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Abstract: An increasing number of behind-the-meter (BtM) rooftop photovoltaic (PV) pan-

els is being installed and maintained by site owners. However, invisible PV power generation 

(PVPG) will lead to the difficulty for system operators in power dispatch and affect the safety 

and stability of the power system. To better quantify BtM PVPG, a novel unsupervised data-

driven disaggregation method freedom from PV system physical model assumption for BtM 

PVPG is proposed. After clustering the prosumers’ net load curves, a PVPG sensitivity esti-

mation model is firstly built, based on the net load with approximate energy consumption (EC) 

and the corresponding irradiation data obtained from the pairing date. Then, an EC sensitivity 

model is developed according to the net load and temperature of the date with similar irradia-

tion. Finally, a new net load disaggregation model is constructed by the PVPG sensitivity 

model with EC compensation. Case study based on Ausgrid data shows that the proposed 

method provides a better quality BtM PVPG disaggregation. The disaggregation accuracy im-

proves by 5.06%-5.87% as compared to the state-of-the-art methods. 

Keywords: Behind-the-meter, net load disaggregation, energy consumption, PV power gen-

eration, net load, data-driven 
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Abbreviations and notations 

Abbreviations 
AEMO Australian Energy Market Operator 
BtM Behind-the-meter 
DBI Davies-Bouldin index 
DER Distributed energy resources 
DHI Diffuse horizontal irradiation 
DNI Direct normal irradiation 
DNN Deep neural network 
DTW Dynamic time warping 
EC Energy consumption 
ED Euclidean distance 
FCM Fuzzy C-means 
GMM Gaussian mixture models 
KNN k-nearest neighbor 
LSTM Long short-term memory 
MAPE Mean absolute percentage error 
MLP Multilayer perceptron 
NEM National electricity market 
PV Photovoltaic 
PVPG Photovoltaic power generation 
RMSE Root mean square error 
SVR Support vector regression 
DWT Discrete wavelet transform 
 
Notations 

 Number of clustering centers

 Matched EC day set 

 Matched PVPG day set 

 Time resolution of data set 

 Fitting function between irradiation  

 and PVPG 

 Compensatory fitting function 

 between irradiation and PVPG 

 Fitting function between ambient 

 temperature and EC 

 DHI 

 DNI 

 Number of nearest neighbors of 
 PVPG sensitivity model 

 Number of nearest neighbors of 
 EC sensitivity model 

 Disaggregated EC 

 Disaggregated PVPG 

 Set of EC  

 Set of PVPG  

 Set of net load  

 Starting point of evening 

 Starting point of day time 

 Set of a whole day time step  

 Set of day time step  

 Set of the middle part of  

 Set of evening time step  

 Set of ambient temperature  

 Set of DHI difference  

 Set of DNI difference  

 Set of EC difference  

 Set of estimated/compensatory EC  

 difference 

 Set of PVPG difference  
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 Set of estimated value of PVPG  

 difference  

 Set of net load difference  

 Duration time of  

 Set of ambient difference  

 

1. Introduction 

The greenhouse effect caused by excessive carbon emissions has led to the deterioration of 

the natural environment and frequent extreme weather. In order to achieve decarbonization, 

countries are striving to get rid of dependence on fossil energy and committed to a carbon 

neutrality goal [1]. Due to the technological advancement, under several conditions, the cost of 

renewables sources like photovoltaic (PV) can now be comparable to fossil fuels [2], [3]. Dis-

tributed PV power generation (PVPG) can effectively reduce greenhouse gas emissions [4] and 

there is an increasing interest in investing in the technology. By 2040, the distributed generation 

capacity is expected to double or even triple, and Australian Energy Market Operator (AEMO) 

modelling projects distributed energy resources (DER) could provide 13% to 22% of total un-

derlying annual national electricity market (NEM) energy consumption (EC) [5]. However, 

considering the economy, timeliness of information and customer privacy, most behind-the-

meter (BtM) rooftop distributed PV systems do not have complete or up-to-date information 

directly provided to the grids [6], resulting in invisible or inaccurate recorded PVPG data. Alt-

hough the net load can reflect the behaviors of prosumers to some extent, the comprehensive 

expression of the offset part of the PVPG and EC is still not discussed. This obliterated data 

will cause problems such as the difficulties in power scheduling, disabled designed reverse 

power flow [7] and mismatching the energy storage capacity between solar availability and 

electricity demand [8]. Therefore, to allow DER to maximize their contribution and potential 

to the power system, it is indispensable to develop an effective BtM disaggregation method. 

Based on the metered power information for modelling, BtM PVPG disaggregation is gen-

erally classified as 1) supervised disaggregation methods using fully separated metered data of 

customers to be disaggregated, 2) semi-supervised disaggregation methods using the partial 
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metered data of PV system or the recording data of PV proxy and 3) unsupervised disaggrega-

tion methods only use metered net load data. Considering the application environment, only 

semi-supervised and unsupervised disaggregation methods are studied in this paper. 

As the EC data and PVPG data are not available, a common BtM semi-supervised disaggre-

gation idea is adopted to map the relationship between net load and PVPG information by 

setting representative PV system proxy, and extend this mapping relationship to the target PV 

sites.  

In [9], by using data dimension reduction methodology, a small number of representative 

solar sites is selected according to a four-month collected PVPG data of all sites. Consequently, 

the BtM PVPG value of all sites is estimated by the PVPG data of representative solar sites and 

external variables. However, in the BtM scenario, it is unrealistic to obtain the data of all PV 

sites for a period of time. With the set of fully observable EC and PVPG of partial customers 

in [10], the net load customers under the same lateral secondary distribution transformer are 

disaggregated by employing a designed semi-supervised signal separation optimization algo-

rithm. Assuming that a small number of distributed PV systems are available, support vector 

regression (SVR) is implemented in [11] to build a capacity estimation model based on the 

constructed net load feature, and calculates the disaggregated PV output. Whereas the known 

distributed PV systems need to have the same system geometry of other distributed PV systems 

in the area. Unlike obtaining the metered PVPG proxy data, in [6] by a given PV panels size, 

tile and azimuth of some users, the parameter estimation model is established through deep 

neural network (DNN). Then the disaggregated PVPG is calculated by the physics-based model 

according to the estimated parameters of the PV panels. In [12], the net load disaggregation 

model is constructed based on the accessible PV system data. By assuming that users of a 

building have consistency electricity demand behaviors before and after installation of PV sys-

tem, disaggregated EC can be obtained by the value of the PV system post-installed building 

consumption at the comparable timestamp. However, the model will fail if similar weather 

conditions do not occur. Besides, it can almost be considered as a supervised disaggregation 

method, because the separated EC data has been known before the PV system is installed. 

The application of the above-mentioned proxy based semi-supervised disaggregation meth-



ods is impractical. Because of the difficulties of quantifying and equating the PV system ge-

ometry and physical characteristics of multiple target PV systems and setting a proxy to match 

them. Even if the matching proxy already exists, data collection time is still required, which 

will delay the implementation of the disaggregation plan and increase time costs. 

To avoid setting up a PV proxy, unsupervised disaggregation methods that only use net load 

data are designed. By utilizing PV system physical model assumption, parameters of PV panels 

are estimated through swarm intelligence algorithms in [13], while PVPG is obtained with the 

correction of modeling the temperature effect. But the method relies too much on the period 

when the building is idle, which will greatly reduce the scope of applications. Depending on 

the PV system geometry, the equivalent capacity is firstly estimated by employing maximal 

information coefficient-based grid search [14]. The net load is iteratively disaggregated into 

three parts by minimizing the correlation between the disaggregated PVPG and EC. 

