Table List

 Table 1 Schematic diagram of joint setting, geometric parameters and loading conditions

Table 2 Schematic diagram of joint setting, geometric parameters and loading conditions of finite
 element model in numerical simulation verification

 Table 3 Values of mechanical parameters of finite element model in validation of numerical simulation

Table 4 Comparison of failure patterns between numerical tests and laboratory physical tests

Table 5 Parameter value and calculation condition setting of numerical tests on size effect of CJBs

Table 6 Parameter value and calculation condition setting of numerical tests on anisotropy of CJBs

Table 7 Values of mparameters of rock and joint in CJBs

 Table 1 Schematic diagram of joint setting, geometric parameters and loading conditions

Table 2 Schematic diagram of joint setting, geometric parameters and loading conditions of finite
 element model in numerical simulation verification

Material type	Heterogeneity index	Elastic modulus (<i>GPa</i>)	Uniaxial compressive strength (<i>MPa</i>)	Poisson's ratio	Friction angle (°)
Basalt	5	60	120	0.2	56.15
Joint	5	15	30	0.25	36

Table 3 Values of mechanical parameters of finite element model in validation of numerical simulation

Table 4 Comparison of failure patterns between numerical tests and laboratory physical tests

6.851112e+000 6.043052e+000 5.234991e+000 4.428529=000 2.810809e+000 2.810809e+000 3.618869e+000 3.868525-001 4.214554e-001 Min Principal Stress (MPa Step 940		
The minimum principal st diagram of the numeric specimen in the direction parallel to column axis $=30^{\circ}$)	The failure patterns of laboratory physical specimen in $\beta = 30^{\circ}$, the direction parallel to column axis (Ji et al. 2017)	The failure patterns of laboratory physical specimen in $\beta = 30^\circ$, the direction parallel to column axis (Xiao et al., 2014)
- 4.685297e+000 - 4.126353e+000 - 3.08466e+000 - 3.08466e+000 - 3.08466e+000 - 4.49523e+000 - 1.331536e+000 - 7.726932e-001 - 3.151354e+001 - 3.451334e+001 Mim Principal Stress (MPa		
The minimum principal st diagram of the numeric specimen in the directio parallel to column axis $=45^{\circ}$)	The failure patterns of laboratory physical specimen in $\beta = 45^\circ$, the direction parallel to column axis (Ji et al. 2017)	The failure patterns of laboratory physical specimen in β =45°, the direction parallel to column axis (Xiao et al., 2014)

Size effect	Parameter value and calculation condition setting					
Model sizes (<i>m</i>)	$0.5 \times 0.5, 1 \times 1, 2 \times 2, 3 \times 3, 4 \times 4$					
Heterogeneity indexes	5, 10, 20, 200					
Column diameters (cm)	20, 40, 60, 80					
Elastic moduli of						
columnar joint (GPa)	5.75, 7.5, 15, 22.5, 50					
Residual strength	0 1 0 5 0 75 1					
coefficients of joints	0.1, 0.3, 0.75, 1					
Model boundaries	The case of plane stress, the case between plane stress and plane strain, the case of plane strain					

 Table 5 Parameter value and calculation condition setting of numerical tests on size effect of CJBs

Anisotropy	Para	ameter va	lue and o	calculat	ion cond	lition se	tting
Column dip angles β (°)	0,	15,	30,	45,	60,	75,	90
Heterogeneity indexes		5,	10,	20,	20)0	
Column diameters (<i>cm</i>)		20	, 40	, 60), 8	30	
Elastic moduli of joints		2 75	75	15	22.5	20	
(GPa)		3.75,	7.5,	15,	22.3,	30	
Residual strength		0.1	0.5	() 75	1	
coefficients of joints		0.5	0.5, 0.75,				
The ratios of shift							
distance of the second		0	, 20	, 40	, 50)	
joint set (%)							
The irregularity degrees	Complete	ly regular	column	s, appro	ximatel	y regula	r columns,
of columns	moderately regular columns, irregular columns						
	The case of plane stre			the case	betwee	n plane	stress and
wodel boundaries		plane st	train, t	he case	of plane	strain	

 Table 6 Parameter value and calculation condition setting of numerical tests on anisotropy of CJBs

Material type	Heterogeneity index	Elastic modulus (<i>GPa</i>)	Uniaxial compressive strength (<i>MPa</i>)	Poisson's ratio	Friction angle (°)
Basalt	5, 10, 20, 200	60	120	0.2	56.15
Joint	5	3.75, 7.5, 15, 22.5, 30	30	0.25	36

 Table 7 Values of mechanical parameters of rock and joint in CJBs