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Recursive Minimum-Variance Filter Design for
State-Saturated Complex Networks with Uncertain
Coupling Strengths Subject to Deception Attacks

Hongyu Gao, Hongli Dong, Zidong Wang and Fei Han

Abstract—In this paper, the recursive filtering problem is
investigated for state-saturated complex networks (CNs) subject
to uncertain coupling strengths (UCSs) and deception attacks.
The measurement signals transmitted via the communication
network may suffer from deception attacks which are governed
by Bernoulli-distributed random variables. The purpose of the
problem under consideration is to design a minimum-variance
filter for CNs with deception attacks, state saturations and
UCSs such that upper bounds on the resulting error covariances
are guaranteed. Then, the expected filter gains are acquired
via minimizing the traces of such upper bounds and sufficient
conditions are established to ensure the exponential mean-square
boundedness of the filtering errors. At last, two simulation
examples (including a practical application) are exploited to
validate the effectiveness of our designed approach.

Index Terms—Complex networks, recursive filtering, state
saturations, coupling uncertainties, deception attacks.

I. INTRODUCTION

The past decades have seen a recurring research interest in
complex networks (CNs) because of their wide applications
in a variety of practical situations such as economics, biology,
and social science [29]–[31], [33], [36], [38], [39], [41], [47].
Basically, for many CN applications, it is indispensable for
the network states to be utilized to fulfil the requirements
for monitoring, approximation and optimization. However,
due to the inherent characteristics (e.g. complicated structure
and local interaction) of CNs, the network states are usually
unavailable to the end user but only the measurement outputs
can be accessible. As such, much research enthusiasm has
recently been generated towards the state estimation problems
for CNs.

Up to now, plenty of filtering/estimation algorithms have
been devised for a great variety of CNs (see [5], [18], [27],
[45], [48], [50]) with tremendous attention from both academia
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and industry. In practical engineering, many complex systems
have time-varying parameters that might be caused by different
reasons, e.g. operating point shifting and parameter fluctuation
[1], [2]. To address the filtering issues of time-varying CNs,
various methods have been devised with examples including
the finite-horizon H∞ filtering and recursive filtering (RF)
algorithms, where the latter is most widely studied algorithm
that has gained a great deal of research interest [5], [10], [15],
[20]–[24].

In CN applications, an underlying assumption is that the
coupling strengths among CN nodes can be described as
certain known constants, see e.g. [30], [35], [40], [45]. This
assumption is, unfortunately, quite restrictive in practice. For
instance, it has been mentioned in [44] that coupling strengths
among CN nodes might fluctuate due to various reasons such
as noise disturbance and signal transmission congestion. Thus,
the analysis/synthesis problems of CNs with uncertain cou-
pling strengths (UCSs) have stirred certain research attention
with preliminary results in [14], [26]. In [14], an adaptive
scheme has been put forward to handle synchronization prob-
lems for CNs against the network deterioration caused by
coupling uncertainties. In [26], some adaptive controllers have
been designed for CNs with uncertain coupling matrices.

State saturation has been well recognized as a special kind
of nonlinear constraints whose pervasive existence is largely
due to the physical limits of the internal states of CNs. In fact,
in the CN-related filtering problem, the presence of state satu-
rations has a major impact on the filter performance since the
state estimate is saturated. The state saturation phenomenon, if
not adequately handled, may lead to performance degradation
or even filter instability. In recent years, some initial works
have been acquired on filtering problems of state-saturated
CNs, see e.g. [8], [19]. For instance, an H∞ filter has been
devised in [19] for state-saturated CNs with distributed delays
and quantized measurements and under the event-triggering
mechanism. Nevertheless, for time-varying state-saturated CNs
with UCSs, relevant results on their RF problems are still
scarce.

Along with the prevalence of utilizing industry networks,
cyber-security issues have gradually become major concerns as
open and unprotected communication networks are vulnerable
to cyber attacks launched by adversaries. Recently, the security
RF problems under cyber attacks have received much attention
with many results available in the literature [4], [7], [17].
For example, the distributed RF method has been proposed in
[6] for time-delayed stochastic systems with deception attacks
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and quantization effects. The variance-constrained distributed
filtering issue has been solved in [32] for sensor networks
under deception attacks. In [43], a filter has been designed
for nonlinear systems with time-delays, where both stochastic
deception attacks and sensor saturations have been taken into
account. However, to date, RF issues for CNs with state
saturations and UCSs subject to deception attacks have not
been thoroughly discussed yet.

Concluding the discussions made thus far, it is both prac-
tically and theoretically significant to cope with the RF issue
for state-saturated CNs with UCSs under deception attacks. In
order to handle this issue, we are confronted with three main
difficulties: 1) how to establish an appropriate state-saturated
CN model with coupling uncertainties; 2) how to devise a
suitable filter for the concerned CNs; 3) how to guarantee the
exponential mean-square boundedness (EMSB) of the filtering
errors. Accordingly, our primary contributions are: 1) a novel
CN model is proposed to tackle the concurrence of state
saturations, UCSs, and deception attacks; 2) upper bounds on
error covariances are obtained with filter parameters calcu-
lated by utilizing both local and neighboring information; and
3) sufficient conditions are presented to guarantee the EMSB
of filtering errors.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a state-saturated CN with UCSs as follows:
xk+1
i =σi

(
f(xki ) +

N∑
j=1

(ωij + ∆ωij)Γx
k
j

)
+Dk

i$
k
i

yki =Gki x
k
i + vki

(1)

where xki ∈ Rn (i = 1, 2, . . . , N) is the state of the ith
node and yki ∈ Rm is the associated measurement output.
Γ , diag{b1, b2, · · · , bn} > 0 denotes the inner-coupling
matrix where bs 6= 0 (s = 1, 2, . . . , n) is the coupling strength.
f(·) denotes a known nonlinear function. Ω , [ωij ] (j =
1, 2, . . . , N) is the certain coupling strength coefficient where
ωij ≥ 0. ∆ωij is the UCS with |∆ωij | ≤ ςj (j = 1, · · · , N).
The zero-mean white Gaussian noises $k

i ∈ Rr1 and vki ∈ Rr2
have covariances Rki$ and Rkiv , respectively. Assume that $k

i

and vki are mutually uncorrelated for any i and k. Dk
i and Gki

(Gki is invertible) are known time-varying system matrices.
The saturation function σ(·) : Rn 7→ Rn is defined as

σi(π) ,
[
σi1(πi1) σi2(πi2) · · · σin(πin)

]T
(2)

where

π ,
[
πi1 πi2 · · · πin

]T
, (3)

σis(πis) , sgn(πis)min
{
πmax
is , |πis|

}
, s = 1, 2, . . . , n (4)

in which sgn(·) denotes a signum function, and πmax
is is the s-

th element of the vector πmax
i representing the saturation level

vector.
Let us now introduce the transmission model under decep-

tion attacks. In general, the successes of deception attacks
launched by the adversaries are dependent on the network
conditions and the performance of the protection equipment.

