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Abstract 

In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to 

assess the depth of anesthesia (DOA) under general anesthesia. The EEG variability (EEGV) was extracted as a fluctuation in 

time interval that occurs between two local maxima of EEG. Eight parameters related to EEGV were measured in time and 

frequency domains, and compared with state-of-the-art DOA estimation parameters, including sample entropy, permutation 

entropy, median frequency and spectral edge frequency of EEG. The area under the receiver-operator characteristics curve 

(AUC) and Pearson correlation coefficient were used to validate its performance on 56 patients. Our proposed EEGV-derived 

parameters yield significant difference for discriminating between awake and anesthesia stages at a significance level of 0.05, 

as well as improvement in AUC and correlation coefficient on average, which surpasses the conventional features of EEG in 

detection accuracy of unconscious state and tracking the level of consciousness. To sum up, EEGV analysis provides a new 

perspective in quantifying EEG and corresponding parameters are powerful and promising for monitoring DOA under clinical 

situations. 
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1. Introduction

General anesthesia is a fundamental component of modern

medicine for safely performing surgical procedures on 

patients under loss of consciousness and analgesia [1]. 

Anesthesiologists recommend the best anesthesia option 

based on surgical types, overall health, and individual 

preferences of patients to precisely control the depth of 

anesthesia (DOA). Unfortunately, it is a big challenge for 

anesthesiologists to achieve adequate drug concentration but 

also maintain appropriate anaesthetized states due to different 

mechanisms of anesthetic agents and interpatient variability. 

A combination of different agents is administered during the 

maintenance of anesthesia, which is also a complicated and 

cognitively intensive process especially in long-term 

surgeries. Several studies have reported that both inadequate 

and excessive anesthetic may lead to bad effect on patients’ 

safety [2-5]. Intraoperative awareness due to underdosing 

makes the patients suffer posttraumatic stress disorder [2, 3]. 

Overdosing can cause prolonged postoperative cognitive 

dysfunction and even increase risk of mortality [4, 5]. 

Therefore, there is subsequently a need to objectively and 

accurately monitor DOA for avoiding underdose and overdose 

and thus improving safety and quality of general anesthesia 

during surgery. 

Since anesthetic drugs mainly act on the central nervous 

system (CNS) [6], analyzing brain activity through 

electroencephalogram (EEG) has attracted great attention. 

Currently, EEG monitoring has been widely used as a 

surrogate parameter to quantify either the state of well-being 

of the CNS or the pharmacodynamic effect of an anesthetic 

drug [7]. Bispectral (BIS) index (Aspect Medical Systems, 

USA) [8] and M-Entropy (Datex-Ohmeda, Helsinki, Finland) 

[9] are the most commonly used commercial methods based

on EEG signal for assessment of DOA in hospitals. There are

also other EEG-derived parameters developed recently. The

frequency features of EEG including relative power, median

frequency, spectral edge, high-order spectral analysis and so

on have been proposed to assess DOA [10-12]. However,

these features are highly sensitive to noise and artifacts which

limits their application in clinical anesthesia. Furthermore, to

calculate the spectral features, the signals need to be

transformed from time to frequency domain by a discrete

Fourier transform, which is a linear method. This

transformation implicitly assumes that the dynamics of neural

activity are stationary and linear, but do not consider the non-

stationary and non-linear or chaotic behaviors in EEG signals

[13]. To overcome these problems, many nonlinear analysis

methods are proposed, for example, Lempel-Ziv complexity

[14], detrended fluctuation analysis [15-17], fractal-scaling

analysis [18], the Hurst exponent [19] and Poincaré plot [20],

etc. In particular, entropies are another proposed nonlinear

methods to quantify the regularity of EEG for estimating

DOA, such as approximate entropy (ApEn) [21], sample

entropy (SampEn) [22, 23] and permutation entropy (PeEn)

[24-26]. These nonlinear features represent different aspects

of EEG by providing additional information and have
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achieved good performance for monitoring DOA. Whereas 

ApEn is heavily dependent on the data length and lacks 

relative consistency. SampEn is an improved algorithm to 

overcome the limitation of ApEn, but it is highly sensitive to 

the signal quality [27]. Thereafter, Bandt and Pompe [28] 

proposed PeEn based on ordinal pattern analysis of the time 

series. It has shown to be more robust than ApEn and SampEn 

due to its less sensitivity to noise and artifacts. The main 

disadvantage of PeEn is the paradoxical increases at the 

duration of burst suppression under very deep anesthesia. 

Moreover, the selection of parameters in these nonlinear 

methods is a challenge task. Although the recommend values 

are given [14, 15, 24], optimal parameters for each measure 

may be not suitable for all EEG series due to interpatient 

variability. To sum up, many features in diverse domains have 

been proposed for DOA assessment over past years, but the 

reliability of these monitors has been questioned in some 

special cases [29, 30]. There is still a necessity to explore and 

develop more accurate and robust methods of anesthesia 

assessment. 

Variability analysis has been widely used in 

electrocardiogram (ECG) signals to measure the regulation of 

sympathetic and parasympathetic activities [31]. Heart rate 

variability (HRV) refers to the small fluctuations between 

consecutive heartbeat intervals. It contains a lot of information 

about the regulatory functions of the cardiac autonomic 

nervous system and cardiovascular system. Similarly, for the 

CNS, there exists a balance between excitation and inhibition 

in cortical activity, which can be affected by anesthetics 

through enhancing inhibitory synaptic events or depressing 

excitatory synaptic events [32, 33]. The increase in neuronal 

inhibition produces a decrease in cortical activity and in 

contrast excitation increases cortical activity. We expected the 

shifts in the balance modulated by anesthesia are accompanied 

by variations in EEG activity. 

The purpose of this study is to open a new perspective on 

EEG analysis for assessing DOA. We provide a new technique 

called EEG variability (EEGV) analysis to characterize the 

fluctuations of EEG. The quasi-period interval of general 

signals is first defined to transform raw EEG to EEGV time 

series. Unlike traditional methods, EEGV measures the time 

between each quasi-period interval instead of raw EEG 

inspired by HRV method which measures the time between 

each heartbeat of ECG. The analyses in both time and 

frequency domains are given. The capability of proposed 

EEGV derived parameters is compared with existing EEG-

based features referring to commercial BIS index and expert-

labeled data during general anesthesia. It is indicated that the 

proposed parameters of EEGV are suitable for characterizing 

the sophisticated brain activity under anesthesia and perform 

extremely better than state-of-the-art DOA estimation 

methods. 

