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Abstract—The role of biomass resources to diminish the depen-
dency on fossil fuels is steadily increasing worldwide. More im-
portantly, governments set goals to boost the share of renewable
energy resources in the power sector to face up to global warming
issues. In this paper, a coalitional game model for the trading of
a Biomass Power Plant (BPP) paired with a concentrating solar
power facility and a wind park is proposed. In the proposed
coalitional trading architecture, the physical coupling between
biomass and concentrating solar power facilities is embedded,
while cost sources related to operation and maintenance of all
units as well as harvesting and transportation of forestry residue
are taken into account to represent a more pragmatic trading
approach. The suggested coalitional trading model is formulated
as a stochastic model with three sequential stages. Moreover,
game theory concepts, i.e., τ -value, nucleolus, and Shapley-
value, are exploited and compared for profit allocation to the
coalition members. A cost-benefit analysis is also conducted to
investigate the effect of cooperative and non-cooperative trading
models on the BPP’s investment feasibility. The results highlight
the lucrativeness of the proposed coalitional trading model and
remarkable reduction in the payback period of the BPP under
a cooperative game framework.

Index Terms—Biomass Power Plant (BPP), cooperative game,
cost-benefit analysis, electricity markets, profit allocation.

NOMENCLATURE

Abbreviations
BCS Biomass-Concentrating Solar.
BPP Biomass Power Plant.
IRR Internal Rate of Return.
NPV Net Present Value.
Sets and Indices
i Index of coalition members, i = 1, . . . , n.
T Set of time slots, indexed by t.
Ω Set of scenarios, indexed by ω and ω̆.
Parameters
cBP/cCS/cW Variable operation and maintenance costs of

biomass/ concentrated solar/ wind plant (C/MWh).
cH/cTr Harvesting/ transportation cost of forestry residue

(C/o.d.t).
GF

t,ω/G
W
t,ω Predicted output power of solar field/ wind park

(MW).
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o+
t,ω/o

−
t,ω Coefficient related to upward/ downward imbal-

ance.
K Daily available forestry residue (o.d.t).
P pb/PW Maximum generation limit of the powerblock/ wind

park (MW).
qΞ
0 Initial state of charge of the thermal energy storage

(MWh).
qSTU Amount of power needed to power-up the BCS

powerblock (MW).
Qb, Qb Upper/ lower bound of generated power by

biomass-fired boiler (MW).
Qpb, Qpb Upper/ lower bound of injected power to the

powerblock (MW).
QΞ, QΞ Maximum/ minimum state of charge of the thermal

energy storage (MWh).
Γ Discount rate (or rate of return).
∆ Coefficient related to restricting power sold to or

purchased from the adjustment market.
η1, η2 Conversion efficiency of powerblock/ biomass-fired

boiler.
λA
t,ω/λ

D
t,ω Price of adjustment/ day-ahead market (C/MWh).

µ Mean of the normal distribution (C/MWh).
πω Scenario probability.
$down/$up Ramping-down/ Ramping-up bound of the

powerblock (MW/hr).
σ Standard deviation of the normal distribution

(C/MWh).
ςch/ςdis Upper bound of charge/ discharge of the thermal

energy storage (MW).
χ Heating value of forestry residue (MWh/o.d.t).
zt Net cash flows (C).
Variables
kt,ω Amount of forestry residue fed into biomass-fired

boiler (o.d.t).
Mi(v) Utopia point of coalition member i (C).
pA,BC
t,ω Amount of power sold by BCS plant in adjustment

market (MW).
pA,W′

t,ω /pA,W′′

t,ω Amount of power sold/ purchased by wind plant in
adjustment market (MW).

pD,BC
t,ω /pD,W

t,ω Amount of power sold by BCS/ wind plant in day-
ahead market (MW).

ppb
t,ω Electric power output of the BCS powerblock

(MW).
pSch
t,ω Arranged electric power of the coalition (MW).
py,b
t,ω/p

y,f
t,ω/p

z
t,ωPortion of electric power produced by biomass-fired

boiler/ solar field/ thermal energy storage [MW].
qb
t,ω Generated power of the biomass-fired boiler (MW).
qpb
t,s Thermal power input to the powerblock (MW).
qΞ
t,ω State of charge of the thermal energy storage

(MWh).
qy,b
t,ω/q

y,f
t,ω/q

z
t,ω Amount of thermal power conveyed from biomass-

fired boiler/ solar field/ thermal energy storage to
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the BCS powerblock (MW).
qx,b
t,ω , q

x,f
t,ω Amount of thermal power conveyed from biomass-

fired boiler and solar field to the thermal energy
storage (MW).

Ri(v) Minimum right vector of coalition member i (C).
RMi(S) Remainder of coalition member i in coalition S

(C).
ui(v) Profit allocated to coalition member i (C).
V (S) Profit built via the alternation of coalition members

(C).
v(I)/v(S) Profit gained in grand coalition/ coalition S (C).
yi(v) Profit allocation imputation to coalition member i

(C).
αb
t /α

pb
t 1 if biomass-fired boiler/ powerblock is on, 0

otherwise.
βt 1 if the BCS powerblock starts-up at hour t, 0

otherwise.
γch
t /γ

dis
t 1 if thermal energy storage is in charge/ discharge

mode, 0 otherwise.
ε+t,ω/ε

−
t,ω Deviation of the coalition from its settled schedule

when it is operating long/ short (MW).
ε1
t,ω/ε

2
t,ω/ε

3
t,ω Revenue of the coalition from first-/ second-/ third-

stage of the decision framework (C).
ϑ(i) Profit gained through individual trading model.
ΦBP

t,ω/Φ
CS
t,ω Total cost of biomass/ concentrated solar plant (C).

I. INTRODUCTION

A. Motivation and Literature Survey

DURING the past decade, tremendous attention has been
paid to biomass, wind, and solar energy sources as proper

alternatives to fossil fuels for tackling global warming issues
[1]. In this context, the European Union set a goal to attain
more than 80% emission mitigation by 2050 compared to
1990 by concentrating on renewable energy sources [2]. To
this end, many fossil fuel-based electric power technologies
must be substituted with renewable power plants like Biomass
Power Plants (BPPs), concentrating solar power facilities, and
wind parks. With the growing emergence of these renewable
technologies in the electric power sector, these resources’
trading problem in electricity markets has been turned into
an underlying issue [3].