Although the unsupervised disaggregation methods proposed in [13] and [14] only use net 

load data and can effectively improve the usage conditions, the methods rely on a specific PV 

system physical model assumptions. The disaggregation results will be inaccurate if the PV 

arrays are degraded or the PV physical model is incorrectly assumed [2]. 

To solve the problem of overdependence on assumption of PV system physical model and 

PV system geometry, a BtM PVPG disaggregation method based on nonlinear programming 

is proposed in [15]. The assumption of the PV system physical model is only used for the 

conversion of output efficiency affected by the temperature of the PV panel. However, the 

model does not consider the influence of temperature on EC behavior, resulting in errors in the 

disaggregation results. 

Table 1 presents an overview of the recent works in BtM PVPG disaggregation. It can be 

observed that, although compared to semi-supervised disaggregation methods, unsupervised 

disaggregation methods have their unique advantages, the existing unsupervised disaggrega-

tion methods depend on the setting of the physical model, which will bring this unsupervised 

disaggregation method to another error dilemma.  



Table 1 
Comparison of recent BtM disaggregation studies. 
Work Disaggregation 

type 

Disaggregation 

framework 

Data needed Algorithms needed Disaggregation level 

Shaker et al. 

[9] 

Semi-supervised Data-driven Net load, PV site locations, meteorological, 

PVPG of proxy and a 4-month separated me-

tered data of all PV sites. 

K-means, principal component analysis, linear regres-

sion, Kalman filter, multilayer perceptron, and wavelet 

neural network. 

Aggregated net load of 405 cus-

tomers and PV sites. 

Bu et al. [10] Semi-supervised Data-driven Net load, separated metered data of proxy. Spectral clustering and designed semi-supervised signal 

separation optimization. 

Aggregated net load of 1120 resi-

dential customers and 337 PV 

sites. 

Li et al. [11] Semi-supervised Data-driven Net load, PVPG and capacity of proxy and 

meteorological. 

Support vector regression. Net load of a single residential 

house. 

Mason et al. 

[6] 

Semi-supervised Data-driven with PV 

system geometry 

Net load, PV system physical model parame-

ters. 

Linear regression and deep neural network. Aggregated net load of 1000 resi-

dential customers and PV sites. 

Stainsby et 

al. [12] 

Almost fully su-

pervised 

Data-driven Net load, EC before PV system installed, date 

of PV system installed and meteorological. 

Pairing, comparison and displacement. Net load of a single residential 

house or building. 

Chen et al. 

[13] 

Unsupervised PV system geometry Net load, PV sites location and meteorologi-

cal. 

Swarm intelligence algorithms. Net load of a single building. 

Wang et al. 

[14] 

Unsupervised Data-driven combined 

with PV system ge-

ometry 

Net load and meteorological, PV system phys-

ical model parameters. 

Grid search and maximal information coefficient. Zonal level. 

Sossan et al. 

[15] 

Unsupervised 

 

 

Data-driven combined 

with PV system ge-

ometry 

Net load and meteorological, PV system phys-

ical model parameters. 

Nonlinear programming. Net load of a single house. 

This work Unsupervised Data-driven Net load and meteorological. Clustering, k-nearest neighbor, multilayer perceptron 

and long short-term memory network. 

Aggregated net load from 29 to 

77 residential customers and PV 

sites. 



As shown from the literature review, the semi-supervised methods based on the PV proxy 

mostly are data-driven with using machine learning-based principles for PVPG disaggregation, 

but the learning targets for training disaggregation models are from the additional installation 

PV proxy, which is difficult to ensure that its PVPG output characteristics are consistent with 

the target PV devices. While the unsupervised methods analyze the existing net load and per-

form disaggregation in combination with the assumption of PV system physical model, which 

avoids the problem of inconsistent output characteristics of semi-supervised methods based on 

PV proxy, but the incorrect assumptions of the PV system physical model are prone to intro-

duce mismatched PVPG characteristics and resulting in decreased disaggregation accuracy. 

In the existing work, the supervised and semi-supervised net load disaggregation methods 

have developed rapidly, while the unsupervised method has few breakthroughs, and there is no 

PV system physical model independent unsupervised disaggregation model. Therefore, in or-

der to solve the restriction of the PV proxy and ease the dependence on the PV system physical 

model and geometry, an unsupervised data-driven net load disaggregation method only needs 

net load and meteorological data as input is proposed in this paper to close the research gap 

and focus on the practical application. The distinguished contributions of this paper are as fol-

lows: 

• To the best of authors’ knowledge, this is the first unsupervised data-driven net load dis-

aggregation method that completely omits PV physical model assumption and PV system 

geometry, with the consideration of PV conversion efficiency due to ambient temperature 

variation. 

• The proposed unsupervised net load disaggregation method extracts the PVPG features by 

net load to build a BtM disaggregation model using machine learning algorithms. By 

avoiding the inconsistency of output characteristics caused by semi-supervised methods, 

PVPG is obtained by setting up proxy used as learning targets. 

• A data-driven EC sensitivity model is proposed to refine the initial PVPG disaggregation 

model with meteorological data, which can effectively reflect the variations of net load 

caused by the energy inrush. 



• The testing results show that the proposed unsupervised data-driven net load disaggregation 

methods have higher disaggregation accuracy and better disaggregation stability than the 

state-of-the-art unsupervised disaggregation methods. 

2. Problem statement and data description 

2.1. Problem statement 

Distributed PV systems produce positive power when there is irradiation. For prosumers 

whose energy production is only generated by PVPG, the net load at night is equivalent to the 

EC. For distinction, the sets of daytime , evening and a whole day are written as fol-

lows: 

   (1) 

subject to 

  (2) 

where , and represent the time step of , and, respectively, and represent 

the starting point of daytime and evening respectively, denotes the time resolution of the 

data set. Net load is defined with Eq. (3): 

  (3) 

where , and are the set of net load , EC and PVPG , respectively. The time di-

vision and net load composition are shown in Fig. 1. 
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Fig. 1 Time division and net load composition 

In most BtM situations, only the net load represented by the black line in Fig. 1 can be 

directly obtained, while the EC and PVPG corresponding to the blue and red lines respectively 

are unknown. The key problem to be solved in this paper is to calculate the values of EC and 

PVPG when only the net load and the corresponding meteorological data are available. 

The meteorology time series is composed of ambient temperature , direct normal irradiance 

(DNI) and diffuse horizontal irradiation (DHI) with a daily resolution of 24. To unify the format 

of net load data, average interpolation is applied to the raw meteorology data. 

