reinforcement learning operation facilitates
exploitation. These operations are iteratively executed ng times
and finally output an optimal DQN and a seed node set for the
IM problem, where ng is the predefined number of iterations.

In the following subsections, the operations of EDRL-IM
are introduced in detail.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TETCI.2021.3136643, IEEE Transactions on Emerging Topics in Computational Intelligence



6

Algorithm 2 Framework of EDRL-IM
1: Input: population size: np; parent population size: no;

crossover probability: pc; mutation probability: pm; max-
imum number of generations: ng .

2: P(0)← Initialization(np).
3: for (q = 1 to ng) do
4: Ps(q) ← Genetic Operation

(
P(q), no, pc, pm

)
, and

find the solution Pf (q) with the maximum F in Ps(q).
5: Pf (q)← DRL

(
Pf (q)

)
.

6: P(q + 1)← Selection(np, P(q), Ps(q), Pf (q)).
7: end for

Algorithm 3 Evaluation()
1: Input: A solution Pi : W1

i , W 2
i , k and HD.

2: Output: S, F(S), and {(Sit , ait, rit, Sit+1)}.
3: Compute S, {(Sit , ait, rit, Sit+1)} based on Algorithm 1.
4: Compute F(S) based on (1).

A. Evolutionary Operation

1) Solution Representation and Evaluation: In EDRL-IM,
a population P = {Pi}np

of solutions are simultaneously
evolved, where each solution Pi represents a DQN. Formally,
Pi is represented as follows:

Pi = (W1
i ,W

2
i ),W1

i ∈ [−1, 1](d+1)·l,W
2
i ∈ [−1, 1]l·1.

Recall that W1 and W 2 are the weight parameters of the first
and second layers of a DQN, respectively. (d + 1) and l are
the number of neural nodes in the first and second layers,
respectively.

For each solution Pi, EDRL-IM combines the aforemen-
tioned network embedding, DQN and seed markov selection
modules and the objectives in (1) to generate two outputs. One
of the outputs is the seed node set Si and its influence spread
Fi, which is used for the fitness evaluation of the solution
Pi in the EA steps. The other one is a set of markov decision
processes {(Sit , ait, rit, Sit+1)} that are used for the acceleration
of the DQN optimization in the DRL steps.

Algorithm 3 gives the detailed operations of a solution
evaluation (Functioned as Evaluation()).

2) Initialization: The initialization (Initialization()) tries to
generate a population of solutions. For our IM problem, there
is no prior knowledge about the DQNs in the initialization

Algorithm 4 Initialization()
1: Input: Size of population: np.
2: Output: Initial solutions P(0).
3: Set Pi(0) = (W1

i ,W
2
i ), i = 1, 2, . . . , np.

4: for (i = 1 to nP ) do
5: for (each element in W1

i and W 2
i ) do

6: Randomly generate a value in the range of -1 to
1.

7: end for
8: [S F(S) {(Sit , ait, rit, Sit+1)}]← Evaluation(Pi(0)).
9: end for

Algorithm 5 Genetic Operation()
1: Input: Parent solutions: P(q), crossover probability: pc

and mutation probability pm.
2: Output: Offspring solutions: Ps(q).
3: Sort the solutions P(q) in a descend order based on their

fitness.
4: Generate a set of pairs of parent solutions
{(Pi(q),Pj(q))}, where Pi(q) and Pj(q) randomly
comes from the top and last 50% solutions in P(q),
respectively.

5: for (each pair of solutions (Pi(q),Pj(q))) do
6: if (A randomly generated value p ≤ pc) then
7: Randomly generate a bit value 0 or 1 for each gene

position.
8: Cross the gene values of the two solutions that have

a bit value 1, and then generate two offspring solutions
Psi (q) and Psj (q).

9: else
10: Put Pi(q) and Pj(q) into Ps(q).
11: end if
12: end for // Crossover
13: for (Each solution Psi (q) in Ps(q)) do
14: for (Each gene position of Psi (q)) do
15: if (A randomly generated value p ≤ pm) then
16: Update the gene value to a value N(−1, 1).
17: end if
18: end for
19: [S F(S) {(Sit , ait, rit, Sit+1)}]← Evaluation(Psi (q)).
20: end for // Mutation

stage. Therefore, to simplify the initialization operation, for
each weight parameter of the DQNs, we randomly generate a
value in the range of -1 to 1 as its initial value. Algorithm 4
gives the detailed operations of the population initialization.

3) Genetic Operation: The genetic operations include
crossover and mutation, which aim to guide the exploration
of the proposed EDRL-IM. The crossover explores offspring
solutions Ps(q) with high quality by recombing and inherit-
ing parent solutions P(q), while the mutation explores new
solutions with good genetic diversity by randomly tuning the
offspring solutions.