Therefore, the deception attacks can be considered as ran-
domly occurring from the defenders’ perspective and the
transmission signals subject to deception attacks can then be
modeled as follows:{

ỹki = yki + αki ζ
k
i ,

ζki = −yki + ξk
(5)

where ỹki is the received signal of the i-th node from adjacent
node, and ξk ∈ Rm represents the non-zero signal sent by
adversaries satisfying ‖ξk‖ ≤ θ for an arbitrary given positive
scalar θ.

The stochastic variable αki is Bernoulli-distributed with the
following probabilities:

Prob{αki = 0} = 1− ᾱi, Prob{αki = 1} = ᾱi (6)

where ᾱi ∈ [0, 1) is a known constant.
Letting x̂

k+1|k
i and x̂

k+1|k+1
i represent, respectively, the

predicted and estimated values of xk+1
i , we put forward the

following filter:
x̂
k+1|k
i =σi

(
fi(x̂

k|k
i ) +

N∑
j=1

ωijΓx̂
k|k
j

)
x̂
k+1|k+1
i =x̂

k+1|k
i +Kk+1

i

(
ỹk+1
i −Gk+1

i x̂
k+1|k
i

) (7)

where Kk+1
i is the gain to be determined.

In order to facilitate our analysis, we denote

e
k+1|k
i , xk+1

i − x̂k+1|k
i ,

e
k+1|k+1
i , xk+1

i − x̂k+1|k+1
i ,

P
k+1|k
i , E

{
e
k+1|k
i

(
e
k+1|k
i

)T}
,

P
k+1|k+1
i , E

{
e
k+1|k+1
i

(
e
k+1|k+1
i

)T}
.

The main objectives of this paper are to: 1) obtain upper
bounds on P k+1|k+1

i ; 2) calculate the time-varying filter gain
through minimizing the trace of the obtained bounds; and 3)
discuss the EMSB of the filtering errors.

III. MAIN RESULTS

In this section, we will design a RF method to estimate
states of the state-saturated CNs with UCSs subject to decep-
tion attacks. First, we calculate upper bounds on P

k+1|k+1
i .

Then, filter gains Kk+1
i are obtained by minimizing the trace

of the acquired upper bound. Finally, the EMSB of the filtering
errors are discussed.

Before proceeding, we need the following lemmas.
Lemma 1: [24] For vectors a, b ∈ Rn, the inequality

abT + baT ≤ λaaT + λ−1bbT (8)

holds where λ > 0 is a positive scalar.
Lemma 2: [8] For any x1, x2 ∈ R, there exists εh ∈ [0, 1]

such that

σh(x1)− σh(x2) = εh(x1 − x2), h = 1, 2, . . . , n (9)

where σh(·) is the saturation function defined in (2)-(4).
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Lemma 3: [34] For matrices P,Q,R and S , symmetric
matrix Z > 0 and constant ε > 0 satisfying RRT < I and
ε−1I −SZS T > 0, the inequality

(P + QRS )Z(P + QRS )T

≤P(Z−1 − εS TS )−1PT + ε−1QQT (10)

holds.
Lemma 4: [42] For 0 ≤ k ≤ n, suppose that X = XT >

0, Mk(X) = MT
k (X) ∈ RL×L and Nk(X) = N T

k (X) ∈
RL×L. If there exists Z = ZT > X such that

Mk(X) ≥Mk(Z), Nk(X) ≥Mk(X), (11)

then solutions Rk and Sk to

Rk =Mk(Rk−1), Sk = Nk(Sk−1), R0 = S0 > 0 (12)

satisfy Rk ≤ Sk.
Lemma 5: [28] Given constant matrices T1, T2 and T3

where 0 < T1 = T T1 and 0 < T2 = T T2 , then T1−T T3 T2T3 ≥
0 if and only if[

T1 T T3
T3 T −12

]
≥ 0, or

[
T −12 T3
T T3 T1

]
≥ 0,

or T −12 − T3T −11 T T3 ≥ 0.

(13)

Lemma 6: [37] For any stochastic process Vk(ϑk) and real
number δmin, δmax, u > 0 and 0 < β ≤ 1, if

δmin‖ϑk‖2 ≤ Vk(ϑk) ≤ δmax‖ϑk‖2 (14)

and

E{Vk(ϑk)|ϑk−1} ≤ (1− β)Vk−1(ϑk−1) + u, (15)

then the EMSB of ϑk is ensured , i.e.,

E
{
‖ϑk‖2

}
≤ δmax

δmin
E
{
‖ϑ0‖2

}
(1− β)k +

u

δmin

k∑
i=1

(1− β)i.

(16)

Theorem 1: The following recursions hold:

P
k+1|k
i

=Dk
i R

k
i$(Dk

i )T + E
{

Θk
i (F ki +Mk

i W
k
i )P

k|k
i (F ki

+Mk
i W

k
i )TΘT

i,k

}
+

N∑
j=1

ωijE
{

Θk
i

(
(F ki +Mk

i W
k
i )e

k|k
i

× (e
k|k
j )TΓT + Γe

k|k
j (e

k|k
i )T (F ki +Mk

i W
k
i )T

)
(Θk

i )T
}

+
N∑
j=1

∆ωijE
{

Θk
i

(
Γxkj (e

k|k
i )T (F ki +Mk

i W
k
i )T

+ (F ki +Mk
i W

k
i )e

k|k
i (xkj )TΓT

)
(Θk

i )T
}

+
N∑
j=1

N∑
p=1

∆ωij

×∆ωipE
{

Θk
i Γxkj (xkp)TΓT (Θk

i )T
}

+
N∑
j=1

N∑
p=1

ωijωip

× E
{

Θk
i Γek|kp (e

k|k
j )TΓT (Θk

i )T
}

+
N∑
j=1

N∑
p=1

∆ωijωip

× E
{

Θk
i Γ(xkj (ek|kp )T + ek|kp xTj,k)ΓT (Θk

i )T
}

(17)

and

P
k+1|k+1
i

=(I −Kk+1
i Gk+1

i )P
k+1|k
i (I −Kk+1

i Gk+1
i )T

+ (1− ᾱi)Kk+1
i Rk+1

iv (Kk+1
i )T + E

{
ᾱiK

k+1
i ξk+1ξ

T
k+1

× (Kk+1
i )T + ᾱiK

k+1
i Gk+1

i xk+1
i (xk+1

i )T (Gk+1
i )T (Kk+1

i )T

+ ᾱi(I −Kk+1
i Gk+1

i )e
k+1|k
i (xk+1

i )T (Gk+1
i )T (Kk+1

i )T

− ᾱiKk+1
i Gk+1

i xk+1
i ξTk+1(Kk+1

i )T + ᾱiK
k+1
i Gk+1

i

× xk+1
i (e

k+1|k
i )T (I −Kk+1

i Gk+1
i )T − ᾱiKk+1

i ξk+1

× (xk+1
i )T (Gk+1

i )T (Kk+1
i )T − ᾱi(I −Kk+1

i Gk+1
i )

× ek+1|k
i ξTk+1(Kk+1

i )T − ᾱiKk+1
i ξk+1(e

k+1|k
i )T

× (I −Kk+1
i Gk+1

i )T
}

(18)

where Θk
i , diag

{
(εki )(1), (εki )(2), · · · , (εki )(n)