2.2.  Data description 

To verify the effectiveness of the proposed BtM PVPG disaggregation method, a public da-

taset incorporating semi-synthetic data is used. This dataset consists of 300 un-identified cus-

tomers with only zip code recorded in Sydney and surrounding regional areas, with EC and 

rooftop PVPG separately measured [16]. The time span of the data set is from July 1, 2010 to 

June 30, 2013, with a resolution of 48 points per day. For Australia, as one of the countries 

with most serious extreme weathers, heatwave will lead to extreme peaks in demand, therefore 

a total of 17 heatwave days were marked and will be discussed specifically in the case study 

[17]. According to [18], 18 customers with anomalous general load data and controllable data 

were removed, and 13 customers in remote areas were further removed according to the area 

where the zip code belongs. The remaining 269 customers are further divided into 5 sub-regions 

based on their spatial distance. Considering that the data provided by the Ausgrid did not attach 

T



corresponding meteorological information, two methods were implemented to deal with this 

situation. 1) The raw PVPG data was removed and simulated by the model proposed in [19] 

based on the meteorology data from [20], the reality penetration level and distributed system 

capacity owned by each customer. This data set is mainly concerned with the accuracy of the 

proposed disaggregation method under the exclusion of the measurement errors caused by the 

mismatch between observed meteorological and PVPG data. 2) The raw PVPG data was used 

in conjunction with the meteorological data from the central area in the sub-regions [20]. This 

dataset will test the robustness of the disaggregation method using heterogeneous collection 

meteorological data of proximity site. Fig. 2 illustrates the distribution of customers in 5 sub-

regions built by Google Earth [21]. The high latitude to bottom latitude represents the Sub-

region 1 to Sub-region 5 respectively. 

 
Fig. 2. Geographical location and area division of 269 customers 

The yellow dots in Fig. 2 represent the location of the customers’ zip codes, the closed yel-

low polylines represent the boundaries of the sub-regions, and the blue dots represent the me-

teorological collection points from the central area in the sub-regions. 

The number of customers, generation capacity, original and designed PV penetration level 

[22] in each area are shown in Table 2. More detailed parameters for data description are added 

in Appendix A to facilitate reproducing of results. 



Table 2 
Parameters of the 5 sub-regions. 

Sub-region 
Number of 

Users 
Daily Peak 
Load (kW) 

Total Genera-
tion Capacity 

(kW) 

Reality Pene-
tration Level 

(%) 

Designed Pene-
tration 

Level (%) 

1 77 87.62 119.77 32.23 33.73 

2 63 71.27 104.45 30.53 32.17 

3 29 34.91 47.97 36.42 35.74 

4 44 50.57 63 40.61 38.51 

5 56 57.58 107.53 44.96 43.70 

The remainder of this paper is organized as follows. Section 2 describes the problem state-

ment and experimental data. Section 3 proposes the framework and details of the disaggrega-

tion model. Section 4 introduces the evaluation metrics and method comparisons. Section 5 

shows the effectiveness of the proposed model through the experimental results of the case 

study. Section 6 gives the conclusion. 

3. Framework and proposed methodology 

3.1. Framework 

The basic idea is to refine the regional aggregated load according to the user’s electricity 

curve shape by clustering, then the net load disaggregation with EC difference compensation 

is implemented for each cluster to decouple the PVPG curves. To achieve the above process, 

three stages called PVPG sensitivity modelling, EC sensitivity modelling and net load dis-

aggregation stages are designed as follows: 

1) PVPG sensitivity modelling stage 

Due to the BtM environment, it is impossible to directly obtain integrated time series con-

taining only PVPG from utility grid side, but by matching the date with approximate EC be-

havior, the PVPG difference can be obtained through the corresponding paired net load differ-

ence. Considering the strong correlation between PVPG and irradiation, a neural network based 

PVPG sensitivity model is built according to the irradiation difference and PVPG difference 

approximated by the related net load difference. 

2) EC sensitivity modelling stage 

In consistency with the data series of PVPG, series containing only EC information can only 



be obtained indirectly by the net load difference of pairing dates with approximated irradiation. 

Considering the strong drive of ambient temperature to EC behaviors, a neural network-based 

EC sensitivity model is built according to the ambient temperature difference and EC difference 

approximated by the related net load difference. 

3) Net load disaggregation stage 

In this stage, the PVPG sensitivity model is firstly amended by the output of EC sensitivity 

model and then innovatively transformed into BtM PVPG disaggregation model by utilizing 

the output characteristics of PV panels, the power output is to 0 when there is no radiation. 

Consequently, a more accurate net load disaggregation model including EC compensation is 

built. 

The framework of the proposed BtM net load disaggregation methodology is shown in Fig. 

3. The details of the three stages will be explained in subsequent sections later. 

 

Fig. 3 The framework of the proposed BtM net load disaggregation methodology 

3.2. Net load disaggregation 

The most difficult part of net load disaggregation is how to disaggregate PVPG sequences 

from net load without historical separated sub-meter data as reference. In this section, consid-

ering the relationships between the PVPG and solar irradiation, the PVPG sensitivity model is 

built by employing k-nearest neighbor (KNN) [23] and LSTM [24]. Furthermore, the EC model 

is established fully taking the strong correlation between ambient temperature and day type by 

using KNN and LSTM, too. The net load disaggregation model is proposed with the output 

characteristics of PV panels. The details are given as follows: 



3.2.1. PVPG sensitivity model 

Because BtM sub-meter data does not easily access from utility grid side, it is not feasible 

to obtain PVPG through supervised or semi-supervised methods. However, the approximate 

value of PVPG difference can be obtained by making a difference of a paired net load, which 

has similar EC behavior. For the sake of simplicity, net load difference , EC difference

and PVPG difference between day and day are given by Eq. (4): 

  (4) 

The estimated value of PVPG difference between day and day is given by Eq. (5) be-

low: 

  (5) 

  (6) 

The load demand is determined by the customer behavior. Therefore, to search the dates with 

similar EC behavior, KNN is applied to find the most similar samples. In consideration of the 

PVPG concealing of the net load at time , only the net load at time is chosen to find the 

nearest neighbors samples to avoid the distubance with the assumption that the days when cus-

tomers with approximate nighttime EC behaviors are more likely to have approximate daytime 

EC behaviors. The matched EC day set of day can be shown as below: 

  (7) 

where represents the number of nearest neighbors of PVPG sensitivity model. 

The set of estimated PVPG difference can be given by Eq. (8): 

  (8) 

  (9) 
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An example of obtained approximate PVPG difference is given in Fig. 4. 

 

Fig. 4 An example of obtained approximate PVPG difference 

Fig. 4(a) shows that by searching the date of similar EC behavior at time , two similar 

EC curves of a whole day can be acquired. By making the difference between the net load of 

the matched two days, an approximate PVPG difference curve can be obtained as shown by 

the black solid line in Fig. 4(b). 

By referring to the date index of Eq. (7), the corresponding difference set of DHI and 

DNI can be obtained by Eqs. (10) and (11): 

  (10) 

  (11) 

where is the GHI difference between day and day , is the GNI difference 

between day and day . 

As PVPG is mainly affected by DHI and DNI; LSTM, which has a good performance to deal 

with timing sequences problems, is applied to explore the nonlinear relationship between 

PVPG difference, DHI difference and DNI difference. The relationship between the above var-

iables can be expressed by Eq. (12): 

  (12) 

where is the fitting function formed by LSTM between estimated PVPG and irradiation. 