2. Materials and methods 

2.1 Data collection 

In this study, a total of 56 patients with American Society 

of Anesthesiologists physical status I-III are enrolled for 

analysis, 24 are male (43%) and 32 are female (57%). Age 

(mean ± SD) is 48.7 ± 13.8 years old ranged from 22 to 79 

years, height was 162.1 ± 6.9 cm ranged from 147 to 177 cm, 

and weight was 64.1 ± 13.0 kg ranged from 39 to 103 kg. 

Seven patients are assigned to American Society of 

Anesthesiologists physical status I, 35 patients are assigned to 

II, and 14 patients are assigned to III. Written informed 

consents were obtained from all participants. All patients 

presenting surgery under general anesthesia were monitored 

by commercial Philip MP60 system. Before surgical 

operation, personal information such as age, weight, height, 

gender, operation type and medical history were recorded. 

During operation, physiological parameters like ECG, 

photoplethysmography, EEG, heart rate and SpO2 were 

monitored and collected during the whole surgery. The single-

channel EEG data were collected using the BIS module and 

BIS sensor (3 electrode) at the sampling rate of 125 Hz. The 

BIS index was calculated by BIS module at a sampling rate of 

0.2 Hz for DOA monitoring. After wiping the forehead with 

alcohol and drying, the electrodes are placed at the center of 

forehead, above an eye, against the patient's temple according 

to the instructions and configured to functions as the reference 

electrode, grounding electrode and EEG sensing electrode, 

respectively. The potential difference between reference and 

EEG sensing electrodes were measured as EEG signal. Each 

data recording started before anesthesia induction when 

patients were still in awake state and continued through to the 

end of the surgery. All EEG data are preprocessed before 

 
Figure 1. Example of the expert assessments of conscious level (EACL) from five anesthesiologists and their average. 
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subsequent analysis. The raw EEG signals are filtered by a 

bandpass filter within 0.5-47 Hz, which is the band considered 

by BIS algorithm [8]. A finite impulse response (FIR) filter 

instead of infinite impulse response (IIR) filter is applied to 

avoid disturbing the phase information in EEG. A bandstop 

FIR filter (59-61 Hz) is also used to remove 60 Hz power 

frequency interference. 

At the same time, the significant events and vital signs 

related to anesthesia state were carefully noted on operation 

records by two nurses during the whole surgery, including (1) 

personal information: name, age, gender, weight and height, 

(2) physiological signal: blood pressure, heart rate, body 

temperature, SpO2, end-tidal carbon dioxide and minimum 

alveolar concentration, (3) anesthetic events: the start and end 

time of induction, the agents for induction and their dose, 

adding and reversal of muscle relaxants, type of general 

anesthetics, intubation, extubation, start and end time of drugs 

administration for maintenance, (4) surgical events: the type 

of surgery, the start and end time of surgery procedure and the 

occurrence of specific noxious stimulus, (5) clinical signs of 

patients: body movement, eyes closed and unusual responses, 

(6) other information that was possibly related to anesthesia 

state [34]. During the anesthesia, the induction drugs were 

propofol and fentanyl. Muscle relaxants were also injected. 

Sevoflurane (29 patients), desflurane (16 patients) or propofol 

(11 patients) were used for maintenance of adequate 

anesthesia decided by anesthesiologists. After induction and 

loss of consciousness, face mask (8 patients), laryngeal mask 

(21 patients), endotracheal intubation (26 patients), or 

tracheostomy (1 patient) is used to control ventilation 

according to the type of operation and patients’ condition. 

Then the administration of inhalational agents (i.e. 

sevoflurane or desflurane) started to maintain general 

anesthesia by airway of laryngeal mask or endotracheal 

intubation. At the end of surgery, patients emerged from 

general anesthesia with the metabolism of drugs until to 

recovery of consciousness. 

To evaluate the performance, a gold standard called expert 

assessments of conscious level (EACL) [34], which annotates 

the state of patients, is also provided. Five experienced 

anesthesiologists from National Taiwan University Hospital 

were asked to individually plot the score of “the state of 

anesthetic depth”, called EACL, according to their clinical 

assessment on operation records of the events and vital signs, 

goals of therapy, and the BIS value. These selected 

anesthesiologists have worked for many years, so they are well 

trained and very skilled for administration and monitoring of 

general anesthesia. This course is performed after surgeries, 

so it is a simulation because of no contact with patients. The 

range of the score is settled from 0 to 100, which is the same 

as BIS index. A score of 100 indicates fully awake, and 0 

means no brain activity. All five involved anesthesiologists 

assessed loss of consciousness (LOC) by BIS value below 60 

which is associated with a low probability of explicit recall, 

and at the same time, patients were closed eyes and absence 

of voluntary movements. A score value ranged from 40 to 60 

is defined as the suitable anesthetic depth for surgery. The 

score was assigned a value of less than 40 if anesthesiologists 

considered a patient approached a too deep anesthetic state 

and the doses of medications should be decreased in real 

surgery procedure. Contrarily, if anesthesiologists considered 

the depth of anesthesia was inadequate for surgical stimulation,  

the score was assigned a value of greater than 60. By this way, 

a handmade continuous-time curve ranged from 0 to 100 was 

plotted on recording papers to describe the conscious level of 

patients. Then the curves were scanned and digitized at 0.2 Hz. 

The annotations were made independently by themselves 

based on their previous experiences. So there totally comes to 

five EACL labeling for each individual record. Due to the 

inter-expert disagreement, we implement a mean value of five 

EACL to create an improved gold standard and increase the 

level of accuracy. Figure 1 gives an example of EACL from 

five anesthesiologists for one patient and their corresponding 

average. 