}
, (εki )(ν) ∈

[0, 1] (ν = 1, 2, . . . , n) and F ki , ∂f(xk
i )

∂xk
i

|
xk
i =x̂

k|k
i

. The scaling
matrix Mk

i is problem-dependent and the unknown matrix W k
i

stands for linearization errors and satisfies W k
i (W k

i )T ≤ I .
Proof: It follows from Lemma 1 and (1) that

e
k+1|k
i =xk+1

i − x̂k+1|k
i

=σi
(
fi(x

k
i ) +

N∑
j=1

(ωij + ∆ωij)Γx
k
j

)
− σi

(
fi(x̂

k|k
i ) +

N∑
j=1

ωijΓx̂
k|k
j

)
+Dk

i$
k
i

=Θk
i

(
fi(x

k
i )− fi(x̂k|ki ) +

N∑
j=1

∆ωijΓx
k
j

+

N∑
j=1

ωijΓe
k|k
j

)
+Dk

i$
k
i . (19)

Expanding f(xki ) around x̂k|ki generates

f(xki ) = f(x̂
k|k
i ) + F ki e

k|k
i + o(|ek|ki |) (20)

where

F ki ,
∂f(xki )

∂xki
|
xk
i =x̂

k|k
i

is the Jacobian matrix. o(|ek|ki |) is the high-order term of Tay-
lor series expression. According to [15], o(|ek|ki |) is rewritten
as

o(|ek|ki |) ,Mk
i W

k
i e

k|k
i . (21)

Substituting (20)-(21) into (19), we obtain

e
k+1|k
i =xk+1

i − x̂k+1|k
i

=Θk
i (F ki +Mk

i W
k
i )e

k|k
i + Θk

i

N∑
j=1

∆ωijΓx
k
j

+ Θk
i

N∑
j=1

ωijΓe
k|k
j +Dk

i$
k
i . (22)

On account of P k+1|k
i , E

{
e
k+1|k
i (e

k+1|k
i )T

}
, one has

P
k+1|k
i
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=E
{(

Θk
i (F ki +Mk

i W
k
i )e

k|k
i + Θk

i

N∑
j=1

∆ωijΓx
k
j

+ Θk
i

N∑
j=1

ωijΓe
k|k
j +Dk

i$
k
i

)(
Θk
i (F ki +Mk

i W
k
i )

× ek|ki + Θk
i

N∑
j=1

∆ωijΓx
k
j + Θk

i

N∑
j=1

ωijΓe
k|k
j

+Dk
i$

k
i

)T}
. (23)

Thus, it is easy to obtain (17) from (23).
From (1), (5) and (7), one has

e
k+1|k+1
i =xk+1

i − x̂k+1|k+1
i

=(I −Kk+1
i Gk+1

i )e
k+1|k
i + ᾱiK

k+1
i

× (Gk+1
i xk+1

i + vk+1
i − ξk+1) + α̃k+1

i

×Kk+1
i (Gk+1

i xk+1
i + vk+1

i − ξk+1)

−Kk+1
i vk+1

i (24)

where α̃k+1
i , αk+1

i − ᾱi. Therefore, P k+1|k+1
i is derived as

P
k+1|k+1
i

=(I −Kk+1
i Gk+1

i )P
k+1|k
i (I −Kk+1

i Gk+1
i )T

+ E
{
ᾱi(I −Kk+1

i Gk+1
i )e

k+1|k
i (xk+1

i )T (Gk+1
i )T (Kk+1

i )T

− ᾱi(I −Kk+1
i Gk+1

i )e
k+1|k
i ξTk+1(Kk+1

i )T

+ ᾱ2
iK

k+1
i Gk+1

i xk+1
i (xk+1

i )T (Gk+1
i )T (Kk+1

i )T

+ ᾱiK
k+1
i Gk+1

i xk+1
i (e

k+1|k
i )T (I −Kk+1

i Gk+1
i )T

− ᾱ2
iK

k+1
i Gk+1

i xk+1
i ξTk+1(Kk+1

i )T + (ᾱi − 1)2

×Kk+1
i Rk+1

iv (Kk+1
i )T + ᾱ2

iK
k+1
i ξk+1ξ

T
k+1(Kk+1

i )T

− ᾱiKk+1
i ξk+1(e

k+1|k
i )T (I −Kk+1

i Gk+1
i )T

− ᾱ2
iK

k+1
i ξk+1(xk+1

i )T (Gk+1
i )T (Kk+1

i )T + ᾱi(1− ᾱi)
× (Kk+1

i Gk+1
i xk+1

i (xk+1
i )T (Gk+1

i )T (Kk+1
i )T

+Kk+1
i Rk+1

iv (Kk+1
i )T +Kk+1

i ξk+1ξ
T
k+1(Kk+1

i )T

−Kk+1
i Gk+1

i xk+1
i ξTk+1(Kk+1

i )T

−Kk+1
i ξk+1(xk+1

i )T (Gk+1
i )T (Kk+1

i )T )
}
. (25)

Remark 1: It is worth mentioning that some uncertain terms
are included in (18) because of the consideration of the
deception attacks and the noises, and this makes it impossible
to accurately compute P

k+1|k+1
i and Kk+1

i . To deal with
this problem, an alternative method for finding upper bounds
on P

k+1|k+1
i is proposed through employing mathematical

induction, and then the filter gain Kk+1
i is obtained via

minimizing traces of such upper bounds.
Theorem 2: Let model (1), positive scalars λ1, ρ1, ρ2, ρ3

and η and initial conditions P 0|0
i ≤ Φ

0|0
i be given. If

Φ
k+1|k
i =aki I +Dk

i R
k
i$(Dk

i )T (26)

and

Φ
k+1|k+1
i

=(1 + ᾱiρ1 + ᾱiρ3)(I −Kk+1
i Gk+1

i )Φ
k+1|k
i

× (I −Kk+1
i Gk+1

i )T + 2ᾱi(1 + ρ−11 + ρ2)Kk+1
i

×Gk+1
i Φ

k+1|k
i (Gk+1

i )T (Kk+1
i )T + 2ᾱi(1 + ρ−11 + ρ2)

×Kk+1
i Gk+1

i x̂
k+1|k
i x̂Ti (k + 1|k)(Gk+1

i )T (Kk+1
i )T

+ ᾱi(1 + ρ−12 + ρ−13 )θ2Kk+1
i (Kk+1

i )T

+ (1− ᾱi)Kk+1
i Rk+1

iv (Kk+1
i )T (27)

admit positive-definite solutions such that, for all k ≥ 0, the
constraint η−1I < Φ

k|k
i is satisfied, then matrices Φ

k+1|k
i and

Φ
k+1|k+1
i are, respectively, the upper bounds on P

k+1|k
i and

P
k+1|k+1
i , i.e.,

P
k+1|k
i ≤ Φ

k+1|k
i , (28)

P
k+1|k+1
i ≤ Φ

k+1|k+1
i (29)

where

aki ,min{zki , 4π̄i},
zki ,(1 + λ1ω̄i + ς̄)tr

(
F ki ((Φ

k|k
i )−1 − ηI)−1(F ki )T + η−1

×Mk
i (Mk

i )T
)