For the sake of ensuring the number of features when training the LSTM model and reducing 
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(a) Net load, EC and PVPG of a paring 

date with similar EC behaviors 

 
(b) Net load, EC and PVPG difference of a 

paring date with similar EC behaviors 



unnecessary information loss caused by the difference between the variables, the actual mod-

eling is carried out in the form of Eq. (13): 

  (13) 

  (14) 

3.2.2. PVPG disaggregation model 

With the help of the physical characteristics of PV panels that PVPG equals to 0 when DNI 

and DHI are 0, the disaggregated PVPG can be captured by Eq. (15) according to the 

relationship derived in Eq. (12) by only inputting DNI and DHI of day : 

  (15) 

Except for DNI and DHI, the operating temperature of PV panels will also dramatic influ-

ence PV conversion efficiency [25]. Therefore, ambient temperature should be added when 

building the PVPG sensitivity model in Section 3.2.1. It is important to note that, unlike the 

relationship between PVPG and irradiation, we cannot obtain the exact value of EC when the 

temperature is a specific value. In other words, when the PVPG sensitivity model is trans-

formed into PVPG disaggregation model, only the ambient temperature of the required PVPG 

disaggregation day can be used. Hence, Eq. (12) should be rewritten as Eq. (16) instead of Eq. 

(17). 

  (16) 

  (17) 

where is the set of ambient temperature . The PVPG disaggregation model transformed 

from the PVPG sensitivity model is written as Eq. (18) below: 

  (18) 
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The disaggregation model built with Eq. (18) based on the approximate estimated PVPG 

( ) ( ) ( ) ( ) ( ) ( )( ), 1 , 1
C C 1 1

G day N day I,G DNI day DNI day DHI day DHI day, , ,
i k i k i k i kfD » -D =D DP t P t I t I t I t I t!

( ) ( ) ( )
( ) ( ) ( )

, 1
C

, 1
C

1
DNI day DNI day DNI day

1
DHI day DHI day DNI day

. . 

i k

i k

i k

i k
s t

ì - = Dï
í

- = Dïî

D

D

I t I t I t

I t I t I t

'
PV day( )iP t

( )I,Gf ! i

'
G day I,G DNI day DHI day( ) 0 (( ( ) 0),( ( ) 0))i i iP f I I- = - -t t t

( ) ( ) ( ) ( )( ), 1 , 1 , 1 , 1
C C C C

G day N I,G DHI day DNI day day, ,
i k i k i k i k ifD » -D = D DD D D DP t P I t I t T t!

( ) ( ) ( ) ( )( ), 1 , 1 , 1 , 1 , 1
C C C C C

G day N I,G DNI day DHI day day, ,
i k i k i k i k i k

fD » -D = D D DD D D D DP t P I t I t T t!

T T

( ) ( ) ( )( )I,G DNI day DHI day day
'
G day( , , , ,) i i ii f=-P I t 0 I 0 T t0 tt



difference according to Eq. (8) is still flawed, because it is almost impossible to find these 

matched days that have completely consistent EC curves, especially for residential load in 

which the EC behavior is changeable. Therefore, the values of Eq. (8) include the EC difference 

as shown in Fig. 4(b) with the blue solid line between the matched days, and its actual repre-

sentation should be given by Eq. (19): 

  (19) 

where represents the number of nearest neighbors of EC sensitivity model, is the 

compensation EC difference of matched EC day set . 

To build a more accurate disaggregation model, the values of compensation EC difference

must be acquired. Similar to the PVPG data, in the case of BtM, EC data of sub-meter 

is inaccessible directly. However, the estimated EC difference can be obtained by making a 

difference of a paired net load, which has similar PVPG. Considering that for the customers, 

there is generally no physical configuration change to the PV devices in a short period of time, 

by searching the days with similar DNI and DHI for the same customers, the paired day set 

with similar PVPG can be obtained using KNN. 

  (20) 

The set of estimated EC difference can be written as Eq. (21): 

  (21) 

  (22) 

According to [26], the change of EC for residents is mainly driven by the ambient tempera-

ture. Hence, the EC sensitivity model can be built by and ambient temperature difference

of matched PVPG day set from Eq. (23): 

  (23) 

  (24) 
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where is the fitting function formed by LSTM between estimated EC and ambient tem-

perature. 

The compensation EC difference can be calculated with corresponding temperature 

difference from the EC sensitivity model as shown in Eq. (25): 

  (25) 

Based on the same reason by rewriting Eq. (12) to Eq. (13), the EC sensitivity modeling is 

carried out in the form of Eq. (26):  

  (26) 

It is important to note the monotonicity of EC sensitivity model and PVPG sensitivity model. 

PVPG and solar irradiation are always positively correlated, while EC and ambient temperature 

are positively correlated in summer, negatively correlated in winter. Consequently, when 

matching the days with similar DNI and DHI, the search range should be within the same 

monotonicity of the EC relative ambient temperature. Considering that the shape of EC curve 

varies greatly in different seasons, before building the EC sensitivity model, the net load data 

is clustered to ensure the search range. 

Since the daytime net load is composed of EC and PVPG, it is difficult to ensure the cluster-

ing results only reflect the differences in EC behavior and not affected by the variability of 

PVPG. In order to solve the above problems, evening net load containing only pure EC at

is used for clustering based on the continuity of customers’ EC behavior. By assuming that if 

the evening EC has an approximate distribution, the daytime load also has an approximate 

distribution. Three clustering methods including Gaussian mixture models (GMM) [27], Fuzzy 

C-means (FCM) with Euclidean distance (ED) and FCM with dynamic time warping (DTW) 

[28], [29] are employed for experiments and comparisons in case study. 

3.2.4. PVPG disaggregation model with EC difference compensation 

After the compensation EC difference is obtained through the EC sensitivity model, a 

more precise PVPG sensitivity model can be rewritten from Eq. (16) as: 
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  (27) 

where is the compensatory fitting function formed by LSTM between estimated PVPG 

and irradiation. 

The final PVPG disaggregation model in practice can be converted from compensated PVPG 

sensitivity model to Eq. (28): 

  (28) 

The disaggregated EC in day is further disaggregated as below: 

  (29) 

The model of the proposed net load disaggregation method is illustrated in Fig. 5: 

 
Fig. 5. The proposed disaggregation model 

As shown in Fig. 5, the proposed BtM disaggregation model does not involve any PV system 

geometry and PV parameter assumptions. This means that it is completely data-driven. The 

distinction of the feature requirements in different stages is highlighted in Table 3. 
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Table 3 
Method and features requirements of different stages. 

Stages 
Features 

Net Load 
Ambient 

Temperature 
One-sided Ambient 

Temperature 
DNI DHI 

PVPG Sensitivity Modelling √ × √ √ √ 
EC Sensitivity Modelling √ √ × × × 

4. Performance metrics and method comparisons 

4.1. Clustering assessment metrics 

Before building the EC sensitivity model, it is essential to cluster the net load. Davies-

Bouldin index (DBI) is employed to reflect the quality of the clustering by measuring the mean 

of the maximum similarity of each cluster [30]. It should be noted that when using DBI for 

FCM-DTW, the intra-class distance and the inter-class distance should be calculated according 

to DTW distance. The clustering performance is better with a smaller DBI value.  

4.2. Net load disaggregation assessment metrics 

The accuracy of the proposed net load disaggregation method is evaluated by root mean 

square error (RMSE) and the designed mean absolute percentage error (MAPE).  

Hourly RMSE is defined in Eq. (30) for evaluating the disaggregated PVPG only, because 

the disaggregated EC is obtained by the difference between the net load and the disaggregated 

generation. 

  (30) 

As indicated in [11] and [13], hourly MAPE is highly sensitive to the time interval of low 

absolute PVPG. To avoid the above problems, by referring to [11], we also use only the middle 

part of daytime (from 10:00 to 15:00) to calculate the hourly MAPE. The hourly MAPE of 

estimating PVPG is given by Eq. (31). 

