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A semi-analytical model on the critical
buckling load of perforated plates with
opposite free edges

Weigang Fu1 and Bin Wang2

Abstract
Perforated plates are widely used in thin-walled engineering structures, for example, for lightweight designs of structures and
access for installation. For the purpose of analysis, such perforated plates with two opposite free edges might be considered as
a series of successive Timoshenko beams. A new semi-analytical model was developed in this study using the Timoshenko
shear beam theory for the critical buckling load of perforated plates, with the characteristic equations derived. Results of the
proposed modelling were compared with those obtained by FEM and show good agreement. The influence of the dividing
number of the successive beams on the accuracy of the critical buckling load was studied with respect to various boundary
conditions. And the effect of geometrical parameters, such as the aspect ratio, the thickness-to-width ratio and the cutout-to-
width ratio were also investigated. The study shows that the proposed semi-analytical model can be used for buckling analysis
of a perforated plate with opposite free edges with the capacity to consider the shear effect in thick plates.
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Introduction

In box girders and some load-bearing spars, cutouts are
made for special purposes, for example, material saving and
weight reduction, access for installation and inspections.1–4

Generally, plates with cutouts have a relatively lower
structural strength in comparison with those without, and
the buckling behaviour is one of the most critical consid-
erations in safety and reliability of these structures. The
buckling analysis of a plate with cutouts is more compli-
cated than that of an intact plate.5 Many relevant studies
have involved numerical, experimental and analytical
techniques, and their combinations. Recent works in nu-
merical simulation include Tao,6 who employed a FEM
approach for elastic stability of perforated plates under
uniaxial compression, and the parameters with significant
effects on the performance of the plates were proposed.
Paslara7 investigated infill plate boundary condition effects
by FEM on the overall performance of steel plates with
circular openings. And Loughlan8 adopted finite element
modelling strategies and solutions procedures to enable the
determination of post-buckling failure responses of steel
plates with cutouts. More studies were seen on the elastic
buckling behaviour of rectangular plates with cutouts for
partial edge loading,9 the elastoplastic buckling behaviour of
simply supported rectangular plates with elliptic cutouts10

and the post-buckling behaviour of thin plates with central
circular cutouts subjected to biaxial load11 using FEM.

Experimental studies were also frequently seen together
with simulations.12–14 Shin15 tested five perforated web

specimens subjected to simulated loadings, and nonlinear
buckling analyses were performed by FEM to compare with
the observed inelastic mechanisms. A series of experi-
mental tests16 were carried out for the ultimate buckling
load of perforated steel plates, and FEM was used to in-
vestigate the coupling relations between the geometrical
parameters and the buckling behaviour.

Though there have also been numerous reports on an-
alytical approaches for intact plates, for example, Refs.
17–22, few are seen in open literature on plates with cutout.
Ovesy23 adopted a Reddy-type, third-order shear defor-
mation theory of plates for two versions of the finite strip
method to predict the behaviour of the moderately thick
rectangular plates containing central cutouts, though the
approaches given are not applicable for all boundary
conditions. Abolghasemi24 applied the Ritz method and
expanded the stress function in polar coordinates for cir-
cular cutouts to calculate the buckling load. The buckling
behaviour of the panel with the rectangular cutout was
predicted by applying Lekhnitskii theory and the complex
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variable method25 to express the strain distribution around a
rectangular opening of an infinite anisotropic plate. These
analytical solutions were obtained by expressing the stress
and strain distributions along the cutout edges, resulting in
rather complicated analytical solutions. Furthermore, these
analytical solutions are generally applicable only to special
cases, such as circular or rectangular cutouts,26 and in simple
boundary conditions. More recently, a number of studies
were seen making use of the energy methods.27,28 And the
critical buckling load of new materials such as cellular or
corrugatedmaterials were considered, including the adoption
of equivalent shapes of opening.29–32 Some simplified ap-
proaches on the structural profiles were also made, such as
equivalent cross-sections for engineering applications.33–35

For perforated plates with opposite free edges, the local
stress and strain distributions along the cutout edges are not
significant to affect the buckling behaviour of the plate. The
buckling behaviour is more of a global one, thus less
sensitive to local elements. To provide a relatively
straightforward approach for buckling analysis of plates
with cutouts, this work proposes a new semi-analytical
model based on the Timoshenko beam theory to solve
the critical buckling load, which can be reasonably easily
applied to plates with symmetric cutout shapes. The new
approach differs from existing published work in its ad-
vantage of simplicity in the numerical solution of the
analysis model and the versatility in handling a variety of
symmetric cutouts.