2.2 EEG variability analysis 

Variability represents the fluctuation in the time intervals 

between periods of signal. For a given time series, to calculate 

the period interval, the general method is to detect the 

identification points of each period, such as zero-crossing 

points, maximum or minimum extreme points, or other special 

points that can be easily detected. In an ECG, R waves appear 

periodically and prominently, so the R-R intervals between 

successive R waves that detected in the QRS complex are used 

for HRV analysis. For EEGV analysis, inter-cycle interval 

(ICI) data is also required. However, EEG records the firing 

activity of neurons in cerebral cortex, there is no obvious point 

for cycle recognition to define EEGV analysis. When 

analyzing the characteristics of white noise signals based on 

empirical mode decomposition method, Wu et al. [35] 

determined the average period of intrinsic mode functions by 

calculating the number of peaks (i.e., local maximum). 

Therefore, for EEGV analysis, the time interval between two 

adjacent local maximum or minimum is reasonable to be 

accepted as a cycle period of neural circuits in the CNS 

regulation, which we define as quasi-period of 

neuromodulation.  
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The algorithm for detection of local extreme points is as 

follows: 

Given a discrete signal ( )x n  of length N, the derivative of 

( )x n  is approximated by the finite difference as: 

1

( ( ))
'( ) n n

d x n
x n x x

dn
−= = − , 2,3, ,n N=             (1) 

At 0n n= , if 0'( ) 0x n   and 0'( 1) 0x n +  , the local 

maximum at 0n  is detected. Otherwise, if 0'( ) 0x n  and 

0'( 1) 0x n +  , the local minimum is detected at 0n . Specially, 

when two or more successive points have the same value, only 

one extremum in the middle of the constant area is considered. 

For this situation, let 0

ln  and 0

rn  denote, respectively, the first 

and last indices of the constant area, then 0 0 0( ) / 2l rn n n = + 

, where •   indicates the greatest integer function. Similarly, 

if 0'( ) 0lx n   and 0'( ) 0rx n  , the local maximum at 0n  is 

detected. Otherwise, if 0'( ) 0lx n   and 0'( ) 0rx n  , the local 

minimum is detected at 0n . Repeat these procedures until 0n  

is the last point. An example of the local extrema detection is 

shown in Figure 2(a). 

Thereafter, the ICI (ms) at it can be extracted from EEG 

recording by time intervals between successive local extreme 

points in Figure 2 (a), as follows: 

i 1i iICI t t −= −                                     (2) 

where ti indicates the occurrence time of ith maximum or 

minimum. Correspondingly, we define the time interval 

between local maxima as maximum-to-maximum interval 

(MaxMI) and the time interval between local minima as 

minimum-to-minimum interval (MinMI) as shown in Figure 2 

(b). Accordingly, raw EEG signal is transformed to a series of 

EEGV data, defined as: 

1 2{ , , , }NEEGV ICI ICI ICI=                  (3) 

where N is the length of EEGV extracted from EEG segments. 

EEGV is analyzed by either using time-domain or 

frequency-domain methods. Definitions for time domain 

methods are as follows: 

(1) AVMM (ms): the average of all ICIs of EEGV series. 

1

1
AVMM N

i iICI
N

==                             (4) 

(2) pMMx (%): the ratio of the count of adjacent ICIs that 

differ by more than a threshold value of x ms (i.e. 

ICIxC  ) to the total count of all ICIs under 

consideration (i.e., totalC  ). 

pMMx ( / )ICIx totalC C=                           (5) 

(3) rMSSD (ms): the square root of the mean of the sum 

of the squares of differences between adjacent ICIs. 

21
1 1

1
rMSSD ( )

1

N
i i iICI ICI

N

−
= += −

−
            (6) 

(4) SDMM (ms): the standard deviation of all ICIs. 

 
(a) 

 
(b) 

Figure 2. Illustrative representation of inter-cycle interval (ICI) extraction from raw EEG signal. (a) Local extrema detection and ICI definition by the 
time interval between successive local extrema; (b) The time series of Maximum-to-maximum interval (MaxMI) and minimum-to-minimum interval 
(MinMI) between successive local maxima and minima, respectively. 
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2
1

1
SDMM ( )

1

N
i iICI AVMM

N
== −

−
         (7) 

(5) SDSD (ms): the standard deviation of successive 

differences between adjacent ICIs. Let 

1 , 1,2, , 1i i iICI ICI ICI i N+ = − = −  be the 

differences between adjacent ICIs. 

21
1

1
SDSD ( )

2

N
i iICI ICI

N

−
==  −

−
         (8) 

where 1
1

1

1

N
i iICI ICI

N

−
= = 

−
. 

(6) SDAMM (ms): the standard deviation of average ICIs 

calculated over short time segments divided from raw 

signal. There will be M divided segments in which 

1 2, , , Mn n n  number of ICIs are extracted, denoted 

by kICI , 1,2, ,k M= . 

2
1

1
SDAMM ( )

1

k
kM

k ICI ICI
M

== −
−

         (9) 

where 1

1
knk k

j j

k

ICI ICI
n

==   and 1

1k
kM

kICI ICI
M

==  . 

(7) ASDMM (ms): the average of the standard deviation 

of ICIs calculated over short time segments divided 

from raw signal. 

1

1
ASDMM M

k kSD
M

==                           (10) 

where 
2

1k

1
SD ( )

1
kn k k

j j

k

ICI ICI
n

== −
−

. 

The frequency domain methods estimate the distribution of 

absolute or relative power in different frequency bands. In this 

context, total power (TP), median frequency (MF) and spectral 

edge frequency 95% (SEF) are used to reflect the overall 

variance, which are defined as follows: 

(1) TP: the total power of ICIs within the whole frequency 

band. 

(2) MF: the frequency at which the total power is 

separated into two equal 50% parts. 

(3) SEF: the frequency at which 95% of the band power 

is presented. 

The traditionally commonly used time-frequency 

transforms utilize a discrete Fourier transform, which often 

assumes evenly spaced data points in the time series. 

Generally, the ECG and EEG signals are sampled at a fixed 

sampling rate, thus they are evenly spaced with time. HRV is 

derived from R-R intervals (RRIs) of an ECG data by 

detecting R waves. EEGV is derived from MaxMIs or MinMIs 

of an EEG data by detecting local extrema. Because of the 

variation of heart rate or intervals between local extreme 

points, the RRI series in ECG, MaxMI or MinMI series in 

EEG is not uniformly spaced with time. It can be seen in 

Figure 2(a), the occurrence times (i.e., t1, t2, …, ti, ti+1) of local 

maxima are unequally spaced, and in Figure 2(b), the space in 

time (x-axis) between two adjacent MaxMI points is not equal. 