+ (λ−11 + ς̄ + ω̄i)
N∑
j=1

ωij tr(ΓΦ
k|k
j ΓT )

+ 2(1 + ω̄i + ς̄)
N∑
j=1

ςj tr
(
Γ(Φ

k|k
j + x̂

k|k
j (x̂

k|k
j )T )ΓT

)
,

π̄i ,
n∑
h=1

(πmax
ih )2, ω̄i ,

N∑
j=1

ωij , ς̄ ,
N∑
j=1

ςj . (30)

The gain matrix Kk+1
i is calculated by

Kk+1
i = (1 + ᾱiρ1 + ᾱiρ3)Φ

k+1|k
i (Gk+1

i )T (Πk+1
i )−1 (31)

where

Πk+1
i

,Gk+1
i

(
(1 + ᾱiρ1 + ᾱiρ3)Φ

k+1|k
i + 2ᾱi(1 + ρ−11 + ρ2)

× (Φ
k+1|k
i + x̂

k+1|k
i (x̂

k+1|k
i )T )

)
(Gk+1

i )T + ᾱi(1 + ρ−12

+ ρ−13 )θ2I + (1− ᾱi)Rk+1
iv . (32)

Proof: The proof is carried out by resorting to mathemat-
ical induction. Assume that P k|ki ≤ Φ

k|k
i .

Observing the terms in (17), one knows from Lemmas 1-2
that

N∑
j=1

ωijE
{

Θk
i

(
(F ki +Mk

i W
k
i )e

k|k
i (e

k|k
j )TΓT

+ Γe
k|k
j (e

k|k
i )T (F ki +Mk

i W
k
i )T

)
(Θk

i )T
}

≤
N∑
j=1

ωij

(
λ1(F ki +Mk

i W
k
i )P

k|k
i (F ki +Mk

i W
k
i )T

+ λ−11 ΓP
k|k
j ΓT

)
, (33)

N∑
j=1

∆ωijE
{

Θk
i

(
Γxkj (e

k|k
i )T (F ki +Mk

i W
k
i )T
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+ (F ki +Mk
i W

k
i )e

k|k
i (xkj )TΓT

)
(Θk

i )T
}

≤
N∑
j=1

ςj

(
(F ki +Mk

i W
k
i )P

k|k
i (F ki +Mk

i W
k
i )T

+ 2Γ(P
k|k
j + x̂

k|k
j (x̂

k|k
j )T )ΓT

)
, (34)

and
N∑
j=1

N∑
p=1

∆ωij∆ωipE
{

Θk
i Γxkj (xkp)TΓT (Θk

i )T
}

≤1

2

N∑
j=1

N∑
p=1

∆ωij∆ωipE
{

Θk
i Γ(xkj (xkp)T + xkpx

T
j,k)ΓT (Θk

i )T
}

≤1

2

N∑
j=1

N∑
p=1

∆ωij∆ωipE
{

Θk
i Γ(xkjx

T
j,k + xkp(xkp)T )ΓT (Θk

i )T
}

≤2ς̄
N∑
j=1

ςjΓ(P
k|k
j + x̂

k|k
j (x̂

k|k
j )T )ΓT . (35)

Similarly, we have
N∑
j=1

N∑
p=1

ωijωipE
{

Θk
i Γek|kp (e

k|k
j )TΓT (Θk

i )T
}

≤ω̄i
N∑
j=1

ωijΓP
k|k
j ΓT , (36)

and
N∑
j=1

N∑
p=1

∆ωijωipE
{

Θk
i Γ(xkj (ek|kp )T + ek|kp xTj,k)ΓT (Θk

i )T
}

≤
N∑
j=1

N∑
p=1

∆ωijωipE
{

Θk
i Γ(2P

k|k
j + 2x̂

k|k
j (x̂

k|k
j )T

+ P k|kp )ΓT (Θk
i )T
}

≤2ω̄i

N∑
j=1

ςjΓ(P
k|k
j + x̂

k|k
j (x̂

k|k
j )T )ΓT + ς̄

N∑
j=1

ωijΓP
k|k
j ΓT .

(37)

Substituting (33)-(37) into (17) yields

P
k+1|k
i

≤Dk
i R

k
i$(Dk

i )T + (1 + λ1ω̄i + ς̄)E
{

(F ki +Mk
i W

k
i )

P
k|k
i (F ki +Mk

i W
k
i )T

}
+ (λ−11 + ς̄ + ω̄i)

N∑
j=1

ωij

× E
{

ΓP
k|k
j ΓT

}
+ 2(1 + ω̄i + ς̄)

N∑
j=1

ςj

× E
{

Γ
(
P
k|k
j + x̂

k|k
j (x̂

k|k
j )T

)
ΓT
}

≤Dk
i R

k
i$(Dk

i )T + (1 + λ1ω̄i + ς̄)tr
(
F ki ((P

k|k
i )−1 − ηI)−1

× (F ki )T + η−1Mk
i (Mk

i )T
)
I + (λ−11 + ς̄ + ω̄i)

N∑
j=1

ωij

× tr(ΓP k|kj ΓT )I + 2(1 + ω̄i + ς̄)
N∑
j=1

ςj tr
(
Γ(P

k|k
j

+ x̂
k|k
j (x̂

k|k
j )T )ΓT

)
I

=ski I +Dk
i R

k
i$(Dk

i )T (38)

where

ski ,(1 + λ1ω̄i + ς̄)tr
(
F ki ((P

k|k
i )−1 − ηI)−1(F ki )T + η−1

×Mk
i (Mk

i )T
)

+ (λ−11 + ς̄ + ω̄i)
N∑
j=1

ωij tr(ΓP
k|k
j ΓT )

+ 2(1 + ω̄i + ς̄)
N∑
j=1

ςj tr
(
Γ(P

k|k
j + x̂

k|k
j (x̂

k|k
j )T )ΓT

)
.

(39)

Next, using the definition of σi(·) in (2), we have

P
k+1|k
i

=Dk
i R

k
i$(Dk

i )T + E
{(
σi
(
fi(x

k
i ) +

N∑
j=1

(ωij + ∆ωij)Γx
k
j

)
− σi

(
fi(x̂

k|k
i ) +

N∑
j=1

ωijΓx̂
k|k
j

))(
σi
(
fi(x

k
i ) +

N∑
j=1

(ωij

+ ∆ωij)Γx
k
j

)
− σi

(
fi(x̂

k|k
i ) +

N∑
j=1

ωijΓx̂
k|k
j

))T}
≤4π̄iI +Dk

i R
k
i$(Dk

i )T (40)

where π̄i ,
n∑
h=1

(πmax
ih )2.