The trading problem for the aforementioned renewable
resources singly or jointly with other technologies has been
studied from different perspectives in previous works [4]–[18].
Concerning the wind parks’ trading problem, a joint day-ahead
energy and reserve trading model by taking into account the
confidence level of real-time reserve deployment for a wind
park was proposed in [4]. In [5], a risk-based decision-making
framework for optimal trading of a wind park founded on the
second-order stochastic dominance constraints was developed.
The day-ahead trading problem for a wind plant having energy
transactions with demand response providers was studied in
[6]. Efforts were made in [7], [8] to present propitious trading
models for concentrating solar power facilities. In both [7], [8],
the trading problem for a sole concentrating solar power facil-
ity was provided, while authors in [7] focused on the trading in
day-ahead energy, reserve, and regulation markets, but on the
other hand, the trading model proposed in [8] centered on the
day-ahead energy market. In contrast with the vast research
on the trading of wind parks and concentrating solar power
facilities, limited works emphasized the BPP’s trading problem

[9], [10]. In [9], a stochastic trading approach for a BPP aiming
to derive day-ahead and real-time participation strategies was
suggested. A bidding strategy structure for a combined heat
and power unit taking advantage of a biomass-fired boiler in
the day-ahead market was studied in [10].

Several trading models in the literature concentrated on
the coordinated trading of at least two electric power tech-
nologies jointly [11]–[18]. A look-ahead trading pattern for
wind and concentrating solar power facilities considering a
two-day bidding horizon was presented in [11]. In [12], wind
parks, responsive loads, and battery energy storage units were
considered as a single entity participating in day-ahead and
intraday markets. The trading behavior of a hybrid producer,
including renewable energy resources, responsive loads, and
compressed air energy storage, was discussed in [13]. In
[14], a multi-objective trading model was developed for a
BPP and a concentrating solar power facility in the day-
ahead and adjustment markets. In all models suggested in
[11]–[14], the lack of a profit-sharing mechanism for different
entities is seen. By contrast, some efforts were made to exploit
profit allocation mechanisms in the coordinated trading of
diverse energy resources [15]–[18]. Leveraging nucleolus and
Shapley-value approaches, the profit allocation for the joint
trading of wind and power-to-gas technologies was addressed
in [15]. A Nash bargaining theory for profit allocation between
wind and concentrating solar power facilities was proposed
in [16]. The profit allocation approach between demand-
side resources taking part in the energy and reserve markets
using the Aumann-Shapley method was discussed in [17]. In
[18], a profit-sharing scheme based on Owen solution (dual
profit division) was introduced for a group of wind parks
participating in the electricity markets jointly.

B. Research Gaps

In the literature, there is a direct deficiency or insufficient
information on the following issues:

1) A limited body of research has put the focus on the
trading problem of the BPPs. In [9] and [14], as few
works on this topic, all BPP’s cost sources (biofuel as
well as operation and maintenance cost) have been over-
looked, implying that those models could not represent
the BPP’s actual trading model. Moreover, both short-
term and long-term operation analyses of such renewable
resources demand proper modeling of all impactful cost
sources, which the current literature has failed to fill this
research gap.

2) The existing research [4]–[18] has neglected to provide
a cooperative trading model for a BPP along with a
concentrating solar facility and a wind park. It is utterly
unknown to each of the mentioned resources what the
added value of such cooperative trading is. Further, the
lucrativeness of such a coalitional trading model has not
been judged yet.

3) The majority of existing studies [4]–[14] have not put
forward profit allocation mechanisms in their trading
models, while those who succeed in doing so [15]–
[18] did not focus on presenting a comparative study
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TABLE I: Benefits of the proposed model over the frameworks given in the related literature.

Ref. System Involved Markets Cost Sources Profit Allocation Method Cost-Benefit Analysis
DA AD BAL PBP IRR NPV

[4] Wind X - X - - - - -
[5] Wind X - X - - - - -
[6] Wind+DR X - - - - - - -
[7] CSP X - X Operation cost of CSP - - - -
[8] CSP X - - - - - - -
[9] Solar+BPP X - X - - - - -

[10] CHP X - - Operation cost of CHP - - - -
[11] CSP+Wind X - X - - - - -
[12] CSP+Wind+CAES+DR X X X O&M cost of CAES - - - -
[13] Wind+ESS+DR X X X - - - - -
[14] BPP+CSP X X - Biofuel - - - -
[15] Wind+P2G X - X - Nucleolus+Shapley X - -
[16] CSP+Wind X - X - Nash bargaining - - -
[17] DSR X - - - Aumann-Shapley - - -
[18] Wind X X X - Owen solution - - -

This work CSP+BPP+Wind X X X Biofuel+ O&M cost of all resources τ -value+Nucleolus+Shapley X X X

Acronyms: AD-Adjustment; BAL-Balancing; BPP-Biomass Power Plant; CAES-Compressed Air Energy Storage; CHP-Combined Heat and Power;
CSP-Concentrating Solar Power; DA-Day-Ahead; DR-Demand Response; DSR-Demand Side Resources; ESS-Energy Storage System; IRR-Internal Rate of

Return; NPV-Net Present Value; O&M-Operation & Maintenance; PBP-Payback Period

on the well-documented profit allocation methods. Be-
sides, drawing a conclusion on the performance of those
well-documented profit allocation methods in electricity
market trading problems is a research gap.

4) Focusing on the ever-increasing role of BPPs worldwide,
the existing works have done no study on the investment
feasibility of BPPs concerning cooperative and non-
cooperative trading models. With this, the impact of
several underlying factors on the cost-benefit analysis
of BPPs is a knowledge gap.

C. Paper’s Contributions and Organization

Motivated by the points mentioned in I-B, this paper pro-
poses a novel coalitional trading model for a BPP, concentrat-
ing solar power facility, and a wind park in day-ahead and
adjustment markets wherein the physical coupling between
biomass and concentrating solar power facilities is established
to enhance the overall system’s flexibility. The proposed coali-
tional trading is built on a three-stage stochastic setting to enter
the contained uncertainties, i.e., market and source-generation
uncertainties. Furthermore, all cost sources associated with the
operation and maintenance of included resources (wind park,
biomass, and concentrating solar facilities) and biofuel are
accounted to accurately construct the intended trading model.
The surplus profit to each member of the proposed coali-
tional trading framework is designated by τ -value, nucleolus,
and Shapley-value techniques. At last, a cost-benefit analysis
focusing on payback period, Internal Rate of Return (IRR),
and Net Present Value (NPV) from the viewpoint of the BPP
is performed in light of rapidly evolving biomass generation
across the world. The benefits of the proposed model over
the frameworks given in the related literature [4]–[18] are
exhibited in Table I. The unique contributions of this work
to bridge the scientific gaps mentioned above are:

• Coalitional trading: An innovative coalitional trading
model for a BPP, a concentrated solar power facility,
and a wind park in day-ahead and adjustment markets is
presented. The literature survey reveals this work is the
first to propose such a coalitional trading model. There-
fore, for the first time in the literature, the added value
of such a coalitional trading model from the viewpoint
of all existing resources is explored.

• Cost modeling: The cost incurred by operation and main-
tenance of all contained resources and biofuel, including
harvesting and transportation of forestry residue, are
modeled in the proposed scheduling model. Conventional
models for trading in the electricity markets are flawed in
incorporating all these cost sources and thus presenting a
real-life trading model which is practical for both short-
term and long-term operation analyses.