So HRV and EEGV can be seen as a series of unevenly spaced 

samples. Although interpolation and resampling can be used 

to obtain a regularly sampled time series, it is equivalent to a 

nonlinear low-pass filter, which changes the frequency 

components of the data and causes attenuation of high 

frequency. In order to overcome this problem, Lomb-Scargle 

(LS) periodogram method is introduced for characterizing 

periodicity in EEGV. For a given time series (ti, yi) with N 

observations, where i = 1, 2, 3, …, N, the LS periodogram as 

a function of the frequency f is defined as: 
2

1

2
2

1

2

1

2

1

( ) cos(2 ( ))
1

( )
2 cos (2 ( ))

( )sin(2 ( ))

sin (2 ( ))

N

i i
i

LS N

i
i

N

i i
i

N

i
i

y y f t

P f

f t

y y f t

f t

 

  

 

 

=

=

=

=

  − −    
= +

 −


 − −    

−
        (11) 

where 
1

1 N

i
i

y y
N =

=   and 
2

2

1

1

1

N

i

yyiN


=

 = −  −
 are the mean 

and variance of the time series, respectively. The parameter τ 

is calculated by: 

1 1

tan(4 ) sin(4 ) cos(4 )
N N

i i
i i

f ft ft   
= =

=         (12) 

Among the above parameters, SDAMM and ASDMM 

reflect longer-term variability and are suitable for a long 

recording, for example, longer than 24 h. For short-term 

recording less than 15 minutes, although it can be calculated, 

the results would not be meaningful. AVMM, pMMx, 

rMSSD, SDMM, SDSD, TP, MF and SEF measured from 

short-term recordings of a few seconds reflect shorter-term 

trends of EEGV. In general, a fixed-size sliding window is 

used to analyze the EEG for real-time monitoring. It is a short-

term data for each calculation. Therefore, AVMM, pMMx, 

rMSSD, SDMM, SDSD, TP, MF and SEF are applied for real-

time anesthesia assessment. 

2.3 Statistical analysis 

Statistical analyses are performed to evaluate the proposed 

EEGV analysis for DOA measurement. The student’s t-tests 

is used to determine the statistical significance of the 

difference between different anesthetic levels. Kruskal-Wallis 

test are used for testing statistically significant differences 

between multiple groups. All tests are two tailed with a 

specified statistical significance level p < 0.05. The 

Bonferroni correction is used for multiple statistical tests by 

multiplying the raw p-values by the number of tests. The 

receiver operating characteristic (ROC) analysis and area 

under the receiver operating characteristic curve (AUC) are  
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3. Results 

 
(a)                                                                                                           (b)  

 
(c)                                                                                                             (d) 

Figure 3. Example of how EEGV amplitude and frequency content change related to BIS during the whole general anesthesia. The scatter plots 

(a) and (b) show the time interval derived from the local maximum-to-maximum interval (MaxMI) and minimum-to-minimum interval (MinMI). The 

diagrams (c) and (d) show the spectrogram corresponding to (a) and (b), respectively, and the lower and upper black curves are the median and 

the spectral edge frequencies. The vertical black dot lines, from left to right, show the points of loss of consciousness (LOC) and recovery of 

consciousness (ROC). 

 
(a) 

 

(b)      (c)      (d) 
Figure 4. Probability histogram of the local maximum-to-maximum interval (MaxMI) and minimum-to-minimum interval (MinMI) from the patient in 
figure 3 during: (a) the whole general anesthesia; (b) pre-operation; (c) induction and maintenance, and (d) emergence. 

 
Figure 5. The increments in successive local maximum-to-maximum interval (MaxMI) recording in a subject during general anesthesia. The 
increment is calculated by subtracting the value of previous data from the current one in MaxMI series. The vertical black dot lines, from left to 
right, show the points of loss of consciousness (LOC) and recovery of consciousness (ROC). 
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used for assessing the discrimination performance. To 

further assess its accuracy in tracking the level of 

consciousness, the correlation with EACL and BIS is assessed 

by Pearson correlation coefficient. All statistical data are 

presented as mean ± SD. 

3.1 Time and frequency analysis of EEGV 

The whole surgical procedure is generally divided into 

three periods: pre-operation, induction and maintenance, and 

emergence, defined as stage1 (S1) to stage3 (S3) [36]. Before 

induction, patients have a normal and active EEG. Then 

administration of a small dose of drugs induces a state of 

sedation, and with the dose slowly increasing, patients lose 

consciousness which will be maintained by a combination of 

anesthetic agents during the period of anesthesia. Emergence 

is the recovery from general anesthesia until to a fully awake 

state. Figure 3 presents an example of EEGV changes related 

to BIS during the whole general anesthesia. The spectrogram 

is calculated using a Hanning window of length 30 s with an 

overlap of 5 s points. With loss of consciousness under 

induction and maintenance of adequate general anesthesia, 

EEGV amplitude increases, and then decreases with recovery 

of consciousness during emergence from general anesthesia. 

The alterations in frequency content of the EEGV are also 

related to the anesthetic drug effects. Awake and emergence 

tends to cause the appearance of patterns at higher frequencies. 

On the contrary, the lower frequency patterns dominated 

EEGV with increasing depth of anesthesia. It also can be noted 

that the changes of MaxMI are almost identical to that of 

MinMI in both amplitude and frequency during general 

anesthesia. Furthermore, the probability histogram of EEGV 

amplitudes during different stages are shown in Figure 4. The 

MaxMI and MinMI have nearly the same distribution no 

matter on the whole general anesthesia (Figure 4(a)) or three 

 
 

Figure 6. The pMMx distribution with increments between successive 
time intervals in 56 patients during different stages. The asterisk (*) 
and dagger (†) indicate significant difference of pMMx during stage 2 
(S2) compared with that during stage 1 (S1) and stage 3 (S3), 
respectively. 

 
Figure 7. The sampling rate dependence of measured inter-cycle interval (ICI) by maximum-to-maximum interval (a) and their errors (b) from 
simulated sine functions with different frequencies and sampled at different frequencies. The asterisk (*) indicates significant difference between 
groups, while ns indicates no significant difference. Fs means sampling rate and f is the frequency of sine function. 