  (31) 

where is the set of the middle part of , is the duration time of . 
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4.3. Experiment comparisons 

In order to analyze the impact of data partition on building the net load disaggregation model, 

GMM, FCM-ED and FCM-DTW are employed to make a comparison. The core of the dis-

aggregation algorithm proposed in this paper is the construction of the sensitivity models. Tak-

ing into account the complex nonlinear relationship between variables, the fitting of the varia-

bles is completed by machine learning. The and values of KNN determine the size of the 

dataset for building PVPG sensitivity model and EC sensitivity model, hence the disaggrega-

tion results under different combination of and are discussed. In order to illustrate the gen-

eral applicability of the sensitivity model and the superiority of LSTM for processing this prob-

lem, multilayer perceptron (MLP) [36] is introduced as a benchmark for comparison. Disaggre-

gation with or without compensation are compared to demonstrate the effectiveness of the in-

troduction of EC sensitivity model, and two unsupervised net load disaggregation methods 

from [14] and [15] are reproduced and used to compare with the proposed disaggregation 

method. In addition, the robustness of the proposed algorithm is illustrated by the disaggrega-

tion results obtained by building a model using meteorological data collected from heteroge-

neous sources and the disaggregation results obtained from heatwave condition. 

5. Case study 

5.1. Experimental platform and model parameter setting 

All experiments were implemented by Python 3.7.7 on a server with NVIDIA Geforce RTX 

2080Ti GPU and 64 GB of RAM. 

Data from Ausgrid provides the separate timing series of PVPG and EC, so the separated 

data can be used for experimental verification, but not using in BtM PVPG disaggregation 

modelling. The data of 1096 days in the three years (including the 17 extreme weather days) 

described in Section 2.2 are all involved in the construction of the disaggregation model. Con-

sidering the daytime hours are different every day, in order to ensure uniformity for modelling, 

the earliest moment with PVPG occurrence at 5:00 and the latest moment with PVPG disap-

pearance at 19:30 are set as the sunrise time and the sunset time , respectively. 
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Hyper-parameters of the artificial neural network are shown in Appendix B. Considering the 

length of this paper, the analysis of some experimental results is only carried out for Sub-region 

2. 

5.2. Data set partitions and net load matching 

In order to exclude the measurement errors caused by the mismatch between observes me-

teorological and PVPG to better analyze the data set partitions and net load matching of the 

proposed method, experiments of this section are performed using semi-synthetic data. 

5.2.1.  Analysis of the data set partitions 

When building the proposed disaggregation model, clustering is employed to partition net 

load data. Considering that the quantity and quality of proposed disaggregation model depend 

on the clustering results, three clustering methods including FCM based on ED, FCM based on 

DTW and GMM of clustering number ranges from 2 to 4 are implemented and compared. In 

the data partition analysis, for variable control, the nearest neighbor values of PVPG sensitivity 

model is set to 10, the nearest neighbor values of EC sensitivity model is set to 30. Table 4 

shows the DBI of different clustering methods.  

Table 4 

DBI of different clustering methods. 

Method 
Number of clusters 

2 3 4 

FCM-ED 0.638 0.933 1.219 

FCM-DTW 0.588 0.858 1.131 

GMM 0.797 1.352 1.620 

All three methods achieve the best clustering results when the number of clusters is equal to 

2. The DBI of FCM-DTW is calculated based on the DTW distance, so the value is the smallest. 

The disaggregation results using MLP and LSTM of different parameter combinations are pre-

sented in Tables 5 and 6. 
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Table 5 

Average hourly MAPE of PVPG disaggregation with different clustering methods based on 
MLP for 3 years. 

Number of 
clustering 

Uncompensated (%) Compensated (%) 

FCM-ED 
FCM-
DTW 

GMM FCM-ED 
FCM-
DTW 

GMM 

2 13.03 11.83 13.71 5.08 5.18 6.50 
3 14.90 13.43 11.54 8.00 7.26 6.67 
4 15.49 15.41 14.43 8.16 7.52 8.67 

No seasonal 
partition 

14.66 8.23 

Seasonal par-
tition 

14.72 7.55 

Table 6 

Average hourly MAPE of PVPG disaggregation with different clustering methods based on 
LSTM for 3 years. 

Number of 
clustering 

Uncompensated (%) Compensated (%) 

FCM-ED 
FCM-
DTW 

GMM FCM-ED 
FCM-
DTW 

GMM 

2 10.55 10.57 12.76 3.20 3.96 5.12 
3 12.88 12.66 11.96 6.90 6.10 8.29 
4 13.51 14.10 13.16 6.62 6.49 6.49 

No seasonal 
partition 

13.61 5.59 

Seasonal par-
tition 

13.56 5.82 

Tables 5 and 6 show that for each clustering method, the optimal disaggregation result ap-

pears when the number of clusters is 2. The observation is consistent with the result of the 

optimal number of clusters, while the disaggregation with no seasonal partition does not 

achieve a better accuracy. This can be interpreted as the influence of temperature on EC pre-

sents different correlations in different seasons, and the correlation is completely opposite in 

winter and summer. With clustering, the temperature-driven EC is divided into two types with 

obvious morphological differences, so that the sensitivity model can be more important. In 

contrast, the clustering method does not have a large impact on the decomposition accuracy, 

while the number of clusters has a greater impact. Therefore, FCM-ED is used to analyze the 

impact of the number of clusters on the proposed disaggregation model. The class center and 



the corresponding date distribution is shown in Figs. 6 and 7, respectively. 
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(d) Seasonal partition 

Fig. 6 Class centers of the data partition 
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(d) Seasonal partition 

Fig. 7 Date distribution of data partition 

The cluster center in Fig. 6 is obtained from the clustering of EC curves at nighttime , 

but displayed as a whole day time to facilitate analysis. From the results of clustering centers, 

it is feasible to pair or cluster through local nighttime curves to reflect the global EC behavior. 

Average ambient temperature in summer in Sydney is usually not higher than 26 , so the 

cooling load is less, which is represented as a black dotted line with a lower amplitude in Fig. 

6(a). Considering the demand for heating is large in winter with average ambient temperature 
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at about 13 , the load amplitude is relatively high, which is represented by the red dotted line 

in Fig. 6(a). However, Figs. 6(b) and 6(c) show that when the number of clusters is set to 3 or 

4, the newly added cluster centers are between the typical winter and summer curves, and the 

centers characteristics are not obvious. The DBI index can also prove that the clustering quality 

is poor. Unreasonable data division will increase the number of EC sensitive models that need 

to be built, which may result in a decrease in the amount of model training data and affect 

model performance. Tables 5 and 6 also show the disaggregation of simple season division. 

The disaggregation result of seasonal division is similar to those with clusters number of 3, but 

it is better than the number of clusters of 4. From Fig. 6(d), it can be seen that in addition to the 

winter curve center, the difference between the center of the remaining season is chaotic for 

the season division, but the data distribution does not destroy the continuity of the time series 

shown in Fig. 7(d). In our experiments, it is found that the continuity of the data has a greater 

impact on the quality of the PVPG sensitivity model. This may be due to the input continuity 

of DNI and DHI, which can more regularly reflect the elevation and azimuth of the sun. 