• Profit allocation: The profit allocation to each member
of the suggested coalitional member is derived using τ -
value, nucleolus, and Shapley-value. This paper presents a
comparative study between these well-documented profit-
sharing mechanisms and therefore draws a practical con-
clusion in electricity market trading problems to fill the
existing research gap, as stated above.

• Cost-benefit analysis: Concentrating on the BPP, a cost-
benefit analysis is carried out to analyze the impact
of several underlying factors on the BPP’s investment
feasibility. The cost-benefit analysis performed in this
paper is the first in the literature, which takes into account
the payback period, IRR, and NPV.

The paper’s remainder is organized as follows. Problem de-
scription and formulation are presented in Sections II and III,
respectively. Game-based profit allocation methods and case
studies are given in Sections IV and V, respectively. At last,
Section VI presents the conclusions.
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II. PROBLEM DESCRIPTION

A. Market Model

This paper considers the optimal trading of the intended
coalition in the pool electricity market, which possesses differ-
ent trading venues, including day-ahead, adjustment, and real-
time balancing markets [19]. Motivated by the Spanish market,
the coalition takes part in day-ahead and adjustment trading
venues while covering its alteration from the settled schedule
in the real-time balancing market [20]. In order to take part in
the day-ahead market of day J, the coalition must submit its
energy selling pack to the pool at 10 o’clock in the morning of
day J-1 [20]. After the day-ahead market closure, the results
of this market are proclaimed. Next, the coalition participates
in the adjustment market, a trading venue that aids the supply
sources in adjusting their scheduling before the delivery time
in day J. The adjustment market closure is one hour before
midnight of day J-1 [20]. After the adjustment market closure,
the results of this market are announced. Finally, the last
trading venue is the real-time balancing market, which takes
place in day J , dealing with the deviations caused by the
non-dispatchable member of the coalition, i.e., wind park [20].
Given the real-time balancing market, the coalition encounters
two operating situations: short or long. If there is a generation
deficit between the settled schedule and the delivered energy in
the real-time operation, the coalition operates short; otherwise,
the long operating situation occurs. In the short situation,
the coalition needs to purchase the deficit energy at a price
higher than or equal to the day-ahead price. By contrast, the
coalition’s excess energy in the long situation is purchased at
a price lower than or equal to the day-ahead price [20]. To
sum up, the coalition’s optimal involvement in the discussed
trading venues follows three sequential stages, as displayed in
Fig. 1.

B. Model Assumptions

For clarification, the paramount model assumptions are
itemized below:

1) In this paper, a forestry BPP in accordance with several
BPPs operating in the Spanish electricity market is
considered. The forestry residue required for the BPP
is gathered by the forestry gathering and management
unit within 100 kilometers around the plant [21]. Note
that all wood residues are collected from forests certified
by Forest Stewardship Council. Accordingly, harvesting
and transportation costs of forestry residue constitute
the biofuel cost. Furthermore, since biofuel’s annual
capacity is finite, the BPP devotes a specified capacity
of forestry residue for daily operation [9], [22].

2) In order to address uncertain factors as well as capturing
the discussed market model, a three-stage stochastic ap-
proach is leveraged. All uncertain factors are described
by simulated scenarios applying normal distribution [8],
[12], [15], [23]:

f(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

(1)

Day J-1 Day J

Day-ahead 

market closure at 

period 10 a.m.

Adjustment 

market closure at 

period 11 p.m.

Real-time balancing Market

(delivery horizon)

1
st
 Stage 2

nd
 Stage 3

rd 
Stage

Fig. 1: The considered market model.

where x is the uncertain parameter, while σ and µ stand
for the standard deviation and mean of the distribution,
respectively. By fitting normal distribution to historical
data of the intended parameter, the desired number of
scenarios for the uncertain parameter can be generated.

3) The coalition’s trading in the considered market model
does not influence market’s results, implying that the
coalition is price-taker [20].

III. PROPOSED COALITIONAL TRADING FORMULATION

In this section, a mathematical representation for the in-
tended coalitional trading model to maximize the coalition’s
overall profit is presented. The schematic of the suggested
coalition is given in Fig. 3. As can be seen, a single Biomass-
Concentrating Solar (BCS) powerblock is embedded to convert
thermal energy jointly received from the biomass-fired boiler,
thermal energy storage, and solar field. The thermal energy
storage is placed between the biomass-fired boiler and solar
field to store energy from these units. The coalition manages
the output electric powers from the BCS powerblock and
wind park to optimize its involvement in the considered
trading venues constructively. Benefiting from the three-stage
stochastic setting, the objective function of the coalitional
trading model is formulated as follows:

Max
∑
ω∈Ω

πω
∑
t∈T

(
ε1
t,ω + ε2

t,ω + ε3
t,ω

)
(2)

where ε1
t,ω , ε2

t,ω , and ε3
t,ω denote the coalitions’ earning from

1st, 2nd, 3rd stages of the designed three-stage stochastic
setting, i.e., day-ahead, adjustment, and real-time balancing
markets, respectively. Three-stage stochastic setting holds the
following sequence of decisions [24]:

1) 1st stage decisions: Before the realization of the day-
ahead prices (before 10 a.m. of day J−1 in Fig. 1), the
coalition decides on its energy selling pack to the day-
ahead market and the commitment status of the biomass-
fired boiler, powerblock, and thermal energy storage.

2) 2nd stage decisions: After proclaiming the day-ahead
market results (before 11 p.m. of day J−1 in Fig. 1), the
coalition determines its involvement in the adjustment
market. At this stage, adjustment prices and source-
generation (solar field and wind park) powers are still
unknown to the coalition.

3) 3rd stage decision: After all uncertain parameters be-
came known to the coalition in the real-time balancing
market (delivery horizon in Fig. 1), the deviation of the
coalition from its settled schedule when it is operating
long/short is determined.

The coalition’s earning in the 1st trading venue (day-ahead
market) is expressed by (3), wherein the first and second terms
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BCS power block

Thermal storage

Biomass boilerForestry residue

Solar fieldSolar energy

Day-ahead market

Adjustment market

1st Stage

Wind park

2nd Stage

Real-time balancing 

market
3rd Stage

Coalitional Trading

Fig. 2: Schematic of the proposed coalitional trading model.

are respectively associated with the earnings of the wind park
and the BCS unit.

ε1
t,ω = λD

t,ωp
D,W
t,ω + λD

t,ωp
D,BC
t,ω ; ∀t ∈ T ,∀ω ∈ Ω (3)

The coalitions’ transactions in the 2nd trading venue (adjust-
ment market) are modeled by (4). In (4), the first term shows
the coalition’s income by presenting an energy selling pack,
whereas the second term represents the coalition’s expense
by presenting an energy purchasing pack to the 2nd trading
venue. It is worth noting that all kinds of supply sources
mostly just present energy selling packs to the day-ahead
market. By contrast, supply sources having intermittent power
plants offer both energy selling and purchasing packs to the
adjustment market to adjust to forecast errors [20]. The last
two terms in (4) are costs of BPP and concentrating solar
facility, respectively. The BPP’s cost arises from harvesting
and transportation of forestry residue and its operation and
maintenance, as expressed in (5). The cost of concentrating
solar facility originates from its operation and maintenance,
as defined in (6).