From (38)-(40), it is concluded that

P
k+1|k
i ≤ min{ski , 4π̄i}I +Dk

i R
k
i$(Dk

i )T . (41)

Together with (26), (30), (41) and the assumption P
k|k
i ≤

Φ
k|k
i , one assures that the inequality (28) holds.
By using Lemma 2 and the fact that xk+1

i = x̂
k+1|k
i +

e
k+1|k
i , one has

P
k+1|k+1
i

≤(I −Kk+1
i Gk+1

i )P
k+1|k
i (I −Kk+1

i Gk+1
i )T

+ (1− ᾱi)Kk+1
i Rk+1

iv (Kk+1
i )T + E

{
ᾱiK

k+1
i ξk+1ξ

T
k+1

× (Kk+1
i )T + ᾱiK

k+1
i Gk+1

i xk+1
i (Kk+1

i Gk+1
i xk+1

i )T

+ ᾱi
(
ρ1(I −Kk+1

i Gk+1
i )P

k+1|k
i (I −Kk+1

i Gk+1
i )T

+ ρ−11 Kk+1
i Gk+1

i xk+1
i (Kk+1

i Gk+1
i xk+1

i )T
)

+ ᾱi
(
ρ2K

k+1
i Gk+1

i xk+1
i (Kk+1

i Gk+1
i xk+1

i )T

+ ρ−12 Kk+1
i ξk+1ξ

T
k+1(Kk+1

i )T
)

+ ᾱi
(
ρ3(I −Kk+1

i

×Gk+1
i )P

k+1|k
i (I −Kk+1

i Gk+1
i )T

+ ρ−13 Kk+1
i ξk+1ξ

T
k+1(Kk+1

i )T
)}

≤(1 + ᾱiρ1 + ᾱiρ3)(I −Kk+1
i Gk+1

i )P
k+1|k
i

× (I −Kk+1
i Gk+1

i )T + (1− ᾱi)Kk+1
i Rk+1

iv (Kk+1
i )T

+ ᾱi(1 + ρ−12 + ρ−13 )θ2Kk+1
i (Kk+1

i )T

+ 2ᾱi(1 + ρ−11 + ρ2)Kk+1
i Gk+1

i P
k+1|k
i (Gk+1

i )T (Kk+1
i )T

+ 2ᾱi(1 + ρ−11 + ρ2)Kk+1
i Gk+1

i x̂
k+1|k
i (x̂

k+1|k
i )T

× (Gk+1
i )T (Kk+1

i )T . (42)
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Applying Lemma 4 to (27) and (42), we draw a conclusion
as (29).

From the above discussions, the upper bounds (27) on
P
k+1|k+1
i are obtained. Moving forward, we arrive at

∂tr(Φk+1|k+1
i )

∂Kk+1
i

=2(1 + ᾱiρ1 + ᾱiρ3)(−Φ
k+1|k
i (Gk+1

i )T +Kk+1
i Gk+1

i

× Φ
k+1|k
i (Gk+1

i )T ) + 4ᾱi(1 + ρ−11 + ρ2)Kk+1
i Gk+1

i

× Φ
k+1|k
i (Gk+1

i )T + 2ᾱi(1 + ρ−12 + ρ−13 )θ2Kk+1
i

+ 4ᾱi(1 + ρ−11 + ρ2)Kk+1
i Gk+1

i x̂
k+1|k
i (x̂

k+1|k
i )T (Gk+1

i )T

+ 2(1− ᾱi)Kk+1
i Rk+1

iv

=− 2(1 + ᾱiρ1 + ᾱiρ3)Φ
k+1|k
i (Gk+1

i )T + 2Kk+1
i Πk+1

i

=0. (43)

It is obtained from (43) and the invertibility of Πk+1
i that

Kk+1
i is computed by (31).
Remark 2: In this paper, a novel approach has been pre-

sented to calculate the time-varying filter gain for CNs. The
main idea of this method is to calculate the filter gain of node
i by only using its local and neighboring information, thereby
reducing the computational complexity. Note that, by using
the traditional state-augmentation method, the dimension of
the corresponding upper-bound matrix amounts to nN × nN ,
which would give rise to a heavy computational burden in
case of large network size. As such, our recursive scheme is
more suitable for online application in practical engineering
as compared with the traditional state augmentation approach.

Now, we are ready to discuss the EMSB of ek|ki under
Assumption 1 and Lemmas 7-8.

Assumption 1: The positive scalars ri$, r̄i$, γ, γ̄, di, d̄i,
f
i
, f̄i, mi and m̄i satisfy

ri$ ≤ ‖Ri$,k+1‖ ≤ r̄i$, γ ≤ ‖Γ‖ ≤ γ̄,
di ≤ ‖Dk

i ‖ ≤ d̄i, f i ≤ ‖F
k
i ‖ ≤ f̄i, mi ≤ ‖Mk

i ‖ ≤ m̄i

for any i and k.
Lemma 7: Consider the state-saturated CN described by

(1)-(6) with filter (7). Then, we have

Hk+1
i ≤ (Φ

k+1|k
i )−1,

(Gk+1
i )TKk+1

i Gk+1
i ≤ 1

2ᾱi(1 + ρ−11 + ρ2)
(Φ

k+1|k
i )−1,

(Φ
k+1|k
i )−1 ≤ 1

d̄2i r̄i$
I (44)

if positive scalars ρ1 and ρ2 exist such that

3 + 2ρ−11 + 2ρ2 ≥ ρ1,
ρ1 ≥ 2

(45)

where

Hk+1
i , (Lk+1

i )T (Φ
k+1|k+1
i )−1Lk+1

i ,

Kk+1
i , (Kk+1

i )T × (Φ
k+1|k+1
i )−1Kk+1

i ,

Lk+1
i , I − (1− ᾱi)Kk+1

i Gk+1
i .

Proof: It follows from (26) that

Φ
k+1|k
i ≥ Dk

i R
k
i$(Dk

i )T , (46)

or
(Φ

k+1|k
i )−1 ≤ 1

d̄2i r̄i$
I.

From (27), one knows that

Φ
k+1|k+1
i ≥(1 + ᾱiρ1 + ᾱiρ3)(I −Kk+1

i Gk+1
i )Φ

k+1|k
i

× (I −Kk+1
i Gk+1

i )T + 2ᾱi(1 + ρ−11 + ρ2)

×Kk+1
i Gk+1

i Φ
k+1|k
i (Gk+1

i )T (Kk+1
i )T . (47)

Thus, if the positive scalars ρ1 and ρ2 satisfy the condition
(45), the inequality

Φ
k+1|k+1
i ≥Lk+1

i Φ
k+1|k
i (Lk+1

i )T , (48)

holds. Then, by applying Lemma 5, the above inequality (48)
holds if and only if

(Lk+1
i )T (Φ

k+1|k+1
i )−1Lk+1

i ≤ (Φ
k+1|k
i )−1, (49)

i.e., Hk+1
i ≤ (Φ

k+1|k
i )−1.

In addition, (27) tells that

Φ
k+1|k+1
i ≥2ᾱi(1 + ρ−11 + ρ2)Kk+1

i Gk+1
i Φ

k+1|k
i

× (Gk+1
i )T (Kk+1

i )T . (50)

By means of Lemma 5, it is derived from (50) that

(Gk+1
i )T (Kk+1

i )T (Φ
k+1|k+1
i )−1Kk+1

i Gk+1
i

≤ 1

2ᾱi(1 + ρ−11 + ρ2)
(Φ

k+1|k
i )−1, (51)

or

(Gk+1
i )TKk+1

i Gk+1
i ≤ 1

2ᾱi(1 + ρ−11 + ρ2)
(Φ

k+1|k
i )−1.