5.2.2. Analysis of the net load matching 

In Section 3.2.1, when building the PVPG sensitivity model, the dates with similar EC be-

havior at time is determined by the net load at using KNN. Also, in Section 3.2.3, when 

building the EC sensitivity model, the dates with similar PVPG is determined by the matched 

DNI and DHI. To illustrate the effectiveness of the proposed strategy, the similarity correspond-

ing to the match when finding the approximate EC behavior, PVPG by nighttime EC, and 

irradiation (DNI and DHI), is given in Fig. 8. The similarity is measured in terms of hourly 

MAPE and the results are shown as an average values of 1096 days for 3 years with the and

range from 1-200. 
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Fig. 8 The average similarity of matched EC and PVPG with different  

The results indicate that it is feasible to perform similarity matching with such strategies, 

and the variability of both the matched EC and PVPG shows an overall increasing trend with 

increasing of nearest neighbors. The variability value of PVPG starts at a small amount, which 

means that for smaller values of , finding the net load with similar DNI and DHI by KNN 

and making a difference, can result in a sequence containing almost only EC differences infor-

mation. In contrast, the variability value of EC starts at a large amount, which means that for 

smaller values of , finding the net load with similar nighttime EC behavior by KNN and 

making a difference, does not result in a sequence containing only PVPG differences infor-

mation. This is the main source of the disaggregation error of the initial PVPG disaggregation 

model, and the compensation by building the EC sensitivity model is precisely to correct this 

part of the error. 

Fig. 9 shows the effect of different nearest neighbor values on the disaggregation accuracy 

when FCM-ED is used with 2 as the number of clusters. 

k

k

2k

1k



 

(a) Average hourly MAPE for 3 years 

 
(b) Average hourly RMSE for 3 years 

Fig. 9 The disaggregation error under different combinations 

In Fig. 9, when the combinations of values of PVPG sensitivity model vary from 5 to 25 

and values of EC sensitivity model vary from 20 and 50, the proposed disaggregation 

method possesses comparatively small MAPE and RMSE. It can be seen that when is a 

constant, both the average hourly MAPE and RMSE for 3 years in the heat map become larger 

as increases. This is because when building the PVPG sensitivity model using KNN to find 

the dates with similar EC behaviors, the EC difference error introduced is already minimized. 

With the increase of , this error will gradually accumulate and lead to the decrease of dis-

aggregation accuracy. In addition, the PVPG is directly affected by the irradiation, and the 

relationship between the two can be captured by the proposed machine learning model with a 

small amount of data, which is also the reason for the higher accuracy when the value of is 

smaller. When is a constant, both the average hourly MAPE and RMSE for 3 years in the 

heat map shows a trend from decline to rise as increases. This may due to the relationship 

between EC behavior and temperature is complicated. Trying to reflect the EC difference 

through the temperature difference as effectively as possible requires a larger amount of data 

for machine learning modelling, which is the reason for the error decreases gradually at the 

beginning as increases. However, excessively increase in will also cause the interference 

information of PVPG difference accumulates, leading to the EC sensitivity model cannot cor-

rectly reflect the relationship between EC and temperature. This is the reason why the error 
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rises again. 

Overall, needs to be kept at a small value, while is a value that needs to be traded off 

to minimize the interference information of PVPG difference introduced while ensuring to have 

a sufficient amount of data to build the EC sensitivity model. It is notable from Fig. 9 that more 

satisfactory disaggregation results are obtained even for non-optimal combinations of and

. The subsequent experimental results in this paper are obtained based on of 10 and

of 30. 

5.3. Comparisons with state-of-the-art disaggregation methods 

In this section, the performance of two unsupervised disaggregation methods reproduced 

from [14] and [15] are compared with the proposed method. The box plots of average hourly 

MAPE comparisons for 3 years are shown in Fig. 10. All the proposed methods are with EC 

difference compensation. 

 

 
Fig. 10 Average hourly disaggregation MAPE comparison for 3 years 

With this experimental data set, method in [14] has the worst disaggregation performance, 

the proposed method with compensation has better disaggregation results under different pa-

rameter combinations compared to it. Method in [15] has slightly higher median and box width 

with the proposed method with or , but has less outliers. When , both the pro-

posed methods constructed by MLP and LSTM have significant disaggregation accuracy im-

provements compared to methods from [14] and [15]. The use of MLP modeling can also 
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achieve better disaggregation results as compared to the state-of-the-art methods, which can 

explain the general applicability of using neural networks to the disaggregation architecture to 

some extent. Fig. 10 shows that under the same number of clusters, the disaggregation effect 

of the model built by LSTM is better than that of MLP, which is mainly due to the advantages 

of LSTM in dealing with time series problems. Therefore, if a neural network with stronger 

learning ability can be used, the disaggregation accuracy may be further improved, which also 

shows the scalability of the proposed BtM PVPG disaggregation architecture. 

Hourly MAPE profile for each day of the whole year 2012 with different methods is shown 

in Fig. 11. 

 
Fig. 11 Hourly MAPE profile for each day of year 2012 with different methods 

In Fig. 11, proposed method constructed by LSTM, with and without compensation, 

are compared. Method in [14] is designed based on a large number of PV system geometry 

assumptions. Therefore, if there is a discrepancy between the assumption and the actual situa-

tion, for example, the degradation of the PV arrays, the disaggregation error cannot be elimi-

nated, and this kind of error exists at all times of the year. Method in [15] transforms the dis-

aggregation problem into a constrained optimization problem with relevant constraints. How-

ever, in this method, the constraint conditions do not reflect the influence of temperature on the 

EC behavior, so there will be a large disaggregation error. The proposed method without com-

pensation does not consider the changes in EC behavior caused by temperature when modelling, 

causing the net load difference in this case to be erroneously attributed to the difference in 

irradiation, so it has worse performance in winter when the temperature-sensitive load is more. 
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In contrast, the proposed method with compensation maintains a lower error range throughout 

the year, even in months when the temperature-sensitive load has a greater variation. Tables 5 

and 6 also conclude that no matter what the combination of model parameters is, the compen-

sated disaggregation model will have a huge improvement in accuracy as compared to the un-

compensated disaggregation model. 

The average hourly RMSE and MAPE of different disaggregation methods for 3 years are 

shown in Table 7. 

Table 7 

The average hourly RMSE and MAPE reduction for 3 years as compared to other algorithms. 

Methods 

Performance improvement 
Compensated, LSTM, 

 
Compensated, LSTM, 

 
Compensated, LSTM, 

 
RMSE MAPE RMSE MAPE RMSE MAPE 

Method in [14] 
(RMSE: 2.61 kW, 
MAPE: 8.26%) 

1.17 kW 5.06% 0.52 kW 1.35% 0.57 kW 1.64% 

Method in [15] 
(RMSE: 2.35 kW, 
MAPE: 9.10%) 

1.10 kW 5.87% 0.45 kW 2.16% 0.50 kW 2.45% 

Table 7 shows the reduction ranges of the proposed model built using LSTM with compen-

sation of average hourly RMSE and MAPE for 3 years are between 0.52 kW-1.17 kW and 

1.35%-5.06% respectively, as compared to method in [14]. The reduction ranges of average 

hourly RMSE and MAPE for 3 years are between 0.45 kW-1.10 kW and 2.16%-2.45% respec-

tively, as compared to method in [15]. 