Table 1. The Pearson’s correlation coefficients between indices 

calculated from 1000 Hz EEG signals and those from 64 Hz, 125 

Hz, 250 Hz or 500 Hz signals. 

 64 Hz 125 Hz 250 Hz 500 Hz 

AVMM 0.83±0.11 0.99±0.01 1.00±0.00 1.00±0.00 

pMM50 0.92±0.07 0.99±0.00 1.00±0.00 1.00±0.00 

rMSSD 0.58±0.28 0.95±0.09 0.99±0.00 1.00±0.00 

SDMM 0.55±0.29 0.96±0.07 1.00±0.00 1.00±0.00 

SDSD 0.58±0.28 0.95±0.09 0.99±0.00 1.00±0.00 

TP 0.76±0.12 0.92±0.05 0.99±0.00 1.00±0.00 

MF 0.62±0.19 0.88±0.08 0.98±0.01 1.00±0.00 

SEF 0.84±0.12 0.99±0.01 1.00±0.00 1.00±0.00 

± indicates standard deviation. 
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different stages (Figure 4(b)-(d)). In view of this, we will only 

focus on MaxMI for EEGV analysis in subsequent sections. 

The changes between successive MaxMIs occur frequently 

but irregularly as shown in Figure 5. Increments as the 

differences between adjacent elements in a MaxMI series are 

calculated by subtracting the value of immediate previous 

element from the current one. If the current data is greater than 

its previous data then the increment is positive (> 0), while if 

the current data is less than its previous, the increment is 

negative (< 0). Both positive and negative increments, which 

are almost symmetric with respect to zero, are generated in 

MaxMIs. The increments during awake show a much 

smoother trend with only smaller amplitudes, while they have 

a wider range with both smaller and larger amplitudes during 

induction and maintenance. The incidence of larger changes 

in adjacent MaxMIs is measured by pMMx defined by the 

fraction of MaxMIs changes greater than a given threshold x 

from the preceding interval. We summarized the results by the 

proportion of changes exceeding different thresholds. Figure 

6 shows the mean and standard deviation of pMMx 

distribution in 56 patients during different stages. The 

proportion of larger differences during unconsciousness is 

significantly higher than the awake and recovery values. The 

difference of pMMx during S2 compared with that during S1 

and S3 tends to be greater at the thresholds of 30, 40 and 50 

ms. These levels all clearly separate unconsciousness from 

consciousness state. The threshold value of 50 ms (i.e., 

pMM50) is selected to measure larger changes in successive 

MaxMI for EEGV analysis. 

3.2 Stability under different sampling rates 

As in HRV analysis, the sampling rate directly affects the 

accuracy of R wave detection, which results in error in 

obtaining HRV parameters. Although this error can be 

decreased by increasing the sampling rate, an acceptable 

minimal sampling frequency is a better choice limited by 

storage space, calculation time, transmission bandwidth and 

so on. Theoretically, all the information can be captured at a 

sampling rate greater than twice the upper frequency 

according to Nyquist-Shannon sampling theorem. Similarly, 

EEGV analysis are highly dependent on the accuracy in 

detecting locations of local extrema. 

To confirm the effect of different sampling rate on the 

accuracy in detection of local extrema, simulations using sine 

functions of different frequencies (i.e., 5 Hz, 10 Hz, 20 Hz and 

40 Hz) under four sampling rates (i.e., 64 Hz, 125 Hz, 250 Hz 

and 500 Hz) are performed. The time length of the generated 

sine waves is 30 s. The means and standard deviation of ICIs 

extracted by MaxMI from the sine waves are shown in figure 

7 (a), and the absolute errors between the measured ICI and 

theoretical value (i.e. period of sine function) are also 

calculated as shown in Figure 7 (b). The results indicate that 

there is no statistically significant difference between groups 

of 5 Hz, 10 Hz and 20 Hz under different conditions of 

 

 
Figure 8. The box plots related to the distribution of AVMM, pMM50, rMSSD, SDMM, SDSD, TP, MF, SEF of EEGV (blue box) and SampEn, 
PeEn, MF, SEF of EEG (green box) corresponding to stage 1 (S1) to stage 3 (S3) from 56 patients. The significant difference giving p < 0.05 by 
Bonferroni correction is marked with asterisk (*). 
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sampling rates, the mean ICIs are nearly equal to the 

theoretical values. In special, significant difference is 

observed among groups of 40 Hz, but no significant difference 

is observed when removing the group sampled at 64 Hz. 

Furthermore, errors in ICI measures are related to sampling 

frequency and is on a downward trend with increase of 

sampling rate. The error is small if Nyquist-Shannon sampling 

theorem is satisfied, while sampling at 64 Hz on 40 Hz signal 

causes an unaccepted error. 

To further investigate the stability of proposed EEGV 

indices with different sampling rates, the original EEG signals 

sampled at 125 Hz are resampled to 64 Hz, 250 Hz, 500 Hz 

and 1000 Hz to simulate the recording at different sampling 

rate. EEGV indices derived from data sampled at 64 Hz, 125 

Hz, 250 Hz, 500 Hz and 1000 Hz are calculated. An 

overlapping sliding window with a fixed size 30 s and a step 

5 s is used on EEG recordings. The indices calculated from 

1000 Hz signals are considered as the reference, then Pearson 

correlation coefficients are calculated between the reference 

and the corresponding indices derived from the variable 

sampling frequencies. The results are presented in Table 1. 

Sampling at 125 Hz, 250 Hz or 500 Hz results in excellent 

correlation and no significant difference, while the decrease is 

significant at 64 Hz. For this subject, the sampling rate as low 

as 125 Hz is adequate, but a lower sampling rate (i.e., 64 Hz) 

may decline the accuracy in calculation of EEGV indices. 