The crossover works on the parent solutions P(q), and it
mainly contains the operators of solution pairing and single-
point crossover. The solution pairing operation generates a set
of pairs of parent solutions, while the single-point crossover
executes the recombing and inheriting process for each pair
of parent solutions to generate offspring solutions. Here, to
learn effectively the structures of solutions in the crossover,
the solution pairing operation generates a set of pairs of
parent solutions {(Pi(q),Pj(q))}, in which Pi(q) and Pj(q)
randomly comes from the top 50% and the last 50% solutions,
respectively. For each pair of solutions (Pi(q),Pj(q)), the
single-point crossover first randomly generates a bit value 0
or 1 for each gene position, and then crosses the gene values
of the two solutions that have a bit value 1.

The mutation works on the offspring solutions Ps(q). To
improve the solution diversity, a normal random mutation is
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Algorithm 6 Selection()
1: Input: Size of population: np, the parent population P(q),

the offspring population Ps(q), and the solution Pf (q)
generated by the DRL.

2: Output: The population of next generation P(q + 1).
3: Sort the solutions in P(q), Ps(q), and Pf (q) in a descend

order based on their fitness.
4: Select np/2 solutions with high fitness to P(q + 1).
5: Randomly select np/2 solutions from P(q)

⋃
Ps(q)

⋃
Pf (q) -P(q + 1) to P(q + 1).

chosen, which works on each solution Psi (q) generated by the
crossover. More specifically, for each gene position in Psi (q),
if a random value is smaller than a mutation probability pm, its
gene value is mutated to a value x = N(−1, 1) in the range of
[-1, 1] that follow a probability density function e−x

2/2/
√

2π,
where N(−1, 1) is the normal random mutation function.

Algorithm 5 gives the procedures of the proposed genetic
operation.

4) Selection: The selection operation selects the population
of the next generation from the parent population P(q), the
offspring population Ps(q), and the solution Pf (q) generat-
ed by the DRL, which aims to preserve both the solution
effectiveness and diversity of population. Here, inspired by
the work of Khadka [38], we select half of the solutions
with high fitness to the population of next generation to
preserve the solution effectiveness and increase the stability
of the population. Moreover, to preserve the diversity of
population, we randomly select half of the rest of solutions
to the population of next generation. Algorithm 6 gives the
procedures of this selection operation. Although the other
selection strategies such as the roulette wheel selection can be
also used here, their performance for the IM problem is worse
than the selection strategy of the EDRL-IM in our simulation
results.

B. Reinforcement Learning Operation

In EDRL-IM, the reinforcement learning operation
(DRL(), see Algorithm 7) is used for exploitation around
the solution Pf (q) in Ps(q) that has the highest 2-hop
influence spread. In order to obtain a good tradeoff between
the effectiveness and efficiency in learning the parameters in
Pf (q), we use a combination of a nt−step Q-learning [31]
and fitted Q-iteration [31]. The nt−step Q-learning considers
the delayed rewards of actions, where the final estimated
reward Q(St, at) of an action at at state St is only received
after an episode with nt−step exact feedbacks. The fitted
Q-iteration adopts batch samples C of experience replay
buffer B (markov decision) samples returned by evaluation
steps to update the function approximation. In this case, the
objective of RL is to minimize the nt−step loss function L of
a DQN with weight parameters (W1,W 2), which evaluates
the expected loss between the estimated reward Q(St, at)
returned by a DQN and the approximated reward Q̃(St, at)
estimated by the nt−step exact reward feedbacks and the
estimated reward Q(St+nt

, at+nt
) in the batch samples C.

Algorithm 7 DRL()
1: Input: Size of batches nb, number nt of steps in DQN,

and Pf (q).
2: Output: Pf (q).
3: Construct the experience replay buffer B.
4: Randomly sample the batches C with size nb from B, in

which each batch is composed of nt + 1 tuples.
5: Adopt a SGD method to minimize L(W1,W 2) in (10),

where the weigh parameters (W1,W 2) of the DQN solu-
tion Pf (q) are updated as (11) and (12) at each iteration.

More specifically, the nt−step loss function L(W1,W 2) is
evaluated as follows:

L(W1,W 2) = EC∈B

[(
nt−1∑
i=0

rt+i + γ

max
a′

Q(St+nt
, a

′
; W1,W 2)−Q(St, at; W1,W 2)

)2
]
,

(10)
where γ is a decaying factor which determines the importance
of future rewards, while E is an expectation function.