Problem description

The geometry of the cutout considered in this study can be
of the shape of a circle, an ellipse, a rhombus or an even-
sided polygon, or others, which can be symmetrical to the
central axis of the plate. As a circular cutout is most widely
used in practice, it is chosen here to demonstrate the
analysis. The geometry is described in Figure 1 with the
plate of length a and width b. The circular cutout in
the middle of the plate has a diameter d. The plate edges AB

and CD can be simply supported, fully clamped or have no
constraint, respectively, as the boundary condition. And
edges AD and BC are assumed free with no constraint. A
uniformly distributed compressive load, FP, is applied on
AB and CD.

Figure 2 shows that the perforated plate is decomposed
into three connected sections in the axial direction: the left
and right full-width sections, ABB’A’ and D’C’CD, re-
spectively; they are intact beam sections, with A’B’ and
C’D’ being tangential to the cutout circle, which is centred
at (a/2, b/2). Both sections can be considered as two
separated Timoshenko36 beams. The middle section,
A’B’C’D’, has a circular cutout, for which the remaining
part of the section can be treated as a series of successive
Timoshenko sub-beams, with each sub-beam of a rectan-
gular shape in various heights fitting the circumference of
the circular cutout. Note that due to the symmetry to the
beam axis, there is an identical upper and lower group of
sub-beams, correspondingly.

Setting the point O at the middle of AB as the coordinate
origin with the x axis being the central line of the beam, the y
coordinate of the circular cutout outline can be expressed by
equation (1)

FðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d

2

�2

�
�
x� a

2

�2

s
(1)

The total division number of sub-beams, n, is assumed to
be even. And if the sub-divisions are taken at equal length for
simplicity, for the ith sub-beam, its end coordinate, xi, and
width (or height), bi, can be given by equations (2) and (3)

xi ¼

8>>>>><
>>>>>:

0, i¼ 0
ða�dÞ=2, i¼ 1
ða�dÞ=2þði�1Þd=ðn�2Þ, i¼ 2, 3, ::: , n�1
a, i¼ n

(2)

Figure 1. Perforated plates with opposite free edges (AD and BC).

Figure 2. Successive Timoshenko sub-beams for perforated plates.
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bi ¼
(
b, i ¼ 1, n
b� 2FðxiÞ, i ¼ 2, 3, ::: , n� 1

(3)

Note that both the upper and lower sub-beam groups
need to be considered. And as an approximation for sim-
plicity, they are ‘lumped’ together in height as bi accordingly.

Analytical buckling model of perforated
plate structures with opposite free edges

Buckling model expressed by the Timoshenko
beam theory

The infinitesimal segment in the ith Timoshenko sub-beam
is shown in Figure 3 with the transverse displacement dwi.
Its corresponding bending and transverse shear stiffness are
Di = EiIi and Bi = GiA0i = GiAi/ψ, with Ei, Ii, Gi, Ai and ψ
being the Young’s modulus, the moment of inertia, the
transverse shear modulus, the area of the cross-section and
the shear correction coefficient, respectively. ψ = 1.2 for a
rectangular cross-section. The rotation angles of cross-
section in Euler–Bernoulli and Timoshenko beam theory
are θi and φi, respectively, and the angle γi is caused by
considering the shear deformation in the Timoshenko beam.