Based on Assumption 1 and summarizing the above analy-
sis, Lemma 7 is proven.

Lemma 8: Consider the state-saturated CN described by
(1)-(6). We have

FTi,k(Φ
k+1|k
i )−1Fi,k ≤

1

1 + λ1ω̄i + ς̄
(Φ

k|k
i )−1,

(Φ
k+1|k
i )−1 ≤ 1

1 + λ1ω̄i + ς̄

(
(F ki )T

)−1
(Φ

k|k
i )−1(F ki )−1

(52)

when Φ
k+1|k
i = zki I + Dk

i R
k
i$(Dk

i )T , where Fi,k , F ki +
Mk
i W

k
i .

Proof: From (26), (30) and Lemma 3, we can easily
obtain the following inequalities:

Φ
k+1|k
i ≥ (1 + λ1ω̄i + ς̄)Fi,kΦ

k|k
i F

T
i,k,

Φ
k+1|k
i ≥ (1 + λ1ω̄i + ς̄)F ki ((Φ

k|k
i )−1 − ηI)−1(F ki )T .

(53)

According to the definition of F ki in (20), it is easy to know
that F ki is invertible. Based on Lemma 5, we see from (53)
that Lemma 8 holds.
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Theorem 3: Consider the state-saturated CN depicted by
(1). Let λ1, ρ1 and ρ2 be positive scalars satisfying

2ρ2 ≥ρ1 − 2ρ−11 − 3,

ρ1 ≥2,

λ1ω̄if
2

i
>f2

i
(5 + 3ς̄ + 2ω̄i) +Nf̄2i γ̄

2(ς̄ + ω̄i)

× (5 + 3Nς̄ + 2Nω̄i).

(54)

Then, the EMSB of ek|ki is ensured under Assumption 1.
Proof: First, we define the following notations:

ek+1|k ,[(e
k+1|k
1 )T , (e

k+1|k
2 )T , · · · , (ek+1|k

N )T ]T ,

ek+1|k+1 ,[(e
k+1|k+1
1 )T , (e

k+1|k+1
2 )T , · · · , (ek+1|k+1

N )T ]T .

Next, we select a quadratic function as follows:

Vk(ek|k) ,
N∑
i=1

(e
k|k
i )T (Φ

k|k
i )−1e

k|k
i . (55)

Substituting (22) and (24) into (55), we obtain

E{Vk+1(ek+1|k+1)|ek|k}

=
N∑
i=1

(e
k+1|k+1
i )T (Φ

k+1|k+1
i )−1e

k+1|k+1
i . (56)

According to (22), (24) and recalling xk+1
i = e

k+1|k
i +

x̂
k+1|k
i , one has

e
k+1|k+1
i =(Lk+1

i + α̃k+1
i Kk+1

i Gk+1
i )Θk

i

(
Fi,kek|ki

+
N∑
j=1

∆ωijΓx̂
k|k
j +

N∑
j=1

(∆ωij + ωij)Γe
k|k
j

)
+ (Lk+1

i + α̃k+1
i Kk+1

i Gk+1
i )Dk

i$
k
i

+ ᾱiK
k+1
i Gk+1

i x̂
k+1|k
i − (1− ᾱi)Kk+1

i vk+1
i

− ᾱiKk+1
i ξk+1 + α̃k+1

i Kk+1
i (Gk+1

i x̂
k+1|k
i

+ vk+1
i − ξk+1). (57)

Calculate E{Vk+1(ek+1|k+1)|ek|k} along (57) as follows:

E{Vk+1(ek+1|k+1)|ek|k}

=
N∑
i=1

(e
k|k
i )TFTi,k(Θk

i )TGk+1
i Θk

iFi,ke
k|k
i +

N∑
i=1

N∑
j=1

n∑
h=1

(∆ωij

+ ωij)(∆ωih + ωih)(e
k|k
j )TΓT (Θk

i )TGk+1
i Θk

i Γe
k|k
h

+
N∑
i=1

N∑
j=1

n∑
h=1

∆ωij∆ωih(x̂
k|k
j )TΓT (Θk

i )TGk+1
i Θk

i Γx̂
k|k
h

+
N∑
i=1

ᾱiξ
T
k+1Kk+1

i ξk+1 +
N∑
i=1

($k
i )T (Dk

i )TGk+1
i Dk

i$
k
i

+
N∑
i=1

ᾱi(x̂
k+1|k
i )T (Gk+1

i )TKk+1
i Gk+1

i x̂
k+1|k
i

+
N∑
i=1

(1− ᾱi)(vk+1
i )TKk+1

i vk+1
i

+ 2
N∑
i=1

N∑
j=1

(∆ωij + ωij)(e
k|k
i )TFTi,k(Θk

i )TGk+1
i Θk

i Γe
k|k
j

+ 2
N∑
i=1

N∑
j=1

∆ωij(e
k|k
i )TFTi,k(Θk

i )TGk+1
i Θk

i Γx̂
k|k
j

+ 2
N∑
i=1

ᾱi(e
k|k
i )TFTi,k(Θk

i )TQk+1
i (Gk+1

i x̂
k+1|k
i − ξk+1)

− 2
N∑
i=1

ᾱi(x̂
k+1|k
i )T (Gk+1

i )TKk+1
i ξk+1

+ 2
N∑
i=1

N∑
j=1

N∑
h=1

∆ωih(∆ωij + ωij)(e
k|k
j )TΓT (Θk

i )TGk+1
i

×Θk
i Γx̂

k|k
h Γx̂

k|k
h + 2

N∑
i=1

N∑
j=1

ᾱi(∆ωij + ωij)(e
k|k
j )TΓT

× (Θk
i )TQk+1

i (Gk+1
i x̂

k+1|k
i − ξk+1) + 2

N∑
i=1

N∑
j=1

ᾱi∆ωij

× (x̂
k|k
j )TΓT (Θk

i )TQk+1
i (Gk+1

i x̂
k+1|k
i − ξk+1) + 2

N∑
i=1

ᾱi

× (1− ᾱi)(ek|ki )TFTi,k(Θk
i )T (Gk+1

i )TKk+1
i (Gk+1

i x̂
k+1|k
i

− ξk+1) + 2
N∑
i=1

N∑
j=1

ᾱi(1− ᾱi)∆ωij(x̂k|kj )TΓT (Θk
i )T

× (Gk+1
i )TKk+1

i (Gk+1
i x̂

k+1|k
i − ξk+1)