To minimize L(W1,W 2), the experience replay buffer B
and the batch samples C are first constructed. B is collected
from the evolutionary processes while C is randomly sampled
from B. Then, the L(W1,W 2) is minimized by a stochastic
gradient descent (SGD) method, where the weight parameters
(W1,W 2) are updated as follows:

(W1,W 2)
′

= (W1,W 2)−∆(W1,W 2), (11)

where ∆(W1,W 2) is computed as follows:

∆(W1,W 2) = α ·

[
nt−1∑
i=0

rt+i + γmax
a′

Q(St+nt
, a

′
; W1,W 2)

−Q(st, at; W1,W 2)
]
∇(W1,W 2)Q(St, at; W1,W 2)

,

(12)
where α is a learning rate, while ∇(W1,W 2) is the deviation
to (W1,W 2).

V. EXPERIMENTAL RESULTS

In this section, we test EDRL-IM and seven classical IM
algorithms on the GN [39] and LFR [40] benchmark networks
and ten real-world networks to validate the effectiveness
of the proposed EDRL-IM. In the following, the details of
experimental settings are first given, and then a comparison of
EDRL-IM with the seven IM algorithms on the tested networks
is made and the comparison results are analyzed.

A. Experimental Settings

1) Experimental Networks: To validate the effectiveness of
EDRL-IM, we test it on the GN [39] and LFR [40] benchmark
networks and ten real-world networks.

GN Benchmark Networks: The GN benchmark networks
[39] are used to represent real modular networks, which
have the same degree 16 for all 128 nodes. These nodes are
evenly distributed into 4 communities, and each of them has
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TABLE I
DETAILED INFORMATION OF THE TESTED REAL-WORLD NETWORKS. d̄ REPRESENTS THE AVERAGED NODE DEGREE OF A NETWORK.

Network n m d̄ Basic description
Polbooks [41] 105 882 16.80 It represents the purchase of books about U.S. politics in Amazon.

SFI [42] 118 200 3.125 It represents the collaboration of scientists who lived at the Santa Fe Institute between 1999 and 2000.
Jazz [43] 198 2,742 27.70 It represents the cooperation between jazz musicians. together.

Filmtrust [44] 874 1,853 4.240 It denotes the user trusts in the FilmTrust project.
Email [45] 1,133 5,451 9.622 It denotes the E-mail communication in Rovira i Virgili University.
Atc [46] 1,226 2,615 4.266 It denotes the route recommendation of USA’s National Flight Data Center.

Power [47] 4,941 6,594 2.669 It shows the power topology of the western states of the United States.
Wiki [48] 7,115 103,689 29.15 It represents the user relationships in the Wiki website.
Gemo [41] 7,743 11,898 3.073 It represents the author’s cooperation in the computational geometry.
Pgp [49] 10,680 24,340 4.558 It denotes the private communication between users extracted by the Pretty-Good-Privacy algorithm.

a fraction (1 − µ) of links that are located in a community,
where µ is a control parameter. With the increase of µ, the
number of links across communities is increased, and the GN
benchmark network becomes more complex. Here, we test all
algorithms on two GN benchmark networks with µ = 0.1 and
µ = 0.3 to analyze their performance in tackling networks
with homogeneous node degree.

LFR Benchmark Networks: The LFR benchmark networks
[40] are extensions of the GN benchmark networks, which
take the heterogeneity of node degree and community size
into consideration. Moreover, they enable to model real-world
networks with arbitrary network sizes. In these networks, the
node degree and community size follow power law distribution
with control parameters β and τ , respectively. Here, we test
all algorithms on two LFR benchmark network with µ = 0.1
and µ = 0.3 to show their performance in tackling networks
with heterogeneous node degrees, in which each network is
set as n = 500, β = 1 and τ = 2.

Real-World Networks: Ten real-world networks are tested to
validate the effectiveness of EDRL-IM in tackling various real
systems such as communication, cooperation, email, airline
and social systems. Most of these real networks have clear
community structures (see [50]). The detailed information of
these networks is given in Table I.

2) Baseline Algorithms: Seven classical IM algorithms
are chosen as baseline methods, including three approximate
greedy algorithms (Degree, CELF [51] and CI [5]), two DRL
algorithms (S2V-DQN [28] and Finder [31]) and two meta-
heuristic algorithms (MA-IMmulti [25] and CMA-IM [7]). A
comparison of EDRL-IM with the approximate greedy and
meta-heuristic algorithms is made to show the effectiveness
and efficiency of EDRL-IM in solving the IM problem, while
a comparison of EDRL-IM with the DRL algorithms tries to
validate the superiority of the evolutionary DRL framework
over classical DRL frameworks.

Degree [7]: Degree first sorts the nodes of a network in a
descend order based on their degree, and then selects the top
k nodes with high node degree as a seed node set.

CELF [51]: CELF is an extension of Degree by taking the
influence spread of nodes into consideration. It first calculates
the influence spread range of each node, and then selects
the node with the highest influence spread as a seed node.
Next, it updates the influence spread of the nodes in the
submodularities that contain seed nodes. The aforementioned
steps are iteratively executed until all seed nodes in the seed

set are selected.
CI [5]: CI selects the seed set by choosing a set of seed

nodes that have the highest collective influence. For each node
vi, its collective influence (IC(vi)) is evaluated as follows:

IC(vi) = (d̄i − 1)
∑

vj∈Ball(vi,η)

(d̄j − 1), (13)

where d̄i represent the degree of vi while Ball(vi, η) is a
collection of nodes with a distance of η from node vi.