Considering the shear deformation shown in Figure 3,
the rotation angles of the cross-section can be given as

φiðxÞ ¼ θi � γi ¼
dwiðxÞ
dx

� FQiðxÞ
GiA0i

¼ dwiðxÞ
dx

� FQiðxÞ
Bi

(4)

where FQiðxÞ ≈FViðxÞ þ FPiðxÞdwiðxÞ=dx is the shear force
perpendicular to the segment axis. With

dMiðxÞ
�
dxþ FQiðxÞ ¼ 0 (5)

and

MiðxÞ ¼ Ei

Z
z2i dAi

dφiðxÞ
dx

¼ EiIi
dφiðxÞ
dx

¼ Di
dφiðxÞ
dx

(6)

equation (4) can be written as

Bi

�
dwiðxÞ
dx

� φiðxÞ
	
þ Di

d2φiðxÞ
dx2

¼ 0 (7)

where Bi = GiA0i. As there is no transverse load in the ith

sub-beam, by taking the derivative of equation (5) with
respect to x, we can get

d2MiðxÞ
dx2

þ FPi
d2wiðxÞ
dx2

¼ 0 (8)

or

Di
d3φiðxÞ
dx3

þ FPi
d2wiðxÞ
dx2

¼ 0 (9)

The governing buckling equations of the ith (i = 1, 2,…, n)
Timoshenko sub-beam can be expressed by equations (7) and
(9). And the general solution can be obtained by the
transverse displacement and the angle of rotation

wiðxÞ ¼ Ci
1 þ Ci

2 cosðkixÞ þ Ci
3xþ Ci

4 sinðkixÞ (10)

φiðxÞ ¼ �βiC
i
2ki sinðkixÞ þ Ci

3 þ βiC
i
4ki cosðkixÞ (11)

where k2i ¼ FPi=½Dið1� FPi=BiÞ�, βi ¼ 1� FPi=Bi and
FPi ¼ FP. And Cj

i (j =1, 2, 3, 4) are coefficients to be
determined. The bending moment and shear force can be
obtained as

MiðxÞ ¼ Di


�βiC
i
2k

2
i cosðkixÞ � βiC

i
4k

2
i sinðkixÞ

�
(12)

FQiðxÞ ¼Bi


�
βiC

i
2ki � Ci

2ki


sinðkixÞ

þ �
Ci

4ki � βiC
i
4ki



cosðkixÞ

� (13)

Boundary conditions

Various boundary conditions for edge AB and CD can be
expressed. Three of the commonly seen types are given as
follows:

(1) Simply supported (S): At x = 0 and x = a

wjx¼0 ¼ wjx¼a ¼ 0, M jx¼0 ¼ M jx¼a ¼ 0

BCjx¼0 ¼
"
1, 1, 0, 0
0, bS01, 0, 0

#
(14a)

where bS01 ¼ D1β1k
2
1

BCjx¼a ¼
"
1, bSn2, a, bSn3
0, bSn4, 0, bSn5

#
(14b)

where bSn2 ¼ cosðknaÞ, bSn3 ¼ sinðknaÞ, bSn4 ¼ �Dnβn
k2n cosðknaÞ, bSn5 ¼ �Dnβnk

2
n sinðknaÞ

(2) Fully clamped (C): At x = 0 and x = a

wjx¼0 ¼ wjx¼a ¼ 0, φjx¼0 ¼ φjx¼a ¼ 0

BCjx¼0 ¼
"
1, 1, 0, 0
0, 0, 1, bC01

#
(15a)

where bC01 ¼ β1k1

Figure 3. Infinitesimal segment in the ith Timoshenko sub-beam.
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BCjx¼a ¼
"
1, bCn2, a, bCn3
0, bCn4, 1, bCn5

#
(15b)

where
bCn2 ¼ cosðknaÞ, bCn3 ¼ sinðknaÞ, bCn4 ¼ �βnkn sinðknaÞ,
bCn5 ¼ βnkn cosðknaÞ