3.3 Determination of different stages 

Both EEG and EEGV patterns during awake, induction and 

maintenance, and emergence of general anesthesia are 

generally different. EEG frequency becomes slower and EEG 

amplitude becomes larger with increase of anesthetic 

concentration until the emergence of burst and suppression 

pattern. In this point of view EEGV amplitude and dispersion 

were expected to become larger with increase of anesthetic 

concentration. Whereas the frequency would be expected to 

become smaller with increase of anesthetic concentration. The 

AVMM, pMM50, rMSSD, SDMM, SDSD, TP, MF, SEF of 

EEGV and SampEn, PeEn, MF and SEF of EEG segments 

corresponding to S1 to S3 are calculated for each recording. 

SampEn with m = 2, r = 0.2 × standard deviation and PeEn 

with m = 6, τ = 1 are illustrated in previous studies [7, 29, 37]. 

The box plots related to the distribution of proposed indexes 

from 56 patients are shown in Figure 8. Changes in AVMM, 

pMM50, rMSSD, SDMM and SDSD are similar. The AVMM 

significantly increases from S1 to S2 with induction and loss 

of consciousness, then significantly decreases during recovery 

from general anesthesia. The TP, MF, SEF of EEGV and 

PeEn, SEF of EEG inversely change during different periods 

of anesthesia. Induction and maintenance of anesthesia 

significantly decreases TP, and there is a significant increase 

during emergence. SampEn and MF of EEG cannot correctly 

separate each state from S1 to S3. Generally, within a short 

period of time during emergence from general anesthesia, 

patients gradually regain spontaneous activities and 

consciousness until to sufficient recovery. It is noted that the 

EEGV measures AVMM and pMM50 significantly 

differentiate S1 from S3 in spite of small difference between 

these two states. Therefore, they have high resolution to 

represent consciousness level of patients. 

3.4 Discrimination of awake and unconscious 

To illustrate the discrimination performance between 

consciousness and unconscious conditions, ROC analysis is 

used and corresponding AUC is calculated. The performance 

of proposed method is compared with SampEn, PeEn, MF and 

SEF of EEG. The gold standard EACL and commercial BIS 

index are used to label the states of awake and unconscious 

states. Generally, the BIS index from 40 to 60 indicates an 

appropriate anesthesia level to ensure a low probability of 

intraoperative awareness. The value of 60 signifies a threshold 

for distinguishing consciousness and unconscious. The values 

of EACL and BIS lower than 60 indicate the unconscious 

state, and higher than 60 indicate consciousness. Figure 9 

Table 2. The statistical results of AUC of ROCs from 56 patients for 
distinguishing the consciousness and unconscious labeled by EACL 
and BIS index. 

Index vs. EACL vs. BIS 

EEGV 

AVMM 0.90 ± 0.11*†⁑‡ 0.91 ± 0.10*†⁑‡ 

pMM50 0.89 ± 0.12*†⁑‡ 0.87 ± 0.11*⁑‡ 

rMSSD 0.87 ± 0.12*†⁑‡ 0.88 ± 0.11*†⁑‡ 

SDMM 0.87 ± 0.12*†⁑‡ 0.89 ± 0.11*†⁑‡ 

SDSD 0.86 ± 0.12*†⁑‡ 0.88 ± 0.11*†⁑‡ 
TP 0.90 ± 0.11*†⁑‡ 0.89 ± 0.10*†⁑‡ 

MF 0.90 ± 0.11*†⁑‡ 0.90 ± 0.10*†⁑‡ 

SEF 0.90 ± 0.11*†⁑‡ 0.91 ± 0.10*†⁑‡ 

EEG 

SampEn 0.49 ± 0.19 0.57 ± 0.19 

PeEn 0.81 ± 0.16 0.85 ± 0.14 
MF 0.37 ± 0.16 0.47 ± 0.19 

SEF 0.66 ± 0.17 0.71 ± 0.17 

The asterisk (*), dagger (†), double asterisk (⁑) and double dagger (‡) 
indicate significant difference compared with SampEn, PeEn, MF and 
SEF of EEG, respectively. ± indicates standard deviation. 
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shows a case of ROC analysis for EEGV and EEG measures 

to classify consciousness and unconscious states referring to 

EACL. The statistical results for AUC of AVMM, pMM50, 

rMSSD, SDMM, SDSD, TP, MF, SEF of EEGV and SampEn, 

PeEn, MF, SEF of EEG from 56 patients are shown in table 2. 

The EEGV derived parameters yield a significant higher AUC 

in detecting two different states. For instance, AVMM (0.90 ± 

0.11) of our proposed method far surpass SampEn (0.49 ± 

0.19), PeEn (0.81 ± 0.16), MF (0.37 ± 0.16) and SEF (0.66 ± 

0.17) of traditional methods. It is demonstrated that EEGV 

analysis achieves a better result in all terms compared to 

existing methods. 

3.5 Monitoring the consciousness level 

Figure 10 shows the changes of EEG oscillations and 

EEGV indexes during a general anesthesia. A spectrogram is 

presented to indicate the changes in frequency content of the 

EEG as shown in Figure 10 (a). The colours clearly show the 

alterations in EEG spectral power. The beta (13-30 Hz) 

rhythms decrease with the loss of consciousness, in contrast, 

the slow oscillations including alpha (8-12 Hz) and delta (<4 

Hz) activity increase. All EEGV indexes can track the changes 

in consciousness level with increasing anesthetic drug effect 

as shown in Figure 10 (b). AVMM, pMM50, rMSSD SDMM 

and SDSD are negatively correlate with high frequency 

oscillations in EEG, while positively correlate with low 

frequency oscillations, and vice versa in cases of TP, MF and 

SEF. As the loss of consciousness, the AVMM, pMM50, 

rMSSD, SDMM and SDSD increase while TP, MF and SEF 

decrease. 

In order to deepen evaluation of accurately tracking brain 

states, the trend of AVMM, pMM50, rMSSD, SDMM, SDSD, 

TP, MF and SEF is confirmed by the correlation versus EACL 

and BIS, which are used as real state of the patients. The 

results are also compared with SampEn, PeEn, MF and SEF 

of EEG. An overlapping sliding window with a fixed size 30 

s is used on EEG recordings for monitoring the DOA. The 

window moves every 5 s to provide synchronous parameter 

with EACL and BIS sampled at 0.2 Hz. As can be seen in 

Figures 8 and 10, the range and trend direction are different 

among parameters. Therefore, linear regression between each 

parameter and the gold standard (i.e., BIS and EACL) is used 

as estimates of a unit of measure, to normalize the parameters 

 

Figure 9. ROC curves of different EEGV (solid line) and EEG 
(dashed line) measures for classifying consciousness and 
unconscious states of one patient. 