S2V-DQN [28]: S2V-DQN first uses the structure2vec
method to embed a network into low-dimensional node repre-
sentations, and then adopts a DRL with ε−degree samples to
train a DQN. Finally, the seed set is generated based on the
seed scores generated by the DQN.

Finder [31]: Finder first uses a graph neural network for
network embedding, and then uses a virtual node to aggregate
the embedding results. Next, it trains a DQN with ε−degree
samples to give influence scores (the influence in the largest
connected component) for all nodes. Finally, a set of nodes
with high scores are chosen as seed nodes.

CMA-IM [7]: CMA-IM first models the IM problem as an
optimization of 2-hop influence spread over communities, and
then presents a memetic algorithm with a genetic algorithm
and a local search to find seed nodes over communities. In
CMA-IM, a population of initial seed sets are generated based
on the node degree and community information of networks.

MA-IMmulti [25]: MA-IMmulti is an extension of CMA-IM,
which enables to tackle multiplex networks. It first models the
IM problem as an optimization of multiplex 2-hop influence
spread, and then presents a novel MA algorithm to solve
the IM problem in multiplex networks. In MA-IMmulti, a
population of initial seed sets are generated based on an
integration of random, roulette-based degree and distance
selection strategies.

3) Criteria: To verify the performance of all algorithms, the
2-hop influence spread F(S) and the wilcoxon’s rank sum test
+/−/ ∼ are adopted. The F evaluates the overall performance
of all algorithms in finding seed nodes, while the +/ − / ∼
compute the statistical difference of solutions obtained by all
algorithms with a significance level 5%. The labels ‘+’ and ‘-’
indicate that the baseline algorithms have a better and worse
performance than EDRL-IM, respectively, while the label ‘∼’
denotes that there is no significant performance difference
between the baseline algorithms and EDRL-IM. Moreover, to
validate the overall performance of all algorithms, we record

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TETCI.2021.3136643, IEEE Transactions on Emerging Topics in Computational Intelligence



9

TABLE II
PARAMETER SETTINGS OF ALGORITHM.

Algorithm Parameter Meaning Value

EDRL-IM

np Size of population 200
pc Probability of crossover 0.8
pm Probability of mutation 0.2
ng Number of generations 100

d
Dimension of network

embedding vector 64

l Second layer size of DQN 64
nt Number of DQN steps 4
nb Batch sizes 512
γ Decaying factor 0.8
α Learning rate 0.001

CI η Node distance 1

S2V-DQN

hid dim Hidden layer dimension 64
ne Number of eposides 50
nt Number of DQN steps 4
nb Batch size 64
γ Decaying factor 0.99
α Learning rate 0.001

Finder

d
Dimension of network

embedding vector 64

nt Number of DQN steps 4
nb Batch size 64
γ Decaying factor 0.99
α Learning rate 0.0001

MA-IMmulti

np Size of population 200
pc Probability of crossover 0.6
pm Probability of mutation 0.5
pl Local search Probability 0.7
ng Number of generations 100

CMA-IM

np The size of population 200
pc Probability of crossover 0.8
pm Probability of mutation 0.2
ng Number of generations 100
α Constant term 4
β Amplification term 10
pool Size of mating pool 100
tour Tournment size 2

their average performance ranking over all tested benchmark
and real-world networks. More specifically, all algorithms are
ranked from 1 to 8 based on their performance, and the
algorithm with the best performance is ranked as 1. The
overall performance ranking of an algorithm is its averaged
performance ranking over all tested networks.

4) Simulation Settings: EDRL-IM is simulated by Python
on a server with Intel (R), Xeon (R), E5-2630 v4 CPU (2.20
GHz) and 512GB of RAM. Degree, CI, S2V-DQN and Finder
are coded with python, while CELF and MA-IMmulti are
coded with C++. Moreover, CMA-IM is coded with matlab.
For each network, all algorithms are independently tested for
20 trials with parameter settings in Table II. Moreover, all
algorithms are evaluated under the propagation probability
setting pij = 0.1 for each eij ∈ E .

B. Experiments on the GN and LFR Benchmark Networks

In this part, all algorithms are tested on two GN and two
LFR benchmark networks under five different settings of seed
set size k = {10, 20, 30, 40, 50}, and the statistic F and overall
performance rank results over 20 trials are recorded in Fig. 4.