(3) Free of constraints (F): At x = 0 and x = a

M jx¼0 ¼ M jx¼a ¼ 0, FQ

��
x¼0

¼ FQ

��
x¼a

¼ 0

BCjx¼0 ¼
"
0, bF01, 0, 0
1, 0, 0, bF02

#
(16a)

where bF01 ¼ D1β1k
2
1 , bF02 ¼ B1ðk1 � β1k1Þ

BCjx¼a ¼
"
1, bFn1, a, bFn2
0, bFn3, 0, bFn4

#
(16b)

in which

bFn1 ¼ �Dnβnk
2
n cosðknaÞ, bFn2 ¼ �Dnβnk

2
n sinðknaÞ

bFn3 ¼Bnðβnkn� knÞsinðknaÞ, bFn4 ¼Bnðkn�βnknÞcosðknaÞ

Continuity conditions

The physical requirement of continuity between neigh-
bouring sub-beams of a smooth plate structure requires the
following conditions to be satisfied for the transverse
displacement, the angle of rotation, the bending moment
and the shear force:

(1) Transverse displacements: At xi = ai, i = 1, 2, …, n�1

wiðaiÞ � wiþ1ðaiÞ ¼ AT
iN

�
CT

i þ CT
iþ1


 ¼ 0 (17)

where

AT
iN ¼ ½1,uiðaiÞ,ai,viðaiÞ,� 1,� uiþ1ðaiÞ,� ai,� viþ1ðaiÞ�

uiðaiÞ ¼ cosðkiaiÞ,viðaiÞ ¼ sinðkiaiÞ,uiþ1ðaiÞ
¼ cosðkiþ1aiÞ,viþ1ðaiÞ ¼ sinðkiþ1aiÞ

CT
i ¼ 


Ci
1,C

i
2,C

i
3,C

i
4

�T
,CT

iþ1 ¼


Ciþ1

1 ,Ciþ1
2 ,Ciþ1

3 ,Ciþ1
4

�T
(2) Angles of rotation: At xi = ai, i = 1, 2, …, n�1

φiðaiÞ � φiþ1ðaiÞ ¼ AT
iZ

�
CT

i þ CT
iþ1


 ¼ 0 (18)

in which

AT
iZ ¼



0, �piðaiÞ, 1, qiðaiÞ, 0, piþ1ðaiÞ, �1, �qiþ1ðaiÞ

�
piðaiÞ ¼ βiki sinðkiaiÞ, qiðaiÞ ¼ βiki cosðkiaiÞ

piþ1ðaiÞ¼βiþ1kiþ1 sinðkiþ1aiÞ, qiþ1ðaiÞ¼βiþ1kiþ1 cosðkiþ1aiÞ

(3) Bending moments: At xi=ai, i=1, 2, …, n�1

MiðaiÞ �Miþ1ðaiÞ ¼ AT
iW

�
CT

i þ CT
iþ1


 ¼ 0 (19)

where

AT
iW ¼ ½0,� miðaiÞ,0,� niðaiÞ,0,miþ1ðaiÞ,0,niþ1ðaiÞ�

miðaiÞ ¼ Diβik
2
i cosðkiaiÞ,niðaiÞ ¼ Diβik

2
i sinðkiaiÞ

miþ1ðaiÞ ¼ Diþ1βiþ1k
2
iþ1 cosðkiþ1aiÞ,niþ1ðaiÞ

¼ Diþ1βiþ1k
2
iþ1 sinðkiþ1aiÞ

(4) Shear forces: At x = ai, i = 1, 2, …, n�1

FQiðaiÞ � FQiþ1ðaiÞ ¼ AT
iJ

�
CT

i þ CT
iþ1



(20)

where

AT
iJ ¼ ½0,� siðaiÞ,0,tiðaiÞ,0,siþ1ðaiÞ,0,� tiþ1ðaiÞ�

siðaiÞ¼Bikið1�βiÞsinðkiaiÞ, tiðaiÞ¼Bikið1�βiÞcosðkiaiÞ

siþ1ðaiÞ ¼ Biþ1kiþ1

�
1� βiþ1



sinðkiþ1aiÞ, tiþ1ðaiÞ

¼ Biþ1kiþ1

�
1� βiþ1



cosðkiþ1aiÞ

The buckling solution matrix

For simplicity, simply supported edges were chosen as the
example for discussion. One set of equations consists of
four boundary conditions from equations (14) and 4(n�1)
continuity conditions from equations (17–20), leading to a
total of 4n equations for 4n unknown coefficients. These
equations are linear and can be written into a matrix format