 
(a) 

 
(b) 

Figure 10. The relationship between the EEG variability indexes and 
the changes of EEG oscillations during general anesthesia. (a) The 
spectrogram of EEG signal, dark red shows higher spectral power; (b) 
normalized EEG variability indexes. 

Table 3. The Pearson’s correlation coefficients of AVMM, pMM50, 
rMSSD, SDMM, SDSD, TP, MF, SEF based on EEGV and SampEn, 
PeEn, MF and SEF based on EEG versus EACL and BIS from 56 
patients. 

 Index vs. EACL vs. BIS 

EEGV 

AVMM 0.66 ± 0.19*†⁑‡ 0.53 ± 0.33*⁑‡ 

pMM50 0.68 ± 0.19*†⁑‡ 0.49 ± 0.34*⁑‡ 

rMSSD 0.54 ± 0.22*†⁑‡ 0.53 ± 0.29*†⁑‡ 

SDMM 0.55 ± 0.22*†⁑‡ 0.54 ± 0.29*†⁑‡ 

SDSD 0.54 ± 0.22*†⁑‡ 0.53 ± 0.29*⁑‡ 

TP 0.70 ± 0.18*†⁑‡ 0.53 ± 0.34*⁑‡ 

MF 0.72 ± 0.17*†⁑‡ 0.54 ± 0.35*⁑‡ 

SEF 0.71 ± 0.18*†⁑‡ 0.54 ± 0.35*⁑‡ 

EEG 

SampEn - 0.05 ± 0.31 0.18 ± 0.26 

PeEn 0.47 ± 0.28 0.48 ± 0.28 

MF - 0.10 ± 0.29 0.13 ± 0.27 

SEF 0.32 ± 0.31 0.32 ± 0.28 

The asterisk (*), dagger (†), double asterisk (⁑) and double dagger (‡) 
indicate significant difference compared with SampEn, PeEn, MF and 
SEF of EEG, respectively. ± indicates standard deviation. 
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value into the range of 0 to100. Subsequently, Pearson’s 

correlation coefficients are calculated as shown in table 3. The 

EEGV parameters show a higher correlation with both EACL 

and BIS compared with conventional methods. For instance, 

we note that AVMM (0.66 ± 0.19) of our proposed method far 

surpass SampEn (-0.05 ± 0.31), PeEn (0.47 ± 0.28), MF (-0.10 

± 0.29) and SEF (0.32 ± 0.31) of traditional methods. It is 

demonstrated that the proposed method superior to the 

traditional methods in accuracy of tracking the level of 

consciousness. 

4. Discussion 

In this paper, we presented a novel EEGV analysis to assess 

the variation of EEG signals for deriving reliable DOA 

monitoring. EEGV was defined by extracted ICIs that measure 

the time between each quasi-period interval of EEG. 

Increasing DOA leaded to the predominance of patterns at 

lower frequencies, often at higher amplitudes underlying 

EEGV. Both time-domain and frequency-domain parameters 

of EEGV including AVMM, pMM50, rMSSD, SDMM, 

SDSD, TP, MF and SEF were employed. The variation 

behavior of EEG measured by EEGV was found correlated to 

consciousness level. Various indices have been suggested for 

similar use of assessing DOA during past couple of decades. 

In order to investigate the effectiveness of proposed method, 

the result is also compared to previous methods. The linear 

features of MF and SEF represent frequency shift of EEG 

during general anesthesia, the nonlinear features of SampEn 

and PeEn measure the complexity of EEG. They are all 

popular and widely used in recent studies. For instance, Liu et 

al. [25] used MF, SEF, SampEn, PeEn and Gu et al. [26] used 

PeEn, SEF as the input of artificial neural network for 

monitoring DOA. In [29] and [30], SampEn and PeEn were 

selected as the sub-parameters to train a recurrent neural 

network and an adaptive neurofuzzy system for estimating 

DOA. The proposed EEGV derived parameters could 

discriminate EEG data into different stages during anesthesia 

in 56 patients with improved performance compared with 

existing algorithms. Furthermore, the higher correlation with 

both EACL and BIS demonstrated better performance across 

all of the patients for predicting DOA. The results indicate that 

EEGV measuring and the corresponding parameters are an 

excellent candidate for use in an EEG monitor and would also 

improve the performance of existing literature of learning-

based methods. 

From the results, AVMM, pMM50, rMSSD, SDMM and 

SDSD increase when patients lose their awareness, then 

decrease with recovery of consciousness. In contrast, the TP, 

MF and SEF of EEGV decrease with loss of consciousness. 

General anesthetics primarily act on the neurotransmitter 

receptors in the CNS for either enhancing inhibitory signals or 

blocking excitatory signals [32]. The enhanced inhibition 

makes a significant contribution to inactivating large areas of 

brain and generate anesthetized state. Similar to HRV analysis 

reflecting the balance between sympathetic and 

parasympathetic modulation in human autonomic nervous 

system, the variability in EEG can reflects the intrinsic balance 

shift between excitation and inhibition of CNS caused by 

general anesthesia administration. The AVMM, pMM50, 

rMSSD, SDMM, SDSD predominantly reflects inhibition 

activity, and TP, MF, SEF is accompanied by a marked 

enhance in excitation activation. Moreover, many studies have 

shown that gamma-aminobutyric acid-mediated sevoflurane, 

desflurane, or propofol generally caused a decrease in higher 

EEG gamma (> 30 Hz) and beta (13-30 Hz) rhythms, in 

contrast, an increase in slow oscillations including alpha (8-12 

Hz) and delta (< 4 Hz) activity [38-40]. General anesthesia 

lengthens the time interval between the periods of EEG 

activity, that is also one reason for an apparently increases in 

EEGV amplitude and a reduction in frequency during 

induction and maintenance as shown in Figure 3. The pMM50, 

rMSSD, SDMM and SDSD mainly reflect inter-cycle smaller 

changes in time interval. With the decrease of high frequency 

contents and increase of low frequency contents in EEG 

during induction and maintenance of general anesthesia, the 

histogram of time intervals between local extrema tends to be 

a broad distribution as shown in Figure 4 (c), and hence 

causing a higher variance, which is measured by rMSSD, 

SDMM and SDSD. Furthermore, this frequency shift 

increases the occurrence of long difference between 

successive time intervals of local extrema as shown in Figure 

5, and thus resulting in increase of pMM50. The pMM50 at 

selected threshold of 50 ms in successive intervals 

significantly separated induction and maintenance from 

awake or emergence. The results would have been very similar 

even though a value of 30 ms or 40 ms was selected. 