ε2
t,ω = λA

t,ω

(
pA,BC
t,ω + pA,W′

t,ω

)
− λA

t,ωp
A,W′′

t,ω − ΦBP
t,ω − ΦCS

t,ω;

∀t ∈ T ,∀ω ∈ Ω (4)

ΦBP
t,ω = bt,ωc

H + bt,ωc
Tr +

(
qy,b + qx,b

)
η1c

BP;

∀t ∈ T ,∀ω ∈ Ω (5)

ΦCS
t,ω =

(
qy,f + qx,f

)
η1c

CS; ∀t ∈ T ,∀ω ∈ Ω (6)

The coalitions’ earning in the 3rd trading venue (real-time
balancing market) is described by (7). In (7), the first two
terms show the coalition’s income and expense in long and
short operating situations, respectively. The last term in this
equation models the operation and maintenance cost of the
wind park.

ε3
t,ω = λD

t,ωo
+
t,ωε

+
t,ω − λD

t,ωo
−
t,ωε
−
t,ω −GW

t,ωc
W;∀t ∈ T ,∀ω ∈ Ω

(7)

The techno-economic constraints of the proposed coalitional
trading are described in the following subsections.

A. Biomass-Fired Boiler Constraints

The generated power of the biomass-fired boiler, which is
a function of forestry residue burnt in the boiler, is computed
by (8). The amount of forestry residue fed into the biomass-
fired boiler is finite and limited by the available daily capacity,
as modeled in (9). The biomass-fired boiler needs to work
in the rated operational range, hence, the lower and upper
bounds of biomass-fired boiler’s generated power are enforced
in (10), whereas Equation (11) ensures that it is equal to the
power conveyed to the thermal energy storage and the BCS
powerblock. Indeed, (11) is the thermal energy balance of the
biomass-fired boiler. The portion of electric power produced
by the biomass-fired boiler as a result of transferring thermal
energy to the BCS powerblock is quantified in (12).

qb
t,ω = η2χkt,ω; ∀t ∈ T ,∀ω ∈ Ω (8)

0 ≤
∑
t∈T

kb
t,ω −K ≤ 0; ∀ω ∈ Ω (9)

Qbαb
t ≤ qb

t,ω ≤ Qbαb
t ; ∀t ∈ T ,∀ω ∈ Ω (10)

qb
t,ω = qy,b

t,ω + qx,b
t,ω ; ∀t ∈ T ,∀ω ∈ Ω (11)

py,b
t,ω = η1q

y,b
t,ω ; ∀t ∈ T ,∀ω ∈ Ω (12)

B. Solar Field Constraints

The portion of electric power produced by the solar field on
account of transferring thermal energy to the BCS powerblock
is calculated in (13). Note that the output thermal energy of the
solar field is transferred to the BCS powerblock or the thermal
energy storage. Constraint (14) guarantees that the solar field’s
thermal energy is conveyed to the thermal energy storage or the
BCS powerblock, while the overall conveyed thermal energy
should be lower than the output thermal power of the solar
field.

py,f
t,ω = η1q

y,f
t,ω; ∀t ∈ T ,∀ω ∈ Ω (13)

0 ≤ qy,f
t,ω + qx,f

t,ω ≤ GF
t,ω; ∀t ∈ T ,∀ω ∈ Ω (14)

C. Thermal Energy Storage Constraints

The portion of electric power produced by the thermal
energy storage resulting from conveying thermal energy to
the BCS powerblock is computed in (15). The charge and
discharge processes of the thermal energy storage have to be
consistent with its rated operational range, thus, the upper
bounds of discharge and charge in the thermal energy stor-
age are enforced by (16) and (17), respectively. Constraint
(18) prohibits the thermal energy storage from being run in
discharge and charge modes simultaneously. In other words,
the thermal energy storage can only be operated in discharge
or charge modes at each period. Thermal energy storage is
only allowed to convey energy to the BCS powerblock when
the powerblock is online, as expressed in (19). It has to be
noted that conveying energy from thermal energy storage to an
offline BCS powerblock is impractical. The state of charge of
the thermal energy storage at t = 1 and the rest of the trading
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periods are modeled by (20) and (21), respectively. These two
constraints show the available energy at the thermal energy
storage at any period. Constraint (22) reflects that the initial
state of charge of the thermal energy storage should be equal
to its state of charge at the last trading period. This constraint
prevents trading problems from being affected by the initial
state of charge in the coming scheduling horizons (days).
Constraint (23) bounds the state of charge of the thermal
energy storage inside its upper and lower boundaries to be
run within its rated operational range.

pz
t,ω = η1q

z
t,ω; ∀t ∈ T ,∀ω ∈ Ω (15)

qz
t,ω ≤ ςdisγdis

t ; ∀t ∈ T ,∀ω ∈ Ω (16)

qx,b
t,ω ≤ ςchγch

t , q
x,f
t,ω ≤ ςchγch

t ; ∀t ∈ T ,∀ω ∈ Ω (17)

γch
t + γdis

t − 1 ≤ 0; ∀t ∈ T (18)

αpb
t − γdis

t ≤ 0; ∀t ∈ T (19)

qΞ
t,ω = qΞ

0 + qx,b
t,ω + qx,f

t,ω − qz
t,si; ∀t = 1,∀ω ∈ Ω (20)

qΞ
t,ω = qΞ

t−1,ω + qx,b
t,ω + qx,f

t,ω − qz
t,ω; ∀t ≥ 2,∀ω ∈ Ω (21)

qΞ
t=24,ω = qΞ

0 ; ∀t = 24,∀ω ∈ Ω (22)

QΞ ≤ qΞ
t,ω ≤ QΞ; ∀t ∈ T ,∀ω ∈ Ω (23)

D. BCS Powerblock Constraints

The power of the BCS powerblock is computed by (24).
Actually, this equation describes the power balance of the
BCS powerblock. The BCS powerblock’s output power should
not exceed designated operating limits (upper and lower
bounds), as defined in (25). Thermal power input to the BCS
powerblock, which is a function of its output electric power
and the thermal power needed to power-up the powerblock, is
defined in (26), while power-up status of the BCS powerblock
is imposed in (27). Constraint (28) reflects the lower and upper
bounds of the thermal power input to the BCS powerblock. In
fact, this constraint enforces the rated operating range of the
input thermal power of the BCS powerblock. Ramping-up and
ramping-down limits of the BCS powerblock are represented
by (29) and (30), respectively. These constraints prevent the
BCS powerblock from impractical ramping operations.

ppb
t,ω = pD,BC

t,ω + pA,BC
t,ω = py,b

t,ω + py,f
t,ω + pz

t,ω;∀t ∈ T ,∀ω ∈ Ω
(24)