As observed from Fig. 4, among the 20 influence test
instances on the GN and LFR benchmark networks, EDRL-
IM can obtain the highest influence spread F values on 14

test instances, while the other baseline IM algorithms can
only obtain the highest F values on at most 6 instances.
This shows the superior performance of EDRL-IM in finding
influential seed nodes over the other baseline IM algorithms.
The good performance of EDRL-IM is further validated by
the overall performance ranks of all algorithms in Fig. 4(e).
The results show that EDRL-IM has an average performance
ranking (1.513) much lower than that of Degree (5.192), CELF
(6.150), CI (5.548), S2V-DQN (3.395), Finder (8.000), MA-
IMmulti (4.028), and CMA-IM (2.168).

The results in Fig. 4 also show that the metaheuristic
IM algorithms (EDRL-IM, CMA-IM and MA-IMmulti) have
higher F and lower average performance ranking values than
the approximate greedy algorithms (Degree, CELF and CI),
especially for the comparison results in the GN benchmark
networks. This is reasonable as these approximate greedy
algorithms facilitate exploitation, but they suffer from the
lack of exploration. Moreover, these meta-heuristic IM al-
gorithms adopt a framework of MAs with GAs and local
searches, in which the GAs facilitate exploration while the
local searches are suitable for exploitation. Among these meta-
heuristic IM algorithms, CMA-IM and EDRL-IM show the
best performance in the GN and LFR benchmark networks,
respectively. In the GN benchmark networks, EDRL-IM has
a slightly worse performance than CMA-IM. This is because
the GN benchmark networks have clear community structures
and CMA-IM can use these community information to help
finding seed nodes. Moreover, the GN benchmark networks
have no obvious heterogeneous structure information. In this
case, EDRL-IM is hard to learn useful structure information
to improve its search and learning ability from the networks.

From Fig. 4, we can see that the approximate greedy
algorithms (Degree, CELF and CI) have a good performance
for the LFR benchmark networks with heterogeneous node
degree and community structures, whereas they have a poor
performance for the GN benchmarks networks. This is rea-
sonable as the main greedy principles of these algorithms are
designed based on the heterogeneous information of networks.
We can also see that Degree, CELF and CI are easier to get
trapped into local optima with the increase of the seed set
sizes. This is because the solution search space for the IM
problem is increased with the seed set sizes whereas these
greedy algorithms are lack of exploration.

Fig. 4 also shows that in the DRL algorithms, S2V-DQN
has a competitive performance whereas Finder has a poor
performance for the IM problems in the GN and LFR bench-
mark networks. This validates that the DRL algorithms can
effectively solve the IM problem, whereas they easily get
trapped into local optima. This is because the DRL algo-
rithms mainly adopt a greedy SGD optimization technique
to optimize a solution and they use a greedy strategy with
the highest reward value to choose seed nodes. Accordingly,
their performance is highly related to the SGD optimization
technique and the greedy strategies. To solve the issues of the
DRL algorithms, we propose an evolutionary DRL framework
(EDRL-IM), which combines an EA and a DRL to evolve
a population of solutions simultaneously. In EDRL-IM, the
EA is used for exploration while the DRL is adopted for
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Fig. 4. Statistical performance of all algorithms on the GN and LFR benchmark networks under different seed set sizes. (a) and (b) are the 2-hop influence
spread F of all algorithms on the GN benchmark networks with µ = 0.1 and µ = 0.3, respectively. (c) and (d) are the F results of all algorithms on LFR
benchmark networks with µ = 0.1 and (d) µ = 0.3, respectively. (e) is the average performance ranking of all algorithms over all benchmark networks.
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Fig. 5. Performance ranking of all algorithms with different seed set sizes
on the real-world networks.

exploitation. The combination of EA and DRL enables EDRL-
IM to improve the search and learning capabilities of EA and
DRL in solving the IM problem, which can be validated by
the comparison results in Fig. 4.

C. Experiments on the Real-world Networks

To validate the practicability of EDRL-IM, we test all
algorithms on the aforementioned real-world networks with
different settings of seed set size k = {10, 20, 30, 40, 50},
and record their statistical results (F, wilcoxons rank sum test
and overall performance ranking) into Table III and Fig. 5.

For each network, the best result among these algorithms is
marked in boldface.

The results in Table III show that EDRL-IM is able to
obtain the highest influence spread F values in 35 out of all 50
statistical values (70%), while Degree, CELF, CI, S2V-DQN,
Finder, MA-IMmulti, and CMA-IM perform best in 1, 0, 2,
0, 0, 1 and 13 cases, respectively. Moreover, considering the
comparisons with Degree, CELF, CI, S2V-DQN, Finder, MA-
IMmulti, and CMA-IM, EDRL-IM shows an absolute advantage
for the wilcoxons rank sum test, as it outperforms them on at
least 35 cases, and only has a slightly worse performance than
CMA-IM in 13 cases. In addition, considering the overall per-
formance (see Fig. 5), EDRL-IM shows an obvious advantage
over the other baseline algorithms. More specifically, EDRL-
IM has an average performance ranking (1.310) much lower
than that of Degree (3.481), CELF (6.072), CI (4.269), S2V-
DQN (5.702), Finder (6.613), MA-IMmulti (5.465) and CMA-
IM (2.976). These comparison results validate the superiority
of EDRL-IM over the other baseline methods in finding
influential seed nodes.