5.4. Performance analysis of the proposed disaggregation method 

5.4.1. Performance analysis of the semi-synthetic datasets 

 
To further analyze the performance of the proposed method when using meteorological data 

that well-matched the PV system, the hourly MAPE for each month modeled utilizing semi-

synthetic data of PVPG with and without EC difference compensation is shown in Fig. 12. 
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(a) Without EC difference compensation 

 
(b) With EC difference compensation 

 

 

(c) Mean error improvement with EC difference compensation of each month 

Fig. 12. Hourly MAPE for each month comparison of PVPG disaggregation with and 
without EC difference compensation for 3 years 

Comparing Fig. 12(a) with Fig. 12(b), after having EC difference compensation, both the 

accuracy and stability of disaggregation have been greatly improved. Before the compensation, 

the largest median value of hourly MAPE and the largest hourly MAPE are concentrated from 

May to September, however the median and largest value of hourly MAPE are greatly reduced 

in these months after the compensation. Fig. 12(c) further shows after the compensation, the 

average hourly MAPE reduction of each month is relatively obvious from May to September, 

while the error reduction in other months is relatively small.  

To explain this change, average daily temperature for each month of this region is displayed 

in Fig. 13 and the maximal information coefficient (MIC) [12] is used to calculate the correla-

tion between average daily temperature and average daily EC for each month in the region.  
 



 
Fig. 13. Average temperature and the MIC between average temperature and average EC. 

Fig. 13 shows MIC is high from May to September, which means that in these months, the 

EC behaviors are largely dependent on the temperature. This can also explain why the error 

reduction in these months is so obvious after the EC difference compensation. In Australia, the 

duration of winter is usually defined from early June to end of August. During this period, the 

extensive use of electrical equipment for heating has led to a larger proportion of temperature-

sensitive loads. After the compensation, the errors from January to April and November are 

relatively large in the whole year due to these months belong to the coverage of Australia’s 

spring and autumn. From Fig. 13, we can see that the average temperature is between 15 oC 

and 20 oC, which will lead to less temperature-sensitive load and cause less temperature-driven 

changing of EC. If the temperature-based compensation is performed at this situation, it is 

likely to cause the correction to be inconspicuous, or even to incorrectly explain the reason for 

the change in EC. Fig. 14 provides the PVPG and EC disaggregation results of a week in June. 

This shows that the curves estimated by the proposed method with compensation are closer to 

the real value in both amplitude and shape. In Fig. 14, the estimated results from Sunday to 

Wednesday show that the disaggregation method with compensation proposed can well fit the 

shape of PVPG even under non-clear sky conditions. Since the results of EC disaggregation is 

obtained by adding net load and disaggregated PVPG, Fig. 14(b) shows that the disaggregated 

EC also has a higher accuracy when the results of the PVPG disaggregation are accurate. 



 
(a) Disaggregation results of PVPG for a week. 

 

(b) Disaggregation results of EC for a week. 

Fig. 14. Disaggregation results comparison of different methods for a week. 

Disaggregation results with and without EC difference compensation in different sub-regions 

for 3 years are shown in Table 8. 

Table 8 

Disaggregation results with and without EC difference compensation in different sub-regions 

Sub- 

region 

Without EC difference compensation With EC difference compensation 

MLP LSTM MLP LSTM 

RMSE 

(kW) 
MAPE (%) 

RMSE 

(kW) 
MAPE (%) 

RMSE 

(kW) 
MAPE (%) 

RMSE 

(kW) 
MAPE (%) 

1 2.52 13.73 1.86 10.88 1.56 9.37 1.99 8.49 

2 1.96 13.03 1.43 10.55 0.89 5.08 0.59 3.20 

3 0.94 14.63 0.62 11.25 0.91 9.36 0.59 7.02 

4 1.86 13.99 0.94 8.79 1.02 9.21 0.93 6.08 

5 2.91 16.43 2.00 11.48 1.43 8.28 1.33 7.82 



Considering the 5 sub-regions, Table 8 shows that the disaggregation method with EC dif-

ference compensation provides a higher accuracy as compared to the method without EC dif-

ference compensation. From the disaggregation results with EC difference compensation, Sub 

regions 3 and 4 have relatively low average hourly RMSE, and Sub-regions 1, 2 and 5 have 

relatively high average hourly RMSE, which is mainly affected by the aggregation level. The 

aggregation degree of the former regions is lower than the latter one, so the cardinal number of 

net load is relatively small. For all 5 sub-regions, LSTM has a better decomposition accuracy 

as compared to MLP, which also illustrates the advantages of LSTM in disaggregating the ex-

perimental data set. 

5.4.2. Performance analysis of the raw datasets 

In reality, due to the lack of sensing devices, it is not easy to obtain accurate meteorology 

data about the target customers’ geographical location. The output of PV equipment is ex-

tremely sensitive to the cloud cover state, the difference in irradiation between the meteorolog-

ical data collection point and the target location introduces a large amount of measurement 

error, which causes a decrease in the accuracy of the disaggregation algorithm. In order to 

analyze the robustness of the proposed disaggregation algorithm, the raw PVPG data of Aus-

grid and the meteorological data from the sub-regional central area are used for model building. 

For simplicity, proposed method (compensated, LSTM, ) will be presented. 

The hourly MAPE distributions for 3 years in Sub-region 2 are presented in Table 9. 

Table 9 

The hourly MAPE distributions for 3 years in Sub-region 2 

Methods 
Intervals of MAPE 

      

Method in [14] 769 177 54 29 16 51 

Method in [15] 804 157 49 28 13 45 

Proposed method 911 103 31 12 8 31 

Due to spatial differences, the collected meteorological data may not truly reflect the actual 
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irradiance received by the PV systems of the target user, that is, the site for data collection may 

be different from that of PV equipment installation. In this case more than 500% PVPG dis-

aggregation MAPE can occur. Table 9 shows that among the disaggregation results for a total 

of 1096 days, the percentage of days with MAPE vary from 0-200% for method in [14], method 

in [15] and proposed method are 86.31%, 87.68% and 92.52%, respectively. Detailed MAPE 

distribution results are shown in Fig. 15 by histograms and the Gaussian kernel density estima-

tion curves. 

 
(a) The hourly MAPE distribution of method in [14] 

 
(b)The hourly MAPE distribution of method in [15] 

 

(c)The hourly MAPE distribution of proposed method 



 

(d)Probability density curves of different methods 

Fig. 15 The Histograms and the probability density curves of hourly MAPE of different 
methods 

Fig. 15(d) shows that the peak probability density of each of the three methods occurs at 

MAPE of 31.86%, 28.83% and 27.06%. The MAPE probability density curve of the proposed 

method intersects with method in [14] and method in [15] around MAPE of 70%. On the left-

hand side of the intersection point, the proposed method has a higher probability density. The 

mean values of method in [14], method in [15] and proposed method are 61.32%, 57.72% and 

49.02% respectively.  

The inaccuracy of the disaggregation for small actual PVPG will greatly increase the abso-

lute percentage error, for example, when the actual PVPG is 0.1 kW and the disaggregation 

result is 0.2 kW, the absolute percentage error is 100%. The above case will contribute much 

more to the average hourly MAPE, which will render the average hourly MAPE metrics statis-

tically meaningless. Therefore, we use average hourly RMSE of each month for the metric. 

The average hourly RMSE of each month for 2012 is shown in Table 10. 

 

 

 

 

 

 



Table 10 

The average hourly RMSE of each month for 2012 

Methods 
RMSE (kW) 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
Method 

in [14] 
13.42 12.30 11.07 5.45 3.94 3.97 4.50 4.68 5.21 9.12 10.17 12.52 

Method 

in [15] 
11.80 11.08 10.16 5.30 4.09 3.98 4.65 4.78 5.43 8.39 9.14 10.91 

Proposed 

method 
9.66 9.19 9.03 5.27 4.13 4.16 4.20 4.53 6.00 8.36 8.90 8.88 

It can be observed from Table 10 that the proposed method achieves the lowest average 

hourly RMSE in all months except May, June and September. Therefore, the statistical results 

from Fig. 15 and Table 10 both indicate that the proposed algorithm has better robustness in 

the raw data set. 