0 ≤ ppb
t,ω ≤ P pb; ∀t ∈ T ,∀ω ∈ Ω (25)

qpb
t,ω − qSTUβt =

ppb
t,ω

η1
; ∀t ∈ T ,∀ω ∈ Ω (26)

βt = αpb
t − α

pb
t−1; ∀t ∈ T (27)

Qpbαpb
t ≤ q

pb
t,ω ≤ Qpbαpb

t ; ∀t ∈ T ,∀ω ∈ Ω (28)

ppb
t,ω − p

pb
t−1,ω ≤ $up; ∀t ∈ T ,∀ω ∈ Ω (29)

ppb
t−1,ω − p

pb
t,ω ≤ $down; ∀t ∈ T ,∀ω ∈ Ω (30)

E. Coalitional Trading Constraints

The power sold to or purchased from the adjustment market
by the coalition is restricted by (31) [12]. Note that coalition’s
trading in the adjustment market should be limited to prevent
influencing adjustment market results for a price-taker pro-
ducer [25]. The coalition’s deviation from its settled schedule
in the real-time balancing market while operating long or
short are modeled in (32)-(36). Equation (32) calculates the
overall coalition’s deviation from its settled schedule in the
real-time balancing market. The arranged electric power of
the coalition, which is the sum of the power sold to day-
ahead and adjustment trading venues minus power purchased
from the same venues, is quantified in (33). The coalition’s
deviation when it is operating short cannot be greater than
its maximum in-hand capacity, while the coalition’s deviation
when it is operating long cannot be greater than its operating
power, as defined in (34) and (35), respectively. Constraint
(35) limits the arranged electric power of the coalition within
its maximum in-hand capacity. The ascending constraint of
energy selling packs to the day-ahead trading venue is imposed
by (37)-(38) [12]. At last, limitations (39)-(41) guarantee the
nonanticipativity of transactions in day-ahead and adjustment
trading venues [12].

0 ≤ Υ ≤ ∆
(
P pb + PW

)
; ∀t ∈ T ,∀ω ∈ Ω,

Υ =
[
pA,W′′

t,ω , (pA,W′

t,ω + pA,BC
t,ω )

]
(31)

ε−t,ω − ε+t,ω = pSch
t,ω − p

pb
t,ω −GW

t,ω; ∀t ∈ T ,∀ω ∈ Ω (32)

pSch
t,ω = pD,W

t,ω + ppb
t,ω + pA,W′

t,ω − pA,W′′

t,ω ;∀t ∈ T ,∀ω ∈ Ω
(33)

0 ≤ ε−t,ω ≤ P pbαpbt + PW; ∀t ∈ T ,∀ω ∈ Ω (34)

0 ≤ ε+t,ω ≤ p
pb
t,ω +GW

t,ω; ∀t ∈ T ,∀ω ∈ Ω (35)

0 ≤ pSch
t,ω ≤ P pbαpbt + PW; ∀t ∈ T ,∀ω ∈ Ω (36)

pD,BC
t,ω ≥ pD,BC

t,ω̆ if λD
t,ω − λD

t,ω̆ ≥ 0;∀t ∈ T ,∀ω, ω̆ ∈ Ω (37)

pD,W
t,ω ≥ pD,W

t,ω̆ if λD
t,ω − λD

t,ω̆ ≥ 0;∀t ∈ T ,∀ω, ω̆ ∈ Ω (38)

pD,BC
t,ω = pD,BC

t,ω̆ if λD
t,ω − λD

t,ω̆ = 0;∀t ∈ T ,∀ω, ω̆ ∈ Ω (39)

pD,W
t,ω = pD,W

t,ω̆ if λD
t,ω − λD

t,ω̆ = 0;∀t ∈ T ,∀ω, ω̆ ∈ Ω (40)

pA,ξ
t,ω = pA,ξ

t,ω̆ if λD
t,ω − λD

t,ω̆ = 0; ∀t ∈ T ,∀ω, ω̆ ∈ Ω,

ξ = [BC,W′,W′′] (41)

IV. PROFIT ALLOCATION METHODS

In trading problems managed by a coalition, the underlying
concern is how much profit has to be allocated to each
coalition member. This gives birth to the idea of cooperative
game models. In this work, τ -value, nucleolus, and Shapley-
value are exploited and compared for fair profit sharing to
the coalition members, i.e., BPP, concentrating solar power
facility, and wind park, as three principal classes of cooperative
games. It is worth noting that these methods have not been
jointly considered before for trading problems; nevertheless,
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these are different approaches to distribute profit among coali-
tion members. They will thus be introduced in this section and
compared in the case study.

A. τ -Value Theorem

The concept of τ -value was first proposed by Tijs in 1981
[26]. The main characteristic of this theorem is that the core of
the τ -value is non-empty for balanced games. The τ -value is
founded on the utopia point M(v) and minimum right vector
R(v) of a specific game with characteristic function v. Based
on this method, the profit allocated to each member i of coali-
tion (ui(v)), namely, BPP, concentrating solar power facility,
and wind park, is obtained using the following equation.

ui(v) = Ri(v) + κ [Mi(v)−Ri(v)] (42)

where if Mi(v) = Ri(v), then κ = 0, if not:

κ =

(
n∑
i=1

Mi(v)−
n∑
i=1

Ri(v)

)−1(
v(I)−

n∑
i=1

Ri(v)

)
(43)

where v(I) refers to the profit gained by the proposed coali-
tional trading model, i.e., grand coalition I, where all coalition
members participate in the trading problem, and n is the total
number of coalition members. Note that Mi(v) and Ri(v) in
the preceding equations are obtained employing (44) and (45),
respectively.

Mi(v) = v(I)− v(I − {i}) (44)

Ri(v) = Max RMi(S) = Max

v(S)−
∑

ι∈S−{i}

Mι(v)


(45)

where RMi(S) is known as the remainder of coalition
member i in coalition S [26], and v(S) denotes the profit
gained while members in S cooperate in the trading.

B. Nucleolus Theorem

In 1969, Schmeidler introduced the nucleolus theorem [27].
Based on this theorem, the nucleolus is obtained at a point
where the dissatisfaction of all coalition members is mini-
mized. This theorem’s principal feature is that the nucleolus
is invariably an element of the core for balanced games.
To obtain the profit allocated to each coalition member, the
following linear optimization problem should be solved [28]:

Min ζ (46)

s.t. V (S) =
∑
i∈S1

yi (47)

V (S)−
∑
i∈S2

yi ≤ ζ (48)

where V (S) represents the profit built via the alternation of the
coalition members and yi refers to profit allocation imputation
to coalition member i. Further, in (47) and (48), S1 refers

to the grand coalition (I), and S2 constitutes all non-empty
subcoalitions of coalition members, i.e., BPP, concentrating
solar power facility, and wind park. Note that V (S) is defined
based on the following equation.