Table III also presents some similar results as Fig. 4. For
the small and medium scale networks (i.e., n ≤ 5, 000), the
meta-heuristic IM algorithms (CMA-IM and EDRL-IM) have
a better performance than the approximate greedy algorithms
(Degree, CELF and CI). Moreover, the DRL algorithms (S2V-
DQN and Finder) show a poor performance for the IM
problem in networks. In addition, by combining the EA and
DRL, our EDRL-IM shows a good performance for the IM
problem in all networks. This validates the effectiveness of
our proposed evolutionary DRL framework for solving the IM
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TABLE III
RESULTS OF ALL ALGORITHMS ON THE REAL NETWORKS WITH DIFFERENT SEED SET SIZES. ’+’, ’-’ AND ’∼’ INDICATE THAT THE RESULTS OF THE

COMPARED ALGORITHMS ARE SIGNIFICANTLY BETTER THAN, WORSE THAN, AND SIMILAR TO THAT OF EDRL RESPECTIVELY BY WILCOXON’S RANK
SUM TEST WITH A SIGNIFICANCE LEVEL 5%. THE BEST VALUES ARE HIGHLIGHTED IN BOLD FACE.

Network Seed set size Degree CELF CI S2V-DQN Finder MA-IMmulti CMA-IM EDRL-IM

Polbooks

k=10 36.22(-) 26.84(-) 35.01(-) 36.22(-) 25.47(-) 35.69(-) 35.17(-) 37.06
k=20 47.56(-) 44.83(-) 46.36(-) 48.15(-) 46.20(-) 52.31(-) 51.92(-) 53.08
k=30 54.29(-) 59.80(-) 51.95(-) 57.78(-) 56.81(-) 66.14(∼) 57.68(-) 66.02
k=40 59.37(-) 71.50(-) 57.65(-) 70.90(-) 64.90(-) 78.66(-) –(-) 79.47
k=50 64.27(-) 80.08(-) 63.03(-) 78.50(-) 71.90(-) 89.07(-) –(-) 92.17

Sfi

k=10 21.06(-) 18.40(-) 18.06(-) 16.64(-) 20.25(-) 20.56(-) 21.26(-) 21.33
k=20 32.74(-) 29.25(-) 28.85(-) 28.19(-) 32.18(-) 31.30(-) 32.71(-) 33.22
k=30 42.78(-) 38.99(-) 38.38(-) 38.89(-) 41.80(-) 41.27(-) 42.86(-) 43.28
k=40 51.74(-) 48.89(-) 47.63(-) 49.21(-) 50.56(-) 50.98(-) 52.34(-) 52.91
k=50 60.61(-) 58.48(-) 57.04(-) 58.54(-) 59.74(-) 60.38(-) 61.47(-) 62.21

Jazz

k=10 107.2(-) 80.33(-) 115.2(-) 63.71(-) 57.28(-) 109.6(-) 107.9(-) 116.5
k=20 172.1(-) 134.5(-) 181.2(∼) 112.8(-) 82.91(-) 165.3(-) 162.6(-) 179.9
k=30 207.6(-) 170.0(-) 223.4(-) 146.6(-) 99.50(-) 211.0(-) 211.8(-) 227.1
k=40 230.3(-) 204.7(-) 249.2(-) 186.1(-) 115.3(-) 245.5(-) 251.0(-) 263.7
k=50 253.5(-) 238.7(-) 270.6(-) 222.5(-) 131.7(-) 269.1(-) –(-) 285.7

Filmtrust

k=10 35.28(-) 28.05(-) 32.60(-) 35.72(-) 36.65(-) 34.07(-) 39.32(-) 41.41
k=20 51.90(-) 47.75(-) 49.81(-) 48.13(-) 56.97(-) 48.43(-) 63.29(+) 62.50
k=30 71.02(-) 63.32(-) 65.02(-) 63.20(-) 75.41(-) 61.99(-) 83.93(+) 77.23
k=40 82.56(-) 76.79(-) 75.26(-) 69.29(-) 85.66(-) 75.12(-) 101.7(+) 90.93
k=50 91.08(-) 89.99(-) 84.45(-) 85.78(-) 97.66(-) 88.36(-) 117.5(+) 108.1