2
6666666666666664

BCjx¼0

T1ða1Þ,� T2ða1Þ
::::::

TiðaiÞ,� Tiþ1ðaiÞ
::::::

Tn�1ðan�1Þ,� Tnðan�1Þ
BCjx¼a

3
7777777777777775

2
6666666666666666664

CT
1

CT
2

::::::

CT
i

CT
iþ1

::::::

CT
n�1

CT
n

3
7777777777777777775

¼ 0 (21)
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where Ti (ai) and Ti+1 (ai) can be given as

TiðaiÞ ¼

2
6666664

AT
i,N ðaiÞ

AT
i,ZðaiÞ

AT
i,W ðaiÞ

AT
i,J ðaiÞ

3
7777775
,Tiþ1ðaiÞ ¼

2
6666664

AT
iþ1,N ðaiÞ

AT
iþ1,ZðaiÞ

AT
iþ1,W ðaiÞ

AT
iþ1,J ðaiÞ

3
7777775

(22)

The critical buckling force, FPcr, can be obtained by
setting the determinant of the 4n × 4n matrix in equation
(21) to zero. By using the bisection method to solve the
nonlinear eigenvalue buckling equation, the solution of
the lowest value is the first-order critical buckling load of
the beam with cutouts.

Finite element model for verification

Detailed results corresponding to buckling of plates with
cutouts are very limited from open literature. In order to
verify the outcome of the proposed semi-analytical model, a
FE model using ANSYS37 was developed to compare the
results, including a parametric study. In the FE model,
SHELL181, a four-node element with six degrees of
freedom at each node, was chosen. It is suitable for analysis
of thin to moderate thick shell structures with large rotations
and strains. In this work, the quadrilateral gridding was
adopted to mesh the perforated plate.

EdgesAB andCD, as shown in Figure 1, were set to either
simply supported or clamped boundary condition and edges
AD and BC to free of constraints. A uniformly distributed
compressive load was applied on AB and CD. Convergence
tests were carried out to ensure good results. Figure 4 shows
a typical mesh pattern of a quarter of the model.

Results and discussions

Validation with the FE Model

The FE model outcome was first compared with published
literature results5 of solid plates with no hole (d = 0) as
shown in Table 1 for various values of the length-to-width
ratio a/b and the thickness-to-width ratio h/b. Table 2 gives
the comparison with Ref. 24 for perforated plates of dif-
ferent cutout-to-width ratio d/b. Good agreement can be
observed. The FE model was therefore used as the
benchmark for comparison with the proposed semi-
analytical model.

Division number of the sub-beams

As the division number of the sub-beams in the proposed
model, N (= n�2) can be selected differently, the influence
of the choice was investigated. Due to the geometric
symmetry, the division was always evenly numbered and
tested from 4 to 18, respectively, with the results compared
to the FEM results.

Considering the geometrical parameters in practical
engineering applications, cases of three different plate
thickness were chosen for the relative errors in the critical
buckling load with respect to the division number, as shown
in Figure 5. For the thinner plate (Figure 5(a), h/b = 0.001

Figure 4. Finite element meshes of perforated plates with opposite free edges.