V (S) = v(S)−
∑
i∈S

ϑ(i) (49)

Eventually, by having the profit gained through the individual
(non-cooperative) trading models ϑ(i), the assigned profit to
the coalition members u(i) is computed using (50).

ui(v) = ϑ(i) + yi (50)

C. Shapley-value Theorem

The theorem of Shapley-value for cooperative games was
founded by Shapley in 1953 [29]. The apportioned profit to
the coalition members founded on the Shapley-Value u(i) is
computed by:

ui(v) =
∑
S:i/∈S

(n− |S|)!(|S| − 1)!

n!
[v(S)− v(S − {i})]

(51)

where n is the total number of members participating in the
coalitional trading, |S| is the number of members in coalition
S, and v(S) − v(S − {i}) indicates the incremental profit
that can be obtained by member i in coalition S. At last,
n! stands for the permutations that we can build from the
members in I, grand coalition. The in-depth descriptions
of these three cooperative games are given in [26]–[29] for
interested readers.

V. CASE STUDY

BPP and concentrating solar power facility with 50 MW
power capacities are coupled to build a 100 MW BCS unit. The
wind park capacity is 173.45 MW. The operation and main-
tenance costs of the BPP, concentrating solar power facility,
and wind park are 3.18 C/MWh, 0.92 C/MWh, and 16.26
C/MWh, respectively. 800 Oven-Dry Tons (o.d.t) forestry
residue with 4.067 MWh/ton heating value is considered as
the daily available biofuel for the BPP. The harvesting and
transportation costs of forestry residue are 36.28 C/o.d.t and
18.37 C/o.d.t, respectively [30]. The ramping-up/down bound
of the BCS powerblock is set to 40% of its hourly maximum
generation limit. Other data corresponding to the available
units are listed in Table II. The coefficient related to restricting
power sold to or purchased from the adjustment market ∆ is
set to 0.3 [12].

TABLE II: Other Parameters of the BCS powerblock, thermal
energy storage, and biomass-fired boiler

Parameter Value Parameter Value
Qb, Qb 0, 150 MW η1 89.5%

Qpb, Qpb 50, 250 MW η2 40%

QΞ, QΞ 120, 1200 MWh qSTU 10 MW

ςch, ςdis 150, 150 MW qΞ
0 600 MWh
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The developed trading problem holds a mixed-integer pro-
gramming nature, which was solved by the CPLEX optimiza-
tion engine in GAMS software. To demonstrate the merits of
the suggested framework, two case studies are considered:

1) Optimal trading in the next-day electricity market: We
quantify the lucrativeness of the proposed cooperative
trading model against the non-cooperative one for a
representative day.

2) Cost-benefit analysis of the BPP: We perform a cost-
benefit analysis for the BPP to evaluate the influence of
various factors on the BPP’s payback period.

A. Optimal Trading in the Next-Day Electricity Market

In this subsection, we appraise the lucrativeness of the coali-
tional trading model for a representative next-day electricity
market, March 13, 2019 [31]. In order to represent market
and source-generation uncertainties, a set of scenarios applying
normal distribution are generated. To secure tractability [20],
day-ahead price and source-generation scenarios are reduced
to eight scenarios individually, whereas adjustment and real-
time balancing prices are decreased to five apiece. The sce-
nario reduction process is handled via GAMS SCENRED2
[32]. It must be noticed that correlation among market sce-
narios, day-ahead, adjustment, and real-time balancing prices,
are taken into account [20]. Accordingly, the total number of
scenarios for the three-stage stochastic objective function (2)
is 8×5×5×8=1600.

For a coalitional trading problem with n member, 2n-1
trading problems corresponding to all subcoalitions of coali-
tion members have to be solved. Here, with n=3, we need
to solve seven different trading problems in proportion to
different combinations of coalition members, as shown in the
left column of Table III. It is worthwhile to note that the
optimization problem (2)-(41) conforms to coalition {Wind
park, BPP, Concentrating solar facility}, last row of Table III.
By contrast, other coalitions’ trading problems can be easily
derived by adjusting the inputs of the optimization problem
(2)-(41). To do so, the trading problem for each intended
coalition is obtained in a way that the parameters and variables
of the absent element(s) in the main optimization problem
(2)-(41) should be set to zero. For instance, to obtain the
optimization problem for the second row of Table III (i.e.,
wind park), we set the parameters and variables of the BPP
and concentrating solar facility in (2)-(41) to zero and solve
the optimization problem. It is worth mentioning that this
formulation derives from the fact that all entities are price-
taker. Table III reports the profit of different coalitions in
the next-day electricity market. As shown in Table III, the
BPP earns the lowest profit due to biofuel’s high cost. At the
same time, the wind park gets the highest profit on account
of its large capacity and wind availability at all hours. This
table manifests that the larger the coalition’s scale, the greater
the obtained profit. Another noteworthy point that can be
inferred is that increasing the scale of the coalition yields
greater added value. For example, coalitions {Wind park}
and {Concentrating solar facility} individually obtain C7,321
and C13,769, and accordingly, the overall profit of these

TABLE III: Profit of different coalitions.

Coalition Profit (C)
{Wind park} 61,809

{BPP} 7,321
{Concentrating solar facility} 13,769

{Wind park, BPP} 69,202
{Wind park, Concentrating solar facility} 75,808

{BPP, Concentrating solar facility} 24,536
{Wind park, BPP, Concentrating solar facility} 86,674

two coalitions would be C21,090. As Table III shows, the
integration of BPP and concentrating solar facility in the form
of coalition {BPP, Concentrating solar facility} earns C24,536,
which is C3,446 more than the individual coalitions (i.e.,
{Wind park} and {Concentrating solar facility}), revealing the
benefit of the suggested coalitional trading model.

Table IV provides a comparison between the allocated profit
to coalition members under cooperative and non-cooperative
trading schemes. As reported in this table, the proposed
cooperative trading framework yields C3,775 of surplus profit
compared to the non-cooperative one, revealing the lucra-
tiveness of the suggested trading framework. Table IV also
shows that the highest share of the total surplus profit has
been allocated to the concentrating solar facility, followed by
the BPP and wind park. The reason is that the concentrating
solar facility and BPP are the most influential members of the
coalition in terms of boosting the surplus profit. Among the
profit allocation methods, the highest share of the allocated
profit for the concentrating solar facility belongs to Shapley-
value (C1,847), followed by τ -value (C1,845) and nucleolus
(C1,838). On the flip side, the highest portion of the allocated
profit for the BPP goes to the nucleolus (C1,772), followed
by Shapley-value (C1,768) and τ -value (C1,766). Moreover,
from Table IV, it is seen that the wind park is the least
influential member of the coalition. However, by estimating
an average of C160 daily surplus profit for the wind park, the
average annual surplus profit compared to the non-cooperative
trading is expected to be C58,400. This provides the reason
for the wind park to remain in the coalition, thus highlighting
the stability of combining these complementary technologies
in future renewable-dominated power systems. Accordingly, as
one can see, the best-suited profit allocation method from the
viewpoint of each of the coalition members is different. For
instance, the nucleolus is the most desirable approach for the
wind park and the BPP as it yields the highest surplus profit,
while the Shapley-value is the best choice for the concentrating
solar facility. Nevertheless, the highest difference between
the surplus profit of different allocation methods considering
all coalition members is C9 (Shapley-value and nucleolus
for the concentrating solar facility), which is trivial. Thus,
the performance of various profit allocation methods can
be roughly considered similar, and thus by ignoring minor
differences, any of them can be leveraged by the coalition.
This is fully in line with the nature of convex games (the
proposed game in this paper is convex [33]). However, as
remarkably discussed in the related context, it is arduous to
draw a generic conclusion about profit allocation methods as
numerous parameters are involved.
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TABLE IV: Comparison between the allocated profit under cooperative and non-cooperative trading models.