Email

k=10 131.3(-) 50.54(-) 131.8(-) 128.0(-) 21.61(-) 127.4(-) 134.2(∼) 134.5
k=20 211.3(-) 102.3(-) 209.6(-) 194.5(-) 42.52(-) 192.9(-) 220.0(+) 219.6
k=30 272.5(-) 147.9(-) 267.2(-) 273.7(-) 65.54(-) 244.1(-) 286.6(+) 283.1
k=40 320.9(-) 183.3(-) 313.2(-) 325.0(-) 82.91(-) 283.8(-) 340.0(+) 335.2
k=50 363.9(-) 220.7(-) 346.0(-) 300.0(-) 169.0(-) 319.4(-) 381.2(+) 375.0

Atc

k=10 34.42(-) 20.45(-) 32.98(-) 27.27(-) 33.41(-) 27.35(-) 34.27(-) 34.89
k=20 57.15(-) 38.67(-) 51.73(-) 43.22(-) 55.07(-) 41.73(-) 59.66(+) 59.38
k=30 77.11(-) 54.79(-) 72.27(-) 60.49(-) 73.89(-) 55.72(-) 80.14(+) 79.88
k=40 93.46(-) 70.45(-) 87.46(-) 75.57(-) 89.61(-) 69.13(-) 98.42(+) 97.50
k=50 106.5(-) 85.98(-) 102.0(-) 89.47(-) 106.1(-) 82.58(-) 114.9(+) 113.4

Power

k=10 20.57(-) 14.22(-) 18.35(-) 12.09(-) 14.67(-) 15.76(-) 20.11(-) 20.66
k=20 37.95(-) 27.94(-) 35.43(-) 23.84(-) 28.39(-) 28.32(-) 37.99(-) 38.22
k=30 54.68(-) 41.21(-) 50.36(-) 35.51(-) 41.37(-) 40.57(-) 54.69(-) 54.97
k=40 70.47(-) 54.25(-) 65.55(-) 47.89(-) 55.04(-) 52.66(-) 70.85(-) 70.99
k=50 85.82(-) 67.51(-) 79.56(-) 58.02(-) 68.54(-) 64.78(-) 86.69(∼) 86.72

Wiki

k=10 2,872(∼) 293.2(-) 2,872(∼) –(-) 230.8(-) 1,387(-) 2,812(-) 2,872
k=20 4,247(-) 559.5(-) 4,281(-) –(-) 329.4(-) 1,755(-) 4,371(+) 4,348
k=30 5,454(-) 764.5(-) 5,471(-) –(-) 593.7(-) 1,955(-) 5,528(-) 5,558
k=40 6,311(-) 874.7(-) 6,251(-) –(-) 697.5(-) 2,263(-) 6,060(-) 6,506
k=50 7,026(-) 1,017(-) 7,100(-) –(-) 1,039(-) 2,548(-) 6,112(-) 7,343

Gemo

k=10 132.3(-) 102.0(-) 139.4(-) –(-) 114.1(-) 80.17(-) 86.09(-) 140.7
k=20 188.8(-) 154.5(-) 200.5(∼) –(-) 143.7(-) 99.96(-) 149.8(-) 200.7
k=30 229.4(-) 193.8(-) 236.8(-) –(-) 179.9(-) 115.8(-) 205.8(-) 244.3
k=40 258.5(-) 228.1(-) 264.6(-) –(-) 195.9(-) 133.6(-) 252.2(-) 276.0
k=50 282.4(-) 253.3(-) 286.5(-) –(-) 227.1(-) 150.5(-) 285.8(-) 303.9

Pgp

k=10 166.5(-) 109.5(-) 171.8(-) –(-) 78.86(-) 91.08(-) 156.4(-) 173.6
k=20 259.5(-) 172.4(-) 264.7(-) –(-) 133.9(-) 110.1(-) 245.9(-) 269.2
k=30 332.7(-) 222.8(-) 345.5(-) –(-) 183.1(-) 127.9(-) 326.8(-) 349.3
k=40 398.9(-) 266.8(-) 403.7(-) –(-) 224.4(-) 140.7(-) 385.7(-) 416.0
k=50 448.3(-) 305.2(-) 463.1(-) –(-) 254.9(-) 156.0(-) 433.9(-) 470.4

best/all – 1/50 0/50 2/50 0/50 0/50 1/50 13/50 35/50
+/-/∼ – 0/49/1 0/50/0 0/47/3 0/50/0 0/50/0 0/49/1 13/35/2 –

problem in networks.
Table III also shows that the approximate greedy algorithms

(Degree, CELF and CI) have a competitive performance for
most networks, especially for the large-scale networks (Gemo
and Pgp). This is reasonable as compared with the benchmark
networks, the real-world networks show more heterogeneous
structure information. Moreover, most of the real networks
show the scale-free property of node degree, which enables to
maximally spread influence through a few of nodes with high
node degree.