Table 1. Comparison of FE results of solid plates (d = 0) for boundary condition SFSF a/b = 0.5–2, h/b = 0.001 and 0.01.

h/b a/b 0.5 1 1.5 2 2.5

0.001 FEA 726.5400 177.4200 77.6310 43.2470 27.5130
Literature 5 724.7200 177.2958 77.6034 43.2355 27.5062
Relative error 0.2511% 0.0700% 0.0355% 0.0265% 0.0247%

0.01 FEA 7.2551 × 105 1.7733 × 105 7.7606 × 104 4.3236 × 104 2.7507 × 104

Literature 5 7.243 × 105 1.7716 × 105 7.7538 × 104 4.3199 × 104 2.7484 × 104

Relative error 0.1670% 0.0959% 0.0876% 0.0856% 0.0836%

Table 2. Comparison of FE results for boundary condition SFSF,
a/b = 1 and h/b = 0.001.

d/b 0.2 0.3 0.4 0.5 0.6

FEA 158.17 139.68 119.61 99.51 79.89
Literature24 157.51 139.08 119.16 99.24 79.69
Relative error 0.42% 0.43% 0.38% 0.27% 0.25%

Fu and Wang 5



and Figure 5(b), h/b = 0.01), for any division number from
4 to 18, the relative errors are always within 5%. For the
thicker plate (Figure 5(c), h/b = 0.1), the relative errors also
will not exceed 6% for any division number from 4 to 18.

As shown in Figure 5, the relative errors to the corre-
sponding FEA results are broadly small, for instance, within
5% for a division number in the range from 4 to 12 or 4 to 18
for 6% relative error. In other words, results are not sensitive
to the selection of the division number, and a larger one does
not necessarily help to improve accuracy. The recom-
mended number is between 4 and 18 for calculation
efficiency.

Applicability of various boundary conditions

Four different boundary conditions were considered,
starting from the left side in the clockwise direction, SFSF,
CFCF, SFCF and CFFF. The critical buckling loads cor-
responding to the four boundary conditions are illustrated in
Figure 6. Five values of the aspect ratio (a/b = 1–9) were
analysed for d/b = 0.4 and h/b = 0.1. Results from the
proposed model are virtually identical, especially as the
aspect ratio a/b is from 6 to 9, to those of the corresponding
FE model, and the aspect ratio will be chosen from 1 to 5 in
the following parametric analysis. The critical buckling
load can be seen reducing with respect to the aspect ratio.

Effect of geometrical parameters on the critical
buckling load

Three non-dimensional geometrical parameter sets, that is,
the length-to-width (aspect) ratio a/b, the thickness-to-
width ratio h/b and the cutout-to-width ratio d/b, were
studied, respectively, for their influence on the critical
buckling load with the boundary condition case SFSF.

The aspect ratio a/b. Five values of the aspect ratio (a/b = 1–
5) were considered with two cutout-to-width ratios (d/b=0.2
and 0.6) and two thickness-to-width ratios (h/b = 0.001 and
0.1), respectively, as shown in Figure 7. It illustrates that the
critical buckling load reduces with respect to the aspect
ratio. And the orders of the magnitude of the critical
buckling load are different due to the difference in the plate
thickness, but the changing trend of the critical buckling
loads is similar.

A bigger cutout understandably yields a lower critical
buckling load due to the long and thin successive sub-
beams above and below the cutout. And the critical
buckling loads of the two different-sized cutouts show a
converging trend in terms of the aspect ratio. This is due to
the increasing slenderness of the plate in terms of the aspect
ratio in which buckling becomes more of a global effect and
less sensitive to local features such as the cutout.

Figure 5. Relative errors of the critical buckling load in terms of the sub-beam dividing number.
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The thickness-to-width ratio h/b. The influence of the
thickness-to-width ratio was studied in five cases (h/b =
0.001–0.1) with two cutout-to-width ratios (d/b = 0.2 and
0.6) and two aspect ratios (a/b = 1 and 5). The critical
buckling loads are given in Figure 8; for the thickness-to-
width ratio h/b and the critical buckling load, the load can be
seen to increase with respect to the thickness-to-width ratio
due to the higher moment of inertia of the cross-section of
thicker plates. A bigger cutout yields a lower buckling load.

And a bigger aspect ratio leads to a lower critical buckling
load, as the slenderness increases.