Coalition Member
Non-cooperative

Cooperative Profit (C)

Profit (C)
τ -Value Nucleolus Shapley-Value

Profit Surplus Profit Profit Surplus Profit Profit Surplus Profit
Wind park 61,809 61,973 164 61,974 165 61,969 160

BPP 7,321 9,087 1,766 9,093 1,772 9,089 1,768

Concentrating solar facility 13,769 15,614 1,845 15,607 1,838 15,616 1,847

Total 82,899 86674 3,775 86674 3,775 86674 3,775
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Fig. 3: Traded Power in day-ahead and adjustment markets
under cooperative and non-cooperative trading models.

Fig. 4 depicts the traded power in the day-ahead and
adjustment markets under cooperative and non-cooperative
trading frameworks. It can be seen that by leveraging the
cooperative framework, the amount of power sold in the day-
ahead market is raised for most of the hours. Furthermore, it is
seen that both power sold to or purchased from the adjustment
market are increased by exploiting the cooperative trading. The
reason for greater involvement of the cooperative trading in
both day-ahead and adjustment trading venues could be the
higher the flexibility that the cooperative trading model offers
compared to the non-cooperative one. Specifically, the more
freedom the integration of all resources offers to the coalition
gives rise to a higher share of involvement in these two trading
venues. For instance, as seen in constraint (31), the higher the
coalition’s scale, the greater the capacity of involvement in
the adjustment trading venue, and thus the higher amount of
power sold to or purchased from the adjustment market under
the cooperative trading framework. Fig. 4 allows concluding
that the cooperative trading results in a higher contribution of
resources in trading venues, thereby earning a greater profit.

As stated earlier, the total number of scenarios for simula-
tions was considered 8×5×5×8=1600. In order to analyze the
reliability of the selected scenario set, we carry out a sensitivity
analysis on the proposed cooperative trading profit and the
computation time under different sizes of the final scenario
set, i.e., |Ω|= {324, 1600, 4900, 16900, 390625}. Note that
scenario sets with the size of 324, 1600, 4900, 16900, and
390625 are associated with scenario trees having the struc-

324
(6×3×3×6)

1600
(8×5×5×8)

4900
(10×7×7×10)

16900
(13×10×10×13)

390625
(254)

85000
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87053

86673 86696
86744
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Fig. 4: Sensitivity on the proposed cooperative trading profit
and computation time under different sizes of the final scenario
set.

ture of 6×3×3×6, 8×5×5×8, 10×7×7×10, 13×10×10×13,
and 25×25×25×25, respectively. The results are reported in
Fig. 4. For the sake of clarity, the format of computation time
in Fig. 4 is shown in the power of 10. As observed, the
computation time with scenario sets up to 16900 scenarios
is under 10 seconds, revealing the proposed architecture’s
high computational efficiency and tractability. However, all
these scenario sets (i.e., 324, 1600, 4900, 16900) results in
a distinct profit. For more reliable decision-making over the
size of the final scenario set, we construct an enormous
scenario tree (here, 25×25×25×25=390625) and treat the
resulting profit as the reference point. As seen in Fig. 4, the
cooperative trading problem in the enormous scenario tree
(390625 scenarios) gives a profit of C85450 while enduring
a high computational burden (5944.6 seconds). It should be
noted that enormous scenario trees are rarely leveraged by
the decision-makers as the final scenario tree due to their
high computational difficulty, still, they provide worthwhile
reference points. According to the results, the profit deviation
of tractable scenario sets (i.e., |Ω|= {324, 1600, 4900, 16900})
from the reference profit (C85450) is under 2%, indicating
the reliability of the leveraged architecture. Eventually, the
scenario tree 8×5×5×8 is considered as the final scenario set
in all simulations since it is highly tractable and has the lowest
profit deviation from the reference point.

B. Cost-benefit analysis for the BPP
Here, we conduct a cost-benefit analysis for the designated

BPP to assess the impact of cooperative and non-cooperative
trading models along with several other underlying factors on
the BPP’s payback period, IRR, and NPV. Note that the cost-
benefit analysis is performed based on the Spanish market data
in 2019 [31], and the investment cost of the BPP is considered
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to be 1577.3 C/kW [22]. One of the foremost factors to assess
the feasibility of a cost-benefit analysis is the payback period.
The payback period points out a timeframe that is required to
recoup an investment cost and is calculated using the following
equation:

Payback Period =
Total Investment Cost

Annualized Total Profit
(52)

Obviously, the shorter the payback period, the more en-
gaging the investment. Other prominent factors to judge the
feasibility of an investment scheme are NPV and IRR. NPV
represents the future value of positive cash flows (i.e., benefits)
and negative cash flows (i.e., costs) over the lifetime of an
investment discounted to the present. The NPV formula is as
follows:

NPV =
T∑
t=0

zt
(1 + Γ)t

(53)

where T is the total number of periods, zt refers to net cash
flows at period t, and Γ stands for the discount rate (or rate of
return). As the NPV definition implies, the greater the NPV,
the more attractive the investment. The IRR stands for the rate
of return (or discount rate) at which the NPV of forthcoming
cash flows is equivalent to the investment cost. It can also be
defined as the rate of return (or discount rate) at which the
overall present value of positive cash flows (i.e., benefits) is
equal to the overall present value of negative cash flows (i.e.,
costs). According to the definition, the IRR is a discount rate
at which the NPV is equal to zero, as shown below:

NPV =
T∑
t=0

zt
(1 + Γ)t

= 0 (54)

The obtained discount rate (Γ) from solving the above
equation is the IRR. Similar to the NPV, the higher the IRR,
the more desirable the investment. Note that Microsoft Excel is
utilized for NPV and IRR calculation in this paper. The details
of NPV and IRR are outside this paper’s scope, whereas they
have been thoroughly addressed in [34]. It is worth mentioning
that T is set to 25 years consistent with the economic life of
the BPP [22], and discount rates are input data chosen by
investors according to the existing situation.