The results in Table III present that with the increase of seed
set size, the performance of approximate greedy algorithms

(Degree, CELF and CI) and DRL algorithms (S2V-DQN
Finder) are degraded. This is because the solution search
space increases with the increase of the seed set size whereas
the greedy and DRL algorithms are lack of exploration.
The metaheuristic MA algorithms (MA-IMmulti, CMA-IM and
EDRL-IM) combine the EA and local searches, which enable
to facilitate exploration and exploitation, respectively. Note
that, MA-IMmulti and CMA-IM cannot work well for the large-
scale networks (Gemo and Pgp) due to their limited search
ability in the large-scale discrete solution search space.

To show the performance of EDRL-IM, we plot the vi-
sualization of the seed node set of the Polbooks and Sfi
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(a) Degree (b) CELF (c) CI (d) S2V-DQN

(e) Finder (f) MA-IMmulti (g) CMA-IM (h) EDRL-IM

Fig. 6. Visualization of the seed node sets with size 10 found by all algorithms on the Polbooks network. The seed nodes are marked in red color.

(a) Degree (b) CELF (c) CI (d) S2V-DQN

(e) Finder (f) MA-IMmulti (g) CMA-IM (h) EDRL-IM

Fig. 7. Visualization of the seed node sets with size 10 found by all algorithms on the Sfi network. The seed nodes are marked in red color.

network found by all algorithms in Figs. 6 and 7, respectively.
From Figs. 6 and 7, we can see that the seed sets selected
by the Degree and CI algorithms are concentrated on nodes
with high node degree. The seed sets selected by the CELF,

S2V-DQN, Finder and MA-IMmulti algorithms are relatively
scattered, and most of them are the ones with high node
degree. Therefore, Degree, CI, CELF, S2V-DQN, Finder and
MA-IMmulti easily get trapped into local optima. The seed
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(c) Wiki-20

Fig. 8. 2-hop influence spread range of EDRL-IM on the Polbook (k = 10), Email (k = 30) and Wiki (k = 20) networks varies with the number of
iterations.

nodes selected by the CMA-IM and EDRL-IM algorithms are
scattered, and contain some low-degree nodes that connect
different connected components. This enables CMA-IM and
EDRL-IM to find more influential seed nodes. The main
difference of the seed nodes found by the CMA-IM and
EDRL-IM is that the seed nodes found by CMA-IM are evenly
distributed over all communities. In this case, the influence
of nodes within the same community could be overlapped.
Therefore, EDRL-IM has a better performance than CMA-IM.

To investigate the convergence of EDRL-IM, Fig. 8 shows
the variation of F values with the number of iterations on
the Poolbooks, Email and Wiki networks. The results show
that the F values are increased with the increasing number
of iterations when ng ≤ 60, which validates the exploration
ability of EDRL-IM over the evolution. They also present that
EDRL-IM can converge to good solutions within 100 itera-
tions, which demonstrates the convergence and exploitation
ability of EDRL-IM in solving the IM problem.

VI. CONCLUSION

In this article, we have modeled the influence maximization
of complex networks as the continuous weight parameter
optimization of a deep Q network, and have proposed an
evolutionary deep reinforcement learning algorithm (called
EDRL-IM) for solving the modeled optimization problem.
In EDRL-IM, an evolutionary algorithm has been designed
to evolve simultaneously a population of DQNs, each of
which can make decisions for the selection of seed nodes
through a dynamic markov node selection strategy, while a
deep reinforcement learning algorithm has been proposed to
accelerate the evolution by using an SGD optimization strategy
and integrating all DQNs’ training information to optimize
the DQN. Experiments on both the GN and LFR benchmark
networks and ten real-world networks have shown the ad-
vantages of EDRL-IM over the state-of-the-art IM algorithms
for finding the influential seed node set, and have validated
the generalization of EDRL-IM for tackling different types of
networks.

This work was done under the IC influence propagation
model, which may be unsuitable certain real scenery such
as the influence spreading of social systems under the nov-
el coronavirus (COVID-19), Zika virus and other infectious

diseases. In this case, as part of our future work, we will
study the IM problem in complex networks under various
influence propagation models such as LT, TD, SIR, SEIR,
SIQR and SEIQR models, and will use our EDRL-IM solution
for tasks of infectious diseases such as disease prediction, tar-
get immunity, and analysis of epidemic prevention measures.
Moreover, we will study the parallelization of the proposed
EDRL-IM, aiming to solve the IM problem in the super-large
scale networks which have millions of nodes and billions of
edges. In addition, we will extend the proposed EDRL-IM for
solving the IM problem in multilayer, temporal, and dynamic
networks under with heterogeneous and dynamic influence
propagation probability. Finally, inspired by the works [52],
we will propose a multitasking evolutionary DRL for simul-
taneously solving multiple similar optimization problems in
complex networks.
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