It is well known that EEG is very susceptible to artifacts 

especially in awake and recovery stages. During awake stage, 

EEG signal is usually contaminated by artifacts such as eye 

movement, blinks and baseline drift. Furthermore, most 

researchers avoid head and neck surgery to investigate EEG 

during anesthesia, because it is difficult to reject artifacts 

caused by surgical procedure in this type of surgery. The 

methods with resistance to artifacts would be more favored by 

researchers and clinicians. SampEn and MF are extremely 

sensitive to artifacts [25, 41], so they are not feasible to 

determine different stages of EEG during general anesthesia 

as presented in Figure 8, because of undesirable decrease in 

SampEn and MF of EEG caused by blink artifacts and baseline 

drift during S1 and S3 [25]. PeEn is more robust to noise and 

artifacts by considering the distribution of ordinal patterns 

rather than raw amplitude of data [24]. However, all EEGV 

derived parameters work fine (Figure 8). Different with 

traditional approaches, EEGV analysis characterizes the 

behavior of EEG depends on ICI instead of the values 

themselves, meaning relative rather than absolute magnitude, 
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so it reduces the bad effect of noise or artifacts and thus 

improves the accuracy of DOA estimation. The ICI 

measurement instead of frequency domain analysis is another 

improvement to responds to rapid changes in EEG signals that 

result from variations in the brain state. It was approved by the 

significant improvement of MF and SEF of EEGV compared 

with that of EEG as shown in Tables 2 and 3. Higher AUC and 

correlation coefficient values of EEGV analysis also indicate 

a stronger indicator of DOA during surgery in spite of under 

noisy environments, which stands up the value of our study. 

However, there are some potential limitations of current 

study. In anesthesia care, balanced general anesthesia is the 

most common management strategy, which use different 

drugs together for desired effects [42]. However, the 

underlying mechanisms of general anesthetic action are 

different. For instance, ketamine acts at N-methyl-d-aspartate 

glutamate receptors, whereas the primary target of propofol 

and sevoflurane is gamma-aminobutyric acid A receptor. This 

difference leads to different EEG changes of general 

anesthesia. Ketamine, related to propofol and sevoflurane, 

oppositely increases the beta range rhythms and decrease the 

delta activity [43]. Various studies show that BIS 

paradoxically increase after ketamine administration [43-45]. 

This would require additional larger data set and patients with 

varying kinds of administered anesthetics for further 

evaluation of the presented technology. 

As we know, the noise or artifacts is a very big and tough 

problem in EEG measurement. Noise caused misinterpretation 

of EEG by BIS algorithm is also one of serious drawbacks in 

BIS system despite having been widely used in daily 

anesthesia practice. Interferences from several electric devices 

such as electrocautery equipment, forced-air warming 

blankets and the otorhinolaryngology positioning system have 

been reported to cause paradoxical BIS changes [43, 46]. That 

is why the correlation versus EACL performs better than BIS 

in our results. In general, the main purpose of preprocessing is 

to remove noise and artifacts in signals. However, it is a very 

challenge task due to the weak amplitude, nonlinearity and 

nonstationarity of EEG signals. Various methods have been 

proposed to remove the noise and artifacts from EEG data 

[47]. The classical IIR or FIR filters, and wavelet filters are 

two widely used techniques. In this paper, a bandpass FIR 

filter was used to exclude artifacts of less than 0.5 Hz or 

greater than 47 Hz. But both of them use fixed basis functions 

(i.e., sine and cosine functions, or wavelet). Empirical mode 

decomposition (EMD) introduced by Huang et al. [48] 

adaptively decomposes signals into several intrinsic mode 

functions (IMF) in order from high to low frequency without 

any assumed basis functions. So, it highly applies to analysis 

of nonlinear and nonstationary signals. The filtered EEG can 

be reconstructed by selected IMFs within special frequency 

bands of interests. In the future, we will further investigate the 

reliability of the proposed algorithm on EEG contaminated by 

different kind of noise and artifacts. Also, we will adjust the 

preprocessing technique of EEG by using EMD-based filter 

and further confirm the performance of the proposed method 

under different combination of IMFs. 

Burst suppression (BS) is known as alternating stretches of 

high amplitude (bursts) and low amplitude (suppression) in 

EEG during deep anesthesia [49]. With increasing anesthetic 

drug concentration, SampEn has the ability to distinguish the 

BS state, but BIS and PeEn may provide incorrect results [30, 

50, 51]. Note that all EEG analyzed in this study do not include 

any BS patterns. Whether the proposed method is robust in the 

characterization of the BS pattern would need to be further 

validated. 

5. Conclusion 

The current study is the first one to propose an aperiodic 

analysis technology of EEG for improvement of determining 

anesthesia state of patients. In this approach, we first defined 

the ICI data extracted from EEG to transform raw data to a 

series of EEGV data. Then time-domain and frequency-

domain methods were used to perform EEGV analysis. 

Compared with traditional techniques, EEGV measures the 

variation in time intervals between consecutive extreme 

instead of raw voltage amplitude. It could serve as a new trend 

to explore DOA monitoring since providing information about 

the balance between excitation and inhibition. It was validated 

with patients under general anesthesia that the EEGV derived 

parameters including AVMM, pMM50, rMSSD, SDMM, 

SDSD, TP, MF and SEF provided a promising methodology 

to more precisely differentiate states of consciousness and 

assess DOA than existing EEG-based parameters. Especially, 

the spectral features of EEGV can be suggested as the optimal 

measures for DOA in term of AUC and correlation coefficient 

for clinical practice. This work has also potential for other 

EEG-based evaluations such as epilepsy, stroke, Alzheimer's 

disease, depression, and sleep stage scoring. 
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