As seen in Table IV, there is no significant difference be-
tween the allocated profit to the BPP under different allocation
methods in the cooperative approach. There would be thus no
considerable difference in BPP’s payback period as well as
its IRR and NPV under different profit allocation methods.
Fig. 5 illustrates the BPP’s payback period with different
daily available biofuel and various BPP’s capacities under
cooperative and non-cooperative trading models. As shown in
this figure, for all values of BPP’s capacity and daily available
biofuel, the cooperative trading model obtains a lower payback
period. It can also be seen that increasing the BPP’s capacity
will not lower the payback period on account of the very high
investment cost of the BPP. This might be why no BPP with
a capacity of more than 50 MW is operating in the Spanish
electricity market [31]. Moreover, the impact of daily available
biofuel is more significant for larger BPPs. As seen in Fig. 5,
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Fig. 5: BPP’s payback period with different daily available
biofuel and various BPP’s capacities.

no more than 1000 o.d.t daily biofuel affects the payback
period for a 50 MW BPP, while each of the considered daily
available biofuel (800, 1000, 1200, and 1400 o.d.t) influences
the payback period of an 87.5 MW BPP.

With the growing progress in the technology of harvesting
and transportation of forestry residues, the biofuel cost is
expected to decline [22]. Furthermore, the BPP location is
another fundamental factor influencing the biofuel cost since
the region where forestry residues are gathered and conveyed
to the power plant affects the biofuel cost [30]. In this regard,
a cost-benefit analysis for different biofuel costs is carried out
under 0%, 10%, 30%, and 50% reduction in the biofuel cost.
The BPP’s payback period and its IRR and NPV for different
biofuel costs are displayed in Figs. 6–8. First, it is observed
that cooperative trading is a more cost-effective approach when
the biofuel cost is high since the difference in the payback
periods under different trading schemes is more substantial.
This comes from the fact that the integrated operational
model of BPP and concentrating solar is a more economical
approach when the biofuel cost is high. In fact, integrated
energy systems can potentially downplay the role of high
fuel prices due to the greater flexibility offered to the entire
system. Therefore, in the case of experiencing a relatively high
biofuel cost, cooperative trading can act as an up-and-coming
alternative for investors to reduce the payback period. Second,
it can be observed that with 10%, 30%, and 50% reductions in
the biofuel cost, the payback is approximately decreased by
28%, 55%, and 67% under the cooperative framework, and
32%, 59%, and 71% under the non-cooperative framework.
The reason lies in the issue that the lower the biofuel cost,
the greater the profit, and thus the lower the payback period.
Therefore, more and new investments in the BPPs are seen
worldwide by decreasing the biofuel cost. Third, Fig. 7 allows
concluding that the lower the biofuel cost, the higher the IRR
and thus the more interesting the investment. Interestingly,
the IRR is an effective measure for investors to analyze the
profitability of an investment by comparing the obtained IRR
with the minimum acceptable rate of return (or discount rate).
If the obtained IRR is greater than the minimum acceptable
rate of return, the investment is profitable. For instance, if the
minimum acceptable rate of return for an investor is 14%, the
only profitable investment would be the cooperative trading
under the biofuel cost= 27.325 C/o.d.t, as shown in Fig. 7.
The NPV of the BPP under two different biofuel costs and for
three different discount rates (0%, 5%, and 10%) are shown in
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Fig. 6: BPP’s payback period under different biofuel costs.
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Fig. 7: The IRR of the BPP under different biofuel costs.

Fig. 8. As observed, the highest NPV is experienced for biofuel
cost= 27.325 C/o.d.t and the lowest discount rate (0%). Note
that the higher the NPV, the more attractive the investment.
The positive values of the NPV reveal that the investment
would be profitable, while the negative values indicate that the
investment would be loss-making. Thus, for only 10% discount
rate and biofuel cost= 38.255, the investment is unprofitable.
It has to be noted that T is set to 25 years consistent with the
economic life of the BPP [22], and discount rates are input
data chosen by investors according to the existing situation.

To further encourage investors to invest in BPPs, several in-
centive schemes might be offered by policymakers worldwide.
For instance, in Spain, the operation and maintenance costs are
covered by the contractor who built the power station with the
initial designated investment cost [35]. Therefore, the BPPs
are no longer responsible for their operation and maintenance
costs, which will greatly increase their earnings. To analyze
the impact of such an incentive scheme on the BPP’s payback
period, a cost-benefit analysis is fulfilled without considering
operation and maintenance costs. The BPP’s payback periods
with and without consideration of operation and maintenance
costs are reported in Table V. From Table V, it can be
noticed that the payback period is remarkably reduced without
considering operation and maintenance costs. It is found that
the provided incentive scheme in Spain can lessen the BPP’s
payback period by 7.04 and 5.12 years under non-cooperative
and cooperative trading models, respectively.

VI. CONCLUSION

In this paper, a novel coalitional trading framework with dif-
ferent profit allocation schemes was proposed for a BPP paired
with a concentrating solar facility and a wind park. To capture
the real-world phenomena of the designated trading problem,
all variable cost sources, including operation and maintenance
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Fig. 8: The NPV of the BPP under two different biofuel costs.

TABLE V: BPP’s payback period with and without consider-
ation of operation and maintenance costs.

Trading Model
Payback Period (years)

cBP= 3.18 C/MWh cBP= 0 C/MWh

Non-cooperative 24.77 17.73

Cooperative 20.32 15.20

of all units and harvesting and transportation of forestry
residue, were considered. The proposed trading problem was
formulated as a three-stage stochastic setting encompassing
diverse uncertain origins. Additionally, a cost-benefit analysis
was performed for the BPP to assess several primary factors
on the BPP’s payback period. From case studies, we can
draw the following conclusions: 1) The proposed cooperative
trading framework outperforms the non-cooperative trading
model by providing a 4.55% profit gain in a representative
day; 2) The performance of profit allocation methods in terms
of the profit allocation to each coalition member is relatively
similar; 3) Cooperative trading substantially outperforms the
non-cooperative one in the case of BPP’s payback period;
4) By increasing the BPP’s capacity, the payback period is
also starting to rise; 5) The impact of daily available forestry
residue on the BPP’s payback period is limited, especially for
smaller-scale power plants; 6) Concerning high biofuel costs,
the coalitional trading model is more cost-effective in terms
of the BPP’s payback period, while the impact of cooperative
trading in low biofuel costs is not significant compared to the
non-cooperative one; 7) The incentive scheme offered in Spain
could substantially reduce the BPP’s payback period.
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https://futurenviro.es/en/curtis-teixeiro-biomass-plant-a-coruna-galicia-
spain/ (accessed Jan. 25, 2021).

[22] IRENA - International Renewable Energy Agency, “Power Generation
Biomass for Wind Power,” Biomass Power Gener., no. Volume 1: Power
Sector, Issue 1/5, p. 274, 2012.

[23] J.-F. Toubeau, J. Bottieau, F. Vallée and Z. De Grève, ”Deep Learning-
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