+ 2
N∑
i=1

N∑
j=1

ᾱi(1− ᾱi)(∆ωij + ωij)(e
k|k
j )TΓT (Θk

i )T

× (Gk+1
i )TKk+1

i (Gk+1
i x̂

k+1|k
i − ξk+1) (58)

where Qk+1
i , (Lk+1

i )T (Φ
k+1|k+1
i )−1Kk+1

i and Gk+1
i ,

Hk+1
i + ᾱi(1− ᾱi)(Gk+1

i )TKk+1
i Gk+1

i .
Observing the terms in (58), one has

N∑
i=1

N∑
j=1

n∑
h=1

(∆ωij + ωij)(∆ωih + ωih)(e
k|k
j )TΓT

× (Θk
i )TGk+1

i Θk
i Γe

k|k
h

≤
N∑
i=1

N∑
j=1

N(∆ωij + ωij)
2(e

k|k
j )TΓT (Θk

i )TGk+1
i Θk

i Γe
k|k
j

≤
N∑
i=1

N∑
j=1

N(ςj + ωij)
2(e

k|k
j )TΓTGk+1

i Γe
k|k
j , (59)

and

N∑
i=1

N∑
j=1

n∑
h=1

∆ωij∆ωih(x̂
k|k
j )TΓT (Θk

i )TGk+1
i Θk

i Γx̂
k|k
h

≤
N∑
i=1

N∑
j=1

Nς2j (x̂
k|k
j )TΓTGk+1

i Γx̂
k|k
j . (60)

For the cross terms in (58), one has

2
N∑
i=1

N∑
j=1

(∆ωij + ωij)(e
k|k
i )TFTi,k(Θk

i )T (Gk+1
i )TΘk

i Γe
k|k
j
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≤
N∑
i=1

N∑
j=1

(ςj + ωij)(e
k|k
i )TFTi,kGk+1

i Fi,kek|ki

+
N∑
i=1

N∑
j=1

(ςj + ωij)(e
k|k
j )TΓTGk+1

i Γe
k|k
j . (61)

The remaining cross terms in (58) can be handled similarly.
Moreover, substituting (59)-(61) and all the other cross terms
into (58), we have

E{Vk+1(ek+1|k+1)|ek|k}

≤
N∑
i=1

(e
k|k
i )TFTi,k

(
(1 + 2ς̄ + ω̄i + 2ᾱi)Hk+1

i + ᾱi(1− ᾱi)

× (3 + 2ς̄ + ω̄i)(G
k+1
i )TKk+1

i Gk+1
i

)
Fi,kek|ki

+
N∑
i=1

N∑
j=1

(ςj + ωij)(e
k|k
j )TΓT

(
(1 + 2Nςj +Nωij + 2ᾱi)

×Hk+1
i + ᾱi(1− ᾱi)(3 + 2Nςj +Nωij)(G

k+1
i )TKk+1

i

×Gk+1
i

)
Γe

k|k
j +

N∑
i=1

ᾱi
(
2 + (1 + 2ς̄ + ω̄i)(2− ᾱi)

)
× (ξTk+1Kk+1

i ξk+1 + (x̂
k+1|k
i )T (Gk+1

i )TKk+1
i Gk+1

i x̂
k+1|k
i )

+
N∑
i=1

N∑
j=1

ςj(x̂
k|k
j )TΓT

(
(1 + 2Nςj +Nωij + 2ᾱi)Hk+1

i

+ ᾱi(1− ᾱi)(3 + 2Nςj +Nωij)(G
k+1
i )TKk+1

i Gk+1
i

)
× Γx̂

k|k
j +

N∑
i=1

($k
i )T (Dk

i )TGk+1
i Dk

i$
k
i

+
N∑
i=1

(1− ᾱi)(vk+1
i )TKk+1

i vk+1
i . (62)

Now, let us focus on the terms ofHk+1
i and Kk+1

i in (62) by
recalling the inequalities (44) in Lemma 7, in which the matrix
Φ
k+1|k
i has two possible solutions according to Theorem 2. As

such, we shall discuss the EMSB of ek|ki for both cases.
Case 1: Consider the case that Φ

k+1|k
i = 4π̄iI +

Dk
i R

k
i$(Dk

i )T . It is obvious from Lemma 7 that (Φ
k+1|k
i )−1,

Hk+1
i and Kk+1

i are all bounded. According to (1) and (7),
we know that x̂k+1|k

i and x̂k|ki are also both bounded. To sum
up, the right-hand side of inequality (62) is bounded based on
Assumption 1, and thus ek|ki has the EMSB from Lemma 6.

Case 2: Consider the case that Φ
k+1|k
i = zki I +

Dk
i R

k
i$(Dk

i )T . Let us recall Lemmas 7-8 and Assumption
1, and then substitute (44) into (62). The inequality (62) is
arranged as

E{Vk+1(ek+1|k+1)|ek|k}

≤
N∑
i=1

(e
k|k
i )T

(1 + 2ς̄ + ω̄i + 2ᾱi
1 + λ1ω̄i + ς̄

(Φ
k|k
i )−1

+
(1− ᾱi)(3 + 2ς̄ + ω̄i)

2(1 + ρ−11 + ρ2)(1 + λ1ω̄i + ς̄)
(Φ

k|k
i )−1

)
e
k|k
i

+N
N∑
i=1

(ς̄ + ω̄i)(e
k|k
i )TΓT

(1 + 2Nς̄ +Nω̄i + 2ᾱi
1 + λ1ω̄i + ς̄

×
(
(F ki )T

)−1
(Φ

k|k
i )−1(F ki )−1

+
(1− ᾱi)(3 + 2Nς̄ +Nω̄i)

2(1 + ρ−11 + ρ2)(1 + λ1ω̄i + ς̄)

×
(
(F ki )T

)−1
(Φ

k|k
i )−1(F ki )−1

)
Γe

k|k
i

+
N∑
i=1

2 + (1 + 2ς̄ + ω̄i)(2− ᾱi)
2(1 + ρ−11 + ρ2)

(x̂
k+1|k
i )T (Φ

k+1|k
i )−1

× x̂k+1|k
i +

N∑
i=1

N∑
j=1

ςj
(
(1 + 2Nςj +Nωij + 2ᾱi)

+
(1− ᾱi)(3 + 2Nςj +Nωij)

2(1 + ρ−11 + ρ2)

)
(x̂
k|k
j )TΓT (Φ

k+1|k
i )−1Γ

× x̂k|kj +
N∑
i=1

ᾱi
(
2 + (1 + 2ς̄ + ω̄i)(2− ᾱi)

)
ξTk+1Kk+1

i

× ξk+1 +
N∑
i=1

($k
i )T (Dk

i )TGk+1
i Dk

i$
k
i

+
N∑
i=1

(1− ᾱi)(vk+1
i )TKk+1

i vk+1
i

≤
N∑
i=1

pi(e
k|k
i )T (Φ

k|k
i )−1e

k|k
i +

N∑
i=1

2 + 2ς̄ + ω̄i

1 + ρ−11 + ρ2
(x̂
k+1|k
i )T

× (Φ
k+1|k
i )−1x̂

k+1|k
i

+
N∑
i=1

N∑
j=1

2ςj(2 + 2Nςj +Nωij + ᾱi)

× (x̂
k|k
j )TΓT (Φ

k+1|k
i )−1Γx̂

k|k
j +

N∑
i=1

2ᾱi(2 + 2ς̄ + ω̄i)

× ξTk+1Kk+1
i ξk+1 +

N∑
i=1

($k
i )T (Dk

i )T
(
(Φ

k+1|k
i )−1

+ ᾱi(1− ᾱi)(Gk+1
i )TKk+1

i Gk+1
i

)
Dk
i$

k
i

+

N∑
i=1

(1− ᾱi)(vk+1
i )TKk+1

i vk+1
i (63)

where

pi ,
1

λ1ω̄if
2

i

(
f2
i
(5 + 3ς̄ + 2ω̄i) +Nf̄2i γ̄

2(ς̄ + ω̄i)

× (5 + 3Nς̄ + 2Nω̄i)
)
. (64)

Moreover, according to (44) and Assumption 1, we know that
(Φ

k+1|k
i )−1 and Kk+1

i are both bounded. In consideration of
the boundedness of x̂k+1|k

i and x̂k|ki , we conclude that the sum
of the last five terms on the right-hand side of (63) is bounded,
i.e., there exists a positive scalar t0 such that

E{Vk+1(ek+1|k+1)|ek|k} ≤
N∑
i=1

pi(e
k|k
i )T (Φ

k|k
i )−1e

k|k
i + t0.