Heatwave occurs often in Australia, and the increase in temperature can significantly reduce 

the photovoltaic conversion efficiency of PV systems. In order to investigate the performance 

of the proposed disaggregation method under extreme hot weather, 17 days with the hottest 

maximum temperature were selected from July 1, 2010 to June 30, 2013 for the results analysis. 

The heatwave dates are described in Appendix A. The hourly RMSE and MAPE of each heat-

wave day are shown in Fig. 16. 

 
(a) The hourly MAPE of each heatwave day 

 
(b) The hourly RMSE of each heatwave day 

Fig. 16 The hourly RMSE and MAPE of 17 heatwave days 



Results of Fig. 16 denote that the proposed method has the minimum MAPE value for 12 

out of the 17 heatwave days, and has the minimum RMSE value for 11 out of the 17 heatwave 

days among the three disaggregation methods. This illustrates the effectiveness of the proposed 

disaggregation method in extremely hot days. 

 

6. Conclusion and future work 

In practice, it is difficult to obtain complete and independent PVPG data which is attributed 

by the following four points: (1) When considering the economy, rooftop PV panels are in-

stalled BtM and PVPG data will not be recorded separately. (2) There may be equipment prob-

lems with PVPG meter, resulting the complete or accurate PVPG data cannot be recorded. (3) 

Due to the timeliness of information, the PV panels installation information recorded by the 

utility may not match the actual situation. (4) Users may illegally install PV panels without the 

permission of energy system operator. Incorrect or vague information will increase the diffi-

culty of assessing regional PV potential, escalating the risk of connection to the main grid, and 

reducing the stability of the power system.  

To solve these practical problems, this paper presents a novel unsupervised data-driven BtM 

PVPG disaggregation method. This disaggregation method does not need to set up PV system 

proxy and no reliance on PV physical model consumption. Therefore, it has strong practicabil-

ity and can still guarantee the disaggregation accuracy when facing the degradation of the PV 

arrays. 

The most unique innovation of this work is that based on the conversion characteristics of 

PV panels, the PVPG sensitivity model can be converted into a PVPG estimation model, which 

can perform the net load disaggregation when only historical net load data and historical 

weather data are accessible. In order to refine the model, clustering is used to divide EC be-

haviors before disaggregation, and the accuracy of the PVPG disaggregation model is further 

improved through EC difference compensation. The comparison of results with two state-of-



the-art unsupervised disaggregation models prove that the proposed method has higher dis-

aggregation accuracy. Net load datasets in Ausgrid at residential level are employed in the case 

study. Disaggregation results of semi-synthetic datasets of 5 separated sub-regions have shown 

the effective and satisfactory. The disaggregation results of the raw datasets with meteorologi-

cal data from heterogeneous collection sources and heatwave days have shown the robustness 

and practicality of the proposed method. 

This paper explored a disaggregation method for net load as a consequence of BtM PVPG 

supply and proposed a new data-driven BtM PVPG disaggregation architecture. However, only 

a single type of distributed energy system is considered and the model is still flawed. Hence, 

the authors will focus on more complex BtM scenes and broader applications. The future work 

includes: 1) optimizing the model architecture to obtain higher disaggregation accuracy, 2) ex-

ploring more types of net load disaggregation methods, such as considering wind power or 

biogas, and 3) applying BtM disaggregation results to scenarios more broadly, such as energy 

storage and net load forecasting. 
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Appendix A. The detailed parameters of the experimental dataset 

The 1096 days from July 1, 2010 to June 30, 2013 are numbered from1 to 1096. The date 

remarked as heatwave is 926, 209, 932, 883, 215, 219, 922, 925, 214, 210, 884, 216, 915, 208, 

220, 903, 233 (listed in descending order of the highest daily temperature).  

 



Table A 

The ID of the customers with anomalous general load data and controllable data, and the ID of 

the customers in remote areas 

 ID 

Customers in remote areas, with 
anomalous general load data and con-
trollable data 

2, 9, 27, 34, 57, 68, 85, 95, 104, 121, 143, 1
46, 150, 152, 176, 187, 191, 212, 221, 229, 2
39, 248, 249, 260, 265, 272, 273, 284, 287, 2
89, 293, 294 

Table B 

The ID of the sub-regions division of the 269 customers 

Sub-regions ID 

1 

4, 6, 11, 12, 16, 17, 31, 32, 36, 40, 43, 44, 45, 48, 53, 55, 56, 60, 
62, 66, 71, 78, 79, 80, 92, 96, 98, 99, 105, 113, 116, 118, 120, 126
, 128, 129, 131, 135, 139, 140, 142, 156, 159, 162, 164, 172, 173, 
181, 182, 192, 193, 194, 199, 205, 213, 217, 219, 220, 226, 233, 23
4, 237, 242, 244, 251, 257, 262, 264, 268, 275, 277, 278, 279, 282, 
288, 291, 298 

2 

1, 8, 18, 32, 46, 63, 65, 74, 76, 81, 82, 83, 89, 91, 94, 97, 100, 10
2, 109, 112, 114, 115, 117, 123, 132, 134, 136, 141, 147, 149, 154, 
161, 166, 174, 179, 180, 183, 185, 190, 195, 197, 198, 204, 208, 20
9, 210, 216, 228, 235, 236, 241, 243, 247, 250, 254, 255, 258, 274, 
280, 295, 296, 299, 300 

3 
5, 13, 21, 28, 50, 54, 58, 61, 69, 70, 72, 75, 86, 90, 127, 158, 165,
 167, 178, 224, 225, 245, 246, 266, 271, 276, 286, 292, 297 

4 
3, 7, 10, 14, 15, 19, 20, 23, 29, 30, 37, 38, 39, 42, 49, 64, 67, 84, 
101, 106, 130, 137, 145, 155, 160, 168, 169, 171, 177, 184, 186, 18
9, 196, 202, 206, 215, 218, 223, 227, 232, 238, 267, 270, 283 

5 

22, 24, 25, 26, 33, 35, 41, 47, 51, 52, 59, 73, 77, 87, 88, 93, 103, 
107, 108, 110, 111, 119, 122, 124, 125, 133, 138, 144, 148, 151, 15
3, 157, 163, 170, 175, 188, 200, 201, 203, 207, 211, 214, 222, 230, 
231, 240, 252, 253, 256, 259, 261, 263, 269, 281, 285, 290 

 

 



Table C 

Coordinates of the measured meteorological data from the central area in the sub-regions 

Sub-regions Coordinates 

1  

2  

3  

4  

5  

Appendix B. The hyper-parameters of the artificial neural network 

When building the PVPG and EC sensitivity model, Adam algorithm is adopted with a mini-

batch size of 256 and learning rate 0.0001. All the disaggregation results are obtained from the 

average values of 30 experiments. 

Table D 

Hyper-parameters of the artificial neural network 

Models Layers Iterations 

EC-MLP a 20000 

EC-LSTM  20000 

PVPG-MLP  30000 

PVPG-LSTM  30000 

a: denotes that there are two hidden layers and each layer contains neurons. 
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