The cutout-to-width ratio d/b. The effect of the cutout-to-
width ratio (d/b = 0–0.6) on the critical buckling load is
given in Figure 9, where two thickness-to-width ratios (h/
b = 0.001 and 0.1) and two aspect ratios (a/b = 1 and 5) were
considered, respectively. The critical buckling load of solid
plates with no hole (d/b = 0) are also included for

Figure 6. Critical buckling loads versus the aspect ratio under various boundary conditions, d/b = 0.4 and h/b= 0.1.

Figure 7. Effect of the aspect ratio on the critical buckling load, d/b = 0.2 and 0.6.
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Figure 8. Effect of the thickness-to-width ratios on the critical buckling load.

Figure 9. Effect of the cutout-to-width ratio on the critical buckling load, a/b = 1 and 5. Note that all Figures 7 to 9 show good agreement
between the results of the proposed model and FEM for all the cases discussed.

Figure 10. Plate with opposite free edges containing two different cutouts.
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comparison. It can be seen that the critical buckling load
decreases with the cutout diameter over the diameter range
considered. As expected, a bigger cutout weakens the plate
more, leading to a lower buckling strength. The aspect ratio
also has a significant effect on the critical buckling load with
scale changes in the magnitude of the buckling load for both
plate thicknesses.

Applicability of different cutouts
1-Side Cutouts. The proposed new model can also be

applied to analyse plates with side semi-circle cutouts and
rhombic cutouts. Figure 10(a) shows two semi-circular
cutouts of the same diameter on the opposite sides of the
beam parallel to the beam axis, and the ligament part be-
tween the two-sided cutouts and can be divided into sub-
beams and treated as Timoshenko beams. Figure 10(b)
shows one rhombic cutout with the length of the long di-
agonal line, e, and the length of the short diagonal line, f.
The successive Timoshenko sub-beams of the plate can be
obtained by the same method as that for the central circular
cutout shown in Figure 2. As a case study, five values of the
aspect ratio (a/b = 1–5) were analysed for the critical
buckling load with one cutout-to-width ratio d/b = 0.4 and
two thickness-to-width ratios (h/b = 0.001 and 0.1). As
illustrated in Figure 11, results from the proposed model are
very close to those of the corresponding FE model. The
critical buckling load reduces with respect to the aspect
ratio. And the plate thickness makes a big difference as
shown by the scale of the magnitude of the buckling load.
The overall trend is similar to Figure 7 for a central circular
cutout.

Conclusions

A new semi-analytical modelling technique based on the
Timoshenko shear beam theory was introduced to calculate
the critical buckling load of perforated plates with opposite
free edges. The rectangular plate was treated as a series of
successive sub-beams using the Timoshenko beam theory.
Plates with a central circular cutout were discussed as case
studies, and the results were compared with those obtained
from FEM, showing good agreement. The selections of the
division number of the sub-beams can be flexible within a

practical range from 4 to 18 for computation, over which a
good accuracy can be maintained (within an error of 6% to
the FEA results) with little sensitivity shown in the results to
the division number selection. Overall, the proposed model
is relatively simple and straightforward to use for calcu-
lation of the buckling load of perforated plates with op-
posite free edges with cutouts.

Calculations show that with the boundary condition
SFSF, the critical buckling load increases by reducing the
aspect ratio a/b and increasing the thickness-to-width ratio
h/b, respectively, and by the cutout-to-width ratio d/b in an
approximately linear relationship or a weak quadratic one in
normal linear scales.

One of the clear advantages of the proposed model is its
capacity to handle different geometries of cutouts. Cutouts
of elliptical, rhombic, evenly sided polygonal and other
shapes of profile with a symmetric character to the axis of
the perforated plates can be analysed accordingly, including
both central and sided cutouts. In fact, one may combine
different geometric shapes together for the cutouts.

However, it needs to be pointed out that specifically for
rectangular-shaped cutouts, if the cutout-to-width ratio is
big, the proposed model will not give accurate results. As
the difference in the heights of the neighbouring sub-beams
along the vertical cut line could become too big, there
would be a significant jump in the distributed load between
the neighbouring sub-beams, yielding big errors. This
particular case remains to be studied further.
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