(65)

To this end, it follows from (45), (64), (65) and Lemma 6
that ek|ki has the EMSB under conditions (54).

Remark 3: In this paper, the RF problem has been ad-
dressed for state-saturated CNs with UCSs and deception
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attacks, and the RF algorithm has been designed by the aid
of the mathematical induction method. Note that our approach
only uses the local and neighboring information to compute
the gain for each node. In Theorem 2, a novel RF algorithm has
been presented by finding upper bounds on error covariances.
In Theorem 3, sufficient conditions have been acquired to
guarantee the exponential boundedness of our RF scheme. At
last, sufficient conditions have been established to ensure the
EMSB of filtering errors ek|ki .

Remark 4: The paper solves the RF issue for CNs with state
saturations and UCSs suffering from deception attacks. The
primary features of our approach are highlighted as follows:
1) the state saturations, the UCSs, and the deception attacks
are simultaneously considered in a unified framework; and 2)
the EMSB of filtering errors is analyzed. Thus, the RF scheme
developed would have not only theoretical importance but also
practical significance.
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Fig. 1: x1,k and its estimates.

IV. NUMERICAL EXAMPLE

Example 1: Consider model (1) with parameters given as
follows:

f(xki ) =

[
(xki )(1) + sin((xki )(1)(xki )(2))

0.5(xki )(2) + sin((xki )(1)(xki )(2))

]
,
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Fig. 2: x2,k and its estimate.

Ω =


0.2 0.7 0.5 0.5
0.8 0.7 0.4 0.6
0.6 0.5 0.7 0.3
0.4 0.8 0.6 0.7

 .
The upper bound of the uncertain term ∆ωij is ςj =

[0.1 0.2 0.2 0.1]T (j = 1, 2, 3, 4).

Rk1v =

[
0.3 0
0 0.1

]
, Rk2v =

[
0.2 0
0 0.3

]
,

Rk3v =

[
0.4 0
0 0.1

]
, Rk4v =

[
0.6 0
0 0.2

]
.

Γ = diag{0.5, 0.5}, Rki$ = diag{0.5, 0.3, 0.4, 0.2},

Gk1 =

[
0.6 0.25
0.3 0.2

]
, Gk2 =

[
0.5 0.6
0.5 0.2

]
,

Gk3 =

[
0.8 −1.2
0.6 0.8

]
, Gk4 =

[
0.85 0.95
0.5 0.3

]
,

Dk
1 =

[
−0.5
0.02

]
, Dk

2 =

[
−0.03
−0.02

]
,

Dk
3 =

[
0.02
−0.6

]
, Dk

4 =

[
−0.4
0.01

]
.

The initial state values are x01 = [−0.3 0.1]T , x02 =
[−0.7 0.2]T , x03 = [0.5 −0.2]T and x04 = [0.3 −0.25]T .
Suppose that the saturation levels are πmax

1 = [1.8 0.6]T ,
πmax
2 = [0.4 1.8]T , πmax

3 = [1.3 0.9]T and πmax
4 =
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Fig. 3: x3,k and its estimate.

[0.9 3.5]T . Choose the positive scalars ρ3 = 0.8, η = 0.9,
θ = 0.2, ᾱi = 0.6 (i = 1, 2, 3, 4). Other parameters are
selected as ρ1 = 10, ρ2 = 30 and λ1 = 280 according to
Theorem 3.

Figs. 1-4 illustrate the state and their estimation curves
for four nodes, which show that the developed filters have
achieved the desired performance for the state-saturated CNs
subject to deception attacks.

Example 2: In practical application, the states of the robot
are constrained from the position and orientation [11]. To
explain the practicability of our scheme, consider the indoor
localization problem for mobile robots networks [3], which
are described by

 xk+1
i

κk+1
i

ψk+1
i

 =σi

( xki +W k
i cosψki

κki +W k
i sinψki

ψki + τki

+
4∑
j=1

(ωij

+ ∆ωij)

 xkj
κkj
ψkj

)+

 ($k
i )x

($k
i )κ

($k
i )ψ


yki =

[
1 0 0
0 1 0

] xki
κki
ψki

+ vki

where (xki , κki ) and ψki are the position and the orienta-
tion of the i-th robot, respectively. (W k

i , τ
k
i ) is the velocity
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Fig. 4: x4,k and its estimate.

vector. The saturation levels are πmax
1 = [13.8 4.6 11.1]T ,

πmax
2 = [9.4 15.8 7.4]T , πmax

3 = [5.3 6.9 12.8]T and
πmax
4 = [7.9 5.5 15]T . $k

i = [($k
i )x ($k

i )κ ($k
i )ψ]T ,

Rki$ = diag{0.3, 0.3, 0.3, 0.3} and Rkiv = diag{0.2, 0.2}.
The initial state values are x01 = [−0.3 0.1 0.2]T , x02 =
[−0.7 0.2 − 0.1]T , x03 = [0.5 − 0.2 0.3]T and x04 =
[0.3 − 0.25 0.1]T . Other parameters are selected as the
same as those in Example 1.

Fig. 5 shows the root-mean-square error (RMSE) curves
in position of four robots, where Fig. 5(a) and Fig. 5(b) are
the simulation results with and without taking into account
the state saturation, respectively. From Fig. 5(b), one observes
that the RMSE is unstable when the state saturation is not
considered, which illustrates the negative impact of the state
saturation on the filtering performance. Considering Fig. 5(a)
with Fig. 5(b), it is clearly observed that, even under deception
attacks, the performance has been greatly improved when state
saturations are considered during design process. This verifies
the practicability of our filter.

V. CONCLUSIONS

This paper has coped with the state-saturated RF issue for
CNs with UCSs under deception attacks. Upper bounds on
filtering errors have been acquired and filter gains have been
determined through minimizing traces of these bounds. Sub-
sequently, the EMSB of filtering errors has been analyzed. At
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Fig. 5: RMSE in position.

last, simulations have been provided to illustrate the usefulness
of the developed RF algorithm. Future research directions
will involve the RF issue for more complex systems under
various network scheduling protocols, the consensus problem
for discrete-time CNs, the fault estimation problem based on
various communication mechanisms and the control issue for
time-varying CNs [9], [12], [13], [16], [25], [46], [49], [51].
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